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ABSTRACT
We describe a comprehensive methodology for developing user-
voice personalized automatic speech recognition (ASR) models by
effectively training models on mobile phones, allowing user data
and models to be stored and used locally. To achieve this, we pro-
pose a resource-aware sub-model-based training approach that
considers the RAM, and battery capabilities of mobile phones. By
considering the evaluation metric and resource constraints of the
mobile phones, we are able to perform efficient training and halt
the process accordingly. To simulate real users, we use speakers
with various accents. The entire on-device training and evalua-
tion framework was then tested on various mobile phones across
brands. We show that fine-tuning the models and selecting the right
hyperparameter values is a trade-off between the lowest achiev-
able performance metric, on-device training time, and memory
consumption. Overall, our methodology offers a comprehensive
solution for developing personalized ASR models while leverag-
ing the capabilities of mobile phones, and balancing the need for
accuracy with resource constraints.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; •
Human-centered computing→ Ubiquitous and mobile com-
puting; •Hardware→ Digital signal processing; Sound-based
input / output.
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on-device training, on-device personalization, speech recognition,
model adaptation, stopping criteria.
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1 INTRODUCTION AND MOTIVATION
Over the past few years, we have witnessed a rapid improvement
in automatic speech recognition (ASR) tasks owing to the advance-
ments in model architectures [7, 15, 17, 18, 32]. Training these
powerful models requires a significant amount of annotated and
transcribed audio data. For example, Amazon Alexa[24] trained
their acoustic model with 1 Million hours of unlabelled speech and
labeled speech of 7,000 hours. The tech giants, such as Microsoft,
Google, Amazon, etc., use their efficient distributed training frame-
work to train models in their cloud-based data centers. Data col-
lected from various devices are offloaded to the cloud, trained using
parallel machines in the data centers, and then the pre-trained mod-
els are downloaded on the devices for inference. There is a marked
advantage of this paradigm as models become more general and
robust. However, the transfer of recorded speech to the cloud not
only requires the device to be connected and requires a significant
amount of internet bandwidth and, more importantly, results in
privacy concerns. Furthermore, typically, the ASR models trained
on generic datasets do not generalize well for users with different
voice characteristics such as pitch, accent, and speaking rate. Hence,
model adaptation[26, 27] or personalization [29, 31, 33] is crucial
for better generalization of a user-specific ASR application. User
voice personalization on such devices continues to be a challenge
as recordings have to be trained on cloud-based models.

With the evolution of hardware and software technologies, the
latest mobile phones are becoming increasingly powerful intelligent
devices. This allows the researchers to bring machine intelligence
from cloud-based data centers to mobile or edge devices. The idea
is to preserve data privacy by keeping sensitive data on the users’
device. Additionally, on-device personalization of models not only
mitigates privacy risks but also enhances model performance by
adapting to users’ voices. However, implementing such function-
alities on mobile devices is limited by factors such as CPU speed,
memory, and storage availability, as well as the quality of on-device
training data due to the use of cheap sensor hardware. As a re-
sult, training end-to-end ASR models on lightweight systems is a
challenge in itself.
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A wide range of real-world problems can benefit from on-device
training of ASR models on mobile phones. For instance, it can
facilitate the adaptation of the user’s voice for voice-controlled
home automation or assistive technologies for individuals with
speech impairments [33]. The idea of resource-aware on-device
training is critical in enabling the training of models on devices
with limited computational resources. To address this issue, we
propose a resource-aware sub-model-based approach for training
ASR models on mobile phones, that takes into account the available
resources on the devices. This paper provides a comprehensive
overview of our resource-aware on-device training methodology
for ASR models. We conduct experiments which consider device
specifications such as RAM, CPU utilization, and training time
across various brands of mobile phones. We present our findings
from training the model with various accents on the device over
a baseline model to mimic real-life scenarios. Our findings also
include the impact of tuning training parameters on the accuracy
of the ASR model. Another important aspect of the training process
is determining the stopping criteria as indiscriminate continuation
can lead to overfitting and corruption of the model weights. We
also incorporated the available battery percentage and the lower
memory threshold in the mobile phones to make the decision. In
summary, our approach offers a practical solution for effectively
training ASR models on mobile devices.

