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ABSTRACT
Neural radiance fields (NeRF) have achieved impressive perfor-
mances in view synthesis by encoding neural representations of a
scene. However, NeRFs require hundreds of images per scene to syn-
thesize photo-realistic novel views. Training them on sparse input
views leads to overfitting and incorrect scene depth estimation re-
sulting in artifacts in the rendered novel views. Sparse input NeRFs
were recently regularized by providing dense depth estimated from
pre-trained networks as supervision, to achieve improved perfor-
mance over sparse depth constraints. However, we find that such
depth priors may be inaccurate due to generalization issues. Instead,
we hypothesize that the visibility of pixels in different input views
can be more reliably estimated to provide dense supervision. In
this regard, we compute a visibility prior through the use of plane
sweep volumes, which does not require any pre-training. By regu-
larizing the NeRF training with the visibility prior, we successfully
train the NeRF with few input views. We reformulate the NeRF
to also directly output the visibility of a 3D point from a given
viewpoint to reduce the training time with the visibility constraint.
On multiple datasets, our model outperforms the competing sparse
input NeRF models including those that use learned priors. The
source code for our model can be found on our project page: https:
//nagabhushansn95.github.io/publications/2023/ViP-NeRF.html.
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1 INTRODUCTION
The goal of novel view synthesis is to synthesize a scene from novel
viewpoints given RGB images of a few other viewpoints and their
relative camera poses. By representing the scene implicitly using
multi-layer perceptrons (MLP) and employing volume rendering,
neural radiance fields (NeRF) [Barron et al. 2021, 2022; Liu et al.
2022; Mildenhall et al. 2020] have achieved impressive view syn-
thesis performance. Such superior performance is usually achieved
when a large number of views is input to train the NeRF. How-
ever, in multiple applications such as virtual or augmented reality,
telepresence, robotics, and autonomous driving, very few input
images may be available for training [Niemeyer et al. 2022]. In such
settings, external sensors or a pre-calibrated fixed camera array
may be employed to obtain accurate camera poses. Thus, there is a
need to train NeRFs with few input views referred to as the sparse
input NeRF problem.

The key challenge with sparse input images is that the volume
rendering equations in NeRF are under-constrained, leading to so-
lutions that overfit the input views. This results in uncertain and
inaccurate depth in the learned representation. Synthesized novel
views in such cases contain extreme distortions such as blur, ghost-
ing, and floater artifacts [Niemeyer et al. 2022; Roessle et al. 2022].
Recent works have proposed different approaches to constrain the
training of NeRF to output visually pleasing novel views. While a
few recent works [Yang et al. 2022; Zhang et al. 2021; Zhou and
Tulsiani [n. d.]] focus on training NeRF models on a specific cate-
gory of objects such as chairs or airplanes, we focus on training
category agnostic sparse input NeRF models [Niemeyer et al. 2022].
Such prior work can be broadly classified into conditional NeRF
models and other regularization approaches.

The conditional NeRF models employ a latent representation of
the scene obtained by pre-training on a large dataset of different
scenes [Chen et al. [n. d.]; Hamdi et al. [n. d.]; Johari et al. 2022;
Wang et al. 2021; Yu et al. 2021] to condition the NeRF. The latent
prior helps overcome the limitation on the number of views by
enabling the NeRF model to effectively understand the scene. Such
an approach is popular even when only a single image of the scene
is available as input to the NeRF [Cai et al. 2022; Lin et al. 2023;
Xu et al. 2022]. Different from the above, MetaNeRF [Tancik et al.
2021] learns the latent information as initial weights of the NeRF
MLPs by employing meta-learning. However, the pre-trained la-
tent prior could suffer from poor generalization on a given target
scene [Niemeyer et al. 2022]. Thus, we believe that there is a need
to study the sparse-input NeRF without conditioning the NeRF on
latent representations.

On the other hand, regularization based approaches constrain the
NeRF training with novel loss functions to yield better solutions. DS-
NeRF [Deng et al. 2022] uses sparse depth provided by a structure
frommotion (SfM) model as additional supervision for the NeRF. To
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Figure 1: Overview of ViP-NeRF architecture. Given the images from primary and secondary views, we estimate a visibility
prior map in the primary view and use it to supervise the visibility of pixels as predicted by the NeRF. Specifically, we cast a ray
through a randomly selected pixel in the primary view and sample 3D points along the ray. For every point p𝑖 , we use the NeRF
MLPs to obtain its visibility in primary and secondary views, along with volume density 𝜎𝑖 and color c𝑖 . Volume rendering
outputs visibility 𝑡 ′ of the chosen pixel in the secondary view which is supervised by the visibility prior. L𝑣 constrains the
visibilities 𝑇𝑖 output by network and 𝑇𝑖 computed using volume rendering to be consistent with each other.

provide richer dense supervision, DDP-NeRF [Roessle et al. 2022]
completes the sparse depth map using a pre-trained convolutional
neural network (CNN). However, the requirement of pre-training
on a large dataset of scenes is cumbersome and the dense depth
prior may suffer from generalization errors. RegNeRF [Niemeyer
et al. 2022] and InfoNeRF [Kim et al. 2022] impose constraints to
promote depth smoothness and reduce depth uncertainty respec-
tively. However, in our experiments, we observe that these methods
are still inferior to DS-NeRF on popular datasets. This motivates
the exploration of other reliable features for dense supervision to
constrain the NeRF in addition to sparse depth supervision.

