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ABSTRACT

We give an almost complete characterization of the hardness of
2-coloring j-chromatic graphs with distributed algorithms, for a
wide range of models of distributed computing. In particular, we
show that these problems do not admit any distributed quantum
advantage. To do that:

(1) We give a new distributed algorithm that �nds a 2-coloring

in j-chromatic graphs in Õ(=
1
U ) rounds, with U =

⌊
2−1
j−1

⌋
.

(2) We prove that any distributed algorithm for this problem

requires Ω(=
1
U ) rounds.

Our upper bound holds in the classical, deterministic LOCALmodel,
while the near-matching lower bound holds in the non-signaling
model. This model, introduced by Arfaoui and Fraigniaud in 2014,
captures all models of distributed graph algorithms that obey phys-
ical causality; this includes not only classical deterministic LOCAL
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and randomized LOCAL but also quantum-LOCAL, even with a
pre-shared quantum state.

We also show that similar arguments can be used to prove that,
e.g., 3-coloring 2-dimensional grids or 2-coloring trees remain hard
problems even for the non-signaling model, and in particular do
not admit any quantum advantage. Our lower-bound arguments
are purely graph-theoretic at heart; no background on quantum
information theory is needed to establish the proofs.
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1 INTRODUCTION

In this work, we settle the distributed computational complexity
of approximate graph coloring, for deterministic, randomized, and
quantum versions of the LOCAL model of distributed computing.

In brief, the setting is this: We have an input graph � with =

nodes. Each node is a computer and each edge represents a com-
munication link. Computation proceeds in synchronous rounds:
each node sends a message to each of its neighbors, receives a mes-
sage from each of its neighbors, and updates its own state. After )
rounds, each node has to stop and announce its own output, and
the outputs have to form a proper 2-coloring of the input graph � .
If the chromatic number of � is j , in this setting it is trivial to �nd
a j-coloring in ) = O(=) rounds, as in O(=) rounds all nodes can
learn the full topology of their own connected component, and they
can locally �nd an optimal coloring by brute force without any
further communication. But the key questions are: How well can
we color graphs in) ≪ = rounds? And how much does it help if we
use quantum computers that can exchange quantum information,
possibly with a pre-shared entangled state?

1.1 Main Result

We show that for all constants 2 , j , and U , it is possible to �nd a

2-coloring of a j-colorable graph in ) = Õ(=1/U ) communication
rounds if and only if

U ≤
⌊
2 − 1

j − 1

⌋
.

For example, if the graph is bipartite (j = 2), this means that

the complexity of 2-coloring is Θ̃(=) rounds, 3-coloring is Θ̃(
√
=)

rounds, and 4-coloring is Θ̃(=1/3) rounds. Here we use Õ and Θ̃

to hide polylogarithmic factors, that is, our results are tight up to
polylogarithmic factors.

Perhaps the biggest surprise is that this result holds for a wide
range of models of distributed computing: the answer is the same
for deterministic, randomized, and quantum versions of the LOCAL
model, and it holds even if the algorithm has access to shared
randomness or pre-shared quantum state (as long as the quantum
state is prepared before we reveal the structure of graph �).

In particular, we show that there is no distributed quantum ad-

vantage for approximate graph coloring in the context of the LOCAL
model, at least up to polylogarithmic factors.

1.2 Signi�cance and Motivation

Our work is directly linked to two lines of research: understanding
the quantum advantage in distributed settings, and the complexity
of distributed graph coloring in classical settings.

Distributed quantum advantage. There is a long line of work [16,
22, 32–34, 40, 47, 48, 50] on quantum advantage in the CONGEST
model—this is a bandwidth-limited version of the LOCAL model.
However, much less is known about quantum advantage in the
LOCAL model.

Earlier work by Gavoille et al. [25] and Arfaoui and Fraigniaud
[4] on quantum-LOCAL brought primarily bad news: they showed
that many classical LOCAL model lower bounds still hold in the
quantum-LOCALmodel. The quantum advantage demonstrated by
[25] was limited to constant factors or required pre-shared quantum

resources. The major breakthrough was the recent work by Le Gall
et al. [35] that demonstrated that there is a problem that can be
solved in only 2 rounds using quantum communication, whereas
solving it in the classical setting requires Ω(=) rounds.

However, the problem from Le Gall et al. [35] is very di�erent
from the classical problems commonly studied in the �eld of dis-
tributed graph algorithms, and most importantly, it is not a locally
checkable problem. Locally checkable problems are graph prob-
lems in which the task is to �nd a feasible solution subject to local
constraints—perhaps the best-known example of such a problem is
graph coloring. A lot of recent work on the classical LOCAL model
has focused on locally checkable problems, and there is nowadays
a solid understanding of the landscape of the distributed computa-
tional complexity of such problems for the classical models—see,
e.g., [6–9, 13, 14, 17, 19, 23, 27, 28, 45]. However, what is wide open
is how quantum-LOCAL changes the picture.

