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The phenomenon of linear motion of conductor in a magnetic field is commonly found in electric machineries, such as
electromagnetic brakes, linear induction motor, electromagnetic flowmeter, and so on. The design and analysis of the same require an
accurate evaluation of induced currents and the associated reaction magnetic fields. The finite-element method (FEM) is a generally
employed numerical technique for this purpose. However, it needs stabilization techniques to provide an accurate solution. In this
work, such a stabilization technique is developed for the edge elements. The stability and, hence, the accuracy are brought in by
a suitable representation of the source term. The stability and accuracy of the proposed scheme are first shown analytically and
then demonstrated with the help of 2-D and 3-D simulations. The proposed scheme would require a graded regular mesh along the
direction of motion.

Index Terms— Edge element, magnetic advection, moving conductor, numerical stability, Z transform.

I. INTRODUCTION

THE numerical simulation of electrical machineries and
equipment is inevitable for their economical design and

safe operation. The finite-element method (FEM) is a com-
monly employed numerical technique. The FEM is known to
produce highly accurate solutions for second-order diffusive
simulations. The same is not true when dominant first-order
terms are present. The governing equations of conductor
moving in a magnetic field fall into this category. Consider
the following governing equations of conductor moving in a
magnetic field Ba [1], [2]:

σ∇φ −

(
∇ ·

1
µ

∇

)
A − σu × ∇ × A = σu × Ba (1)

∇ · (σ∇φ) − ∇ · (σu × ∇ × A) = ∇ · (σu × Ba) (2)

where φ is the scalar potential arising out of the current flow,
A is the magnetic vector potential associated with reaction
magnetic field b, u is the velocity of the moving conductor,
µ is the magnetic permeability, and σ is electrical conductivity.

It can be seen that, for the variables A and φ, all the
derivatives in (2) are second derivatives. So, this equation
is not expected to introduce any instability in the solution.
However, the same is not true for (1); here, the first derivative
is present in the form of σu×∇×A. When this becomes dom-
inant, more precisely, when the quantity µσ |u|1z/2 becomes
larger than 1, the numerical instability ensues, where 1z is
the element length along the flow direction [3], [4], [5]. This
quantity is called as Peclet number (Pe = µσ |u|1z/2).

In such a situation, to bring in stability and accuracy
to numerical solutions, several numerical remedies have
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been proposed. Among these, the upwinding techniques are
commonly used across disciplines. The upwinding schemes
are proposed for the fluid dynamics transport equation and
extended for the moving conductor problems [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16]. The upwinding-
based schemes can be inferred as to bring in the stability
by introducing the right amount of diffusion [17], [18]. The
correct amount of diffusion is decided by the stabilization
parameter τ , which is defined to be τ = coth(Pe) − 1/Pe.
On the other hand, the recent source-stabilized finite-element
schemes are primarily proposed for the linear moving conduc-
tor problems [19], [20]. They do not seek stability by adding
diffusion (upwinding) to the governing equation. Instead,
stability is brought in by the appropriate representation of the
source term, which mitigates numerical instability via pole-
zero cancellation. In addition, the source-stabilizing schemes
are shown to be free of non-physical currents at the material
boundary [21].

It can be noted that, all of the above mentioned stabilization
techniques are derived for the linear nodal elements for the
1-D problem of equal discretization, and they are heuristi-
cally extended for the 2-D and 3-D problems [17]. The one
exception can be the source-stabilized scheme proposed in
[20], where stability is analytically shown for a simplified
2-D problem.

In electrical engineering, edge elements are widely used
to accommodate for the discontinuity of the normal field at
the material interfaces; this is not possible with the nodal
elements. It can be noted that, numerical instability at high
velocities is present in the edge-element formulation as well.
In order to cater this, there are upwinding techniques proposed
for the moving conductor problems with the edge elements
[22], [23]. These are generally based on the heuristic extension
of the upwinding techniques proposed for the fluid dynam-
ics transport equation. Hence, they are also susceptible to
transverse-boundary error at the material interfaces [24], [25],
[26], [27].
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Fig. 1. Schematic of the 2-D problem.