In our work, we explore the use of regularization in terms of
visibility of any pixel from a pair of viewpoints. Here visibility of a
pixel refers to whether the corresponding object is seen in both the
viewpoints. For example, foreground objects are typically visible in
multiple views whereas the background objects may be partially
occluded. The visibility of a pixel in different views relies more
on the relative depth of the scene objects than the absolute depth.
We hypothesize that, given sparse input views, it may be easier to
estimate the relative depth and visibility instead of the absolute
depth. Thus, the key idea of our work is to regularize the NeRF with
a dense visibility prior estimated using the given sparse input views.
This allows the NeRF to learn better scene representation. We refer
to our Visibility Prior regularized NeRF model as ViP-NeRF.

To obtain the visibility prior, we employ the plane sweep volumes
(PSV) [Collins 1996] that have successfully been used in depth
estimation [Gallup et al. 2007; Ha et al. 2016; Im et al. [n. d.]; Yang
and Pollefeys 2003] and view synthesis models [Zhou et al. 2018].
We create the PSV by warping one of the images to the view of the
other at different depths (or planes) and compare them to obtain
error maps. We determine a binary visibility map for each pixel
based on the corresponding errors in the PSV. We regularize the
NeRF training by using such a map as supervision for every pair
of input views. We use the visibility prior in conjunction with the
depth prior from DS-NeRF [Deng et al. 2022], where the former

provides a dense prior on relative depth while the latter provides
a sparse prior on absolute depth. Note that the estimation of our
visibility prior does not require any pre-training on a large dataset.

Regularizing the NeRF with a dense visibility prior is computa-
tionally intensive and can lead to impractical training times. We
reformulate the NeRF to directly and additionally output visibility
to impose the regularization in a computationally efficient manner.
We conduct experiments on two popular datasets to demonstrate
the efficacy of the visibility prior for sparse input NeRF.

The main contributions of our work are as follows.

• We introduce visibility regularization to train the NeRF with
sparse input views and refer to our model as ViP-NeRF.

• We estimate the dense visibility prior reliably using plane
sweep volumes.

• We reformulate the NeRF MLP to output visibility thereby
significantly reducing the training time.

• We achieve the state-of-the-art performance of sparse input
NeRFs on multiple datasets.

2 RELATEDWORK
2.1 Novel View Synthesis
Novel view synthesis methods typically use one or more input
views to synthesize the scene from novel viewpoints. Recent pieces
of work focus on obtaining volumetric 3D representations of the
scene that can be computed once to render any viewpoint later.
Zhou et al. [2018] propose multi-plane image (MPI) representations
for view synthesis. Srinivasan et al. [2019] further extend this by
infilling the occluded regions in the MPIs. Wiles et al. [2020] study
an extreme case with a single input image and generate novel views
by employing a monocular depth estimation network for scene re-
projection. In contrast to the above explicit representations, neural
radiance fields [Mildenhall et al. 2020] use an implicit representa-
tion through coordinate-based neural networks. Although NeRFs
achieve excellent performance, they require dense input views for
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training. In this work, we focus on solving this problem, i.e. to train
a NeRF given very few input views.

2.2 Sparse Input NeRF
Several recent works have studied sparse input NeRF by regular-
izing the NeRF with various priors. One of the early works, Diet-
NeRF [Jain et al. 2021], hallucinates novel viewpoints during train-
ing and constrains the NeRF to generate novel views similar to the
input images in the CLIP [Radford et al. 2021] representation space.
DS-NeRF improves the performance by using fine-grained super-
vision at the pixel level using a sparse depth estimated by an SfM
model [Deng et al. 2022]. DDP-NeRF further completes the sparse
depth using a pre-trained network to obtain dense depth along with
uncertainty estimates. Uncertainty modeling allows DDP-NeRF to
relax the depth supervision at locations where the dense depth
estimation is not confident. However, the completed depth may
contain errors that may adversely affect the performance. Diffu-
sioNeRF [Wynn and Turmukhambetov [n. d.]] instead employs a
pre-trained denoising diffusion model to regularize the distribution
of RGB-D patches in novel viewpoints. In contrast, our work uses
a more reliable visibility prior which can be estimated without the
use of sophisticated CNNs and does not require pre-training on a
large dataset of scenes.