A major open problem is whether there is any locally check-
able graph problem that can be solved asymptotically faster in
quantum-LOCAL in comparison with the classical randomized
LOCAL model, and it has been conjectured that no such problem
exists [46]. In this work we provide more evidence in support of
this conjecture: we show that various problems related to graph
coloring do not admit any signi�cant quantum advantage.

Hardness of distributed coloring. In a very recent work [2], the no-
tion of locality was studied in three di�erent settings: distributed,
dynamic, and online graph algorithms. The authors showed that for
locally checkable problems in rooted regular trees the three notions
of locality coincide, but more generally the notions are distinct. The
prime example of a problem that separates the models is 3-coloring
bipartite graphs: the distributed locality (i.e., round complexity) of
the problem is Ω(

√
=) [15], but the online locality is O(log=) [2].

While this demonstrates that there is large gap between distributed
and online settings, this also highlights a blind spot in our under-
standing of seemingly elementary questions in the classical LOCAL
model: What, exactly, is the distributed complexity of 3-coloring

bipartite graphs? Can we solve it in Õ(
√
=) rounds? And, more gen-

erally, what is the distributed complexity of 2-coloring j-colorable
graphs?

Given the prominent role graph coloring plays in distributed
graph algorithms, the state of the art is highly unsatisfactory—the
upper and lower bounds are far from each other, even if we consider
the seemingly elementary question of coloring bipartite graphs:

• As mentioned above, the complexity of 3-coloring bipartite
graphs is known to be somewhere between Ω(

√
=) and O(=).

In [15], the authors show that 3-coloring 2-dimensional grids
requires Ω(

√
=) rounds, and even though they study toroidal

grids (which are not necessarily bipartite), the same result
can be adapted to also show that 3-coloring bipartite graphs
requires Ω(

√
=) rounds. It is not known if this is tight; to the

best of our knowledge, there is no upper bound other than
the trivial O(=)-round algorithm.

• The complexity of 4-coloring bipartite graphs is only known
to be somewhere between Ω(log=) and O(=). Linial’s [37]
lower bound for coloring trees applies, so we know that
the complexity has to be at least Ω(log=), but beyond that
very little is known. The lower bound construction from [15]
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cannot be used here since it is easy to 4-color grids. To come
up with a nontrivial upper bound, it would be tempting to
use network decompositions in the spirit of Barenboim [10],
but we are lacking network decomposition algorithms with
suitable parameters, and in any case this approach cannot
produce 4-colorings or 5-colorings in > (

√
=) rounds.

In this workwe solve all these open questions, up to polylogarithmic
factors, for the general task of 2-coloring j-colorable graphs. We
show that there is plenty of room for improvement in both upper
and lower bounds. For example, in the case of 4-coloring bipartite

graphs, the right bound turns out to be Θ̃(=1/3), which is far from
what can be achieved with the state of the art outlined above.

2 CONTRIBUTIONS IN MORE DETAIL

We will now describe all of our results and contributions in more
detail; we refer to Section 3 for an overview of the proof ideas and
to the full version [20] for the proofs.

2.1 Classical Upper Bound

Let us start with the upper bound. We design new distributed algo-
rithms with the following properties:

Theorem 2.1. There exists a det-LOCAL algorithm Adet and a

rand-LOCAL algorithm Arand that, given a parameter U ∈ N, �nd

a proper vertex coloring with U (j − 1) + 1 colors in any graph with

chromatic number j , as follows:

• Adet runs in O
(
=1/U log3−1/U =

)
· (log log=)O(1) rounds.

• Arand runs in O
(
=1/U log2−1/U =

)
rounds and succeeds with

probability 1 − 1/poly(=).

We note that the algorithms do not need to know j ; it is su�cient
to know U and=. As a corollary, we can, e.g., 3-color bipartite graphs

in Õ(
√
=) rounds by setting U = 2.

The number of colors 2 = U (j − 1) + 1 may look like a rather
unnatural expression, and there does not seem to be a priori any
reason to expect that this would be tight—however, as we will see,
this is indeed exactly the right number.

2.2 Non-signaling Model

Ourmain goal is to show that the algorithms in Theorem 2.1 are opti-
mal (up to polylogarithmic factors), not only in the classical models
but also in, e.g., all reasonable variants of the quantum-LOCAL

model. To this end, we work in the non-signaling model, as de�ned
by Arfaoui and Fraigniaud [4]; this is essentially equivalent to the
i-LOCAL model de�ned earlier by Gavoille et al. [25].