In this work, an attempt is made to propose a source-
stabilized Galerkin finite-element formulation for the edge
elements. For this, a simplified version of the moving con-
ductor problem is considered; using that, the stability of the
proposed formulation is established. Then, in order to correctly
represent the edge elements as well as the curl nature of the
governing equation, an extensive stability analysis is carried
out in 2-D. Subsequently, numerical exercises are carried out
both in 2-D as well as 3-D.

In Section II, description of this work is provided, and it
starts with the stability analysis for a simplified problem.

II. PRESENT WORK

A. Analysis With Limiting 1-D Version of the Problem

Stability analysis of a complete moving conductor prob-
lem is very difficult to handle, mainly due to the presence
of multiple materials and the structure of the simulation
domain. Therefore, a simplified moving conductor prob-
lem will be considered here, following a previous work
[19]. A slightly modified version of the 2-D moving con-
ductor problem used in [19] is shown in Fig. 1. In this,
a conducting slab of thickness d is moving along the
z-axis with velocity uz , under the influence of magnetic
field Bx directed along the x-axis. The conductivity and
permittivity for the conductor are denoted as σ and µ,
respectively.

For this 2-D problem, the vector potential has components
of Ay and Az . The same has been depicted in Fig. 2(a). In
Fig. 2(a), the finite-element discretization of the 2-D problem
using edge elements is shown for one y edge ([n, m + 1/2]).
For the sake of mathematical analysis, a simplified version
with equal discretization along the z- and y-axes is chosen.
The edge variables are subscripted with n and m, where n
denotes the progression along the z-axis and m denotes the
progression along the y-axis. It can be noted that, in addition
to the integer progression (n − 1, n, and n + 1), a factor of
1/2 is present to denote the edge variable that is constant for
the edge.

Now, let us consider the limiting case of d → ∞ as
described in [19]. Here, due to the symmetry along the y-axis,
the variations with respect to the y-axis vanish, resulting in a
problem, which is independent of φ and Az . This situation
is depicted in Fig. 2(b), wherein only Ay has variations
along the z-axis as is the case for y-directed edges, which
have the natural variation along the z-axis (perpendicular axis).

Fig. 2. Representation of A with edge elements in the zy plane. (a) 2-D.
(b) Reduced 1-D.

The corresponding finite-element formulation using the edge
elements can be written as follows:∫

�

d M l
y

dz
d Ay

dz
d� + µσuz

∫
�

M l
y

d Ay

dz
d� + · · ·

= µσuz

∫
�

M l
y Bx (3)

where M l
y is the y-directed edge weight function [28]. Evalu-

ating the above equation for the nth edge gives the following
difference equation:

−(1 + Pe)Ay[n−1] + 2Ay[n] − (1 − Pe)Ay[n+1] + · · ·

=
1
3

(
Bx[n−1] + 4Bx[n] + Bx[n+1]

)
Pe1z. (4)

This is the same as that of the nodal formulation as in [20].
The numerical instability due to the negative roots (poles) of
the difference equation can also be viewed with the help of
Z transform [19], [20]. Moreover, the Z transform clearly
shows the effect of zeros arising from the source term as well.
Applying the Z transform on (4)

Ay

Bx
=

(Z + 0.27)(Z + 3.73)Pe1z
3(−1 + Pe)(Z − 1)

(
Z −

−1−Pe
−1+Pe

) . (5)

For Pe ≫ 1, (5) reduces to

Ay

Bx
≃

1z
3

(Z + 0.27)(Z + 3.73)

(Z − 1)(Z + 1)
. (6)

Now, the pole at −1 of (6) leads to the oscillation in the
solution.

Here, the relation between Ay and Bx in (6) is found to
be same as that of in [20] with the nodal formulation. The
oscillation appearing in the solution in [20] is successfully
mitigated by applying the input field Bx as the averaged nodal
flux densities for the element. Here, the same approach is
extended for the edge formulation, with elemental input fields,
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Fig. 3. Schematic of the simplified 2-D problem for the stability analysis.