Instead of depth estimates as priors, RegNeRF [Niemeyer et al.
2022] regularizes the NeRF using depth smoothness constraints on
the rendered patches in the hallucinated viewpoints. Different from
depth regularization models, InfoNeRF [Kim et al. 2022] tries to
circumvent overfitting by encouraging concentration of volume
density along a ray. In addition, it also minimizes the variation
of volume density distributions along rays of two nearby view-
points. Although these constraints are meaningful, our visibility
prior imposes constraints across multiple views and can exploit the
structure of the problem more effectively.

2.3 Single Image NeRF
Recently, there is increased interest in training NeRFs with a single
input image [Lin et al. 2023; Xu et al. 2022]. A common thread in
single image NeRFmodels is to use an encoder to obtain a latent rep-
resentation of the input image. A NeRF based decoder conditioned
on the representation, outputs volume density and color at given
3D points. For example, pix2NeRF [Cai et al. 2022] combines 𝜋-
GAN [Chan et al. 2021] with NeRF to render photo-realistic images
of objects or human faces. Gao et al. [[n. d.]] focus on human faces
alone and use a more structured approach by exploiting facial ge-
ometry. MINE [Li et al. 2021] combines NeRF with MPI by replacing
the MLP based implicit representation with an MPI based explicit
representation in the decoder. Lin et al. [2023] obtain a richer latent
representation by fusing global and local features obtained using a
vision transformer and CNN respectively. Different from the above
models, Wimbauer et al. [[n. d.]] use the MLP decoder to predict
volume density alone and obtain the color by directly sampling
from the given images. However, a common drawback of these
models is the need for pre-training. Thus the performance may be
inferior when testing on a generic scene.

Figure 2: A toy example to illustrate the computation of vis-
ibility prior. The scene contains a blue sphere and a brown
box and the relative pose between the views is a translation
in x direction. The secondary view image is warped to the
primary view at different depth planes to create a PSV and
compared with the primary view image to obtain error maps.
We observe that the brown square and the blue circle are
matched better in the second and third planes respectively
leading to lower error (denoted as white) in the respective er-
ror maps. The minimum error across all the planes is thresh-
olded to obtain the visibility prior map corresponding to the
primary view image. The right portion of the sphere which
is occluded in the secondary view image is denoted in black
in the visibility map.

3 NERF PRELIMINARIES
We first provide a brief introduction to NeRF and define the no-
tations for subsequent use. A neural radiance field is an implicit
representation of a scene using two multi-layer perceptrons (MLP).
Given a set of images of a scene with corresponding camera poses, a
pixel q is selected at random, and a ray r is passed from the camera
center o through q. Let p1, p2, . . . , p𝑁 be 𝑁 randomly sampled 3D
points along r. If d is the direction vector of r and 𝑧𝑖 is the depth
of a 3D point p𝑖 , 𝑖 ∈ {1, 2, . . . , 𝑁 }, then p𝑖 = o + 𝑧𝑖d. An MLP F1 is
trained to predict the volume density 𝜎𝑖 at p𝑖 as

𝜎𝑖 , h𝑖 = F1 (p𝑖 ), (1)

where h𝑖 is a latent representation. A second MLP F2 then predicts
the color using h𝑖 and the viewing direction v = d/∥d∥ as

c𝑖 = F2 (h𝑖 , v) . (2)

Let the distance between two consecutive samples p𝑖 and p𝑖+1 be
𝛿𝑖 = 𝑧𝑖+1 − 𝑧𝑖 . The visibility or transmittance of p𝑖 is then given by

𝑇𝑖 = exp ©«−
𝑖−1∑︁
𝑗=1

𝛿 𝑗𝜎 𝑗
ª®¬ . (3)

The weight or contribution of p𝑖 in rendering the color ĉ of pixel q
is computed as

𝑤𝑖 = 𝑇𝑖 (1 − exp(−𝛿𝑖𝜎𝑖 )) (4)

to obtain

ĉ =
𝑁∑︁
𝑖=1

𝑤𝑖c𝑖 . (5)

The MLPs are trained using mean squared error loss with the true
color c of q as

L𝑚𝑠𝑒 = ∥c − ĉ∥2 . (6)
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Table 1: Quantitative results on RealEstate-10K dataset.

learned 2 views 3 views 4 views
Model prior LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑
InfoNeRF 0.6796 0.4653 12.30 0.6979 0.4024 11.15 0.6745 0.4298 11.52
DietNeRF ✓ 0.5730 0.6131 15.90 0.5365 0.6190 16.60 0.5337 0.6282 16.89
RegNeRF 0.5307 0.5709 16.14 0.4675 0.6096 17.38 0.4831 0.6068 17.46
DS-NeRF 0.4273 0.7223 21.40 0.3930 0.7554 23.73 0.3961 0.7575 24.24
DDP-NeRF ✓ 0.2527 0.7890 21.44 0.2240 0.8223 23.10 0.2190 0.8270 24.17
ViP-NeRF 0.1704 0.8087 24.48 0.1441 0.8505 27.21 0.1386 0.8588 28.13

