
5014 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

Stabilizability of Linear Dynamical Systems Using Sparse Control Inputs
Chandrasekhar Sriram , Geethu Joseph , and Chandra R. Murthy

Abstract—The stabilizability of a linear dynamical system (LDS)
refers to the existence of control inputs that drive the system
state to zero. In this article, we analyze both the theoretical and
algorithmic aspects of the stabilizability of an LDS using sparse
control inputs with potentially time-varying supports. We show that
an LDS is stabilizable using sparse control inputs if and only if it
is stabilizable (using unconstrained inputs). For a stabilizable LDS,
we present an algorithm to determine the sparse control inputs that
steer the system state to zero. We show that all stabilizable LDSs
are also sparse mean square stabilizable when the process noise
has zero mean and bounded second moment. For such an LDS,
we devise a method to sequentially estimate the sparse control
inputs to stabilize the LDS in the mean square sense. We prove that
a detectable and stabilizable LDS is sparse stabilizable through
output feedback and develop an algorithm for finding the corre-
sponding sparse control inputs. Finally, we analyze the stabilizabil-
ity of an LDS using sparse control inputs with common support.
Our results shed light on the conditions under which a given LDS
is stabilizable using sparse control inputs and the design of the
corresponding control inputs.

Index Terms—Control input design, output feedback, piecewise
sparsity, sparsity, stabilizability, state control.

I. INTRODUCTION

The sparse control of a linear dynamical system (LDS) is a new
research area that deals with control inputs having very few nonzero
entries compared to their dimension. Sparse control inputs are suitable
for many resource-constrained systems, such as networked systems,
opinion dynamics, and environment control systems [1], [2], [3], [4].
For example, in a networked LDS, the controller and the plant (or
actuator) communicate over a data rate-limited channel [5]. Sparse
control inputs are suitable in this setting because sparse vectors admit
compact representations, reducing the bandwidth requirements [2], [6].
In the social network opinion dynamics control problem, an agent
(paid blogger, marketing staff, and election candidate) manipulates the
network opinion by influencing the opinion of a few individuals [3], [7].
Here, the opinion of people in the social network is the time-evolving
state (for example, the DeGroot model), and the agents’ influence is
modeled using sparse control inputs. Motivated by these applications,

Manuscript received 12 April 2022; accepted 2 October 2022. Date of
publication 25 October 2022; date of current version 28 July 2023. This
work was supported in part by the IISc-TU Delft Joint Seed Fund and
in part by the Young Faculty Research Fellowship, MeitY, Govt. of India.
Recommended by Associate Editor M. Kanat Camlibel. (Corresponding
author: Chandra R. Murthy.)

Chandrasekhar Sriram and Chandra R. Murthy are with the De-
partment of Electrical Communication Engineering, Indian Institute of
Science, Bengaluru 560012, India (e-mail: chandrasekhars@iisc.ac.in;
cmurthy@iisc.ac.in).

Geethu Joseph is with the Faculty of Electrical Engineering, Math-
ematics, and Computer Science, Delft Technical University, 2628 CD
Delft, The Netherlands (e-mail: g.joseph@tudelft.nl).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2022.3217102.

Digital Object Identifier 10.1109/TAC.2022.3217102

this article considers the design and analysis of sparse controllers,
focusing on the stabilizability of an LDS with sparse control inputs.

The stability and stabilizability of an LDS are well-studied topics in
control theory [8]. An LDS is said to be asymptotically stable if its state
decays to zero with time, starting from any initial state. Asymptotic
stability implies that even if the state is perturbed, it asymptotically
settles back to the desired trajectory. If a system is not asymptotically
stable, we seek the possibility of rendering the system stable by applying
suitable control inputs [8]. When these inputs are applied, the system
states do not significantly change under small perturbations in the state
trajectory. We explore the possibility of stabilizing an LDS using sparse
control inputs, which we henceforth refer to as sparse stabilizability.

The use of sparse control inputs for stabilizing continuous-time
linear systems via state feedback was introduced in [9], where the
inputs were designed using a row-sparse feedback gain matrix. The
estimation of the gain matrix was cast into a nonconvex optimization
problem via a Lyapunov inequality and solved using algorithms based
on convexification. The idea of the row-sparse gain matrix was extended
to discrete-time linear systems in [10]. Following this line of research, a
few studies addressed the design of sparse feedback with other structural
constraints [11], [12], [13], [14]. However, most of the investigations
were devoted to the numerical implementation of the design algorithms,
and little attention has been paid to the theoretical aspects of sparse
stabilizability. Also, using a row-sparse feedback matrix imposes the
extra constraint of common support (set of indices corresponding to its
nonzero entries) for all the control inputs, which is needlessly restric-
tive. Our article bridges this gap by presenting a comprehensive analysis
that includes theory and algorithms concerning the sparse stabilizability
of an LDS when the support of the control inputs can vary over time.
Our framework is motivated by the advantages of sparse control inputs
with time-varying support demonstrated in [15], [16], and [17].

We address the sparse stabilizability problem via the classical
Popov–Belevitch–Hautus (PBH) test for the stabilizability of the
LDS [8]. Consequently, we directly design the sparse control inputs
that drive the system state to zero. This, in turn, allows us to use control
inputs with time-varying supports. The fewer constraints on the input
lead to more flexibility in stabilizing the system. Moreover, our formu-
lation exploits the sparse recovery algorithms from the compressed
sensing literature to design sparse control inputs. This approach is
fundamentally different from existing studies that use the linear-matrix-
inequality-based approach that relies on the Lyapunov inequality [10],
[11], [12], [13]. Our specific contributions are as follows.
1) In Section II, we show that all stabilizable LDSs are s-sparse

stabilizable for any s ≥ 1 (see Theorem 2). We also design an
algorithm for finding a sequence of s-sparse control inputs such
that the system state decays to zero with time (see Algorithm 1).
Our algorithm is based on a sparse vector recovery method that
exploits an inherent underlying structure called the piecewise-
sparsity pattern in the control inputs.

2) In Section III-A, we extend our results to a noisy LDS where we
address the notion of mean square stabilizability of the system.
We show that all stabilizable LDSs are also s-sparse mean square

0018-9286 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 14,2024 at 11:16:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5503-4334
https://orcid.org/0000-0002-5289-5403
https://orcid.org/0000-0003-4901-9434
mailto:chandrasekhars@iisc.ac.in
mailto:cmurthy@iisc.ac.in
mailto:g.joseph@tudelft.nl
https://doi.org/10.1109/TAC.2022.3217102

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023 5015

stabilizable for any s ≥ 1 (see Theorem 4). We present a procedure
that sequentially estimates sparse control inputs to ensure mean
square stabilizability of a noisy LDS (see Algorithm 2).