Bx E1 and Bx E2. The Bx E1 and Bx E2 are the element-averaged
input magnetic fields for the elements spanning [n − 1], [n]

and [n], [n + 1], respectively. The Bx E1 and Bx E2 are defined
as follows [20]:

Bx E1 =
(
Bx[n−1] + Bx[n]

)
/2

Bx E2 =
(
Bx[n] + Bx[n+1]

)
/2.

For these modified inputs, the difference equation for (3)
becomes

−(1 + Pe)Ay[n−1] + 2Ay[n] − (1 − Pe)Ay[n+1] + · · ·

=
1
2

(
Bx[n−1] + 2Bx[n] + Bx[n+1]

)
Pe1z. (7)

Applying the Z transform

Ay

Bx
=

(Z + 1)2 Pe1z
2(−1 + Pe)(Z − 1)

(
Z −

−1−Pe
−1+Pe

) . (8)

For Pe ≫ 1, (8) reduces to

Ay

Bx
≃

1z
2

(Z + 1)

(Z − 1)
. (9)

While comparing (9) with (6), one would readily recognize
that for high Peclet number, the zero at −1 for the second case
eventually cancels the oscillatory pole at −1, thus leading to
a stable solution. This indicates that the elemental average
of the input magnetic field can be used for the edge ele-
ments as well. However, further confirmation in 2-D would
be helpful, since the edge elements are generally designed
for curl problems. The stability analysis in 2-D is dealt in
Section II-B.

B. Analysis With the 2-D Version of the Problem

A simplified, 2-D version of the moving conductor problem,
as shown in Fig. 3, is considered. The governing equations for
the same are given as follows:

∇ · (σ∇φ) − ∇ · (σu × (∇ × A)) = ∇ ·
(
σuz Bx ŷ

)
(10)

σ∇φ − ∇ ·
1
µ

(∇A) − σu × (∇ × A) = σuz Bx ŷ. (11)

In the edge-element formulation, the magnetic vector poten-
tial A is modeled with the edge vector shape functions M [28].
For this cartesian case, the y component of the vector potential
would be modeled with y-directed edge shape functions, and

similarly, the z component of the vector potential would be
modeled with z-directed edge shape functions. The electric
scalar potential φ is modeled with the nodal shape functions N .
In the Galerkin finite-element formulation, the weight func-
tions are the shape functions themselves, and to mark the
difference, the weight functions are super-scripted with l.

The Galerkin finite-element formulation for (10) and (11)
can be written as follows:∫

�

d N l

dz
dφ

dz
d� +

∫
�

d N l

dy
dφ

dy
d� + uz

∫
�

d N l

dy
d Ay

dz
d� + · · ·

−uz

∫
�

d N l

dy
d Az

dy
d� = uz

∫
�

d N l

dy
Bx (12)

µσ

∫
�

M l
y

dφ

dy
d�+

∫
�

d M l
y

dz
d Ay

dz
d�+

∫
�

d M l
y

dy
d Ay

dy
d� + · · ·

+µσuz

∫
�

M l
y

d Ay

dz
d� − µσuz

∫
�

M l
y

d Az

dy
d� + · · ·

= µσuz

∫
�

M l
y Bx (13)

µσ

∫
�

M l
z
dφ

dz
d�+

∫
�

d M l
z

dz
d Az

dz
d�+

∫
�

d M l
z

dy
d Az

dy
d�

= 0. (14)

It can be noted that, (13) and (14) are the weighted
residual formulation of (11); the former arises from the
y-directed edge weight function Ml

= M l
y , and the latter

arises from the z-directed edge weight function Ml
= M l

z .
In addition to this, for the rest of the analysis, the element
lengths along the y- and z-directions are assumed to be equal,
i.e., 1y = 1z [20].

