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ABSTRACT: We present an eflicient and scalable computational
approach for conducting projected population analysis from real-
space finite-element (FE)-based Kohn—Sham density functional
theory calculations (DFT-FE). This work provides an important
direction toward extracting chemical bonding information from
large-scale DFT calculations on materials systems involving
thousands of atoms while accommodating periodic, semiperiodic,
or fully nonperiodic boundary conditions. Toward this, we derive
the relevant mathematical expressions and develop efficient
numerical implementation procedures that are scalable on
multinode CPU architectures to compute the projected overlap
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and Hamilton populations. The population analysis is accomplished by projecting either the self-consistently converged FE
discretized Kohn—Sham orbitals or the FE discretized Hamiltonian onto a subspace spanned by a localized atom-centered basis set.
The proposed methods are implemented in a unified framework within the DEFT-FE code where the ground-state DFT calculations
and the population analysis are performed on the same FE grid. We further benchmark the accuracy and performance of this
approach on representative material systems involving periodic and nonperiodic DFT calculations with LOBSTER, a widely used
projected population analysis code. Finally, we discuss a case study demonstrating the advantages of our scalable approach to extract
the quantitative chemical bonding information of hydrogen chemisorbed in large silicon nanoparticles alloyed with carbon, a

candidate material for hydrogen storage.

1. INTRODUCTION

Approaches based on overlap' ™ and Hamilton population
analysis™* are widely used to extract chemical bonding
information in covalent material systems. The overlap
population analysis is based on partitioning the number of
electrons among distinct atoms and the orbitals around them,
whereas the total electronic energy of a molecule or a crystal is
partitioned in Hamilton population analysis. In the case of
solid-state systems, these approaches are referred to as crystal
orbital overlap population (COOP) originally discussed by
Hughbanks and Hoffmann® and crystal orbital Hamilton
population (COHP) originally suggested by Dronskowski and
Blochl>™ Traditionally, these methods®’ were used within the
framework of tight-binding linear combination of atomic
orbitals (LCAO) or linearized muffin tin orbital approaches
(LMTO)" which have minimal and a well localized atom-
centered basis set. Building on these techniques are approaches
like “balanced crystal orbital overlap population” (BCOOP)"’
and “crystal orbital bond index” (COBI)'” for robust
extraction of chemical bonding behavior in solid-state
materials. BCOOP was proposed in the context of less
localized basis sets which are close to linear dependency, while
the COBI approach was proposed for studying multicenter
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interactions via a multicenter bond index. Another established
way for analyzing chemical bonding in both molecular and
solid-state systems is by using the localized orbitals constructed
as unitary transformations of extended single-particle eigen-
states. For instance, maximally localized Wannier functions'”
(the solid-state equivalent of Foster—Boys orbitals in quantum
chemistry) and the recent Pipek—Mezey Wannier functions'*
have been used for studying bonding characterization of
crystalline and disordered materials.

Over the last few decades, plane-waves have become the
popular choice of basis sets for electronic structure calculations
due to the systematic convergent nature of the basis set,
offering spectral convergence rates to compute the ground-
state properties of interest. Recent focus for extracting
chemical bonding behavior has been on projected population
analysis'>~'® as these methods combine the advantages of
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plane-wave-based DFT methods for accurately computing the
electronic structure and minimal localized atom-centered basis
for understanding chemical bonding properties as a post-
processing step. In these methods, Kohn—Sham DFT
eigenfunctions obtained from a plane-wave calculation are
projected onto a subspace spanned by the localized atomic-
orbital basis to compute energy-resolved quantities, such as
overlap and Hamilton populations. The most popular and
widely used code based on such a projected population
analysis approach is LOBSTER.'” Here, the Kohn—Sham
eigenfunctions obtained from projector augmented wave
(PAW)-based DFT calculations using popular plane-wave-
based codes (e.g,, VASP,"” Quantum Espresso’) are projected
onto a subspace spanned by a localized atom-centered basis.
While such a strategy has been largely successful, this approach
has certain limitations in extracting chemical bonding
information. First, plane-wave-based techniques often restrict
the simulation domains to be periodic, which is incompatible
with many application problems (e.g., defects, nanoparticles,
charged systems). Furthermore, the plane-wave basis provides
uniform spatial resolution and is computationally inefficient in
the study of defects and isolated systems (e.g, molecules,
clusters, etc.) where a higher resolution is necessary to describe
particular regions of interest and a coarse resolution suffices
elsewhere. Moreover, plane-wave basis sets are extended in
real-space and involve all-to-all communication between
processors, affecting the scalability of computations on
massively parallel computing architectures, thereby restricting
the material system sizes that can be simulated to a few
hundreds of atoms. LOBSTER, which uses plane-wave
discretized Kohn—Sham wave functions as an input to conduct
projected population analysis, suffers from the above
limitations and is restricted only to bulk material systems
(periodic systems) up to a maximum of hundred atoms and
cannot be executed on more than 1 CPU node. Further, the
use of multiple codes, such as the ground-state DFT
calculation employing a plane-wave-based code like VASP or
Quantum Espresso and the subsequent population analysis
using LOBSTER code, makes the process cumbersome and
time-consuming. Kundu et al.'® recently proposed a population
analysis where the Kohn—Sham occupied eigenspace obtained
from plane-wave DFT calculations are projected onto a
localized Wannier orbital basis,"’ thereby minimizing the
projection error from plane-wave to localized atom-centered
basis (spill factor”") due to the completeness of the Wannier
functions. However, such an approach still suffers from the
plane-wave basis limitations and further adds to the complexity
of population analysis by requiring the use of three codes to
accomplish three tasks (ground-state DFT calculation by a
plane-wave code, Wannierization (using wannier90), and
finally the population analysis code). Currently, there are no
computational methods available that can perform chemical
bonding analysis from large-scale density functional theory
(DFT) calculations using a systematically convergent basis set
while also having the ability to handle complex material
systems with fully periodic, nonperiodic, or semiperiodic
boundary conditions. The aim of the current work is to fill in
this gap and provide a solution to this problem.

Addressing the aforementioned limitations, we introduce a
scalable and computationally efficient approach®”** to conduct
projected population analysis from real-space finite-element
(FE)-based density functional theory (DFT-FE) calculations.
The FE basis set is systematically convergent and strictly local,
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comprising piecewise polynomial functions of order p on
which various electronic fields are represented. In contrast to
widely used plane-wave-based DFT calculations, the use of FE
basis for DFT enables large-scale calculations (up to tens of
thousands of electrons) and accommodates periodic, semi-
periodic, and nonperiodic boundary conditions. Additionally,
the local character of the FE basis provides an inherent benefit
in terms of parallel scalability of DFT-FE calculations in
comparison to widely used DFT codes and has been tested up
to 100,000 cores on many-core CPUs** and 24,000 GPUs on
hybrid CPU—GPU architectures.”> > The proposed popula-
tion analysis methodology developed within the framework of
DFT-FE inherits these advantages and enables scalable
chemical bonding analysis in complex material systems.
Furthermore, this methodology is developed as a unified
approach that enables both Kohn—Sham DFT ground-state
calculations and population analysis to be carried out within
the same computational framework using the FE basis. The
framework opens up the possibility of extracting chemical
bonding information for the first time in sizable complex
material systems critical in many technologically relevant
applications, enabling efficient investigation of chemical
bonding interactions in various scenarios, such as large-scale
nanoparticles, layered materials with adsorbate—adsorbent
interactions, complex defect—impurity interactions, bonding
interactions between the migrating ion and the underlying
solid electrolyte lattice in the presence of an electric field, and
many more.

We propose two methodologies for computing overlap and
Hamilton populations via projected population analysis: (a)
projected orbital population analysis (pOA), which relies on
orthogonally projecting the self-consistently converged FE
discretized Kohn—Sham DFT eigenfunctions onto a subspace
spanned by a minimal atomic-orbital basis set and is similar in
spirit to LOBSTER,"” and (b) projected Hamiltonian
population analysis (pHA), which relies on orthogonally
projecting the self-consistent FE discretized Hamiltonian
onto the atomic-orbital subspace, a method motivated from
the fact that many of the reduced scaling electronic structure
codes targeted toward large-scale DFT calculations tend to
avoid explicit computation of DFT eigenfunctions with no
explicit access to these for projection.