3) In Section III-B, we consider a more restricted system where the
system state is accessible only via the system output. For such
systems, we show that if the system is stabilizable and detectable,
it is also sparse stabilizable (see Theorem 5). We also present an
algorithm to determine sparse control inputs that ensure stabiliz-
ability through output feedback (see Algorithm 3).

4) In Section III-C, we analyze an LDS where the supports of the
control inputs remain unchanged across all the time instants (sim-
ilar to [10], [11], [12], [13], and [14]). We derive necessary and
sufficient conditions for the stabilizability (see Theorem 6) and
show that verifying these conditions is an NP-complete problem
(see Proposition 1). Thus, not all stabilizable LDSs are sparse
stabilizable when the input supports are time invariant.

In a nutshell, our work gives theoretical guarantees on the sparse
stabilizability of an LDS and provides algorithmic solutions to com-
pute the control inputs to ensure sparse stabilizability. We note that
several past works have developed algorithms based on sparse signal
recovery to estimate control inputs with time-invariant support [18],
[19]. However, to the best of our knowledge, ours is the first algorithm
that exploits the piecewise-sparsity structure in the control input design.

Notation: The �0-norm, which counts the number of nonzero ele-
ments in a vector, is denoted by ‖ · ‖0. The operator ‖ · ‖ denotes the
induced �2-norm for matrices and Euclidean norm for vectors. We use
AS to denote the submatrix ofA formed by the columns indexed by the
set S . Also, Rank{·}, ρ(·) and (·)† represent the rank, spectral radius,
and pseudoinverse of a matrix, respectively.

II. CHARACTERIZATION OF SPARSE STABILIZABILITY

In this section, we characterize the notion of sparse stabilizability
of an LDS. For this, we consider a discrete-time linear time-invariant
system governed by the following equation:

xk+1 = Axk +Buk (1)

where k ≥ 0 is the integer time index. Here, xk ∈ R
n is the system

state and uk ∈ R
m is the control input at time k. Also, A ∈ R

n×n is
the state transition matrix and B ∈ R

n×m is the input matrix.
The LDS defined by (1) is said to be controllable if there exists a finite

integer K and a sequence of control inputs {uk}K−1
k=0 that can drive the

system state from any initial state xinit to any final state xfinal, i.e., x0 =
xinit and xK = xfinal. A slightly weaker notion than controllability is
stabilizability. The LDS defined by (1) is said to be stabilizable if there
exists a sequence of control inputs {uk}∞k=0 such that limk→∞ ‖xk‖ =
0, for any initial statex0 ∈ R

n. The definition of s-sparse stabilizability
naturally follows:

Definition 1: The LDS defined by (1) is said to be s-sparse sta-
bilizable if, for any initial state x0 ∈ R

n, there exists a control input
sequence {uk, ‖uk‖0 ≤ s}∞k=0 such that limk→∞ ‖xk‖ = 0.

Similarly, an LDS that is controllable using s-sparse control inputs
is called s-sparse controllable [15].

This section characterizes sparse stabilizability using a canonical
form of the LDS in (1) that decomposes the system into stable and
unstable parts. Using this form, we derive two sets of results:
1) sparse stabilizability test: conditions that are jointly necessary and

sufficient for an LDS to be s-sparse stabilizable, for any s ≥ 1;
2) design of sparse control inputs: an algorithm to find control in-

puts {uk, ‖uk‖0 ≤ s}∞k=0 for an s-sparse stabilizable system that
asymptotically drive the system state to zero.

We start with the canonical form in the next subsection.

A. Canonical Form of an LDS

We construct the canonical form using the real Jordan decomposition
of the state transition matrix, A, which is as follows:

A = V −1

[
S(1) ∈ R

n1×n1 0

0 S(2) ∈ R
n−n1×n−n1

]
V (2)

where V ∈ R
n×n and S(1) is an invertible matrix consisting of the

Jordan blocks corresponding to the eigenvalues of A whose absolute
values are greater than or equal to 1. Also,S(2) is a stable matrix formed
by the remaining Jordan blocks, i.e., ρ(S(2)) < 1. Furthermore, we
partition the rows of V as V (1) ∈ R

n1×n and V (2) ∈ R
n−n1×n as

V =
[
V T

(1)V
T
(2)

]T
. Substituting (2) into (1) and premultiplying by V ,

we obtain

V (1)xk+1 = S(1)V (1)xk + V (1)Buk (3)

V (2)xk+1 = S(2)V (2)xk + V (2)Buk. (4)

The above relations represent two LDSs whose states are two low-
dimensional projections of the original state xk, namely, V (1)xk ∈
R

n1 representing the unstable part and V (2)xk ∈ R
n−n1 representing

the stable part (since ρ(S(2)) < 1). However, both the LDSs share a
common control input uk.

The new LDSs have some interesting properties related to stabi-
lizability. Suppose that there exist an integer K < ∞ and a set of
control inputs {uk, ‖uk‖0 ≤ s}K−1

k=0 such that V (1)xK = 0. Then, if
we choose uk = 0, for all k ≥ K, from (3) and (4), for k ≥ K, we get

‖xk‖ ≤ ∥∥V −1
∥∥ (∥∥V (1)xk

∥∥+ ∥∥V (2)xk

∥∥) (5)

=
∥∥V −1

∥∥(∥∥∥Sk−K
(1) V (1)xK

∥∥∥+ ∥∥∥Sk−K
(2) V (2)xK

∥∥∥) (6)

≤ Cγk−K
∥∥V (2)xK

∥∥ (7)

for some real numbers C > 0 and 0 ≤ γ < 1 that depend on the state
matrix A. The last step is because ρ(S(2)) < 1. In other words, the
above choice of feedforward control inputs asymptotically drives the
system state xk to zero, stabilizing the LDS.

In the following, we use the above formulation to derive the s-sparse
stabilizability test and design s-sparse control inputs.

B. Necessary and Sufficient Conditions

We first note that s-sparse stabilizability is a stronger notion than
stabilizability and a weaker notion than s-sparse controllability. There-
fore, the conditions for stabilizability are necessary for s-sparse stabi-
lizability, and the conditions for s-sparse controllability are sufficient
for s-sparse stabilizability. These conditions are as follows.

Theorem 1: Consider the LDS defined by (1).
1) [8, Th. 14.2] The LDS is stabilizable if and only if for all λ ∈ C

such that |λ| ≤ 1, it holds that Rank{[λI −A B]} = n.
2) [15, Th. 1] The LDS is s-sparse controllable if and only

if Rank{[λI −A B]} = n holds for all λ ∈ C, and s ≥ n−
Rank{A}.

Building upon the above result, we next derive the stabilizability test.
Theorem 2: For 1 ≤ s ≤ m, the LDS defined by (1) is s-sparse

stabilizable if and only if Rank{
[
λI −A B

]
} = n ∀ |λ| ≥ 1.