We summarize our contributions through this work as follows:
• We propose a resource-aware sub-model-based training ap-
proach for ASR models that considers the storage, and bat-
tery capabilities of mobile phones.
• We explore the correlation between available resources and
training time, and demonstrate the efficacy of utilising sub-
models for training in scenarios with limited resources.
• We conduct training by considering the evaluation metric,
battery and memory constraints of the mobile phones and
halt training accordingly.
• We demonstrate the working of our approach by deploying
on multiple mobile phones and by using various accented
speech to mimic real-life scenarios.
• We provide a complete overview of creating personalized
models by considering multiple rounds of training.

This paper is organized as follows. In Section 2, we first introduce
the currently available techniques for on-device personalization. In
Section 3, we propose our resource-based adaptive on-device train-
ing procedure to train an ASR model on mobile phones. We then
explain the implementation and experimental setup in Section 4. In
Section 5, we present the comprehensive results and discussions.
We then present the summary and future scope in Section 6.

2 RELATEDWORKS
Training an ASR model on resource-constrained personal devices
such as mobile phones is a challenge, due to the limited memory,
and compute capabilities of the devices. In a study by the authors
of [29, 33], on-device personalization for shorter conversations.
However, addressing longer conversations is challenging as the
adaptation task will likely come with increased training times. In
[31], the authors reduce the memory consumption during the on-
device training by splitting the gradient computation into parts.

The results demonstrated a significant memory reduction at the
expense of an increase in training time, which is not suitable for real-
time deployments. In [13, 36], the authors introduced an on-device
structure learning framework that enables resource-efficient deep
neural networks on mobile devices. These works are limited to the
simple tasks like speech command recognition, image classification,
personal mobile sensing applications, and have not discussed about
deploying a complex ASR model which uses longer utterances
on the edge devices. In [5, 18] converts a complete pre-trained
recurrent neural net model to an 8-bit integer quantized format to
minimize memory consumption while training. It is important to
note that most of these approaches primarily focus on simulation
environments, and the complete deployment constraints of such
methods on large-scale real-world mobile phones have not been
extensively reported. Furthermore, none of these studies consider
the resource capabilities of the devices during the model training
process, which is crucial for real-time deployments.

In recent studies [11], a novel proposal suggests updating only
the parameters of batch normalization (BN) layers. [6] reports the
memory saving by reducing the activations by training only the
biases in the model, freezing the weights in the model. The accu-
racy achieved using these methods remains similar to that obtained
by fine-tuning the entire network. Partial fine-tuning of specific
layers is another option, yet the selection of the optimal number
of layers for this approach remains arbitrary. Several strategies
such as sub-model-based training have been proposed to reduce
the model size during the process of client training. For instance, in
[16], the authors introduced a technique called federated dropout
that randomly extracts sub-models to achieve the same goal. Addi-
tionally, [9] and [19] proposed a static model extraction approach
in which a smaller sub-model is trained on the clients. Another
work, [2], used a rolling window method to ensure that all parts of
the model are trained at least once. However, it is important to note
that none of these studies have demonstrated real-time implementa-
tions for edge devices. Furthermore, the model selection approaches
employed in these works do not consider the resources available
on the devices. This aspect is crucial as the sub-model selection
process should be informed by the capabilities and limitations of
the edge devices.

3 RESOURCE-AWARE ADAPTIVE ON-DEVICE
PERSONALIZATION METHODOLOGY

While on-device training implementations in mobile devices for
simple tasks such as image classification are common, no implemen-
tations exists that utilize long speech utterances and ASR models.
Apart from the previously stated challenges, implementing on-
device voice personalization for ASR tasks are amplified by larger
model sizes and dynamic speech signal sizes. Our objective is to
provide a comprehensive setup for on-device ASR personalization,
with the ability to adaptively train complete models or sub-models
based on the available resources on mobile devices. We detail the
methodology used to construct the on-device personalization task
in this section. Our baseline acoustic model uses connectionist tem-
poral classification (CTC)[14] loss, but different model architectures
can follow a similar approach.
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Figure 1: Resource-aware On-device training workflow: Optimizedmodel with functions such as save, load, infer, train, calculate
CTC loss and get parameter info, sub-model selection strategy using the ratio of available RAM (𝑅𝑎) and the threshold (𝜆).
S denotes the sub-model chosen for training. (Red and blue arrows denote interactions between the optimized model and
external functions and internal functions, respectively. Green arrows denote interactions with system resources.)