The computational framework developed to implement the
above methods hinges on the following key steps: (i) perform
Kohn—Sham DFT ground-state calculation in DFT-FE to
compute the finite-element discretized eigenfunctions spanning
the Kohn—Sham occupied eigenspace; (ii) construct the
subspace spanned by the localized atom-centered orbitals

Wf/\,’“" (available as numerical data or analytical expressions) by

interpolating these orbitals on the underlying finite-element
grid; (iii) orthogonally project the occupied Kohn—Sham

eigenfunctions onto Wf/f“f" in the case of pOA, while
orthogonally projecting the self-consistent Kohn—Sham FE
discretized Hamiltonian onto Wg“" in the case of pHA; (iv)

compute the atom-centered orbital overlap matrix using the
Gauss—Lobatto—Legendre quadrature rule; (v) compute the
coeflicient matrices corresponding to the representation of
projected Kohn—Sham wave functions in the atom-centered

orbital basis Wﬁ/\f"b in the case of pOA, while diagonalizing the
projected Hamiltonian to obtain the eigenvector matrix in the

subspace Wld\,]"“’ in the case of pHA; (vi) using these coefficient
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matrices, evaluate the projected orbital overlap and Hamilton
population in the case of pOA and evaluate the projected
Hamiltonian overlap and Hamilton population in the case of
pHA.

We evaluate the accuracy and performance of the proposed
methods (pOA and pHA) on representative benchmark
examples involving isolated molecules (CO, H,O, O,, Si—-H
nanoparticles) and a periodic system involving a carbon
diamond supercell. We first benchmark the results from the
pOA method with those obtained from LOBSTER code, and
we find an excellent agreement with LOBSTER for the
material system sizes feasible to run on LOBSTER. We also
demonstrate the significant advantage of the pOA approach in
terms of computational time compared to LOBSTER even on
1 CPU-node on these material systems. Furthermore, we take
advantage of our parallel implementation of pOA using MPI
and illustrate the reduction in wall time of the population
analysis by ~70% when scaled up to 1120 CPU cores from 280
CPU cores on a Si nanoparticle system containing 1090 atoms.
We note that these large-scale calculations are not currently
feasible using LOBSTER. Subsequently, we compare the
accuracy and performance of the pHA approach with that of
pOA. The results obtained by the pHA approach agree very
well with those obtained by the pOA approach. We further
show the advantage of using pHA in computational wall time
compared to pOA on large-scale systems (~ 1100—2100
atoms) by employing 280—4500 CPU cores. Finally, we
discuss a case study demonstrating the usefulness of the
proposed computational framework in conducting large-scale
bonding analysis. To this end, we consider the case of the
chemisorption of hydrogen in silicon nanoparticles alloyed
with carbon, a candidate material for hydrogen storage.”®
Toward this, we conduct projected population analysis and
estimate the Si—Si and Si—H bond strength in increasing
system sizes of Si nanoparticles with and without alloying
ranging from 65 atoms to around 1000 atoms and argue the
ease of Si—Si dimerization with the increase in size of alloyed
Si nanoparticles favoring the release of H,.

The remainder of our article is structured as follows: Section
2 discusses the mathematical background and relevant finite-
element (FE) discretization aspects required for describing the
projected population analysis within the FE formalism in the
subsequent sections. Projected orbital population analysis
(pOA) is discussed in section 3, highlighting the aspects of
mathematical formulation, accuracy validation, and perform-
ance comparison results with LOBSTER. Section 4 discusses
the details of projected Hamiltonian population analysis
(pHA) and highlights the advantages of pHA over pOA. We
subsequently discuss a case study illustrating the usefulness of
large-scale chemical bonding analysis in section S, concluding
with a short discussion and outlook in section 6.

2. MATHEMATICAL BACKGROUND

In this section, we introduce the notations and discuss the key
mathematical preliminaries and the relevant finite-element
(FE) discretization aspects required for subsequently describ-
ing the projected population analysis within the FE formalism
in sections 3 and 4.

Let H denote an infinite-dimensional Hilbert space, where
we assume the Kohn—Sham eigenfunctions of the continuous
problem exist. H is equipped with inner product (:I-) over the
field of complex numbers C, and consequently, a norm |-l
induced from the inner product is defined. Let H be the
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Hermitian operator representing the Kohn—Sham Hamilto-
nian of interest defined on the M-dimensional subspace

VM cH. In other words, H € MM represents the

discretized Kohn—Sham Hamiltonian operator in V" spanned
by a suitably chosen systematically convergent basis set—plane
waves,' ”*° finite element basis,”’ >’ finite difference ap-
proach,’>*" wavelets,” etc., all which can be employed to
numerically solve the partial differential equation representing
the Kohn—Sham DFT eigenvalue problem. Consequently, the
discretized spin unpolarized DFT eigenvalue problem to be
solved for N-smallest eigenvalue—eigenvector pairs is given by

Hly) = €lw)

N,
for i=1,2,..,N with NZ;

(1)
where |y) € VM denotes the eigenfunction of  and N, is the

number of electrons in the given material system.
Extracting chemical bonding behavior using projected
population approaches requires us to define an N, -dimen-

sional subspace Wf/\j"“’ (Nop < M), spanned by the localized
non-orthogonal atom-centered auxiliary basis set {I(ﬁ” )}. These

basis functions are constructed for the given configuration of
atoms in the material system and are chosen to be minimal
such that the occupied Kohn—Sham wave functions |y;) are

well-represented in WI(Z“‘" while providing accurate insights into

the chemical bonding behavior. Various types of minimal
atomic-orbital basis functions have been used in the past, such
as Slater-type orbital exzpansions of Hartree—Fock wave
functions by Bunge et al.”’ (henceforth referred to as STO
basis by Bunge), functions fitted to PAW wave functions,'” etc.
Pseudoatomic (PA) orbitals constructed from norm-conserv-
ing pseudopotentials®* also constitute a convenient choice of
atom-centered basis sets for chemical bonding analysis, as
demonstrated in the current work.

In the current work, the discretized Kohn—Sham eigenvalue
problem in eq 1 is represented in finite-element (FE) basis,” a
strictly local and a piece-wise continuous Lagrange polynomial
basis interpolated over Gauss—Lobatto—Legendre nodal
points. We refer to our prior work’>>*** for more details on
the spectral FE discretization of the Kohn—Sham DFT
eigenvalue problem. To this end, the representation of various
fields employed in computing projected population
analysis subsequently—the Kohn—Sham wave functions
((xlyr) = w(x)) and the localized atom-centered functions

(<X|¢}, ) = ®, (x))—in the FE basis is given by

W = YN, 40 = Y N,

j=1

(2)
where N]h :1 < j £ M denote the M finite-element (FE) basis

functions spanning the M-dimensional space V. These are
strictly local Lagrange polynomials of degree p generated using
the nodes of the FE triangulation Th, with the characteristic
mesh size denoted by h. Further in eq 2, y/ and ¢ denote the
coefficients in the expansion of the i discretized Kohn—Sham
wave function (y,(x)) and the u™ atom-centered localized
basis function (¢,(x)). These coefficients constitute the nodal
values of the discretized fields represented using the FE

triangulation 77" since the FE basis functions N}h (x) satisfy the
Kronecker-delta property, i.e., N;’(xk) = 8y, where x; denotes

j=1

https://doi.org/10.1021/acs.jctc.3c00114
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the k™ nodal point of 77", The nodal values l//ij are computed we have |’//i¢> = SD¢|y/i) fori = 1, 2, .., N. We note that the

by solving the FE discretized Kohn—Sham DFT eigenvalue
problem given in eq 1. Computationally efficient and scalable
methodologies to solve this problem on massively parallel
many-core architectures have been discussed in Motamarri et
al.”* and on hybrid CPU—GPU architectures in Das et al.*®

Furthermore, in the current work, the nodal values qﬁlj are

computed from the atom-centered orbital data, which are
usually available as analytical expressions or in the form of
numerical data.