The non-signaling model is a characterization of output distribu-
tions that do not violate the no-signaling from the future principle
or, equivalently, the causality principle [21]. To better understand
this, suppose we have some classical rand-LOCAL algorithm A
that runs in ) rounds and outputs a vertex coloring. Let ? (�) be
the output distribution of A when run on a graph � . The key ob-
servation is that this distribution is not arbitrary—in particular, it
must satisfy the following property:

De�nition 2.2 (Non-signaling distribution, informal version). The
output distribution ? (�) ofA is non-signaling beyond distance) if
the following holds: Let+ be a set of nodes of a graph� with |+ | = =.

det-LOCAL

↓
rand-LOCAL

↓
quantum-LOCAL

↓
NS-LOCAL

Figure 1: Four models of distributed computing that we

study in this work: we prove upper bounds in det-LOCAL

and rand-LOCAL, and we prove lower bounds inNS-LOCAL;

quantum-LOCAL is sandwiched between them.

Fix a subset of nodes* ⊆ + and consider ? (�)↾* , the restriction
of ? (�) to * . Let � [* ,) ] be the graph induced by the radius-)
neighborhood of* in � . Now modify � outside � [* ,) ] to obtain
a di�erent =-node graph� ′ while preserving� [* ,) ] = � ′ [* ,) ].
Then ? (�)↾* = ? (� ′)↾* .

Put otherwise, changes more than distance ) away from * can-
not in�uence the output distribution of* . It is not hard to see that
this holds for det-LOCAL and rand-LOCAL, even if the algorithm
has access to shared randomness. But what makes this notion par-
ticularly useful is that it is satis�ed also by the quantum-LOCAL

model, even with a pre-shared quantum state [4, 25]; see Fig. 1. In-
formally, a system that violates the non-signaling property would vi-
olate causality and enable faster-than-light communication, which
is something that quantum physics does not allow.

We use NS-LOCAL to refer to the non-signaling model. We say
that A is an NS-LOCAL algorithm that runs in ) rounds if it pro-
duces an output distribution that is non-signaling beyond distance) .
We will then prove statements of the form “any NS-LOCAL algo-
rithm for this problem requires at least ) rounds.” As a corollary,
this gives a ) -round lower bound for det-LOCAL, rand-LOCAL,
and quantum-LOCAL, even if we have access to shared random-
ness and pre-shared quantum states. This also puts limits on the
existence of so-called �nitely dependent colorings [29, 30].

2.3 Non-signaling Lower Bounds

The precise version of our lower bound result states that, for every
large enough number of nodes =, there exists a j-chromatic graph
on = nodes that is hard to color in NS-LOCAL.

Theorem 2.3. Let j ≥ 2, 2 ≥ j be integers, and let U = ⌊ 2−1j−1 ⌋.
Let Y ∈ (0, U−1U ) be a real value, and let = ∈ N with

= ≥
⌈

log Y−1

log(1 + 1
U )

⌉

· (6j + 1)U+1 − 1

6
.

Suppose A is an NS-LOCAL algorithm for 2-coloring graphs in the

family F of j-chromatic graphs of = nodes with success probability

@ > Y. Then the running time of A is at least

) = Ω

(
1

j1+
1
U

·
(

=

log Y−1

) 1
U

)

.

A key observation is that, if the parameters j , 2 , and Y in Theo-

rem 2.3 are constants, then ) = Ω(=
1
U ), which matches the upper

bound in Theorem 2.1 up to polylogarithmic factors. In particular,
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there is at best polylogarithmic room for any distributed quantum
advantage.

While Theorem 2.3 implies bounds for coloring bipartite graphs
in general, we will also use our techniques to prove bounds for
speci�c bipartite graphs. By prior work, it is known that 3-coloring
2-dimensional grids is hard in the det-LOCAL model [1, 15]. We
show that this also holds for the non-signaling model:

Theorem 2.4. Let Y ∈ (0, 34 ) and # = ⌈log(Y−1)/log( 43 )⌉. Let
=1, =2 ∈ Nwith ⌊=1

# ⌋ ≥ 5 and ⌊=2
# ⌋ ≥ 5. SupposeA is anNS-LOCAL

algorithm that 3-colors =1 × =2 grids with probability @ > Y. Then,

the running time of A is at least

) = Ω

(
min(=1, =2)
log Y−1

)
.