Proof: See Appendix A. �
Theorem 2 leads to the following corollary connecting sparse stabi-

lizability and sparse controllability.
Corollary 1: For the LDS in (1), the following are equivalent.

1) The LDS is stabilizable.
2) The LDS is s-sparse stabilizable for any given 1 ≤ s ≤ m.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 14,2024 at 11:16:22 UTC from IEEE Xplore. Restrictions apply.

5016 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

Fig. 1. Venn diagram showing the relation between sparse control-
lability, controllability, sparse stabilizability and stabilizability, and the
necessary and sufficient conditions that each set satisfies.

3) The unstable part of the LDS given by (3) is s-sparse controllable
for any given 1 ≤ s ≤ m.

The resulting relationship between sparse controllability, controlla-
bility, and sparse stabilizability is depicted by Fig. 1. It is interesting
to note that any stabilizable system is also s-sparse stabilizable. This
is unlike its counterpart in controllability, where the notions of con-
trollability and sparse controllability are different [15]. Corollary 1
also asserts that even if a stabilizable LDS is not s-sparse controllable,
its s-sparse uncontrollable part is still stabilizable. Here, the s-sparse
uncontrollable part of an LDS refers to a projected system state xk that
cannot always be driven to an arbitrary desired value from any initial
value using s-sparse control inputs [15, Sec. V].

Having derived the conditions for sparse stabilizability, we next
discuss the design of sparse control inputs satisfying these conditions.

C. Design of Sparse Control Inputs

Before we discuss the algorithm for finding sparse control inputs,
we note that if the LDS defined by (1) is stabilizable, one can find a
matrix K ∈ R

m×n such that ρ(A−BK) < 1. Hence, by selecting
the (unconstrained) control inputs uk = −Kxk, we obtain

lim
k→∞

xk = lim
k→∞

(A−BK)k−1x0 = 0. (8)

However, this feedback mechanism cannot be applied in our case, as
−Kxk may not be s-sparse. Hence, we develop an algorithm that
computes a sequence of sparse control inputs for stabilizing an LDS.

From (7), designing sparse control inputs for stabilizing the system
is the same as finding an integer K < ∞ and sparse control inputs
{uk, ‖uk‖0 ≤ s}K−1

k=0 that drive V (1)x to zero. The existence of such
sparse inputs is guaranteed by Corollary 1. Equivalently, we seek sparse
inputs that drive the unstable part of the state defined by (3) to zero. The
following result bounds the number of nonzero sparse control inputs,
K, required to drive the state of a sparse controllable LDS to zero.

Theorem 3 (See[15, Th. 3]): If the LDS defined by (1) is s-sparse
controllable, the number of s-sparse control inputs, K∗, required to
ensure controllability is bounded as follows:

n

R∗
B,s

≤ K∗ ≤ min

{
q

⌈
Rank {B}

s

⌉
, n−R∗

B,s + 1

}
≤ n (9)

Algorithm 1: Design of Control Inputs for s-Sparse Stabilization.

Inputs: A ∈ R
n×n, B ∈ R

n×m, and x0 ∈ R
n

1: Compute V (1) ∈ R
n1×n and S(1) ∈ R

n1×n1 using the real
Jordan decomposition of A as given in (2)

2: Compute K∗ from (12)
3: Compute R using (13)
4: Compute {uk}K∗−1

k=0 by solving (12) using a piecewise sparse
recovery algorithm [21], [22]

5: Choose uk = 0, for k ≥ K∗

where q is the order of the minimal polynomial of A, and R∗
B,s �

min{Rank{B}, s}.
From Theorem 3, the maximum number of sparse vectors required

to steer V (1)xk to zero is given by

K∗ = min

{
q1

⌈
R1

s

⌉
, n1 −min{R1, s}+ 1

}
≤ n1 (10)

where we define q1 as the order of the minimal polynomial of S(1) and
R1 � Rank{V (1)B} < n1. However, from (3), we also have

V (1)xK∗ = SK∗
(1)V (1)x0 +

K∗−1∑
k=0

SK∗−k−1
(1) V (1)Buk. (11)

Thus, we solve for K∗ sparse control inputs from

Rũ0:K∗−1 = −SK∗
(1)V (1)x0 (12)

where R ∈ R
n1×K∗m and ũk1:k2

∈ R
m(k2−k1+1)×1 are

R �
[
SK∗−1

(1) V (1)B SK∗−2
(1) V (1)B . . . V (1)B

]
(13)

ũk1:k2
�
[
uT

k1
uT

k1+1 . . . uT
k2

]T
, k2 ≥ k1 ≥ 0. (14)

Here, the vector ũ0:K∗−1 is formed by concatenating K∗ s-sparse vec-
tors, i.e., ũ0:K∗−1 is piecewise sparse. Directly solving for a piecewise
sparse vector from (12) incurs exponential computational complex-
ity [20]. However, approximate recovery algorithms with polynomial
complexity are available in the compressed sensing literature. Some
examples are the piecewise orthogonal matching pursuit (POMP) [21]
and piecewise inverse scale space algorithm [22].

The overall algorithm is summarized in Algorithm 1. By applying
the control inputs obtained using Algorithm 1, the unstable part of the
system state V (1)xk is driven to zero at time k = K∗, while the stable
part V (2)xk goes to zero as the time index k goes to infinity.

We make a few observations about our algorithm.
1) Computational Complexity: Algorithm 1 involves comput-

ing the Jordan form and recovering a piecewise sparse vector from
(12). The complexity in Jordan decomposition of an n× n matrix
is O(n5) [23]. The complexity in solving for a K∗m-dimensional
piecewise sparse vector with sparsity K∗s using n1 equations via
POMP isO(K∗mn1 +K∗3ms2) [21]. SinceK∗ ≤ n1 ≤ n [see (12)],
the overall complexity of Algorithm 1 is O(n5 + n3s2m).

2) Comparison With Stabilization via State Feedback:
As mentioned earlier [see (8)], one method to stabilize an LDS (with
no constraints on the control input) is via system state feedback control

uk = −Kxk = −K(A−KB)k−1x0. (15)

However, if we relax the sparsity constraint (i.e., s = m), Algorithm
1 gives ũ0:K∗−1 = −(R)†SK∗

(1)V (1)x0 as the solution. Thus, in both
the approaches, the control inputs are linear functions of x0. However,

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 14,2024 at 11:16:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023 5017

our approach has a finite number of nonzero control inputs, whereas
the state feedback can potentially have infinitely many such inputs.

3) Number of Nonzero Control Inputs: From Theorem 3, we
know that K∗ ≤ n1, which implies that, for any stabilizable LDS, we
need at mostn1 nonzero sparse control inputs to drive the system state to
zero. Similarly, Theorem 3 also implies that we need at least n1

min{R1,s}
nonzero sparse control inputs to drive the state to zero.