Finally, we introduce the atom-centered orbital overlap
matrix § with matrix entries S,; = (¢ |¢);), a key quantity in

evaluating projected populations, as discussed in the
subsequent sections. Using the FE representation of ¢H(x) in
eq 2, the matrix entries of S evaluated in a FE discretized
setting is given by

S=d'® with ®=M"D (3)

where @ denotes an M X N, matrix whose columns are the
components of ¢,(x) in the FE basis (see eq 2) and the M X
M matrix M denotes the FE basis overlap matrix with entries

M, = fQ A(l](x)Nq(x) dx. Efficient computation of

M2 and, subsequently, the $ matrix is crucial for evaluating
projected populations in the FE setting. We refer the reader to
the Supporting Information (see section S1.1) for more details
about the computation of M"/? and S matrices in a parallel
computing environment.

given by

3. PROJECTED ORBITAL POPULATION ANALYSIS
(POA)

Projected orbital population analysis, henceforth referred to as
pOA, relies on the orthogonal projection of numerically
computed Kohn—Sham DFT eigenfunctions onto a subspace
spanned by localized atomic orbitals to extract the chemical
bonding behavior, and is in the spirit of Sanchez-Portal et al.*'
and Deringer et al." In this section, we begin by discussing the
mathematical formulation and, subsequently, the related
expressions in a FE setting required for implementing pOA.
We then assess the accuracy and performance of the proposed
implementation with LOBSTER, a widely used package for
conducting projected orbital population analysis.

For clarity and simplicity, we assume that the Kohn—Sham
DEFT eigenproblem in eq 1 is solved in a simulation domain
with fully nonperiodic boundary conditions or a supercell
employing periodic/semiperiodic boundary conditions with a
I' point to sample the Brillouin zone. The extension to a
periodic unit-cell involving Brillouin zone integration via
multiple k-point sampling is not explicitly considered in this
section. However, the expressions and the benchmark results
for k-dependent projected population analysis within the
framework of pOA are discussed in the Supporting
Information (see sections S1.1 and S2.1). A schematic of the
overall implementation strategy is shown in Figure 1.

3.1. Mathematical Formulation. To begin, we introduce

the orthogonal projection operator PP VM WN""’ which

can be written as P? = Za?‘j" 12, >(S_1)(1ﬂ (¢/| with atomic-
orbital overlap matrix S,5 = <<éx|¢/i> as introduced before.
Denoting the orthogonal projection of the Kohn—Sham

eigenfunction |y) € VM onto the subspace Wg"’“’ to be I(//i{/'>,

projected Kohn—Sham wave functions {|l//(/)>} need not form

an orthonormal set and hence Lowdin symmetric orthogon-
alization®® is employed to orthonormalize the projected
Kohn—Sham wave functions. To this end, we denote the

orthonormalized projected wave function as |l/~/1{/)> where
|l/71(/)> = Z?I""’ O;l/zlu/j(/’), with O; = (ug¢|w}.¢) denoting the
matrix elements of the overlap matrix O corresponding to
"))

Projected Orbital Overlap Population (pOOP). Recalling
that (l//(/)ll// ) equals 1 and the fact that the number of electrons

N, in a given material system is related to the density of states
8(e — €;), we can write

N (o]
= Sy
N, = Z [00 <l//j |l//]. >f(€; 61:)5(6 — 6’]) de
= (4)
where f denotes the orbital occupancy function usually given

by the Heaviside function with a value of 1 if € < e (Fermi-
energy) and O otherwise. Using the relations

|l/7;/)) = Z;\""b Oi]-_l/?'ll//;/)) and |l//].{/}> = P¢|l//j), the above ex-
pression relating N, and §(e — ej) can be expressed in terms of

Kohn—Sham wave functions |l//]> € VM and the localized

atom-centered basis |¢) € V¢ in the following way:
Now Nop N N

XX X000 [ fte, e

v up kg j

Saltd, flaa>s;;<aa,|w,c>5<e ) de

533029 NeSe il AT

Im JB kg j
WS 1"l (e — €) de (s)
In the above eq S, [¢*) denotes the dual of the basis function

|¢ ), satisfying the property (¢”|¢> = (¢’ |¢>

lp*) is given by [p¥) = 3 S, |¢> Furthermore, a multi-index
u = {Ia} is introduced above to denote the localized atom-
centered basis function |gl§}4 ) as |¢, ), where a denotes the index

8,,, where

of the atomic orbital centered at a nuclear position R;. The
orbital overlap population deals with the distribution of the
total number of electrons N, among the atoms in a given
material system and can be motivated from the above equation.
To this end, the projected orbital overlap population”
pOOPy(€) associated with a source atom I and a target
atom ] # I is extracted from eq S to be defined as

pOOR,(e) = 37 3’ Re Z 0 uylb™)

i ap

Slajﬁ(z P ¢]ﬁlwk ] 5(6 — GJ)
(6)
where Re(z) refers to the real part of a complex number z.

Introducing the finite-element (FE) discretization of various
fields in eq 6, we deduce the relevant matrix expressions

https://doi.org/10.1021/acs.jctc.3c00114
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required to evaluate the overlap population in the FE setting.
To begin, we define a matrix C of size Ny, X N whose entries

Cl, = Zq O;II/Z(QZSMW/[]) are the coefficients of |l/~/;/}> expressed
in the localized atom-centered basis set {l(ﬁ/4 )}. The FE

representation of various fields in the expression for C, allows
C to be recast in the matrix form as follows
C=s"'o'vo” ¥ =M"Y ?)

where

where W denotes a M X N matrix whose column vectors are
the components of ly) in the FE basis, while the M X N
j

atomic-orbital matrix @ and the M X M FE basis overlap
matrix M are defined in the previous section. We note that the
rows of the matrix C are stored in the order of atoms and their
corresponding atom-centered orbitals for a given atom in
succession. To elaborate, the y™ row of C corresponds to the
I"™ atom and an atom-centered index a associated with this
atom I, while the jth column of this matrix corresponds to the
index of the projected Kohn—Sham wave function
(G = » N). More details related to the derivation and
efficient computation of the matrix expressions for C and O in
the FE setting can be found in the Supporting Information
(section S1.1). Finally, the projected orbital overlap population
(pOOP) associated with a source atom I and a target atom J is
evaluated by extracting the appropriate entries of the matrices
C and S and the expression is given by

By(e) = ) ) Rel

j ap

C/*C

Ta

ClpSigp}d(e =€)
(8)

Projected Orbital Hamilton Population (pOHP). Recalling
that the electronic band energy (Ey,,q) in DFT is related to the
expectation value of the Kohn—Sham Hamiltonian

H e C"™M with respect to its occupied eigenstates
|l//]> € Y™ we have

N o0
Bpung = Z} /_ e &)y Hu)3(e — ) de .
=

Following Maintz et al, 16 we now define the projected

Ny

Hamiltonian operator H* on the subspace V,* in terms of

Iy/jd’) as H? = ijl
eigenvalues (see eq 1). Using this definition of H”, we have
(l//I?’lll//) = { ~(/)|7-("7|l/7j¢> and hence the band energy E 4 can

be written as

Iw]¢)€j(u/}.4|, where ¢; denotes the DFT

N (o]
Evwa = 2 [ fes @)1 )o(e - ) de "
j=1

Along the lines of Maintz et al.,16 we consider the
orthogonalized basis {|¢§J )} obtained via Lowdin symmetric
of {Ih)} where these two sets of basis
-1/2
I/S/w |¢ )
Subsequently, the projection operator Vel expressed in terms

of {|di)}, ie, P? = Z ord |qb )(qbl can be used to recast the

above equation correspondlng to Ep,q as

. .36
orthonormalization

functions are related by the expression |z/§¢> =y
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orb
Epna = Z Z O,kl/z _1/2/ fle, &) (wl,)

=1 k,q,j=1

(BJH\D ) (bl )S(e

Norp

Z Z kl/ZOq;l/z [:f(e, eF)<l//q|q£m>

la,Jf k,q,j

U BALIC

—¢) de

—¢)de (11)

where the composite index notation y = {Ia} [v = {J#}] has
been used for the basis functions {l(,la)} to denote the a [f%]

basis function centered at the atomic position R; [R]] and
HE, ;s denotes the matrix element of HP represented in the