This result is easiest to interpret in the case of a square grid, i.e.,
=1 = =2. Then the lower bound (for constant Y) is simply Ω(

√
=),

where = = =1 ·=2, and this is trivially tight since the diameter of the
grid is O(

√
=); hence the problem can be solved in O(

√
=) rounds

with a det-LOCAL algorithm. In particular, there is no room for
distributed quantum advantage (beyond possibly constant factors).

Finally, we revisit the classical result by Linial [37] about the
hardness of coloring trees. We show that essentially the same lower
bound holds in the non-signaling model:

Theorem 2.5. Let 2 ≥ 2 be an integer, and Y ∈ (0, 1). Suppose
A is an NS-LOCAL algorithm that 2-colors trees of size = ∈ N with

probability @ > Y. Then, for in�nitely many =, as long as Y > 4−= , the
running time of A is at least

) = Ω
(
log2 = − log2 log Y

−1) .

3 KEY NEW IDEAS AND TECHNIQUES

In this section, we will give an informal overview of the key new
ideas and techniques that we use to prove Theorems 2.1, 2.3, 2.4
and 2.5. We refer to the full version of the paper [20] for the formal
proofs.

3.1 Classical Upper Bound

Background and prior work. The only existing distributed algorithm
for solving the approximate coloring problem in general graphs
that we are aware of is a folklore algorithm based on network de-

compositions [5, 38]. For parameters U and 3 , an (U,3)-network
decomposition is a partition of the nodes + of a graph � = (+ , �)
into clusters of (weak) diameter at most 3 together with a proper
U-coloring of the cluster graph; recall that the weak diameter of
a cluster � ⊆ + is the maximum distance in � between any two
nodes in � .

Given such a decomposition, it is not hard to see how to color
graphs of chromatic number j with Uj colors in 3 rounds by using
disjoint color palettes for clusters of di�erent colors: For every
8 ∈ [U], the nodes in a cluster of color 8 use colors from the palette
{8, U + 8, 2U + 8, . . . }. Each such cluster � is colored by having a
leader node collect the entire topology of the cluster and then brute
forcing an optimal coloring i� of the cluster. Since the graph has
chromatic number j , coloring i� uses at most j colors. Finally,
the leader broadcasts the coloring and assigns each node E in � the
color U (i� (E) −1) +8 . This results in a proper coloring with at most

Uj colors. In addition, the nodes do not require knowledge of j in
advance. This algorithm has for example been used by Barenboim
[10] to compute a non-trivial approximate coloring in a constant
number of rounds. Our algorithm is based on two new ideas that
are outlined below.

New ingredient 1: New network decomposition algorithms. Network
decomposition algorithms mostly focus on optimizing the product
of U and 3 (as most applications of network decompositions require
time proportional to U3) or on minimizing the number of cluster
colors for a given maximum cluster diameter (e.g., [5, 10, 26, 38, 45]).
We are interested in network decompositions with a �xed number
of cluster colors U that is beyond our control and where we wish
to optimize the value of 3 . By using existing clustering techniques
[18, 26, 42, 45] with some minor adaptations, we give randomized
and deterministic algorithms that, for any parameter Y > 0, compute
a set of non-adjacent clusters such that the cluster diameter of each
cluster is polylog(=)/Y and the total number of unclustered nodes is
at most Y=. For every integer U , this can in turn be used to compute

an (U,3)-network decomposition with 3 = Õ(=1/U ).
Let us illustrate the idea for the case U = 2. Setting Y = 1/

√
=, we

compute a set of non-adjacent clusters of diameter Õ(
√
=) such that

at most O(
√
=) nodes remain unclustered. The constructed clusters

can all be colored with color 1 and the connected components of
the unclustered nodes form the clusters of color 2. We thus obtain
a (2, Õ(

√
=))-network decomposition in time Õ(

√
=) and one can

therefore color graphs of chromatic number j with 2j colors in

Õ(
√
=) rounds.

New ingredient 2: The hiding trick. We show how to reduce the
number of colors used while keeping the round complexity the
same. The main new idea is what we call the hiding trick: First we
make sure that clusters of the same color are at least four hops
apart; this can be achieved by running a network decomposition

protocol on �3. For simplicity, assume that we have a (2, Õ(
√
=))-

network decomposition. Let � be a cluster of color 1. We �rst
extend � to an extended cluster �1 that includes all unclustered
nodes that are adjacent to � . Next we �nd a proper j-coloring of
�1 using colors {1, . . . , j} by brute force. Finally, any boundary
node of �1 that has color j is removed, thus yielding a cluster �0

with � ⊆ �0 ⊆ �1. Note that �0 is colored using at most j colors
and that and all boundary nodes of �0 have a color di�erent from
j . We have e�ectively hidden the color j inside the cluster. Now
we continue with the rest of the process and can safely use colors
{j, . . . , 2j − 1} to color the uncolored nodes in clusters of color 2.
The end result is a proper (2j − 1)-coloring, and the running time

is simply a constant times the cluster diameter 3 = Õ(
√
=). With

this strategy, for instance, we can compute a 3-coloring of bipartite

graphs in Õ(
√
=) rounds.