4) Decay of System State xk: If the LDS is stabilizable, we
can find s-sparse control inputs {uk}K∗−1

k=0 such that for any k > 0

‖xk‖ ≤ max

{
max

0≤k≤K∗ ‖xk‖ , Cγk−K∗ ∥∥V (2)xK∗
∥∥} (16)

< cγk
∥∥V (1)x0

∥∥ (17)

where c > 0 and 0 ≤ γ < 1. Here, we also use (7) and (12), which
implies that K∗ ≤ n1 < ∞. Consequently, similar to stabilization via
state feedback in (8), the norm of the system state exponentially decays
to zero, and the decay rate depends on A (via γ).

5) Dependence on Sparsity: Note that K∗ decreases with the
sparsity level s. As s increases, the control inputs become less restricted,
and we can drive the unstable part V (1)xk to zero more quickly. On
the other hand, the sparsity level does not affect whether or not the
system is s-sparse stabilizable. However, choosing a small value s may
increase the time needed to drive the unstable part of the system state
to zero, thereby lengthening the time taken to drive the exponentially
decaying system state to a desired small value.

This completes our discussion on the algebraic characterization and
design of control inputs for sparse stabilizability. Our analysis thus
far makes three assumptions: 1) the system is noiseless; 2) the initial
state x0 is known; and 3) the supports of sparse control inputs can be
time varying. In the following section, we extend the idea of sparse
stabilizability to address these three restrictive assumptions.

III. VARIANTS OF SPARSE STABILIZABILITY

In this section, we build upon the notion of sparse stabilizability and
present three (more stringent) variants of sparse stabilizability.

A. Mean Square Stabilizability of Noisy Systems

We consider a noisy LDS given by the following equation:

xk+1 = Axk +Buk + vk (18)

where xk,A, and B are defined in (1). Also, vk ∈ R
n is the process

noise at time k such that for any integer k ≥ 0

E {vk} = 0, E
{
vkv

T
k

}
= Σv ∈ R

n×n with ‖Σv‖ < ∞. (19)

Also, we assume that the noise terms {vk}∞k=0 are independent across
time k and are independent of the initial state x0.

The stabilizability of noisy LDSs is characterized by mean square
stabilizability [24]. The system is said to be mean square stable if
supk=1,2,... E{‖xk‖2} < ∞, for any x0 ∈ R

n. Here, the expectation
is computed with respect to the additive noise vk. We extend the notion
of stabilizability with sparse control inputs as follows:

Definition 2: The LDS given by (18) and (19) is said to be s-sparse
mean square stabilizable if for any initial state x0 ∈ R

n, there exists a
sequence of s-sparse control inputs {uk}∞k=0 such that

sup
k=1,2,...

E

{
‖xk‖2

}
< ∞. (20)

If ρ(A) < 1, the LDS is mean square stable [24]. Hence, a stabiliz-
able system can use the feedback-based control uk = −Kxk so that
ρ(A−KB) < 1, which ensures stabilizability. Here, K is defined
in (8). Similarly, to achieve s-sparse mean square stabilizability, we

Algorithm 2: Design of Control Inputs for s-Sparse Stabilization
of a Noisy LDS.

Inputs: A ∈ R
n×n, B ∈ R

n×m

1: Compute V (1) ∈ R
n1×n and S(1) ∈ R

n1×n1 using the real
Jordan decomposition of A as given in (2)

2: Compute K∗ from (12)
3: Compute R using (13)
4: Compute L∗ using (21)
5: for r = 0, 1, . . . do
6: Compute {uk}rL∗+K∗−1

k=rL∗ by solving (23) using a piecewise
sparse recovery algorithm [21], [22]

7: Choose urL∗+k = 0, for k = K∗,K∗ + 1, . . . , L∗ − 1
8: end for

extend the idea of Algorithm 1. As discussed in Section II-A, we can
decompose the system state into stable and unstable parts. However, if
we apply the sparse control inputs returned by Algorithm 1, the unstable
part of the system state may not go to zero at time k = K∗ [given by
(12)]. This behavior is because of the extra additive terms due to the
noisevk. To handle the noise term, we estimate the sparse control inputs
after every L∗ time steps where

L∗ = min
{
k ≥ K∗ :

∥∥Sk
(2)

∥∥ < 1
}
. (21)

We note that {k ≥ K∗ : ‖Sk
(2)‖ < 1}
= ∅ since ρ(S(2)) < 1. We se-

quentially select the sparse control inputs that ensure that the unstable
part V (1)xk is bounded. The stable part V (2)xk is also bounded
because of the condition on ‖S(2)‖ in (21). Thus, if such a sequence
of sparse control inputs exists, the system is guaranteed to be s-sparse
mean square stabilizable. The formal statement and proof of the above
arguments are given below.

Theorem 4: The LDS defined by (18) and (19) is s-sparse mean
square stabilizable, for all 1 ≤ s ≤ m, if

Rank
{[

λI −A B
]}

= n ∀ |λ| ≥ 1. (22)

Proof: See Appendix B. �
Theorem 4 ensures that all stabilizable systems are s-sparse mean

square stabilizable. Also, the constructive proof of Theorem 4 leads
to the design algorithm described by Algorithm 2. Here, unlike the
noiseless system where we used a feedforward control based on the
initial state, we use feedback control where the control inputs are
estimated using

RũrL∗:rL∗+K∗−1 = −SK∗
(1)V (1)xrL∗ (23)

ũrL∗+K∗:(r+1)L∗−1 = 0 (24)

at time k = rL∗ for every integer r ≥ 0. Consequently, the number of
nonzero sparse control inputs is not bounded when the LDS is noisy.

The computational complexity of Algorithm 2 is similar to Algo-
rithm 1, except that that POMP is repeated after every L∗ steps. The
complexity of steps 1–4 of Algorithm 2 is O(n5 +mn2), and the
complexity of the POMP step is O(n3s2m).

Comparison with conventional nonsparse stabilization: It is
known [8] that the state feedback matrix K that stabilizes the system
in the noiseless case can also be used for mean square stabilization of
the system described by (18). The complexity of computing −Kxk

is O(mn), in each time step. Our algorithm computes inputs for only
L∗ steps; it is not directly comparable to an approach that requires a
matrix–vector multiplication at each time step.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 14,2024 at 11:16:22 UTC from IEEE Xplore. Restrictions apply.

5018 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

B. Stabilizability Through Output Feedback

Stabilizability through output feedback refers to the design of control
inputs to stabilize an LDS using the knowledge of its external outputs
only [8]. For this, we consider the LDS defined as follows:

xk+1 = Axk +Buk and yk = Cxk (25)

where yk ∈ R
p is the system output, and C ∈ R

p×n is the output
matrix. This problem is harder because the outputs may not give us the
full information about the system state. For such systems, we modify
the notion of sparse stabilizability as follows.