The difference form of the finite-element equation (12) for
node 4 [see Fig. 4(b)] can be written as follows:
1
6

(
2
(
φ[0] + φ[1] + φ[2] + φ[3] − 8φ[4] + φ[5] + φ[6] + · · ·

+ φ[7] + φ[8]
)
+ 3uz

(
A[e2] − A[e0] − A[e4] − A[e6] + · · ·

+ A[e10]− A[e8]+ A[e11]− A[e7]
))

+· · ·

=
uz1y

12

(
Bx[8] + Bx[6] + 4Bx[7] − Bx[0] + · · ·

− 4Bx[1] − Bx[2]
)
. (15)

In the above equation, it may be noted that the scalar
variable φ is at the nodes, whereas the vector potential A[e]

is present at the edges. The stability analysis requires the
variables to be at the nodes [20], [29], [30]. Therefore, it is
necessary to represent the vector potential at the nodes. For
this, the node equivalent of the vector potential is obtained
by averaging the vector potential at the edges. Each node has
two y-directed edges (vertical edges); by taking the average
of the two, the Ay[node] is obtained. Similarly, each node has
two z-directed edges (horizontal edges); by taking the average
of the two, the Az[node] is obtained. With these, the nodal form
of (15) can be written as follows:
1
6

(
2
(
φ[0] + φ[1] + φ[2] + φ[3] − 8φ[4] + φ[5] + φ[6] + · · ·

+ φ[7] + φ[8]
)
+

3uz

2

(
Ay[0] + Ay[8] − Ay[2] − Ay[6]

)
+ · · ·

+ 3uz
(
−Az[1] + Az[7]

))
+ · · ·
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Fig. 4. Representation of edge elements in 2-D zy plane. (a) z- and y-directed edge vectors and their corresponding edge numbers. (b) Node and element
numbering for the same set of edge elements.

=
uz1y

12

(
Bx[8] + Bx[6] + 4Bx[7] − Bx[0] + · · ·

− 4Bx[1] − Bx[2]
)
. (16)

For the vector equation, the 2-D representation [see
Fig. 4(a)] has two edges for each direction. That is, the shape
function corresponds to edges e3 and e9; each forms a finite-
element equation. Similarly, the shape function corresponds to
edges e1 and e5; each forms a finite-element equation. Thus,
there are four finite-element equations associated with four
edges. In contrast, the node element forms only one equation
that corresponds to node 4. The edges e1 and e5 are directed
along the z-direction, so their Galerkin weighted residual
formulation corresponds to the z component of the vector
equation (11). Then, the difference form of the finite-element
equation (14) for e1 can be written as follows:

−
1
6

((
φ[0] − φ[1] + 4φ[3] − 4φ[4] + φ[6] − φ[7]

)
1y2µσ + · · ·

+ 6
(

A[e0] − 2A[e1] + A[e7]
)
1z

)/(
1y21zµ

)
= 0. (17)

Similarly, the difference form of the finite-element equation
(14) for e5 can be written as follows:

−
1
6

((
φ[1] − φ[2] + 4φ[4] − 4φ[5] + φ[7] − φ[8]

)
1y2µσ + · · ·

+ 6
(

A[e10] − 2A[e5] + A[e4]
)
1z

)/(
1y21zµ

)
= 0. (18)

Upon taking the average of (17) and (18), one gets the
averaged difference form of the finite-element equation (14)
along the z-direction

−
1
6

((
φ[0] − φ[2] + 4φ[3] − 4φ[5] + φ[6] − φ[8]

)
1y2µσ + · · ·

+ 6
(

A[e0] − 2A[e1] + A[e4] − 2A[e5] + A[e7] + · · ·

+ A[e10]
)
1z

)/(
1y21zµ

)
= 0. (19)

Equation (19) is in terms of the edge vectors A[e]. By following
the similar procedure that applies for (16), the edge variables

are represented with their respective node equivalents:

−
1
6

((
φ[0] − φ[2] + 4φ[3] − 4φ[5] + φ[6] − φ[8]

)
1y2µσ + · · ·

+ 12
(

Az[1] − 2Az[4] + Az[7]
)
1z

)/(
1y21zµ

)
= 0. (20)

By following the same procedure for the y-directed edges,
that is, the following hold: 1) obtain the difference equa-
tions of the Galerkin formulation from e3 and e9 edges;
2) average them; and 3) represent the edge variables with their
node equivalents. After these three steps, the final difference
equation for (13) can be written as follows:

−
1
6

((
φ[0] + 4φ[1] + φ[2] − φ[6] − 4φ[7] − φ[8]

)
1zµσ + · · ·

− 6
(
−Ay[3] + Ay[5] + Az[1] − Az[7]