Table 2: Quantitative results on NeRF-LLFF dataset.

learned 2 views 3 views 4 views
Model prior LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑
InfoNeRF 0.7561 0.2095 9.23 0.7679 0.1859 8.52 0.7701 0.2188 9.25
DietNeRF ✓ 0.7265 0.3209 11.89 0.7254 0.3297 11.77 0.7396 0.3404 11.84
RegNeRF 0.4402 0.4872 16.90 0.3800 0.5600 18.62 0.3446 0.6056 19.83
DS-NeRF 0.4548 0.5068 17.06 0.4077 0.5686 19.02 0.3825 0.6016 20.11
DDP-NeRF ✓ 0.4223 0.5377 17.21 0.4178 0.5610 17.90 0.3821 0.5999 19.19
ViP-NeRF 0.4017 0.5222 16.76 0.3750 0.5837 18.92 0.3593 0.6085 19.57

4 METHOD
We illustrate the outline of our model in Fig. 1. The core idea of
our work is that when only a few multiview images are available
for NeRF training, the visibility of a pixel in different views can be
more reliably densely estimated as compared to its absolute depth.
In this regard, we introduce visibility regularization to train the
NeRF with sparse input views in Sec. 4.1. To impose the visibility
regularization, we obtain a binary visibility prior map for every pair
of input training images, which we explain in Sec. 4.2. Finally, to
reduce the training time, we design a method to efficiently predict
the visibility of a given pixel in different views in Sec. 4.3. Sec. 4.4
summarizes the various loss functions used in training our model.

4.1 Visibility Regularization
Recall from Sec. 3 that NeRF trains MLPs by picking a random pixel
q and predicting the color of q using the MLPs and volume render-
ing. Without loss of generality, we refer to the view corresponding
to the ray r passing through q as the primary view and choose any
other view as a secondary view. NeRF then samples 𝑁 candidate 3D
points, p1, p2, . . . , p𝑁 , along r. Let𝑇 ′

𝑖
be the visibility of p𝑖 from the

secondary view, computed similar to Eq. (3). We define the visibility
of pixel q in the secondary view, 𝑡 ′ (q), as the weighted visibilities
of all the candidate 3D points p𝑖 analogous to Eq. (5) as

𝑡 ′ (q) =
𝑁∑︁
𝑖=1

𝑤𝑖𝑇
′
𝑖 ∈ [0, 1], (7)

where𝑤𝑖 are obtained through Eq. (4). We omit the dependence of
𝑤𝑖 and𝑇 ′

𝑖
on q in the above equation for ease of reading. We obtain

a prior 𝜏 ′ (q) ∈ {0, 1} on the visibility 𝑡 ′ (q) as described in Sec. 4.2.
We constrain the visibility 𝑡 ′ (q) to match the prior 𝜏 ′ (q). However,
we find that the prior may be unreliable at pixels where 𝜏 ′ = 0, as

we describe in Sec. 4.2. Hence, we do not impose any visibility loss
on such pixels and formulate our visibility prior loss as

L𝑣𝑖𝑝 (q) = max(𝜏 ′ (q) − 𝑡 ′ (q), 0) . (8)

Note that our loss function constrains the NeRF across pairs of
views, unlike previous works which regularize [Niemeyer et al.
2022; Roessle et al. 2022] in a given view alone. We believe that this
leads to a better regularization for synthesizing novel views.

4.2 Visibility Prior
Given primary and secondary views, our goal is to estimate whether
every pixel in the primary view is also visible in the secondary view
through a binary visibility prior 𝜏 ′ (q). We employ plane sweep vol-
umes to compute the visibility prior. We illustrate the computation
of the visibility prior with a toy example in Fig. 2. Here, we warp
the image in the secondary view to the primary view using the
camera parameters at different depths varying between the near
depth 𝑧min and far depth 𝑧max. We sample 𝐷 depths uniformly in
inverse depth similar to StereoMag [Zhou et al. 2018]. The set of
warped images is referred to as plane sweep volume (PSV) [Huang
et al. 2018].