Definition 3: The LDS defined by (25) is said to be s-sparse stabi-
lizable through output feedback if for any integer k ≥ 0, we can find
an s-sparse control input uk from the present and past output sequence
{yt}kt=1 such that limk→∞ ‖xk‖ = 0, for any x0 ∈ R

n.
From Section II-C, we recall that designing s-sparse control inputs

for stabilizing the LDS requires only the knowledge of V (1)x0 and
the system matrices. Therefore, for our system, if we can estimate the
V (1)x0 from the output yk, then we can design the desired control
inputs. In other words, if the unstable part [given by (3)] of an s-sparse
stabilizable LDS is observable, the system is s-sparse stabilizable
through output feedback. This observation yields the following result.

Theorem 5: The LDS defined by (25) is s-sparse stabilizable through
output feedback for any 1 ≤ s ≤ m if for all λ ∈ C such that |λ| ≥ 1,

Rank
{[

λI −A B
]}

= Rank

{[
λI −A

C

]}
= n. (26)

Proof: The proof is straightforward because the condition ensures
that the LDS is s-sparse stabilizable (see Theorem 2) and detectable
(i.e., the part of the system state that cannot be estimated from the
outputs is stable) [8, Th. 16.5]. �

Theorem 5 implies that all systems that are sparse stabilizable
through output feedback are s-sparse stabilizable through output feed-
back, and vice versa, for all1 ≤ s ≤ m. Let the reduced column echelon
form of the observability matrix be[

(CAn−1)T (CAn−2)T . . . CT
]T

=
[
C̃ 0

]
T (27)

where ñ ≥ n1 is the rank of the observability matrix, C̃ ∈ R
np×ñ has

full column rank, and T ∈ R
n×n represents the invertible transforma-

tion that leads to the echelon form. Then, the observable part of the
initial state is given by T (1)x0 ∈ R

ñ, where T (1) ∈ R
ñ×n represents

the submatrix of T formed by the first ñ rows. As we noted earlier, to
design the sparse control inputs, we compute T (1)x0 as

T (1)x0 = C̃
† [

yT
1 yT

2 . . . yT
n

]T
. (28)

However, the detectability of the LDS implies that the row space of
V (1) is a subset of that of T (1), and hence, we compute V (1)x0 from
T (1)x0. Finally, we estimate the sparse control inputs that can drive
the unstable part Sn

(1)V (1)x0 of the system state (at time k = n) to
zero using

Rũn:n+K∗−1 = −Sn+K∗
(1) V (1)x0. (29)

We present the pseudocode of our algorithm in Algorithm 3.
We note that the number of nonzero sparse control inputs that

stabilize the LDS does not change even if we stabilize the LDS through
output feedback. However, for stabilization through output feedback,
the unstable part is driven to zero at time k = n+K∗, whereas it
goes to zero at time k = K∗ when the initial state is known. From
the computational point of view, Algorithm 3 needs one extra step to
compute V (1)x0 = V (1)T

†
(1)T (1)x0. Thus, the overall complexity of

this algorithm is O(n5 + n3ms2 + n3p).

Algorithm 3: Design of Control Inputs for s-Sparse Stabilization
Through Output Feedback.

Inputs: A ∈ R
n×n, B ∈ R

n×m

1: Choose uk = 0 for k = 1, 2, . . . , n− 1
2: Compute C̃ ∈ R

np×ñ and T (1) ∈ R
ñ×n using the column

reduced echelon form of the observability matrix in (27)
3: Compute T (1)x0 using (28)
4: Compute V (1)x0 = V (1)T

†
(1)T (1)x0

5: Compute K∗ from (12)
6: Compute R using (13)
7: Compute {uk}n+K∗−1

k=n by solving (29) using a piecewise
sparse recovery algorithm [21], [22]

8: Choose uk = 0 for k ≥ n+K∗

The notion of sparse stabilizability through output feedback can be
extended to noisy LDSs. In this case, the LDS is represented as

xk+1 = Axk +Buk + vk and yk = Cxk +wk (30)

where vk ∈ R
m and wk ∈ R

p represent the process noise and ob-
servation noise, respectively. Here, we combine Algorithms 2 and 3
to sequentially estimate the unstable part of the state and design the
corresponding sparse control inputs. Specifically, in step 6 of Algorithm
2, we estimate the unstable part of the state. The estimation can be done
via the least squares method or Kalman filtering if the initial state is
Gaussian distributed with known statistics.

Comparison with conventional nonsparse stabilization: We know
that, if the system described by (25) is detectable, one can find a matrix
L such that A−LC is a stable matrix [8]. Using x̂k = Lyk, we can
estimate the state with an exponentially decreasing reduction in the
norm of the error in the estimate. Using this estimate, it can be shown
that we can stabilize the system through output feedback. In contrast,
our proposed approach is a nonlinear feedback technique.

C. Time-Invariant Support

In this subsection, we analyze the stabilizability of an LDS us-
ing sparse control inputs that share the same support. Let S ⊂
{1, 2, . . . ,m} be the common support set of all the control inputs,
where |S| ≤ s. Then, the state evolution model (1) is equivalent to

xk+1 = Axk +BSuk,S (31)

where BS ∈ R
n×|S| and uk,SR|S| represents the entries of uk indexed

by S . We note that (31) represents an unconstrained LDS described by
(A,BS). As a consequence, the necessary and sufficient conditions for
stabilizability and the design of sparse inputs are straightforward.

Theorem 6: For any given 1 ≤ s ≤ m, the LDS defined by (1) is
s-sparse stabilizable with time invariant support if and only if there
exists a set S ⊂ {1, 2, . . . ,m} such that |S| = s and

Rank{
[
λI −A BS

]
} = n ∀ |λ| ≥ 1. (32)

Furthermore, if (32) holds for some S , there exists a matrix K(s) ∈
R

s×n such that ρ(A−BSK(s)) < 1, and the s-sparse control inputs
withuk,S = −K(s)xk anduk,S� = 0 asymptotically drive the system
state to zero.

Clearly, the condition described by (32) is more stringent than the
sparse stabilizability condition in Theorem 2. Hence, we conclude
that restricting the sparse control inputs to have common support can
make the LDS nonstabilizable. Although Theorem 6 gives a necessary
and sufficient condition, unlike sparse stabilizability with time-varying
supports, this condition cannot be verified in polynomial time.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 14,2024 at 11:16:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023 5019

Fig. 2. Comparison of stabilization of an LDS with n = m = 50, p = 12, and n1 = n2 = 25 using sparse inputs with sparsity levels s = 5, 10, and
20. The behavior of conventional stabilization using nonsparse inputs is also shown. (a) Stabilization of noiseless LDS. (b) Mean-square stabilization
of noisy LDS. (c) Stabilization of noiseless LDS through output feedback.