)
µσuz1z + · · ·

+ 12
(

Ay[3] − 2Ay[4] + Ay[5]
))/(

1z2µ
)
+ · · ·

=
1

12

(
Bx[0] + 4Bx[1] + Bx[2] + 2Bx[3] + 8Bx[4] + · · ·

+ 2Bx[5] + Bx[6] + 4Bx[7] + Bx[8]
)
σuz . (21)

Equations (16), (20), and (21) form a system of three
equations and three variables φ, Ay , and Az . The stability
analysis can be now performed by taking 2-D Z transform
of these equations [20], [29], [31]. In this, the z-direction
is represented by the transformation variable Zn , and the
y-direction is represented by the transformation variable Zm

[please refer to Fig. 4(b)]. After taking 2-D Z transform, (16),
(21), and (20) take the following form:

1
3

[S1]φ +
uz

4
[S2]Ay −

uz

2
[S3]Az =

uz1z
12

[Q1]Bx (22)

Pe
6uz

[Q1]φ + (−[S1] + Pe[Q2])Ay + Pe[S3]Az + · · ·

=
Pe1z

12
[M1]Bx (23)

Pe
6uz

[
Q2′

]
φ −

[
S1′

]
Az = 0 (24)
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where

[Q1] = Z2
n Z2

m + 4Zn Z2
m + Z2

m − Z2
n − 4Zn − 1 (25)

[Q2] = Z2
n Zm − Zm (26)

[Q2′
] = Z2

n Z2
m − Z2

m + 4Z2
n Zm − 4Zm + Z2

n − 1 (27)

[S1] = 1 + Zn + Z2
n + Zm + Z2

n Zm + Z2
m + · · ·

+ Zn Z2
m + Z2

n Z2
m − 8Zn Zm (28)

[S2] = 1 + Z2
n Z2

m − Z2
n − Z2

m (29)

[S3] = Zn − Zn Z2
m (30)

[S1′
] = Zn − 2Zn Zm + Zn Z2

m (31)

[M1] = 1 + 4Zn + Z2
n + 2Zm + 8Zn Zm + · · ·

+ 2Z2
n Zm + Z2

m + 4Zn Z2
m + Z2

n Z2
m . (32)

Equations (22), (23), and (24) form a system of three
equations with three variables φ, Ay , and Az . By following a
similar procedure as that of [20], the final equation is obtained
for Pe ≫ 1 as follows:(

[Q2][S3] +
[S3][S2]

2

)
Ay ≈

1z
12

([M1][S3] + · · ·

+ 2[Q1][S3])Bx . (33)

Upon simplification, the transfer function takes the following
form:

Ay

Bx
≈

1z
6

(
Z2

n + 4Zn + 1
)

f 1(Zm)(
1 − Z2

n

)
f 2(Zm)

(34)

where

f 1(Zm) = 1 − 2Zm − 3Z2
m

f 2(Zm) =

(
2Zm −

(
1 − Z2

m

)2
)
.

The transfer function (34) has poles/roots located at −1 and
+1, among which the pole at “−1” causes the oscillatory
behavior in the solution. The zeros are located at Zn =

−0.27 and −3.7. The locations of the zeros may be changed
by modifying the representation of the input magnetic field
consistently. By following the 1-D case (please refer to
Section II-A) and the preceding work [20], the input magnetic
field, which is directed along x edges (perpendicular to the
plane), can be averaged over each element, and the resultant
magnetic field can be used as the input field. In other words,
the following would be the input field for the element E1:

Bx =
1
4
(Bx [n − 1, m − 1] + Bx [n, m − 1] + · · ·

+Bx [n − 1, m] + Bx [n, m]) (35)

and similarly for other elements. With this modification, the
transfer function for the proposed formulation is calculated to
take the following form:

Ay

Bx
≈

1z
4

(
Z2

n + 2Zn + 1
)

f 1(Zm)(
1 − Z2

n

)
f 2(Zm)

≈
1z
4

(1 + Zn)
XXXX(1 + Zn) f 1(Zm)

(1 − Zn)
XXXX(1 + Zn) f 2(Zm)

. (36)

The oscillatory pole at “Z = −1” is canceled by the zero
introduced in the numerator. Thus, the elemental averaging of

Fig. 5. Sample 2-D finite-element mesh.

the input magnetic field can be seen to possess the stability
properties similar to that of 1-D. In Section III, numerical
validation exercises are carried out in 2-D and 3-D.