{WAL )} basis. The orbital Hamilton population analysis deals

with the partitioning of the band energy E,.q among the
constituent atoms in a given material system, and the projected
orbital Hamilton population® pOHP can be defined taking
recourse to eq 11. To this end, pOHPy(€) associated with a
source atom I and a target atom ] # I is extracted from eq 11

to be defined as

pOHE, (¢) = ) 3’ Re Z 05" *(wldh,)

i ap

I“J/i[z _1 2<¢]/}|Wk } 5(6 - €])
(12)

where Re(z) refers to the real part of a complex number z.
Introducing the finite-element (FE) discretization of various
fields in eq 12, we deduce the relevant matrix expressions
required to evaluate the Hamilton population in the FE setting.
Consequently, we define the N_, X N matrix C whose entries

0% | are the coefficients of ) expressed
Zlc Ia l//k l// P

I o

in the orthonormalized atom-centered basis set {|¢ )}. The FE

representation of various fields in CM allows one to recast C in
terms of the matrices C (refer to eq 7) and S (refer to eq 3),
ie, C = SYC. In all of our subsequent discussions and
computations in this work, we choose N = N_; and we
compute the N4, X N4 projected Hamiltonian matrix H?
using the coeﬂiaent matrix as H? = CDC' where the matrix D
is diagonal and comprised of the Kohn—Sham eigenvalues ¢,
obtained from the Kohn—Sham DFT problem solved in the FE
basis. We refer the reader to the Supporting Information
(section S1.1) for more details on the derivation and efficient
computation of the matrix expressions for H¥, O, and C within
the FE framework. Finally, the projected orbital Hamilton
population (pOHP) associated with the partitioning of energy
between a source atom I and a target atom ] # I is evaluated by
extracting the appropriate entries of the matrices C and H? and
the expression is given by
POHE (¢) = Y ) Re(C, HY, ;,Cplo(e - ¢)
i ap (13)

Total Computational Complexity Estimate of pOA. The
current implementation of the projected orbital population
analysis (pOA) assumes N = N_;, and thereby, the total
computational complexity can be estimated to be ~4M,, N* +

https://doi.org/10.1021/acs.jctc.3c00114
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26N° (refer to the Supporting Information, section S1.1).
Here, M, is the ratio of the total number of FE degrees of
freedom (M) to the number of MPI tasks (P) on a parallel
computing system. My, can be reduced by increasing the value
of P. Consequently, the second term in the computational
complexity becomes dominant when the number of MPI tasks
P exceeds 4M/26N.

Spilling Factor. The total spilling factor or charge spilling
factor, as introduced by Sanchez-Portal et al,”! describes the

ability of the atom-centered localized basis spanning Wg""’ to
represent the FE discretized Kohn—Sham eigenfunctions h//j>’

the self-consistent solution of the FE discretized Kohn—Sham
eigenvalue problem. The charge spilling factor is given by the
average of the L, projection errors of the Kohn—Sham
occupied eigenstates, while the total spilling factor is computed
as the average of the L, projection errors of the Kohn—Sham
eigenstates considered for the projection. To this end, we
compute the absolute total spilling factor S and absolute
charge spilling factor &, in the spirit of Stefan Maintz et al.”’
and they are expressed in terms of the diagonal entries of the
matrix O (see eq 6 in the Supporting Information) as

N N
1 1
S=—>1- WP ==>)1-o0]
NE (A VA9 N;

N,

ns
S=—) -0
occ j=1 (14)

Projected Orbital Density Error (pODE). We compute the
L, norm of the difference between the ground-state electron
density (p(x)) computed from DFT-FE using the FE
discretized occupied Kohn—Sham eigenfunctions {Jy;)} and

the electron density (p°(x)) computed from the Lowdin
symmetric orthonormalized®® projected Kohn—Sham wave

functions {|l/7'(/)>} S Wf/\,]""’. To this end, pODE is evaluated as

_ lp®) = p’®ll,
o)1l

occ

p(x) = X (xly)(yilx),

i=1

pODE where

occ

p°(x) = X (i) (i lx)

i=1
(18)

3.2. Results: Accuracy and Performance Benchmark-
ing. We now assess the accuracy and performance of the
pro;)osed pOA implementation within the framework of DFT -
FE > by comparing with LOBSTER. To this end, we employ
Quantum Espresso”’ (QE) with PAW®® pseudopotentials to
perform DFT calculations for all of the benchmark systems,
and the resulting ground-state DFT wave functions and
eigenvalues are used as input for conducting the population
analysis using LOBSTER. The calculations using QE are
performed by employing the internal implementation of
GGAY exchange-correlation of the PBE* form. However, in
DFT-FE calculations, we employ optimized norm-conserving
Vanderbilt (ONCV)** pseudopotentials from the pseudoDojo
database®' to conduct pseudopotential DFT calculations using
GGA™ exchange-correlation of the PBE** form employing the
Libxc package.*” We employ nonperiodic boundary
conditions for isolated systems and periodic boundary
conditions for crystalline systems in DFT-FE. The population
analysis methodology discussed in this section is implemented
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DFT-FE ground-state calculation
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Orthonormalized ®

Figure 1. Overview of the implementation strategy for projected
orbital population analysis (pOA) within the finite-element (FE)
framework. The strategy involves projecting the self-consistently
converged Kohn—Sham eigenfunctions obtained from DFT-FE onto
a localized atom-centered basis represented on the FE grid.
Subsequently, the overlap matrix (S), the projected Hamiltonian
(H?), and the coefficient matrices C and C are evaluated which in
turn are used to compute the projected orbital overlap population
pOOP and the projected orbital Hamilton population pOHP,
respectively.

in the DFT-FE code, and we note that the numerical
implementation of population analysis in DFT-FE takes
advantage of parallel computing architectures via MPI
(Message Passing Interface), enabling chemical bonding
analysis of large-scale systems in a unified computational
framework.

For all of the benchmark calculations reported here, the
cutoff energies in QE and mesh sizes in DFT-FE are chosen

. o _s\ B, .
such that a discretization error of O(10 s)ﬁ in ground-state

. . . 4\ E, . . .
energy and a force discretization error of O(10 )—b ;‘1 in ionic
onr

forces is achieved. The simulations and computational times
reported in this work are performed on the CPU nodes of the
supercomputer PARAM Pravega [PARAM Pravega is one of
India’s fastest supercomputers stationed at Indian Institute of
Science comprised of 584 Intel Xeon Cascade-Lake-based
CPU nodes (28,032 cores)].

In this subsection, the computations of pOOP and pOHP as
described in eq 8 and eq 13 are validated using pCOOP and
pCOHP obtained from LOBSTER in terms of both accuracy
and performance. To this end, we project the self-consistently
converged Kohn—Sham (KS) wave functions obtained from
DFT-FE onto a subspace spanned by (i) the STO basis by
Bunge™ and (i) pseudoatomic (PA) orbitals constructed from
the ONCV’" pseudopotentials. On the other hand, the
converged ground-state DFT wave functions obtained using
the PAW formalism in QE are used as input to LOBSTER,
which are in turn projected onto a subspace spanned by
localized atom-centered basis functions known as pbevasp-
fit2015.” In our benchmark studies, we consider (i) isolated
systems comprised of CO, spin-polarized O,, H,O molecules,
and a Si—H nanoparticle with 65 atoms (Si,gHys) and (ii) a 2
X 2 X 2 periodic carbon diamond supercell. To simulate
isolated systems in DFT-FE, we consider the simulation
domain large enough to allow the wave functions to decay to
zero on the boundary by employing nonperiodic boundary
conditions. In contrast, in QE, which always employs periodic
boundary conditions, we consider a simulation domain with a
sufficient vacuum to minimize the image—image interactions.
In the benchmark problem involving a bulk material system,
we consider a 2 X 2 X 2 diamond supercell employing periodic
boundary conditions using a I'-point to sample the Brillouin

https://doi.org/10.1021/acs.jctc.3c00114
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zone in both DFT-FE and QE. We now describe the
comparative study of the projection spill factors, the
population analysis energy diagrams, and the computational
costs between the proposed implementation in DFT-FE and
LOBSTER.