Proposition 1: For the LDS defined by (1), finding a set S ⊂
{1, 2, . . . ,m}, such that |S| = s and (32) holds, is NP-complete.

Proof: We know that (32) seeks a subset of s columns ofB such that
for every left eigenvector z ∈ C

n of A with eigenvalue λ ≥ 1, there
exists at least one column of B from the subset that is not orthogonal to
z. This can be represented using a bipartite graph. The vertices of the
graph on the left represent the columns of B. The vertices of the graph
on the right represent the left eigenvectors of A with the corresponding
eigenvalue greater than unity. Also, an edge from a left vertex to any
right vertex exists if the corresponding column ofB and left eigenvector
are not orthogonal. The task is then to check whether a subset of left
vertices of size at most s covers all of the right vertices. In other words,
verifying (32) is equivalent to the decision version of the hitting set
problem or, equivalently, the set cover problem [25]. Since the decision
version of the hitting set problem is NP-complete [25], the verification
of (32) is also NP-complete. �

Note that we can use approximate algorithms, such as the greedy
algorithm and layering [25] that solve the hitting set problem to estimate
S satisfying (32). Once S is estimated, the design of sparse control
inputs is straightforward from the classical stabilizability results for
unconstrained control inputs. In other words, this approach leads to a
row-sparse feedback gain matrix whose nonzero rows are indexed by
S . We note that the existing methods for sparse stabilizing feedback
using the linear matrix inequality [10], [11], [12], [13] also lead to a
row-sparse gain matrix. However, the two methods have their roots in
two equivalent concepts: the PBH stabilizability test (our approach)
and the Lyapunov inequality (existing approach).

IV. SIMULATION RESULTS

We choose the system dimensions as n = m = 50, p = 12, and
n1 = n2 = 25. For the state transfer matrix A, we choose V in (2)

as V =

[
U 0

0 U

]
. Here, U ∈ R

25×25 is a random orthogonal matrix

obtained via the eigendecomposition of a symmetric random Gaussian
matrix. The diagonal entries of S(1) and S(2) are drawn indepen-
dently from uniform distributions with supports (1,1.5) and (−1, 1),
respectively. We choose the input matrix B = [BT

c 0]
T ∈ R

50×50

and the output matrix C = [Cc 0] ∈ R
12×50. Here, the entries of

Bc ∈ R
25×50 and Cc ∈ R

12×25 are drawn from the standard Gaussian
distribution. Using Theorem 4, we first verified that the system is
stabilizable through output feedback, and thus, our algorithms can
stabilize it.

Using the above realization, we compute sparse inputs for s-sparse
stabilization, s-sparse mean-square stabilization, and s-sparse stabiliza-
tion through output feedback using Algorithms 1–3, respectively. Fig. 2
shows the squared �2 norm of the state vector in each case, averaged
across 100 random initial vectors x0 drawn from the standard Gaussian
distribution. The process noise vectors vk (only for mean square
stabilization) drawn independent and identically distributed from the
zero-mean Gaussian distribution with variance 10−6. We compare with
classical (nonsparse) stabilization, where the input is a linear function
of the state vector for the noiseless and noisy LDS and a linear function
of the output vector for stabilization through output feedback [8].

Fig. 2(a) shows that for the noiseless LDS stabilized using sparse
inputs, the norm of the state vector first increases when nonzero inputs
are applied to drive the controllable part of the state vector V (1)xk to
zero. After the controllable part becomes zero, we apply zero control
input and the uncontrollable part, which is asymptotically stable, decays
down to 0. For mean square stabilization in Fig. 2(b), the controllable
part of the state is not driven to zero due to the process noise. Therefore,
the norm of the state vector corresponding to the unstable part increases
periodically. Stabilization through output feedback in Fig. 2(c) shows
a similar trend as that in Fig. 2(a). However, in this case, we first
observe the output for some time to estimate the initial state. Owing
to this estimation period, it takes longer to drive the controllable part
to zero. From Fig. 2(a) and (c), we also infer that as s decreases,
we need a longer time to drive the controllable part to zero. This
inference is in agreement with (12). Similarly, Fig. 2(b) shows that as
s increases, the system becomes less constrained, and thus, E{‖xk‖2}
decreases. Finally, the state vector norm curve is smooth for the classical
(nonspare) stabilization schemes. In contrast, for our algorithms, the
state vector norm does not change smoothly for small values of s.

V. CONCLUSION

In this article, we studied the problem of stabilizing an LDS using
sparse control inputs. We first proved that all stabilizable systems are
sparse stabilizable. Furthermore, we provided bounds on the number
of nonzero sparse inputs required to stabilize the LDS and derived an
algorithm to design the sparse control inputs. We also developed similar
results for three other notions of sparse stabilizability, namely, mean
square stabilizability for noisy LDSs, stabilizability through output
feedback when the initial state is unknown, and stabilizability when
inputs share a common support. Extending our analysis to study the

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 14,2024 at 11:16:22 UTC from IEEE Xplore. Restrictions apply.

5020 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

stabilizability of an LDS when its control inputs have both sparsity and
energy constraints is a promising direction for future work.

APPENDIX A
PROOF OF THEOREM 2

From Theorem 1, the necessity of the rank condition in the theorem
is straightforward. Consequently, it is enough to show the sufficiency
of the condition, and we prove this using the canonical form discussed
in Section II-A. From (7), we know that to prove the sufficiency of the
condition in Theorem 2, it suffices to show that under this condition,
there exist an integer K < ∞ and a set of control inputs {uk, ‖uk‖0 ≤
s}K−1

k=0 such that V (1)xK = 0. For this, it is enough to verify s-sparse
controllability of the unstable part of system defined by the matrix tuple
(S(1),V (1)B) [see (3)]. However, when the condition in Theorem 2
holds for all λ such that |λ| ≥ 1, we have

n = Rank
{[

λI −A B
]}

(33)

= Rank

{
V
[
λI −A B

] [V −1 0

0 I

]}
(34)

= Rank

{[
λI − S(1) 0 V (1)B

0 λI − S(2) V (2)B

]}
(35)

which follows from (4). Therefore, for any λ ∈ C with |λ| ≥ 1

Rank
{[

λI − S(1) V (1)B
]}

= n1. (36)

Furthermore, since all the eigenvalues of S(1) have absolute values
greater than 1, (36) holds for all λ ∈ C and Rank

{
S(1)

}
= n1 >

n1 − s ∀ s ≥ 1. Invoking Theorem 1, we conclude that the LDS
described by (3) is s-sparse controllable ∀ s ≥ 1. Thus, we establish the
sufficiency of the condition in Theorem 2, and the proof is complete.