III. NUMERICAL VALIDATION

A. Simulation Results for 2-D Version of the Problem

The 2-D simulation involves the problem setup, shown
in Fig. 1. The corresponding finite-element mesh is shown
in Fig. 5. The physical parameters of the problem are as
follows. The conductor has a width of d = 0.5 m, its
conductivity is σ = 7.2 × 106 Sm−1, and its velocity is
uz = 50 ms−1. Simulations were carried out to test the stability
of the proposed formulation; stable solutions are observed.
A sample simulation result showing the reaction magnetic field
bx = ∂ Az/∂y −∂ Ay/∂z with Pe = 200 is displayed in Fig. 6.
Fig. 6(a) shows the bx obtained from the standard Galerkin
formulation, and Fig. 6(b) shows the same from the proposed
formulation. It can be seen that the proposed formulation gives
a stable solution without any numerical oscillations.

In the nodal formulation, it was possible to obtain the
analytical expression for the peak errors due to the numerical
oscillation [20]. This is because, the nodal formulation can be
reduced to 1-D, and the resulting finite-element equation in
the difference form can be solved. The following expressions
of peak errors are derived in [20].

Analytical error in the standard Galerkin formulation

êGA =

∣∣∣∣∣
(
Pe2

− 3
)
(Pe − 1)

3(Pe + 1)3

∣∣∣∣∣ × 100%. (37)

Analytical error in the stable nodal formulation of [20]

êSA =

∣∣∣∣ Pe − 1
(Pe + 1)3

∣∣∣∣ × 100%. (38)

Having these nodal errors as a reference, the peak oscillation
error with the edge elements is measured for the 2-D problem.
These measured values are plotted in Fig. 7, where êGN is the
peak error measured with the Galerkin formulation and êSN
is the peak error measured with the proposed formulation.
It is observed that the peak error from the 2-D Galerkin
edge is twice that of the 1-D Galerkin node. In other words,
“êGN ≈ 2êGA” and the same can be observed from the plot of
“2êGA” in Fig. 7. It can also be observed that the peak error
measured with the proposed formulation (êSN) is negligible.

In Table I, the average and the rms error measured for
the first derivative (reaction magnetic field bx ) are presented.
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Fig. 6. Reaction magnetic field—bx from the 2-D moving conductor problem with Pe = 200. (a) Galerkin formulation. (b) Proposed formulation.

TABLE I
MEASURED VALUES OF ERROR IN THE FIRST DERIVATIVE FOR THE GALERKIN SCHEME AND THE PROPOSED SCHEME

Fig. 7. Percentage of peak error measured.

The errors are measured for the Galerkin scheme and the
proposed scheme, for different amounts of resolution. The
average error and the rms (L2) error are observed to fall
with the increasing resolution. It may also be noted that the
errors measured from the proposed scheme are an order of
magnitude smaller than the errors measured from the Galerkin
scheme. With the increasing resolution, the proposed formu-
lation also produces the expected convergence rate. Thus, the
proposed formulation gives stable as well as accurate results.

In Section III-B, further testing is carried out in 3-D with
the “Testing Electromagnetic Analysis Methods” (TEAMs)
problem No. 9 [32].

B. Validation With 3-D TEAM-9 Problem

A schematic of the TEAM-9 problem is shown in Fig. 8(a).
The problem has an infinite ferromagnetic material with the
conductivity of σ = 5 × 106 Sm−1. The relative magnetic
permeability of the material is taken as µr = 1 and µr = 50.
The ferromagnetic material has a cylindrical bore with the
radius of ri = 14 × 10−3 m. A concentric current-carrying
loop with 1 A of current and a radius of rc = 12 × 10−3 m
is moving at an uniform velocity inside the bore. For the
analysis, the case with the largest velocity (v = 100 ms−1)
is chosen. In order to accurately model the current loop, the
finite-element mesh close to the current loop is dense; away
from the current loop, the mesh becomes progressively coarser.
Due to this variation, the resulting value of the Peclet number
varies from 5 to 200. The finite-element mesh employed is
shown in Fig. 8(b).