Accuracy Validation of pOA. The projected orbital
population analysis (pOA) implemented in DFT-FE is
compared with LOBSTER for the case of Si,gHjs and the
periodic 2 X 2 X 2 supercell of carbon. Table 1 shows the

Table 1. Comparison of Absolute Charge Spill Factor (S.)

and Absolute Spill Factor (S) Obtained Using Projections
Carried out in DFT-FE and LOBSTER

DFT-FE
LOBSTER” Bungeb DFT-FE PA°
System S S S S S S
Carbon diamond ~ 0.010  0.092  0.011  0.101  0.003  0.068
2X2X2
periodic
supercell
SiyoHj4 0.012 0.308 0.039 0.314 0.017 0.271

nanoparticle

“Projection in LOBSTER uses pbeVaspfit2015 as an auxiliary atom-
centered basis. "DFT-FE Bunge indicates the projection of finite-
element discretized Kohn—Sham eigenfunctions to STO basis by
Bunge. “DFT-FE PA basis indicates projection onto pseudoatomic
orbitals.

comparison of the absolute spilling factor S and the absolute
charge spilling factor S, for these systems, and we note that our
spill factors are in close agreement with those obtained from
LOBSTER. Furthermore, we observe that the spill factors S
and S, obtained in our pOA approach employing pseudoa-
tomic (PA) orbitals are smaller in comparison to the spill
factors obtained using STO basis by Bunge. This can be
attributed to the fact that the subspace spanned by PA orbitals
is a better representation of the FE discretized ground-state
Kohn—Sham eigenfunctions obtained from DFT-FE using
ONCYV pseudopotential calculations. We use these PA orbitals
for our subsequent comparisons with LOBSTER in this
section, and comparisons with the STO basis by Bunge are
discussed in the Supporting Information (see section S2.1).
Next, we illustrate the comparisons of population energy
diagrams in Figures 2 and 3, both for the case of a periodic 2 X
2 X 2 carbon diamond supercell and a Si,gH;4 nanoparticle. In
the case of the carbon diamond supercell, a pair of nearest
neighbor carbon atoms are picked as the source and target
atom, and the corresponding contributions of s—s and s—p
orbitals are plotted in Figure 2 both for overlap population and
for Hamilton population. A comparison of total populations is
also illustrated in this figure. These results indicate that the
energy diagrams obtained with LOBSTER match very well
with those of our current approach. The locations of the
bonding and antibonding peaks are identical to those obtained
from LOBSTER, with a slight difference in the amplitude of
the peaks that can be attributed to the use of different
pseudopotentials in LOBSTER and DFT-FE. Similar agree-
ments are observed in the case of the Si,gHz¢ nanoparticle in
which the Si atom and the nearest H atom are picked as the
source and target atoms, and the corresponding contributions
of Hy,—Si3, and H,,—Sij, orbitals are plotted in Figure 3 (see
the inset in the figure) for both the overlap population and the
Hamilton population. Comparisons of spill factors and the
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population energy diagrams for benchmark systems involving
molecules—CO, spin-polarized O,, and H,O—are discussed
in section S2.1, and we observe a close agreement of the pOOP
and pOHP results with those obtained using LOBSTER.
Comparisons with LOBSTER involving k-dependent popula-
tion analysis are discussed in the Supporting Information in the
case of a 1 X 1 X 1 orthogonal unit-cell of the carbon diamond
structure (see section S2.1).

Performance Comparison. The computational CPU times
in terms of node-secs (wall time taken on 1 compute node),
measuring the computation of the overlap population and the
Hamilton population, are tabulated in Table 2 for the proposed
pOA approach and LOBSTER. The benchmark systems
involving a 2 X 2 X 2 carbon diamond supercell and Si—H
nanoparticles—Si,oH;4 and Si;4sH,sp—are chosen for compar-
ison. The computational times indicate a significant advantage
for the proposed implementation compared to LOBSTER. For
instance, computational gains up to 2X are observed for the
case of a carbon diamond 2 X 2 X 2 periodic supercell, while,
in the case of a SiyHj4 nanoparticle, a speed-up of 14X is
observed. This higher speed-up in the case of a Si nanoparticle
using the proposed pOA approach can be attributed to the use
of nonperiodic boundary conditions in our implementation,
while LOBSTER is restrictive in terms of the boundary
conditions one can employ and uses periodic boundary
conditions even for a Si nanoparticle, an isolated system.
Furthermore, it was computationally prohibitive to conduct
population analysis using LOBSTER for the Sij,sH;s
nanoparticle. We further demonstrate the advantage of our
parallel implementation by measuring the wall times of the
population analysis conducted on a large SisgoHj,( nanoparticle
containing 1090 atoms. Table 3 shows a reduction in wall time
of about 1.7X with an increase in the number of CPU cores
from 280 to 1120.

4. PROJECTED HAMILTONIAN POPULATION
ANALYSIS (pHA)

We propose here Projected Hamiltonian population analysis,
henceforth referred to as pHA, as an alternate approach to
pOA described previously, to conduct both overlap and
Hamilton population analysis. The necessity of this alternate
approach is motivated by the fact that many of the reduced
scaling electronic structure codes targeted toward large-scale
DEFT calculations tend to avoid explicit computation of DFT
eigenfunctions having no access to these for projection. To this
end, in this approach, we orthogonally project the self-
consistently converged discretized DFT Hamiltonian onto the
subspace spanned by the minimal atomic-orbital basis set to
extract the chemical bonding information from DFT
calculations. This is in contrast to the previous pOA approach
where the self-consistently converged Kohn—Sham eigenfunc-
tions are projected. As will be demonstrated subsequently,
population analysis via pHA shows computational advantage
over pOA in wall times with an increase in the number of MPI
tasks for large material system sizes. In this section, we discuss
the mathematical formulation and derive the relevant
expressions in a finite-element setting required for implement-
ing pHA. Figure 4 shows a schematic of the overall pHA
implementation strategy. We subsequently compare the
accuracy and performance of the proposed implementation
with those of pOA, which was discussed earlier. For clarity, the
extension to a periodic unit-cell involving Brillouin zone

https://doi.org/10.1021/acs.jctc.3c00114
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Figure 2. Comparison between pOA implemented in DFT-FE using PA orbitals and LOBSTER for nearest neighbor C atoms in a carbon
diamond supercell. The top row shows the projected orbital overlap population, with the subfigures (a) and (b) in this row showing the
contributions of C,—C,; and C,,—C,, to the total orbital overlap population that is plotted in subfigure (c). The bottom row shows the negative of
the projected orbital Hamilton population. The subfigures in the bottom row (d) and (e) show the contributions of C,,—C,, and C,—C,y, to the
total orbital Hamilton population that is plotted in subfigure (f). The energy-scale is shifted such that the Fermi level (ey) is zero. Case study:
Carbon diamond 2 X 2 X 2 supercell with periodic boundary conditions using a I"-point.

integration via multiple k-point sampling is not explicitly
considered here.

4.1. Mathematical Formulation. The projected popula-
tion (both overlap and Hamilton populations) in this approach
is computed by orthogonally projecting the Kohn—Sham
discretized Hamiltonian operator H onto the atomic-orbital

subspace Wf;j“b. The computed projected Hamiltonian
H? = PrHP? . Wg"'b - Wg"'b is subsequently diagonalized
to compute the orthonormal eigenvectors (|l/7lE>) in the
subspace Wég‘"". These eigenvectors of the projected Hamil-

tonian, |l/7lE) € Wf/\)]‘”b, are thereby employed to compute both

the overlap and Hamilton populations. The proposed approach
pHA is in contrast with pOA discussed above (see section 3)

wherein the discretized Kohn—Sham wave function [y) € wM
is orthogonally projected (L, projection) onto the subspace
Wg"“’ to compute the overlap and Hamilton populations. pHA
is similar in spirit to the iterative orthogonal projection
techniques*’ employed in the solution of large-scale matrix
eigenvalue problems of the form Alx) = A|x), wherein, one
seeks an approximate eigenvector, eigenvalue pair (|&), 1) of
A in a carefully constructed lower-dimensional subspace such
that the residual vector |r) = AIZ) — |%) is orthogonal to this
subspace. This orthogonality condition, also known as the
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Galerkin condition, is equivalent to diagonalizing the lower
dimensional matrix (obtained by orthogonally projecting A
into the subspace), which approximates the eigenvalues and
eigenvectors of the original matrix A better than any vectors
lying in the subspace.