Theorem 2.1 is in essence a formalization and generalization of
the hiding trick. We can hide one color in each cluster and therefore
reuse one of the colors for all of the U cluster colors. This results in
a coloring with U (j − 1) + 1 colors. In addition, if one chooses the
color palettes carefully, it is not necessary for the nodes to know j

beforehand. At �rst this may seem like an ad-hoc trick that cannot
possibly be optimal—after all, we are saving only one color in each
step. However, our matching lower bound shows that the hiding
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trick is essentially the best that we can do in distributed coloring,
even if we have access to quantum resources.

3.2 Non-signaling Lower Bounds

Prior work on classical lower bounds. As a warm-up, let us �rst see
how one could prove a lower bound similar to Theorem 2.3 for
classical models. For concreteness, let us focus on the case j = 2

and 2 = 3 in the det-LOCAL model. Then U = 2, and we would like
to show that 3-coloring bipartite graphs requires Ω(

√
=) rounds.

Here we can make use of existential graph-theoretic arguments
similar to the one already used by Linial [37]. LetA be a det-LOCAL
algorithm that purportedly �nds a 3-coloring in bipartite graphs in
) (=) = > (

√
=) rounds. Now suppose that we are able to construct a

graph � on = nodes with the following properties:

(1) � is locally bipartite: for any node E of� , the subgraph of�
induced by the radius-Θ(

√
=) neighborhood of E is bipartite.

(2) � is not 3-colorable: the chromatic number of � is at least 4.

The graph � is not bipartite, but (since A operates in the LOCAL
model) we can apply A to � anyway and observe what happens.
As the chromatic number of � is at least 4, certainly A cannot
3-color � ; hence there has to be at least one node E such that in
the local neighborhood - of E the output of A is not a valid 3-
coloring. However, by assumption, the local neighborhood of E up
to distance Θ(

√
=) is bipartite, so with some cutting and pasting we

can construct another graph� ′
= (+ , �′) on the same set of nodes

such that � ′ is bipartite and the graph induced by the radius-) (=)
neighborhood of - is the same in � and � ′. Hence the output of
A in - is the same in both graphs, which means A produces an
invalid coloring in� ′ (which is bipartite) in the neighborhood - .
The key point in this argument is the existence of the cheating graph
� that “fools” A as A cannot locally tell the di�erence between �
and the valid input graph � ′.

New ingredient 1: Bogdanov’s construction. To apply the proof strat-
egy outlined above, we need a suitable construction of a cheating
graph. It turns out we canmake direct use of Bogdanov’s [12] graph-
theoretic work—this is a 10-year-old result, but so far this seems
to have been a blind spot in the research community, and we are
not aware of any lower bounds in the context of distributed graph
algorithms that make use of it.

Together with our new algorithm from Theorem 2.1, this gives a
near-complete characterization of the complexity of 2-coloring j-
colorable graphs in det-LOCAL. A similar argument applies (with
some adjustments) to the rand-LOCAL model as well; in particular,
we can exploit the independence of the output distribution between
well-separated subgraphs of the input graph to boost the failing
probability of an algorithm (see the full version [20] for the details).

New ingredient 2: Defining cheating graphs forNS-LOCAL. Although
proof techniques based on cheating graphs are commonly used in
the context of det-LOCAL and rand-LOCAL, we stress the same
line of reasoning does not hold in quantum-LOCAL or NS-LOCAL.
In fact, in the context of NS-LOCAL new challenges emerge, which
we discuss later in this section. Our new proof strategy overcomes
these issues: it builds on the idea of cheating graphs, but it allows us
to directly derive a lower bound for NS-LOCAL. To the best of our
knowledge, this is the �rst work establishing that Linial’s argument

[37] can be adapted to more general non-signaling models. This is
one of our main technical contributions.

We present a new de�nition of a cheating graph that is applicable
in NS-LOCAL. Suppose we are interested in a locally checkable
problem P in graph family F .