In the proposed formulation, for each element, the x , y, z
components of the applied magnetic field Bx , By , and Bz are
represented as follows:

Bx =
1∑n

e=1

∣∣ve
x

∣∣ n∑
e=1

Beve
x (39)
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Fig. 8. Description of the TEAM 9a problem and sample results. (a) Schematic representation of the TEAM 9a moving conductor problem. (b) Finite-element
mesh employed. (c) Galerkin scheme—reaction magnetic field—br for uz = 100 ms−1 and µr = 50. (d) Proposed scheme—reaction magnetic field—br for
uz = 100 ms−1 and µr = 50 in the cross section along the r z plane for θ ≈ 0◦.

By =
1∑n

e=1

∣∣ve
y

∣∣ n∑
e=1

Beve
y (40)

Bz =
1∑n

e=1

∣∣ve
z

∣∣ n∑
e=1

Beve
z (41)

where n is the number of edges for each element; Be is the
applied magnetic field corresponding to each edge; and ve

x , v
e
y ,

and ve
z form the unit vector ve = {ve

x , v
e
y, v

e
z } of the edge “e.”

The elemental applied magnetic field vector B = {Bx , By, Bz}

is the source field in the proposed formulation.
The standard Galerkin formulation would have the applied

magnetic field at each Gauss-integration point Bg as follows:

Bg =

n∑
e=1

BeMe
g

where Me
g is the value of edge shape function vector at a

Gauss-integration point. The simulated, reaction magnetic field

along the r z plane is plotted in Fig. 8(c) and (d) for the
Galerkin scheme and the proposed formulation, respectively. It
may be readily noted that the br from the proposed formulation
is stable as expected.

The TEAM-9 test problem is also provided with the
set of analytical solution for comparison [32]. It may be
noted that, the analytical solutions are provided along the
radius of r = 13 mm, which is 1 mm away from both the
current-carrying coil and the ferromagnetic cylinder. Since
the measurement point is very close to the cylinder as well as
the circular coil, it is necessary to model them as accurately
as possible. Such a modeling is not feasible with linear edge
elements in a cartesian coordinate system. Therefore, the
problem is transferred to the cylindrical coordinate system for
the accuracy study. In the cylindrical coordinate system, the
results of Fig. 8(c) and (d) are once again observed. In addition
to this, edge elements can accurately represent the simulation
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Fig. 9. Comparison of the total magnetic flux densities from the analytical
solution of the TEAM-9 problem [32] and the proposed formulation, for the
cases of (a) uz = 100 ms−1, µr = 1 and (b) uz = 100 ms−1, µr = 50.

domain in the cylindrical coordinate system. Simulations are
carried out for v = 100 ms−1 with µr = 1 as well as the
ferromagnetic case of µr = 50. The results from r = 13 mm
are plotted along with the analytical solution in Fig. 9. It can
be seen that the proposed formulation performs consistently
in 3-D as well.

IV. DISCUSSION ON MESH

This work deals with the simulation of linear moving
conductor problems, such as electromagnetic brakes, linear
induction motor, electromagnetic flowmeter, and so on. In such
cases, the conducting region of the problem can be and usually
be discretized with graded regular mesh along the moving
direction. In other words, the resulting mesh would look like
a stack of layers of different thickness along the moving
direction. The same can be seen in Fig. 8(b). In this, the
discretization along the direction of motion (z-axis) has dense

Fig. 10. Sample results from TEAM 9a problem with wedge elements.
(a) Finite-element mesh with wedge elements. (b) Galerkin scheme—reaction
magnetic field—br for uz = 100 ms−1 and µr = 50. (c) Proposed scheme—
reaction magnetic field—br for uz = 100 ms−1 and µr = 50 in the cross
section along the r z plane for θ ≈ 0◦.