Projected Hamiltonian Hamilton Population (pHHP). We

note that |l/71E>, the eigenvectors of 7‘(¢, lie in the atomic-orbital

subspace Vég"“’, and hence, we express |I/7IE) as a linear
combination of the orthonormalized atomic-orbital basis
{Idi)}, ie., |l/7lE> = Zﬂﬁ;l@) Subsequently, following the
similar arguments used in deriving eq 11, we can define the

Hamilton population pHHP;;(€) associated with a source atom
I and a target atom J # I as

PHHP () = 3 3" Re( (71, H{, 15((di))6(e = )
i ap

(16)

where H?;Jﬁ is the matrix element of H? and Re(z) refers to
the real part of a complex number z. Introducing the finite-
element discretization of the various fields in eq 16, we now
deduce the relevant matrix expressions required to evaluate the
Hamilton population in the FE setting. To begin, we use the
definition of the projected Hamiltonian H?, whose matrix

element H}’;Jﬁ can be evaluated as HI‘/;J/j = <4§M|W¢|4§]ﬂ>

https://doi.org/10.1021/acs.jctc.3c00114
J. Chem. Theory Comput. 2023, 19, 4216—4231


https://pubs.acs.org/doi/10.1021/acs.jctc.3c00114?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00114?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00114?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00114?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00114?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation pubs.acs.org/JCTC
10, (a) 1s-3p 0 0 (c) Total
|
5 5 5
|
o 0 0
|
S 5 > 5¢ 1S 5
3 7 O O
B-107 B-10+ 1 B-10t
g | 9 9
m-15;> w-15 w -15
20} 20 20
|
25 [ DFT-FE 25 [ DFT-FE 25 [ DFT-FE
30~ LOBSTER 30|~ LOBSTER 30|~ LOBSTER
4 3 2 1 0 1 4 3 2 4 0 1 9 8 7 6 5 4 3 2 4 0 A1

Projected orbital overlap population (pOOP)

10 10
5 5
of of
= S 5) 15 5]
A C C
8- 5107 3-10
g g g
2 2 2
w- w -15 i -15
-20 -20
25 | DFT-FE 25 | DFT-FE 25 | DFT-FE
s |~ LOBSTER 3o [~ LOBSTER 3o |~ LOBSTER
4 3 2 4 o 1 2 3 2 -1 0 1 2 e -4 2 0 2

Projected orbital Hamilton population (—pOHP)

Figure 3. Comparison between pOA implemented in DFT-FE using PA orbitals and LOBSTER for nearest neighbor Si—H atoms in Si
nanoparticles. The top row shows the projected orbital overlap population, with the subfigures (a) and (b) in this row showing the contributions of
Hy,—Si3, and Hy—Si; to the total orbital overlap population that is plotted in subfigure (c). The bottom row shows the negative of the projected

orbital Hamilton population. The subfigures in the bottom row (d) and (e) show the contributions of H;,—Sij
Hamilton population that is plotted in subfigure (f). The energy-scale is shifted such that the Fermi level (GFS

SiygH34 nanoparticle.

and H,—Si;; to the total orbital
is zero. Case study: Single-fold

Table 2. Comparison of Computation CPU Time“
Measured in node-secs, between Projected Orbital
Population Analysis (pOA) Implementation in DFT-FE
and LOBSTER

Material system pOA (sec) LOBSTER (sec)
Carbon diamond 2 X 2 X 2 supercell 8.26 17.5
SipgHj3¢ nanoparticle 1.72 242
Sij4sH 5o nanoparticle 21.46

“The timing includes the reading and construction of the atomic-
orbital basis (@) and the calculation of the appropriate matrices for
conducting the population analysis (C, C, HY).

Table 3. Wall Times of pOA with Increasing Number of
MPI Tasks on PARAM PRAVEGA (1 Core per MPI Task)”

Number of MPI tasks Wall time (seconds)

280 33.85
560 25.04
1120 20.48

“Case study: SisgoHs;o nanoparticle (1090 atoms with 2830 valence
electrons). The total degrees of freedom (DoFs) per atom is around
8400.

and further can be expressed in the matrix form as

H =§sV 2(l)THCL)S_l/ 2 where H denotes the matrix corre-
sponding to the finite-element discretized Kohn—Sham
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Hamiltonian operator H introduced in section 3. Upon
diagonalization of H”, we have H? = EDE', where E denotes
the Norb X N, eigenvector matrix. We note that the ;' h column

of E represents the coeflicients of |l// ) with respect to the
{|4L>} basis. Similar to section 3, we introduce a composite-
index u = {Ia} to denote the orthonormalized atomic orbital
basis function |d;) as |q§1 ), where a denotes the index of the

atomlc orbital centered at a nuclear position R;. Further, the
U row of E corresponds to the I atom and an atom-centered
index a associated with this atom I. We refer the reader to the
Supporting Information (see S1.2) for details on the derivation
and efficient computation of the matrix expressions related to
H’ and E. Finally, the projected Hamiltonian Hamilton
population (pHHP) associated with the partitioning of band
energy between a source atom I and a target atom ] # I is
evaluated by extracting the appropriate entries of the matrices
E and H” and the expression is given by

N Y
pHHE (¢) = > Relky, H, Ei10(e —¢€)
i ap

(17)

Projected Hamiltonian Overlap Population (pHOP). The
overlap population in the current approach is computed using
the non-orthogonal localized atom-centered orbitals {Iq?} )} To
this end, we first compute the N, linear combination

https://doi.org/10.1021/acs.jctc.3c00114
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coeflicients of the expansion of |l/~/1E> in terms of these basis
fanctions {|¢)}, ie., hpf) = ZMEM )y for j = 1, .., N.

Following the similar arguments used in arriving at eq 5, we

can define the overlap population pHOP;(e) between the
source atom I and | as

PHOB (€) = > > Re{ (1, ))S1a, 15 (7)) }8(e =€)

i ap

(18)

where Re(z) refers to the real part of a complex number z.
Introducing finite-element discretization of the various fields in
the above equation, we define the N, X N, matrix E which
can be computed as E = S™'/?E, where the matrix E is the
eigenvector matrix of H? introduced previously. For the
derivation and the computational cost associated with the
computation of E, we refer to Supporting Information section
S1.2. Finally, the projected Hamiltonian overlap population
(pHOP) associated with a source atom I and a target atom ] is
evaluated by extracting the appropriate entries of the matrices
S and E and the expression is given by

PHOR () = 37 3 Re(E[EjS,)5(e — ¢)
j b

(19)

Total Computational Complexity Estimate of pHA. The
current implementation of the projected Hamiltonian pop-
ulation analysis (pHA) assumes N = N, and thereby, the
total computational complexity is estimated to be ~4M;, N* +
16N°. Since M,,. = M/P, the second term in the computational
complexity becomes dominant when the number of MPI tasks
P is greater than 4M/16N and starts to become computation-
ally more efficient than the pOA approach described in the
previous subsection.

Projected Hamiltonian Density Error (pHDE). To under-

stand the loss of information due to the projection of the finite-

Nog

element discretized Hamiltonian onto VY o we introduce the

projected density error (pHDE). Here, we compute the L,
norm error between the ground-state electron density (p(x))
computed from FE discretized occupied Kohn—Sham
eigenfunctions {Il//l>} solved using DFT-FE and the electron

density (p"(x)) computed from the occupied eigenfunctions
{h/?}.E)} € Wf/:I““’ associated with the projected Hamiltonian H.