De�nition 3.1 (Cheating graph, informal version). Consider a suf-
�ciently large # > 0. A graph � is a cheating graph for (P, F )
if

(1) problem P is not solvable on � ;

(2) for a suitable : , we can cover� with : subgraphs� (1) , . . . ,� (: )

such that P is solvable over each of the graphs induced by their
radius-) (=) neighborhoods, where = = |+ (�) | · # ;

(3) we can take any # subgraphs� (G1 ) , . . . ,� (G# ) together with
their radius-) (=) neighborhoods, possibly with replacement,

form their disjoint union �̃ , and �nd a graph � ∈ F of size =

that contains an induced subgraph isomorphic to �̃ .

See [20] for the formal version. We show that the existence of
graphs of arbitrarily large size with the above properties directly
implies a lower bound equal to ) to the problem P over the graph
family F that holds also in NS-LOCAL.

We note that the precise requirements for : and # depend on ) :
to prove Theorem 2.5 we exploit the fact that when ) is small we
can a�ord a large : , while for Theorems 2.3 and 2.4 we deal with a
large) , and then it will be important to construct a cheating graph
with a constant : .

Our de�nition of a cheating graph is somewhat technical, but
through three examples we demonstrate that this is indeed an
e�ective way of proving lower bounds.

New ingredient 3: New analysis of Bogdanov’s construction. While
in the classical models we could directly apply Bogdanov [12] as a
black box, this is no longer the case inNS-LOCAL. Nevertheless we
show that the construction of [12] indeed gives a cheating graph
for 2-coloring j-chromatic graph.

It is known that the graph constructed by [12] is locally j-
chromatic, but globally has chromatic number greater than 2 , imply-
ing property (1) in De�nition 3.1. We further go through the details
of the construction and prove that the graph also satis�es proper-
ties (2) and (3) from De�nition 3.1—these are properties outside the
scope of [12]. This then yields Theorem 2.3.

New ingredient 4: New analysis of quadrangulations of the Klein

bo�le. We make use of properties of quadrangulations of the Klein
bottle [3, 43, 44] to construct a family of graphs that is locally grid-
like but is not 3-colorable. We show that such quadrangulations
give cheating graphs for 3-coloring grids, from which we obtain
Theorem 2.4.

New ingredient 5: New analysis of Ramanujan graphs. We revisit
the construction of Ramanujan graphs [39], that is, high-girth and
high-chromatic regular graphs, which Linial [37] used in his lower-
bound proof. Again, we show that it provides us with a cheating
graph (De�nition 3.1) for 2-coloring trees, and Theorem 2.5 follows.

Discussion. While quadrangulations of the Klein bottle and Ramanu-
jan graphs have been used in prior work to prove lower bounds
for the classical models, by e.g. Aboulker et al. [1], Linial [37], we
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remark that to our knowledge, this is the �rst time that the appli-
cability of Bogdanov’s graph-theoretic work [12] in the context of
distributed computing and quantum computing lower bounds is
recognized (in spite of it being a 10-year-old result).

We also note that the classical version of Theorem 2.4 by [15]
uses fundamentally di�erent proof techniques: the argument in
[15] is primarily algorithmic, while our proof is primarily graph-

theoretic. The algorithmic proof from the prior work seems to be
fundamentally incompatible with the NS-LOCAL model, while the
graph-theoretic proof also yields a lower bound for NS-LOCAL.
This suggests a general blueprint for lifting prior lower bounds
from det-LOCAL or rand-LOCAL to NS-LOCAL: (1) re-prove the
previous result using existential graph-theoretic arguments, and
(2) apply the cheating graph idea to lift it to NS-LOCAL.

While the proof technique developed in this work is applicable in
many graph problems, there are also problems for which cheating
graphs do not exist (e.g., sinkless orientation on 2-regular graphs).
An open research direction is developing proof strategies that can
be used to derive NS-LOCAL lower bounds for those cases.

4 LOWER BOUND TECHNIQUE IN MORE
DETAIL

Here we give a more formal description of the lower bound tech-
nique illustrated above.

Fix a su�ciently large # > 0. Consider any locally checkable
problem P over some graph family F . We want to show that,
whenever a cheating graph (De�nition 3.1) for the pair (P, F ) exists,
any ) -round algorithm solving the problem has failing probability

at least 1− (1− 1/:)# , where : is the size of the subgraph cover of
the cheating graph.