APPENDIX B
PROOF OF THEOREM 4

The proof relies on the canonical form described in Section II-A.
Similar to (3) and (4), here, we have

V (1)xk+1 = S(1)V (1)xk + V (1)Buk + V (1)vk (37)

V (2)xk+1 = S(2)V (2)xk + V (2)Buk + V (2)vk. (38)

Using the above decomposition and (5), we obtain

sup
k=1,2,...

E

{
‖xk‖2

}
≤ 2
∥∥V −1

∥∥2(sup
k=1,2,...

E

{∥∥V (1)xk

∥∥2}

+ sup
k=1,2,...

E

{∥∥V (2)xk

∥∥2}). (39)

Therefore, to prove the desired result, it is enough to prove that there
exists a sequence of sparse control inputs such that

sup
k=1,2,...

E

{∥∥V (1)xk

∥∥2} < ∞ (40)

sup
k=1,2,...

E

{∥∥V (2)xk

∥∥2} < ∞. (41)

Hence, the rest of the proof is devoted to choosing a sequence of s-sparse
control inputs that satisfy (23) and (24) and showing that the choice of
inputs guarantees the relations (40) and (41).

We start with the sparse control inputs defined by (23) and (24).
From Theorem 2 and Corollary 1, we know that (22) ensures s-sparse
controllability of the LDS defined by (3). As a result, there exist index
sets {Si ⊂ {1, 2, . . . ,m}}K∗

i=1 such that |Si| ≤ s and Rank {RS} =
n1 where the index set S = ∪K∗

i=1{l + (i− 1)m, l ∈ Si}. Also, K∗,
L∗ and R ∈ R

n1×K∗m are defined in (12), (20) and (13), respectively.
Hence RS = [SK∗−1

(1) V (1)BS1 SK∗−2
(1) V (1)BS2 . . .V (1)BSK∗]. For

any integer r ≥ 0, we choose the s-sparse control inputs as

ũrL∗:rL∗+K∗−1,S = (RS)
† SK∗

(1)V (1)xrL∗ ∈ R
K∗|S| (42)

ũrL∗:rL∗+K∗−1,S� = 0 ∈ R
K∗(m−|S|) (43)

where ũrL∗:rL∗+K∗−1 ∈ R
K∗m is defined in (14).

Using the above choice of control inputs, we next establish (40). For
this, we notice from (23) that

−SK∗
(1)V (1)xrL∗ =

K∗−1∑
i=0

SK∗−i−1
(1) V (1)BurL∗+i (44)

for any integer r ≥ 0. Also, from (3), for any r ≥ 0 and 1 ≤ k ≤ L∗,
we have

V (1)xrL∗+k = Sk
(1)V (1)xrL∗

+
k−1∑
i=0

Sk−i−1
(1) V (1) [BurL∗+i + vrL∗+i] . (45)

With k = L∗ in (45) and using (24) and (44), we arrive at

V (1)x(r+1)L∗ =
L∗−1∑
i=0

SL∗−i−1
(1) V (1)vrL∗+i (46)

for any integer r ≥ 0. Thus, using (19) and the fact that the noise vectors
vk are independent, the expected value of the �2-norm square of the
unstable part of the state is

E

{∥∥V (1)x(r+1)L∗
∥∥2} =

L∗−1∑
i=0

Tr
{
D(i)

}
< ∞ (47)

where we define D(i) ∈ R
n1×n1 as D(i)�SL∗−i−1

(1) V (1)Σv(S
L∗−i−1
(1)

V (1))
T. Similarly, from (45), for any integer 1 ≤ k ≤ L∗ − 1, we have

E

{∥∥V (1)xrL∗+k

∥∥2} ≤ (k + 1)

[
max

i=0,1,...,k

∥∥Si
(1)

∥∥2]

×
[
E

{∥∥V (1)xrL∗
∥∥2}+

∥∥V (1)B
∥∥2 k−1∑

i=0

E

{
‖urL∗+i‖2

}]

+
k−1∑
i=0

Tr
{
D(i)

}
< ∞. (48)

Here, we use the following fact from (24), (42), and (43):

k−1∑
i=0

E

{
‖urL∗+i‖2

}
≤

K∗∑
i=0

E

{
‖urL∗+i‖2

}
(49)

≤
∥∥∥(RS)

† SK∗
(1)

∥∥∥2 E{∥∥V (1)xrL∗
∥∥2} (50)

=
∥∥∥(RS)

† SK∗
(1)

∥∥∥2
[
L∗−1∑
i=0

Tr
{
D(i)

}]
< ∞ (51)

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 14,2024 at 11:16:22 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023 5021

where (51) is due to (47). Combining (48) and (51), we get
(40).

We next complete the proof by establishing (41). To this end, we
obtain from (38) that for any integer k > 0

V (2)xk = Sk
(2)V (2)x0 +

k−1∑
i=0

Sk−i−1
(2) V (2) [Bui + vi] . (52)

We note that the right-hand side of (52) is the sum of two terms: the first
term is due to the initial state and process noise given bySk

(2)V (2)x0 +∑k−1
i=0 S

k−i−1
(2) V (2)vi, and the second term is due to the control inputs

given by
∑k−1

i=0 S
k−i−1
(2) V (2)Bui. However, we know that if no control

inputs are applied, the LDS in (4) is mean square stable since ρ(S(2)) <
1. Thus, we arrive at

sup
k=1,2,...

E

⎧⎨
⎩
∥∥∥∥∥Sk

(2)V (2)x0 +
k−1∑
i=0

Sk−i−1
(2) V (2)vi

∥∥∥∥∥
2
⎫⎬
⎭ < ∞. (53)

Consequently, to prove (41) and establish the desired result, it is
sufficient to prove that

sup
k=1,2,...

E

⎧⎨
⎩
∥∥∥∥∥
k−1∑
i=0

Sk−i−1
(2) V (2)Bui

∥∥∥∥∥
2
⎫⎬
⎭ < ∞. (54)

Furthermore, from (42) and (43), we see that {ui}rL∗+K∗−1
i=rL∗ is a

function of V (1)xrL∗ . Also, from (46), V (1)xrL∗ is a function of
{vi}rL∗−1

i=(r−1)L∗ , for r > 0. Since the process noise vectors are inde-
pendent across time and independent of x0, the sets of control inputs
{ui}(r+1)L∗−1

i=rL∗ are independent across different values of r ≥ 0. Thus,
we deduce that for any integers r ≥ 0 and 1 ≤ k ≤ L∗, we have

E

⎧⎨
⎩
∥∥∥∥∥
rL∗+k−1∑

i=0

SrL∗+k−i−1
(2) V (2)Bui

∥∥∥∥∥
2
⎫⎬
⎭

=
r−1∑
t=0

E

⎧⎨
⎩
∥∥∥∥∥S(r−t)L∗

(2)