Let 𝐼 (1) be the image in the primary view and 𝐼 (2)
𝑘

be the set of
𝐷 warped images, where 𝑘 ∈ {0, 1, . . . , 𝐷 − 1} denotes the plane
index. We then compute the error map 𝐸𝑘 of the warped secondary
image with the primary image at each plane 𝑘 of the PSV as

𝐸𝑘 = ∥𝐼 (1) − 𝐼
(2)
𝑘

∥1, (9)

where the norm is computed across the color channels. We deter-
mine the visibility prior 𝜏 ′ for pixel q by thresholding the minimum
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error across all the planes as

𝑒 (q) = min
𝑘

𝐸𝑘 (q),

𝜏 ′ (q) = 1{exp (−𝑒 (q)/𝛾 )>0.5} , (10)

where 𝛾 is a hyper-parameter.
Intuitively, for a given pixel q, a lower error in any of the planes

indicates the presence of a matching pixel in the secondary view, i.e.
q is visible in the secondary view. Note that this holds true when
the intensity of pixels does not change significantly across views,
which is typical for most of the objects in real-world scenes [Li et al.
2021]. Consequently, the absence of a matching point across all the
planes may indicate that q is not visible in the secondary view or q
belongs to a highly specular object whose color varies significantly
across different viewpoints. Thus, our prior is used to regularize the
NeRF only in the first case above i.e. the pixels for which we find
a match. Following the above procedure, we obtain the visibility
prior for every pair of images obtained from the training set, by
treating either image in the pair as the primary or the secondary
view.

4.3 Efficient Prediction of Visibility
Recall that imposing L𝑣𝑖𝑝 in Eq. (8) requires computing visibility
𝑇 ′
𝑖
in the secondary view for every p𝑖 . A naive approach to compute

𝑇 ′
𝑖
involves sampling up to 𝑁 points along a secondary ray from

the secondary view camera origin to p𝑖 and querying the NeRF
MLP F1 for each of these points. Thus, obtaining 𝑡 ′ (q) in Eq. (7)
requires upto 𝑁 2 MLP queries, which increases the training time
making it computationally prohibitive. We overcome this limitation
by reformulating the NeRFMLP F2 to also output a view-dependent
visibility of a given 3D point as,

c𝑖 ,𝑇𝑖 = F2 (h𝑖 , v); c′𝑖 ,𝑇
′
𝑖 = F2 (h𝑖 , v′𝑖 ), (11)

where v′
𝑖
is the viewing direction of the secondary ray. We use the

MLP output 𝑇 ′
𝑖
instead of 𝑇 ′

𝑖
in Eq. (7).

Note that to output𝑇 ′
𝑖
, we need not query F1 again and can reuse

h𝑖 obtained from Eq. (1). We only need to query F2 additionally and
since F2 is a single layer MLP and significantly smaller than F1,
the additional computational burden is negligible. Thus, directly
obtaining the secondary visibility 𝑇 ′

𝑖
of p𝑖 through Eq. (11) allows

us to compute 𝑡 ′ (q) in Eq. (7) using only 𝑁 queries of the MLP F1,
as opposed to 𝑁 2 queries in the naive approach.

However, the use of 𝑇 ′
𝑖
in place of 𝑇 ′

𝑖
regularizes the NeRF train-

ing only if the two quantities are close to each other. Thus, we
introduce an additional loss to constrain the visibility 𝑇𝑖 output by
F2 to be consistent with the visibility 𝑇𝑖 computed using Eq. (3) as

L𝑣 =

𝑁∑︁
𝑖=1

((
SG(𝑇𝑖 ) −𝑇𝑖

)2
+
(
𝑇𝑖 − SG(𝑇𝑖 )

)2)
, (12)

where SG(·) denotes the stop-gradient operation. The first term in
the above loss function uses 𝑇𝑖 as a target and brings 𝑇𝑖 closer to
it. On the other hand, since 𝑇𝑖 gets additionally updated directly
based on the visibility prior, the second term helps transfer such
updates to F1 more efficiently than backpropagation through F2.

Table 3: Comparison of reliability of priors used in differ-
ent models. The reference visibility is obtained using NeRF
trained with dense input views.

RealEstate-10K NeRF-LLFF
model Prec. ↑ Rec. ↑ F1 ↑ Prec. ↑ Rec. ↑ F1 ↑

ViP-NeRF 0.97 0.83 0.89 0.82 0.85 0.83
DDP-NeRF 0.98 0.53 0.66 0.86 0.33 0.47

4.4 Overall Loss
Similar to DS-NeRF [Deng et al. 2022], we also use the sparse depth
given by an SfM model to supervise the NeRF as

L𝑠𝑑 = ∥𝑧 − 𝑧∥2, (13)

where 𝑧 is the depth provided by the SfM model, 𝑧 =
∑
𝑖 𝑤𝑖𝑧𝑖 is the

depth estimated by NeRF and𝑤𝑖 are obtained in Eq. (4). Our overall
loss for ViP-NeRF is a linear combination of the losses obtained in
Eq. (6), Eq. (8), Eq. (12) and Eq. (13) as

L = _1L𝑚𝑠𝑒 + _2L𝑠𝑑 + _3L𝑣𝑖𝑝 + _4L𝑣, (14)

where _1, _2, _3 and _4 are hyper-parameters. We note that L𝑣𝑖𝑝

is always employed in conjunction with L𝑣 to make the learning
computationally tractable.