To this end, pHDE is evaluated as

_ lp® = p @)l
o)1l

p(x) = D (xlup)(wlx),

i=1

pHDE where

N,

occ

P (x) = Z (") (97"
- (20)

4.2. Results: Accuracy and Performance Benchmark-
ing. We assess here the performance and accuracy of the
proposed pHA procedure implemented within the DFT-FE
framework. To this end, we project the self-consistently
converged Kohn—Sham finite-element (FE) discretized
Hamiltonian obtained from DFT-FE into a subspace spanned
by pseudoatomic (PA) orbitals and conduct the population
analysis as discussed in subsection 4.1. We discuss here a
comparative study of the population analysis conducted using
this approach and pOA reported in section 3.
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Figure 4. Overview of the implementation strategy for projected
Hamiltonian population analysis (pHA) within the finite-element
(FE) framework. The employed strategy involves projecting the self-
consistently converged FE discretized Hamiltonian obtained from
DFT-FE onto the atomic-orbital basis and subsequently diagonaliz-
ing this projected Hamiltonian H? to compute the eigenvector matrix
E. The overlap matrix (S) and the coefficient matrices E are finally
evaluated, which in turn are used to compute the projected
Hamiltonian overlap population pHOP and projected Hamiltonian
Hamilton population pHHP.

Accuracy Validation of pHA. To begin with, we plot the
population energy diagrams corresponding to pHHP and
pHOP derived in eqs 16 and 19 and compare with pOHP and
pOOP on the same benchmark systems comprised of isolated
systems and a periodic system as discussed in the previous
section. As mentioned previously, we will refer to the approach
of projected orbital population (pOOP and pOHP) as pOA
and the approach of projected Hamiltonian population (pHOP
and pHHP) as pHA. Figure S illustrates the comparison in the
case of a periodic 2 X 2 X 2 carbon diamond supercell for two
nearest carbon atoms picked as source and target atoms (see
the inset in Figure S). Figure 6 demonstrates the comparisons
in the case of a SiygHj¢ nanoparticle, an isolated system in
which the Si atom and the nearest H atom are picked as source
and target atoms (see the inset in Figure 6). As the results
demonstrate, we see a very good match of the corresponding
contributions of s—s and s—p orbitals for both overlap and
Hamilton populations conducted using both pOA and pHA.
Comparisons between both methods for benchmark systems
involving molecules—CO, spin polarized O,, and H,0O—are
discussed in Supporting Information section S2.1, and we
observe a very close agreement.

We now compare the density error metrics (pODE and
pHDE), a measure of the loss of information during
projections, as introduced in section 3.1 and section 4.1.
Recall from eq 15 and eq 20, these metrics measure the error
between the self-consistently converged ground-state electron
density computed from DFT-FE and the electron density
computed using the projected wave functions in the subspace

Wf/:’“"’. As shown in Table 4, we see a close agreement between

pHDE and pODE for a variety of benchmark material systems,
which include isolated systems (CO, H,O, spin-polarized O,,
SisoHje, SisgHgg and Sij4sHis) and a periodic system (carbon
2 X 2 X 2 supercell).

The comparative study discussed so far demonstrates the
excellent match of numerical results obtained between the
approaches pOA and pHA. As remarked before, pOA is similar
in spirit to the projected population analysis approach
implemented in LOBSTER, but the pHA proposed in this
work is different in spirit than the pOA approach and relies on

https://doi.org/10.1021/acs.jctc.3c00114
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Figure 5. Comparison of the overlap and Hamilton populations between the two proposed methods of projected population analysis (pOA and
pHA) for nearest C atoms in a carbon diamond supercell. The top row shows the overlap population obtained using both of these methods. The
subfigures (a) and (b) in this row show the contributions of C,,—C,, and C,,—Cy, to the total overlap population that is plotted in subfigure (c).
The bottom row shows the negative of the Hamilton population for both methods. The subfigures in this bottom row (d) and (e) show the
contributions of C,,—C,, and Cy—Cy, to the total Hamilton population that is plotted in subfigure (f). The energy-scale is shifted such that the
Fermi level (e) is zero. Case study: 2 X 2 X 2 carbon diamond supercell with periodic boundary conditions at the I'-point for Brilloun zone

sampling.

the projection of a finite-element discretized Kohn—Sham
Hamiltonian to conduct population analysis.

Performance Comparisons. We now demonstrate the
computational advantage of conducting population analysis
using pHA for large-scale systems. Parts a and b of Figure 7
show the computational wall times measuring the projected
population analysis with the increasing number of MPI tasks
by comparing the two methods pOA and pHA. For this study,
we consider two nanoparticles SisgoHs;o and Sij;s0Hggg
comprised of 1090 and 2150 atoms, respectively. The results
indicate a speed-up of 1.3—1.4X for pHA with the increase in
MPI tasks beyond a certain number. These speed-ups are
consistent with the computational complexity estimates
derived in previous sections, i.e., the O(N?®) cost becoming
dominant beyond a certain number of MPI tasks with a lower
prefactor for pHA.

5. BONDING INSIGHTS IN LARGE SYSTEMS:
CHEMISORPTION IN Si NANOPARTICLES

In this section, we demonstrate the advantage of the proposed
computational framework for conducting population analysis
to extract chemical bonding in large-scale material systems. We
motivate the need for large-scale bonding analysis by
considering the case study of chemisorption of hydrogen in
silicon nanoparticles, a candidate material for hydrogen

4226

storage,26 where the storage (release) of hydrogen is a result
of the formation (breaking) of a Si—H bond. As discussed in
Williamson et al.,”® the release of hydrogen in these Si
nanoparticles occurs due to the dimerization of dihedral SiH,
cofacial pairs in a SijyHj4 unit to reduce to a Si,H,, unit by
the formation of an additional Si—Si bond. Furthermore, the
authors also argued from a thermodynamic viewpoint that
alloying these Si nanoparticles with C reduces the critical
temperature of hydrogen absorption/desorption to an
operating temperature compatible with fuel cell applications.
In this case study, we attempt to provide a chemical bonding
viewpoint by conducting population analysis to extract
bonding information in these Si nanoparticles. We compute
a quantity known as the integrated projected orbital Hamilton

population IPOHP = f .. ~POHP(¢) de. A higher value of

IPOHP correlates with a stronger covalent bonding interaction
between the source-target atoms, and this quantity is similar to
integrated pPCOHP (ICOHP) computed in LOBSTER. To this
end, we argue the ease of dimerization of dihedral SiH, cofacial
pairs in the Si nanoparticle by computing IPOHP between Si—
Si atoms in the adjacent dihedral SiH, pairs and the associated
Si—H atoms in a given SiH, dihedral unit. We examine IPOHP
values as a function of increasing Si nanoparticle size ranging
from 65 atoms to 1090 atoms and, further, with and without
carbon alloying. In particular, we consider 1-fold, 2-fold, 5-fold,

https://doi.org/10.1021/acs.jctc.3c00114
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Figure 6. Comparison of the overlap and Hamilton populations between the two proposed methods of projected population analysis (pOA and
pHA) for nearest Si—H atoms in a Si nanoparticle. The top row shows the overlap population obtained using both of these methods. The
subfigures (a) and (b) in this row show the contributions of H,—Si3, and H;;—Si;, to the total overlap population that is plotted in subfigure (c).
The bottom row shows the negative of the Hamilton population for both methods. The subfigures in the bottom row (d) and (e) show the
contributions of H;;—Si;, and H;;—Sij, to the total Hamilton population that is plotted in subfigure (f). The energy-scale is shifted such that the
Fermi level (ef) is zero. Case study: single-fold Si,oH;4 nanoparticle with nonperiodic boundary conditions.