L∗−1∑
i=0

Sk−i−1
(2) V (2)ButL∗+i

∥∥∥∥∥
2
⎫⎬
⎭

+ E

⎧⎨
⎩
∥∥∥∥∥
k−1∑
i=0

Sk−i−1
(2) V (2)BurL∗+i

∥∥∥∥∥
2
⎫⎬
⎭ (55)

≤ L∗
L∗−1∑
i=0

∥∥∥Sk−i−1
(2) V (2)B

∥∥∥2 r∑
t=0

∥∥∥S(r−t)L∗
(2)

∥∥∥2E{‖utL∗+i‖2
}

(56)

where the last step follows because of the submultiplicative property
of norms. Therefore, the desired result (54) is proved if the following
holds:

r∑
t=0

∥∥∥S(r−t)L∗
(2)

∥∥∥2E{‖utL∗+i‖2
}
< ∞. (57)

To prove the above relation, we use (51) to obtain

r∑
t=0

∥∥∥S(r−t)L∗
(2)

∥∥∥2E{‖utL∗+i‖2
}

≤
r∑

t=0

∥∥∥SL∗
(2)

∥∥∥2t ∥∥∥(RS)
† SK∗

(1)

∥∥∥2
[
L∗−1∑
i=0

Tr
{
D(i)

}]
< ∞ (58)

because ‖SL∗
(2)‖ < 1 due to (21). Hence, (57) is established, which

concludes the proof.

REFERENCES

[1] A. Olshevsky, “Minimal controllability problems,” IEEE Trans. Control
Netw. Syst., vol. 1, no. 3, pp. 249–258, Sep. 2014.

[2] M. Nagahara and D. E. Quevedo, “Sparse representations for packetized
predictive networked control,” IFAC Proc. Vol., vol. 44, no. 1, pp. 84–89,
Jan. 2011.

[3] N. Wendt, C. Dhal, and S. Roy, “Control of network opinion dynamics by
a selfish agent with limited visibility,” IFAC-PapersOnLine, vol. 52, no. 3,
pp. 37–42, Jan. 2019.

[4] A. Jadbabaie, A. Olshevsky, G. J. Pappas, and V. Tzoumas, “Minimal
reachability is hard to approximate,” IEEE Trans. Autom. Control, vol. 64,
no. 2, pp. 783–789, Feb. 2019.

[5] S. C. Tatikonda, “Control under communication constraints,” Ph.D. dis-
sertation, Dept. Elect. Comput. Sci., Massachusetts Inst. Technol., Cam-
bridge, MA, USA, 2000.

[6] Z. Li, Y. Xu, H. Huang, and S. Misra, “Sparse control and compressed sens-
ing in networked switched systems,” IET Control Theory Appl., vol. 10,
no. 9, pp. 1078–1087, May 2016.

[7] G. Joseph, B. Nettasinghe, V. Krishnamurthy, and P. Varshney, “Control-
lability of network opinion in Erdos-Renyi graphs using sparse control
inputs,” SIAM J. Control Optim., vol. 59, no. 3, pp. 2321–2345, Jan. 2021.

[8] J. P. Hespanha, Linear Systems Theory. Princeton, NJ, USA: Princeton
Univ. Press, 2018.

[9] B. T. Polyak, M. V. Khlebnikov, and P. S. Shcherbakov, “Sparse feed-
back in linear control systems,” Autom. Remote Control, vol. 75, no. 12,
pp. 2099–2111, Dec. 2014.

[10] A. Bykov and P. S. Shcherbakov, “Sparse feedback design in discrete-time
linear systems,” Autom. Remote Control, vol. 79, no. 7, pp. 1175–1190,
Jul. 2018.

[11] A. Bykov, P. Shcherbakov, and M. Ding, “A tractable nonconvex surrogate
for the matrix l0-quasinorm: Applications to sparse feedback design,”
IFAC-PapersOnLine, vol. 49, no. 13, pp. 53–58, Jan. 2016.

[12] A. Bykov and P. Shcherbakov, “Surrogates for the matrix l0-quasinorm in
sparse feedback design: Numerical study of the efficiency,” Adv. Syst. Sci.
Appl., vol. 18, no. 2, pp. 11–25, Aug. 2018.

[13] F. Ferrante, F. Dabbene, and C. Ravazzi, “On the design of structured
stabilizers for LTI systems,” IEEE Control Syst. Lett., vol. 4, no. 2,
pp. 289–294, Apr. 2020.

[14] M. Yagoubi and R. Chaibi, “A nonsmooth Newton method for the design
of state feedback stabilizers under structure constraints,” J. Franklin Inst.,
vol. 358, no. 1, pp. 800–813, Jan. 2021.

[15] G. Joseph and C. R. Murthy, “Controllability of linear dynamical systems
under input sparsity constraints,” IEEE Trans. Autom. Control, vol. 66,
no. 2, pp. 924–931, Feb. 2021.

[16] L. F. Chamon, A. Amice, and A. Ribeiro, “Matroid-constrained approxi-
mately supermodular optimization for near-optimal actuator scheduling,”
in Proc. IEEE Conf. Decis. Control, 2019, pp. 3391–3398.

[17] C. Sriram, G. Joseph, and C. R. Murthy, “Control of linear dynamical
systems using sparse inputs,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2020, pp. 5765–5769.

[18] M. Kafashan, A. Nandi, and S. Ching, “Relating observability and com-
pressed sensing of time-varying signals in recurrent linear networks,”
Neural Netw., vol. 83, pp. 11–20, Jul. 2016.

[19] S. Sefati, N. J. Cowan, and R. Vidal, “Linear systems with sparse inputs:
Observability and input recovery,” in Proc. Amer. Control Conf., 2015,
pp. 5251–5257.

[20] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive
Sensing. Cambridge, MA, USA: Birkhäuser, 2013.

[21] K. Li, C. R. Rojas, T. Yang, H. Hjalmarsson, K. H. Johansson, and S. Cong,
“Piecewise sparse signal recovery via piecewise orthogonal matching
pursuit,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2016,
pp. 4608–4612.

[22] Y. Zhong and C. Li, “Piecewise sparse recovery via piecewise inverse
scale space algorithm with deletion rule,” J. Comput. Math., vol. 38, no. 2,
pp. 375–394, 2020.

[23] T. Beelen and P. V. Dooren, “Computational aspects of the Jordan canonical
form,” in Reliable Numerical Computation. Oxford, U.K.: Clarendon,
1990, pp. 57–72.

[24] P. Minero, L. Coviello, and M. Franceschetti, “Stabilization over Markov
feedback channels: The general case,” IEEE Trans. Autom. Control,
vol. 58, no. 2, pp. 349–362, Feb. 2013.

[25] V. V. Vazirani, Approximation Algorithms. Berlin, Germany: Springer,
2013.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 14,2024 at 11:16:22 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