Let� be the cheating graph. For simplicity, we can think of P as
the 3-coloring problem, and F to be the family of bipartite graphs.
Provided that F respects some natural properties, properties (1)
and (2) from De�nition 3.1 ensure that we can get a lower bound
in rand-LOCAL. Indeed, assume there is a ) -round randomized
algorithm A that 3-colors bipartite graphs. Clearly, A fails to 3-
color� with probability 1. Hence, there is an 8★ ∈ [:] such that the

failing probability ofA over� (8★) is at least 1/: . Hence,A will fail
on any bipartite graph of at most= = |+ (�) | ·# nodes containing an
induced subgraph isomorphic to the radius-) (=) neighborhood of

� (8★) with probability 1/: . If : is not small enough (e.g., : = F (1)),
the failing probability tends to 0. In rand-LOCAL we can amplify
the failure probability as follows: Suppose F contains a graph�# of
at most = = |+ (�) | ·# nodes that contains, as subgraphs, # disjoint

copies of the radius-) (=) neighborhood of� (8★) in� . This is always
possible if F is the family of bipartite graphs. By independence,

the failing probability of A over �# is at least 1 − (1 − 1/:)# (see
Fig. 2a). Hence, such an algorithm cannot exist. The property that
F contains �# is reasonable for many natural problems (e.g., 2-
coloring j-chromatic graphs for all combinations of 2 and j) where,
given a graph for which the problem is solvable, one can connect
disjoint copies of the graphs and obtain a solvable instance of the
problem.

However, as we anticipated, in theNS-LOCALmodel some issues
arise:

(i) If two graphs � and � have di�erent sizes, then even if they
share two identical subgraphs � ′ and � ′ with isomorphic
radius-) neighborhoods, a non-signaling output distribution
is not guaranteed to be identical over� ′ and � ′; this is due to
the no-cloning principle [21, 41, 49].

(ii) If we look at the output distributions for two subsets of nodes
- and . , then even if - and . are far from each other, we can-
not assume that the outputs of these subsets are independent.

Issue (i) puts some limits on the choice of the graph used to
“fool” the algorithm, while issue (ii) makes it necessary to deal with
possible dependencies among di�erent parts of the input graph.
Such issues are the reason why we require the cheating graph to
satisfy property (3) in De�nition 3.1.

To solve issue (i), we consider a graph that is the disjoint union
of # copies �1, . . . ,�= of the cheating graph � : such graph has
|+ (�) | · # vertices, exactly the same as the graph of property (3)
from De�nition 3.1. Consider now any NS-LOCAL algorithm A
that 3-colors bipartite graphs with locality ) , and apply it to the
graph

⊔
8∈[# ] �8 . Clearly, A will fail to solve the problem in each

� 9 with probability 1. At this point, we cannot continue as before:
while it is true that in each � 9 we can �nd an index 8★ such that

the probability of A failing in �
(8★)
9 is at least 1/: , we cannot use

independence to increase the failing probability.
Property (3) ensures that, for a su�ciently large # , and for

any sequence of indices x = (G1, . . . , G# ) ∈ [:]# , there exists a
graph �x of size |+ (�) | · # that contains an induced subgraph
isomorphic to the disjoint union of the radius-) neighborhoods of

� (G1 ) , . . . ,� (G# ) . However, correlations among these subgraphs
of �x might hold. To overcome this issue, we need to consider all

possible sequences of subgraphs�
(G1 )
1 , . . . ,�

(G# )
#

at the same time,

where x = (G1, . . . , G# ) ∈ [:]# (see Fig. 2b). Fix a total order for the

elements in [:]# , and let its ordered elements be x1, . . . , x:# . Let

Fx9 be the event that A fails in �
(I8 )
8 , where I8 is the 8-th element

of x9 , for each 8 = 1, . . . , # . Furthermore, for each index x ∈ [:]# ,

let Ix be the set of all indices y ∈ [:]# such that y and x share
the same element at the 8-th position, for some 8 , i.e., x(8) = y(8).
Notice that, for x = (G1, . . . , G# ),⋃y∈Ix Fy describes the event that
there is an 8 ∈ [# ] such that A fails on �

(G8 )
8 .

We claim that there exists an x★ ∈ [:]# such that

Pr



⋃

y∈Ix★
Fy


≥ 1 −

(
1 − 1

:

)#
,

implying that the dependencies behave “well enough”, hence solv-
ing issue (ii). We proceed by contradiction: we assume that, for all

x ∈ [:]# ,

Pr



⋃

y∈Ix
Fy


< 1 −

(
1 − 1

:

)#
.

While

Pr



⋃

x∈[: ]#
Fx


= 1,

the events in {Fx}x∈[: ]# are not disjoint and the sum of their

probability is not 1. To better deal with the math, we de�ne Ex1 =
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Cheating graph G

G(1) G(2) G(3)

G(4) G(5) G(6)

G(8) G(9)G(7)

G(4)

G(4)

G(4)

Pr(A fails on G(4)) ≥ 1/9

Pr(A fails on HN) ≥ 1− (1− 1/9)N

Graph HN :
contains N copies
of G[NT (G

(4))]

(a) Construction for the rand-LOCAL model. For any Z (n)-round algorithm A solving the problem, there is an i★ ∈ [9] (in the �gure, i★ = 4)

such that Pr[A fails in M (i★) ] ≥ 1/9. Then, Pr[A fails on NT ] ≥ 1 − (1 − 1/9)T by independence, where NT is an admissible instance. As

long as |\ (NT ) | ≤ n, this gives the lower bound.