5 EXPERIMENTS
5.1 Evaluation Setup
We conduct experiments on two different datasets, namely RealEstate-
10K and NeRF-LLFF. We evaluate all the models in the more chal-
lenging setup of 2, 3, or 4 input views, unlike prior work which
use 9–18 input views [Jain et al. 2021; Roessle et al. 2022]. The test
set is retained to be the same across all different settings for both
datasets.

RealEstate-10K [Zhou et al. 2018] dataset is commonly used
to evaluate view synthesis models [Han et al. 2022; Tucker and
Snavely 2020] and contains videos of camera motion, both indoor
and outdoor. The dataset also provides the camera intrinsics and
extrinsics for all the frames. For our experiments, we choose 5
scenes from the test set, each containing 50 frames with a spatial
resolution of 1024× 576. In each scene, we reserve every 10th frame
for training and use the remaining 45 frames for testing. Please
refer to the supplementary for more details on the choice of scenes.

NeRF-LLFF [Mildenhall et al. 2019] dataset is used to evaluate
the performance of various NeRF Models including sparse input
NeRF models. It consists of 8 forward-facing scenes with a variable
number of frames per scene at a spatial resolution of 1008 × 756.
Following RegNeRF [Niemeyer et al. 2022], we use every 8th frame
for testing. For training, we pick 2, 3 or 4 frames uniformly among
the remaining frames following RegNeRF [Niemeyer et al. 2022].

Evaluation measures. We quantitatively evaluate the methods
using LPIPS [Zhang et al. 2018], structural similarity (SSIM) [Wang
et al. 2004], and peak signal to noise ratio (PSNR) measures. For
LPIPS, we use the v0.1 release with the AlexNet [Krizhevsky et al.
2012] backbone as suggested by the authors.
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Figure 3: Qualitative examples on RealEstate-10K dataset with two input views. We observe that the predictions of ViP-NeRF
are close to the ground truth, while those of other models suffer from various distortions. In particular, DDP-NeRF blurs
regions of the frame near the left door and contains black floater artifacts.

Figure 4: Qualitative examples on RealEstate-10K and NeRF-
LLFF dataset with two, three, and four input views. We ob-
serve that ViP-NeRF models specular regions better as the
number of input views increases. For example, in the first
row, the reflection of the chair is better reconstructed as the
number of views increases.

Table 4: Evaluation of depth estimated by different models
with two input views. The reference depth is obtained using
NeRF trainedwith dense input views. The depth RMSE on the
two datasets are of different orders on account of different
depth ranges.

RealEstate-10K NeRF-LLFF
model RMSE ↓ SROCC ↑ RMSE ↓ SROCC ↑

ViP-NeRF 1.6411 0.7702 45.6314 0.6184
DDP-NeRF 1.7211 0.7544 46.6268 0.6136

5.2 Comparisons and Implementation Details
We compare the performance of our model with other sparse input
NeRF models such as DDP-NeRF [Roessle et al. 2022] and Diet-
NeRF [Jain et al. 2021] which use learned priors to constrain the
NeRF training. We also compare with DS-NeRF [Deng et al. 2022],
InfoNeRF [Kim et al. 2022], and RegNeRF [Niemeyer et al. 2022] that

Table 5: Ablation experiments on both the datasets with two
input views.

RealEstate-10K NeRF-LLFF
model LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM ↑

ViP-NeRF 0.1704 0.8087 0.4017 0.5222
w/o sparse depth 0.2754 0.7588 0.5056 0.4631
w/o dense visibility 0.4273 0.7223 0.4548 0.5068

do not use learned priors. We train the models for 50k iterations on
both datasets using the code provided by the respective authors.

For ViP-NeRF, we use Adam optimizer with a learning rate of
5e-4 that exponentially decays to 5e-6 following NeRF [Mildenhall
et al. 2020]. We set the loss weights such that the magnitudes of
all the losses are of similar order after scaling. Specifically, we
set _1 = 1, _2 = 0.1, _3 = 0.001 and _4 = 0.1. For visibility prior
estimation, we set 𝐷 = 64 and 𝛾 = 10. Since we require 𝑇 ′

𝑖
to be

close to 𝑇 ′
𝑖
while using 𝑇 ′

𝑖
to compute L𝑣𝑖𝑝 , we impose L𝑣𝑖𝑝 after

20k iterations. We train our models on a single NVIDIA RTX A4000
16GB GPU.

5.3 Results
We show the quantitative performance of ViP-NeRF and other
competing models on RealEstate-10K and NeRF-LLFF datasets in
Tabs. 1 and 2. Our model outperforms all the competing models,
particularly in terms of the perceptual metric, LPIPS. ViP-NeRF
even outperforms models such as DDP-NeRF and DietNeRF which
involve pre-training on a large dataset. Fig. 3 shows qualitative
comparisons on a scene from the RealEstate-10K dataset, where we
observe significantly better synthesis by our model as compared to
the competing models. We show more qualitative comparisons in
Figs. 7 to 10 in the figure only pages at the end of this manuscript.
In these samples, we find that ViP-NeRF removes most of the floater
artifacts and successfully retains the shapes of objects.