Table 4. Comparison of Density Errors (pODE and pHDE)
Computed from the Projected Orbital Population (pOA)
and Projected Hamiltonian Population Approach (pHA),
Respectively

Material system pODE pHDE
Carbon diamond 2 X 2 X 2 supercell 0.061 0.062
cO 0.118 0.119
H,0 0.136 0.121
O, 1 (Spin-up density) 0.097 0.098
0, | (Spin-down density) 0.062 0.064
SiyoH34 nanoparticle 0.179 0.175
SisgHgg nanoparticle 0.172 0.168
Sij4sH; 5o nanoparticle 0.165 0.162

and 20-fold structures of dihedral Si,4 and Si,,Cs units. Toward
this, we build the 2-fold and further the S-fold structure by
connecting the Si,oH;4 (SiysCsHjg) units by their (111) facets,
as discussed in Williamson et al.*®

The atomic configurations corresponding to various sizes of
Siyg and Siy,Cs nanoparticles are obtained by performing
geometry optimization in DFT-FE code until the maximum
atomic force in each direction reaches a tolerance of

approximately S X 10_4%. Figure 8 shows the relaxed atomic
configuration of the various nanoparticles considered in this
work. To determine the strength of the Si—Si bonding
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interaction between the nearest SiH, dihedral structures, we
computed IPOHP by conducting pOHP analysis. Figure 9
shows the total Hamilton population energy diagrams for
various sizes of Si nanoparticles, capturing this Si—Si
interaction for one of the SiH, dihedral pairs (see atoms
marked in Figure 8). We observe that the bonding and
antibonding peaks are of equal magnitude for different sizes of
Si nanoparticles without carbon, while, for the nanoparticles
alloyed with carbon, the bonding peaks are observed to be
higher. Table 5 reports the mean of IPOHP values
corresponding to the Si—Si interaction between the nearest
SiH, dihedral pairs sharing a core silicon/carbon atom. The
mean of the IPOHP values corresponding to the weakest of the
Si—H interaction in each of the dihedral units of these pairs
has also been tabulated in this table (Si—H1 and Si—H2). An
equivalent Si—Si and Si—H atom pair was also picked from the
nanoparticles without alloying for comparison. Consistent with
the total Hamilton population energy plots of pOHP, the
IPOHP values reported in Table 5 show a higher value (~ 4X
higher) for nanoparticles alloyed with carbon in comparison to
no alloying. This can be attributed to the carbon core in the
alloyed nanoparticles drawing the Si atoms in the nearest SiH,
dihedral units toward each other, thereby leading to a stronger
Si—Si interaction. It is interesting to note the increase in Si—Si
IPOHP values with an increase in the curvature of the alloyed
nanoparticles, indicating the strengthening of the Si—Si

https://doi.org/10.1021/acs.jctc.3c00114
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Figure 8. Relaxed atomic configurations of (a, b) 1-Fold, (c, d) 2-fold, (e, f) 5-fold, and (g, h) 20-fold nanoparticle structures. The mean of the
IPOHP values computed in Table S corresponds to the Si—Si interaction between nearest SiH, dihedral pairs sharing a core silicon/carbon atom.
The silicon atoms highlighted in red illustrate one such pair considered. The structures were relaxed in DFT until the maximum force component

—4 E,

on any atom reached a tolerance level of 5 X 10 Torr”

interaction. This can possibly explain the ease of dimerization
of dihedral SiH, cofacial pairs as the size increases from 1-fold
to 5-fold structures. Similarly, due to the reduced separation
between the dihedral SiH, groups, the corresponding IPOHP
values suggest a weakening of the Si—H bond as seen in Table
S for alloyed nanoparticles, a favorable condition for the release
of H,.

Maximizing the hydrogen storage capacity when designing
hydrogen storage devices is important; hence, large nano-
particles are desirable. As described in Williamson et al.,*® one
such structure is obtained by stacking four S-fold Si
nanoparticles resulting in a 20-fold nanoparticle containing
1090 atoms. IPOHP values for this large nanoparticle with and
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without C alloying were computed by conducting population
analysis on the relaxed geometries. We observe the mean
IPOHP values of Si—Si interaction between the nearest SiH,
dihedral pairs to be around 0.510 and 0.00S for the 20-fold
nanoparticle with and without C alloying, respectively, which
are close to the values observed in the case of a S5-fold
nanoparticle. This is consistent with the fact that stacking does
not significantly impact the curvature of the large nanoparticle
compared to the 5-fold nanoparticle.

6. CONCLUSIONS

In the present work, we formulate and implement two methods
for conducting projected population analysis (both overlap and

https://doi.org/10.1021/acs.jctc.3c00114
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Table 5. Comparison of Mean IPOHP for Various SiH,
Dihedral Pairs in 1-Fold, 2-Fold, and 5-Fold Nanoparticles
of Si,y and Si,,C; Units”

System Si—Si interaction  Si—HI interaction = Si—H2 interaction
SipoHj6 0.009 4.505 4.504
Siy,CsHjg 0.402 4.358 4.362
SisgHgg 0.014 4.484 4.486
SiygCroHgs 0.406 4.319 4.333
SiysHiso 0.005 4.498 4.498
Si;50CasH 50 0.476 4297 4361

“The Si—Si interaction is computed between nearest SiH, dihedral
pairs. Si—H1 and Si—H2 denote the weakest of the Si—H interactions
in each of the dihedral units of these pairs.

Hamilton populations) to extract chemical bonding informa-
tion from finite-element (FE)-based density functional theory
(DFT) calculations. The first method (pOA) relies on the
orthogonal projection of FE discretized Kohn—Sham DFT
eigenfunctions onto a subspace spanned by localized atom-
centered basis functions. In contrast, the second method
(pHA) relies on the orthogonal projection of FE discretized
Kohn—Sham Hamiltonian onto this subspace. These methods
are implemented within the DFT-FE code’””’ and take
advantage of DFT-FE’s capability to conduct fast, scalable,
and systematically convergent large-scale DFT calculations,
enabling large-scale bonding analysis on complex material
systems not accessible before, without any restriction on the
boundary conditions employed.

First, we present the mathematical formulation and efficient
finite-element strategies adopted to compute both the overlap
and Hamilton population within the projected orbital population
analysis (pOA) framework. Following this, we assess the
accuracy of the proposed method on representative material
systems comprised of isolated molecules, nanoparticles, and a
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periodic system with a large supercell In all cases, the
proposed method shows excellent agreement with the
population energy diagrams obtained using LOBSTER, a
widely used orbital-population analysis code. The computa-
tional advantage of pOA over LOBSTER is also clearly
illustrated on a few of these benchmark examples. Sub-
sequently, we discuss an alternate approach for projected
population analysis that does not rely on the availability of
converged Kohn—Sham DFT eigenfunctions. This approach is
motivated by the fact that many of the reduced scaling
electronic structure codes targeted toward large-scale DFT
calculations tend to avoid explicit computation of DFT
eigenfunctions with no access to these vectors for projection.
This alternate method is referred to as projected Hamiltonian
population analysis (pHA). The accuracy and performance
benchmarks of pHA with pOA show similar trends in bonding
behavior with improved scalability for large-scale systems.
Finally, we leverage the proposed population analysis approach
in a case study to extract bonding insights in increasing sizes of
Si nanoparticles up to 1000 atoms, a candidate material for
hydrogen storage. This analysis demonstrates a correlation of
Si—Si and Si—H bonding interactions with the nanoparticle
size and argues the ease of Si—Si dimerization with the increase
in the size of the Si—C alloy nanocluster favoring the release of
H,.

In summary, the proposed projected population analysis
methods within the framework of finite-element discretization
of DFT open the possibility of extracting chemical bonding
information in large material systems critical to many
technologically relevant applications. Our work demonstrates
one such case by conducting a large-scale chemical bonding
analysis in Si nanoparticles, a candidate material for hydrogen
storage. Further, such analysis can also reveal bonding
interactions between complex defects (e.g., dislocations, grain
boundaries, etc.) and solute impurities, offering atomistic
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insights into the stability of these defects, which has
implications for understanding the strength and ductility of
structural materials. Another area of application is solid-state
battery material design, where such population analysis can aid
in understanding ionic conductivity by revealing bonding
interactions between migrating ions and the underlying solid
electrolyte lattice in an electric field. Furthermore, using a
single computational framework for both ground-state DFT
calculations and population analysis allows for on-the-fly
bonding analysis in ab initio molecular dynamics simulations,
yielding bonding interaction insights as a function of time.
These are just a few examples among numerous possibilities
the proposed methods can provide access to, offering a robust
means for extracting chemical bonding information in various
complex scenarios.
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B ACRONYMS

pHA projected Hamiltonian population analysis

pHHP  projected Hamiltonian Hamilton population
pHOP  projected Hamiltonian overlap population
pOA projected orbital population analysis

pOHP  projected orbital Hamilton population
pOOP  projected orbital overlap population

IPOHP integrated projected orbital Hamilton population
PA pseudoatomic

pCOHP projected crystal orbital Hamilton population
pCOOP projected crystal orbital overlap population
pHDE  projected Hamiltonian density error

pODE  projected orbital density error
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