N copies of the cheating graph G

G
(9)
N

G
(4)
1

Graph Hx for x = (4, 3, . . . , 9)

Pr(A fails on H
x
) ≥ 1− (1− 1/9)N

Cheating graph G1 Cheating graph G2 Cheating graph GN

G
(5)
1 G

(6)
1 G

(4)
2 G

(5)
2 G

(4)
N

G
(5)
N G(6)G

(4)
1

G
(8)
1 G

(9)
1G

(7)
1 G

(8)
2 G

(9)
2G

(7)
2 G

(8)
N

G
(7)
N

G
(9)
N

G
(1)
1 G

(2)
1 G

(3)
1 G

(1)
2 G

(2)
2 G

(1)
N

G
(2)
N

G
(3)
N

G
(3)
2

G
(6)
2

Pr(A fails on ∪j∈[N ] G
(xj)
j ) ≥ 1− (1− 1/9)N for x = (4, 3, . . . , 9)

G
(3)
2

(b) Construction for the NS-LOCAL model. We start with T copies M1, . . . , MT of M and consider their disjoint union. We prove that,

in this speci�c graph, there is already a combination of indices x = (x1, . . . , xT ) ∈ [9]T (in the �gure, x = (4, 3, . . . , 9)) for which

Pr[A fails on
⋃

j∈[T ] M
(xj )

j
] ≥ 1 − (1 − 1/9)T . Then, property (3) of De�nition 3.1 ensures that we can construct an admissible instance Nx as

shown in the �gure, with |\ (Nx) | = n. By the properties of the NS-LOCAL model, since Nx and
⊔

i∈[T ] Mi share the same local view around
⋃

j∈[T ] M
(xj )

j
, A fails on Nx too with at least the same probability.

Figure 2: Illustration of the lower-bound argument based on the cheating graph M. For n = |\ (M)| · T , the problem is solvable

in each Z (n)-radius neighborhood of M ( i) , i ∈ [9], but not on M.
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Fx1 and, recursively, we de�ne

Ex9 = Fx9 \
9−1⋃

8=1

Ex8 .

Clearly the events in {Ex}x∈[: ]# are pairwise disjoint: furthermore,

it holds that
∑
x∈[: ]# Pr [Ex] = 1 as

⋃

x∈[: ]#
Ex =

⋃

x∈[: ]#
Fx .

For each x ∈ [:]# , it trivially holds that

∑

y∈Ix
Pr

[
Ey

]
+

∑

y∈[: ]# \Ix
Pr

[
Ey

]
= 1.

Moreover, for each x ∈ [:]# , we have Pr [Ex] ≤ Pr [Fx] as Ex ⊆
Fx, hence

∑

y∈Ix
Pr

[
Ey

]
< 1 −

(
1 − 1

:

)#
.

Thus,

∑

y∈[: ]# \Ix
Pr

[
Ey

]
>

(
1 − 1

:

)#
.

It follows that

∑

x∈[: ]#

∑

y∈[: ]# \Ix
Pr

[
Ey

]
> :#

(
1 − 1

:

)#
= (: − 1)# .

Also, notice that for each y ∈ [:]# the cardinality of the set{
x ∈ [:]#

�� y ∈ [:]# \ Ix
}
is (: − 1)# . Hence,

∑

x∈[: ]#

∑

~∈[: ]# \Ix
Pr

[
Ey

]
=

∑

y∈[: ]#

∑

x∈[: ]# :

y∈[: ]# \Ix

Pr
[
Ey

]

= (: − 1)#
∑

y∈[: ]#
Pr

[
Ey

]

= (: − 1)# ,

reaching a contradiction. Thus, there exists an x★ ∈ [:]# such that

Pr



⋃

y∈Ix★
Fy


≥ 1 −

(
1 − 1

:

)#
.

Property (3) of De�nition 3.1 ensures that there is a graph �x★ ∈ F
of = nodes such that �x★ contains

Gx★ =

⋃

8∈[# ]
�

(x★
8
)

8

as an induced subgraph, and �x★ and
⊔

8∈[# ] �8 share the same
radius-) (=) neighborhood around Gx★ . By the property of the
NS-LOCAL model, we get that the failing probability of A on �x★

is at least 1 − (1 − 1/:)# .
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