In Fig. 4, we qualitatively compare the predictions of our model
with different numbers of input views. We observe that ViP-NeRF
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Figure 5: Estimated depth map on RealEstate-10K dataset
with two input views. We find that ViP-NeRF is better in
both frame synthesis and depth estimation compared to the
competing models. For example, in the first row, the depth
estimated by DDP-NeRF is smooth which may be leading to
a loss of sharpness in synthesizing the shrubs. In contrast,
ViP-NeRF predictions are sharper. For better visualization,
we show inverse depth and normalize it to set the maximum
value to unity.

Figure 6: Visualization of the visibility map predicted by
ViP-NeRF. White indicates the regions of the ‘Primary View’
which are visible in the ‘Secondary View’ and black indicates
the occluded regions. From the primary and secondary views,
we observe that the left part of the fortress and the neigh-
boring portion of the wood are hidden in the secondary view.
ViP-NeRF is able to reasonably determine the visible and
occluded regions.

estimates the geometry reasonably well with even two input views.
However, with more input views, the performance of ViP-NeRF
improves in reflective or specular regions. Fig. 6 visualizes the
visibility map predicted by ViP-NeRF, where we observe that it is
able to accurately predict the regions in the primary image which
are visible and occluded in the secondary image.

Dense depth vs dense visibility. The key idea of our paper is
that it may be possible to reliably estimate dense visibility than
dense depth. From Tab. 1, we find that ViP-NeRF outperforms DDP-
NeRF consistently, which indicates that the dense visibility prior we
compute without any pre-training is superior to the learned dense
depth prior used by DDP-NeRF. Further from Tab. 2, we observe
that ViP-NeRF consistently improves over DS-NeRF in terms of
LPIPS and SSIM, whereas DDP-NeRF does not. This may be due to
the domain shift between the training dataset of DDP-NeRF and the
LLFF dataset, resulting in no performance improvement over DS-
NeRF. Thus, we conclude that augmenting sparse depth with dense
visibility leads to better view synthesis performance than dense
completion of the sparse depth. We further validate this conclusion
by comparing the two priors in the following.

Validating priors.We compare the reliability of the dense visibility
prior used in our model against the dense depth prior from DDP-
NeRF. For this comparison, we convert the dense depth to visibility
and compare it with the visibility prior of our approach. Specifically,
we warp the image in the secondary view to the primary view using
the dense depth prior and compute the visibility map similar to
Eq. (10). We compare the visibility maps obtained using dense depth
and our approach with the visibility map predicted by a NeRFmodel
trained with dense input views. We evaluate the visibility maps in
terms of precision, recall, and F1 score.

From Tab. 3, we observe that our approach significantly outper-
forms DDP-NeRF prior in terms of the recall and F1 score, while
performing similarly in terms of precision. A high precision of
our prior indicates that it makes very few mistakes when imposing
L𝑣𝑖𝑝 . On the other hand, a high recall shows that our prior is able to
capture most of the visible regions where L𝑣𝑖𝑝 needs to be imposed.
On the contrary, a low recall for the DDP-NeRF prior indicates that
large regions that are actually visible in the secondary view are
marked as occluded by the dense depth prior. Consequently, this
indicates the presence of a large number of pixels with inaccurate
depth in the prior of DDP-NeRF. Thus, we conclude that our visibil-
ity prior is more reliable than the dense depth prior fromDDP-NeRF
for training the NeRF.

As discussed in Sec. 1, visibility is related to relative depth, and
thus a prior on visibility only constrains the relative depth ordering
of the objects. On the other hand, the dense depth prior constrains
the absolute depth, perhaps incorrectly. Thus the visibility prior
provides more freedom to the NeRF in reconstructing the 3D ge-
ometry and is also more reliable compared to the depth prior. This
may explain the superior performance of visibility regularization
over dense depth regularization.

Evaluation of estimated depth. It is believed that better perfor-
mance in synthesizing novel views is directly correlated with the
accuracy of depth estimation [Deng et al. 2022]. Thus, we compare
our model with DDP-NeRF on their ability to estimate absolute
depth correctly using root mean squared error (RMSE).We also eval-
uate the models on their ability to estimate the relative depth of the
scene correctly using spearman rank-order correlation coefficient
(SROCC) [Corder and Foreman 2014], which computes the linear
correlation between ranks of the estimated pixel depths with that
of the ground truth depth. Due to the unavailability of ground truth
depth on both the datasets, we train a NeRF model with dense input
views and use its predicted depth as a pseudo ground truth. From
Tab. 4, we observe that our model consistently outperforms DDP-
NeRF both in terms of absolute and relative depth. Fig. 5 shows that
the depth estimated by DDP-NeRF is smooth in textured regions,
which may be leading to blur in the synthesized frame. In contrast,
the dense visibility prior used in our model allows NeRF to predict
sharp depth in such regions leading to sharper frame predictions.