discretization close to the center, where the current loop is
present and the discretization becomes coarser as we move
away from the center.
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The source-based stabilization strategies utilize this feature
of the linear moving conductor problems. Here, the stabiliza-
tion is brought in by the pole-zero cancellation of the source
term. Such an analysis is valid, only when the discretization
is like a stack of layers along the moving direction. Hence,
the proposed scheme requires a regular mesh in 2-D with
quadrilateral elements. In the case of 3-D, the restriction
only applies to the direction of motion. Therefore, the cross
section of the moving conductor, i.e., the plane perpendicular
to the motion, can be discretized without any restrictions.
Hence, the 3-D problems can be discretized with hexahedral or
wedge elements. The discretization using hexahedral elements
is shown in Fig. 8(b).

The application of wedge elements with vector shape
functions is scarce in literature. However, the vector shape
functions for the wedge elements are straightforward to derive,
and they are provided in the Appendix for reference. The dis-
cretization using wedge elements for the TEAM-9 test problem
is shown in Fig. 10(a). The simulated reaction magnetic field,
along the r z plane, is plotted in Fig. 10(b) and (c) for the
Galerkin scheme and the proposed formulation, respectively.
The br from the proposed formulation is stable as expected,
with the wedge elements as well. As an added note, the dis-
cussion in this section is also applicable to node elements [20].

V. CONCLUSION

Edge elements are vital in the finite-element simulation of
electromagnetic fields, especially when multiple materials are
present and the simulation variables are electric and magnetic
fields themselves. Similar to many other central-weighted
numerical schemes, edge elements also produce numerically
oscillating solutions for the simulation of moving conductor
problems at high velocities. In such a situation, the usual
strategy is to employ the upwinding strategies, which in a
way introduce extra diffusion to stabilize the solution [18],
[22], [23]. However, the upwinding schemes are known to
be susceptible to transverse-boundary error at the material
interfaces [21], [24], [25], [27].

In this work, the source-based stabilization strategies, which
are proposed for the nodal formulation, are extended for the
edge elements. The formulation requires a graded regular mesh
along the direction of motion. The stability of the proposed
formulation is analytically studied in 1-D as well as 2-D with
edge elements. Then, numerical exercises are carried out for
the verification of the proposed formulation. The simulation
results in 2-D demonstrate that the formulation produces sta-
ble, accurate, and converging solutions. The 3-D simulation is
carried out with the TEAM-9 problem, and stable solutions are
observed. Comparing the analytical solutions of the TEAM-9
problem and the simulation results, accuracy of the proposed
formulation is demonstrated in 3-D.

APPENDIX
WEDGE ELEMENT—VECTOR SHAPE FUNCTIONS

The edge shape functions for the wedge element are pro-
vided below. Consider the reference triangle element in the
(ξ, η) coordinate system with its nodes a, b, c located at (0, 0),

Fig. 11. Wedge element in the (ξ, η, ζ ) coordinate system. n denotes the
nodes of the element. M denotes the vector shape functions and corresponds
to each edge.

(1, 0), and (0, 1), respectively. The node shape functions for
this reference triangle element can be written as follows [33]:

Na = 1 − ξ − η

Nb = ξ

Nc = η. (42)

Using these, the vector shape function of the wedge element
can be constructed. The reference wedge element in the
(ξ, η, ζ ) coordinate system is shown in Fig. 11. The edge
shape functions for the wedge element are

M1 = l1(Na∇Nb − Nb∇Na)
(1 − ζ )

2

M2 = l2(Nb∇Nc − Nc∇Nb)
(1 − ζ )

2

M3 = l3(Nc∇Na − Na∇Nc)
(1 − ζ )

2

M4 = l4(Na∇Nb − Nb∇Na)
(1 + ζ )

2

M5 = l5(Nb∇Nc − Nc∇Nb)
(1 + ζ )

2

M6 = l6(Nc∇Na − Na∇Nc)
(1 + ζ )

2
M7 = l7 Na∇ζ/2
M8 = l8 Nb∇ζ/2
M9 = l9 Nc∇ζ/2 (43)

where l1, l2, . . . , l9 are the actual lengths of the edges that
correspond to edge shape function M. The gradients are taken
with respect to the (x, y, z) coordinate system [28].
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