Ablations. We analyze the contributions of dense visibility and
sparse depth priors in ViP-NeRF, by disabling them one at a time.
From Tab. 5 and Fig. 11a, we find that removing either priors leads
to a drop in performance on both the datasets. This suggests that
the dense visibility prior may be providing information that is
complementary to the sparse depth prior. For a more fine-grained
analysis, we compare the LPIPS scores on individual scenes in



SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA Nagabhushan Somraj and Rajiv Soundararajan

Fig. 11b. We observe that the addition of dense visibility prior over
sparse depth prior leads to an improvement in the performance on
all the scenes. Further, we find that our model with dense visibility
prior alone is able to achieve impressive performance, especially
on the RealEstate-10K dataset.

5.4 Limitations and Future Work
Our visibility prior constrains only the regions visible in at least
two of the input views. As a result, we observe inaccurate depth
estimation in the regions that are visible in only one of the input
images. However, such regions account for a very small portion of
the scene and reduce further with three or four input views. Further,
ViP-NeRF may fail to synthesize disoccluded regions that can occur
in sparse-input view synthesis, similar to RegNeRF. It would be
interesting to explore the use of generative NeRF models such as
pix2NeRF [Cai et al. 2022] to synthesize such disocclusions.

Our approach to estimating the visibility prior may not account
for significant color changes that can occur when the scene con-
tains highly specular surfaces. We do not impose any loss on such
pixels. It would be interesting to analyze if pre-training a network
on a large dataset to estimate visibility can provide more super-
vision in specular regions. Moreover, it would be interesting to
see if pre-training a network to predict dense visibility generalizes
better when compared to depth completion. Also, we observe in
Tab. 2 that adding a new view leads to a significant improvement
in performance as compared to adding new regularizations. Thus,
one could explore hallucinating new views using generative models
and use the hallucinated views for additional supervision.

6 CONCLUSION
We study the problem of training NeRFs in sparse input scenarios,
where the NeRF tends to overfit the input views and learn incorrect
geometry. We propose a prior on the visibility of pixels in other
viewpoints to regularize the training and mitigate such errors. The
visibility prior obtained using a plane sweep volume is more reli-
able as compared to the depth prior estimated using pre-trained
networks. We reformulate the NeRF MLPs to additionally output
visibility to compute the visibility prior loss in a time-efficient
manner. ViP-NeRF achieves state-of-the-art performance on two
commonly used datasets for novel view synthesis.
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Figure 7: Qualitative examples on RealEstate-10K dataset with two input views. We observe sharp predictions by ViP-NeRF
while predictions by other models suffer from blur and other artifacts. In particular, DDP-NeRF predictions contain blurred
flowers (first row) and blurred tiles (second row).

Figure 8: Qualitative examples on RealEstate-10K dataset with three input views. We find that ViP-NeRF is able to reconstruct
novel views significantly better than the competing models. DDP-NeRF extends parts of the white table and fails to reconstruct
the drawer handles accurately in the first and second examples. In the third example, DDP-NeRF fails to reconstruct thin
objects in the chair.

Figure 9: Qualitative examples on RealEstate-10K dataset with four input views. In the first example, DDP-NeRF fails to retain
the structure of the chair while it blurs the texture of the carpet in the second example. We observe even more severe distortions
among the predictions of other models.
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Figure 10: Qualitative examples on NeRF-LLFF dataset with two input views. In the first and third examples, we observe floater
artifacts (blue arrows) in the predictions of DS-NeRF and DDP-NeRF, which are mitigated in the predictions of ViP-NeRF. We
find that RegNeRF fails to capture thin t-rex bone in the second example and breaks the horn into two pieces in the third
example (magenta arrows). Cyan arrows indicate color changes in the predictions of DDP-NeRF in the second and fourth
examples. We note that predictions by our model do not suffer from the above described artifacts.

(a) Qualitative examples for ablations on RealEstate-10K and NeRF-
LLFF dataset. We observe that the absence of dense visibility prior
leads to significant blur in the predicted frames. While the recon-
struction is reasonable without the sparse depth prior, we obtain the
best reconstructions when using both the priors.

(b) Scene-wise LPIPS scores of ViP-NeRF and the ablated models.
Note that lower LPIPS scores are better. ViP-NeRF performs better
than both the ablated models in most cases leading to overall better
performance.

Figure 11: Qualitative and quantitative comparisons of ablated models on both RealEstate-10K and NeRF-LLFF datasets.
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