3.1 Model for training
We need to convert the baseline ASR model to a memory-efficient
and optimized format suitable for mobile platforms, with support
for training the model. To achieve this, we implemented a con-
version process using the Tensorflow [1] platform that utilizes a
well-optimized Flatbuffer format for size reduction of larger trained
models, with 32-bit floating point precision to represent the model
parameters. This optimized model facilitates faster inference, sig-
nificant model size reduction and also enables training the model.
We use multiple tensorflow functions to interface with the model
in flatbuffer format, and to specify the inputs (e.g., training data,
inference data, path to the checkpoint file) and outputs (e.g., loss
values, output probability matrix) for the optimized model as shown
in Figure 1. These functions can be customized based on our re-
quirement. For instance, we built a function to extract the CTC loss
value. Also, we use a function to get the parameter information
from the model, later to use in our resource-efficient model selec-
tion approach. The train function takes a batch of mini-batch of
inputs, and effectively train the model on device. In a conventional
on-device training setup, four primary functions are employed to
perform crucial tasks such as model training, output prediction,
weight saving, and weight loading.

3.2 Resource-aware model selection
Motivation: Training a model on mobile phones with limited
RAM can be challenging. Limited memory may lead to frequent
garbage collection events which may pause the training process,
as the OS needs to continuously reclaim memory to accommodate
memory needed. In [28], the authors show that there is an increase
in training time when the available memory is low. Also, Android
OS incorporates a memory management feature that prioritises
a few processes and therefore might terminate a few background
processes, [21] when the system’s available memory is less than a

Algorithm 1: Resource-based training model selection
1 Function GetTrainingMode(𝑅𝑎 , 𝜆):
2 𝚯𝑆 : the trainable parameters obtained by selecting a
3 sub-model from the model f (𝚯)
4 for 𝑘 ← 1 to 𝐿 do
5 𝚯𝑆 ← [𝜽𝒌 , 𝜽𝒌+1, · · · 𝜽𝑳]
6 𝜆 ← 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒_𝑠𝑖𝑧𝑒 (f (𝚯𝑺 ))
7 if 𝑅𝑎

𝜆
≥ 1

8 then
9 𝑚𝑜𝑑𝑒𝑙 ← f (𝚯𝑆 )

10 𝑏𝑟𝑒𝑎𝑘

11 return model

threshold [12](can vary from one device to another). This action
can potentially disrupt the smooth operation of the phone.

To alleviate these challenges associated with model training on
limitedmemory, it is advisable to adoptmemorymanagement strate-
gies like model pruning, or partial model-based training. Hence
memory-aware approaches that adaptively adjust the model size
based on currently available memory can help improve training
stability.
Our approach: In our resource-aware approach, we leverage
custom training functions that can train specific parts of the model
based on the currently available resources on the device. Let f
denote the nonlinear function that is defined by our acoustic model
and is characterized by the set of parameters denoted by 𝚯, with
𝐿 hidden layers. Hence, the parameters of the model are given as
𝚯 = [𝜽1, 𝜽2, · · · 𝜽𝑳]. The decision on which sub-part S to train is
made based on resource information collected before the start of the
training process and the parameter 𝜆, which represents the amount
of memory needed to run the training of the selected model on
the device. So, we take a ratio of available RAM (𝑅𝑎) and 𝜆. This
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ratio indicates whether we can train the selected model with the
available memory or otherwise. If the ratio is less than one, we
select the next sub-model by freezing layers progressively. We
continue freezing the layers until the ratio becomes greater than or
equal to one. One key thing to note is we start freezing the layers
from a top-down approach as many existing works showed that
the bottom layers of the models are the ones that get personalized
to the users. Algorithm 1 contains the detailed steps involved in
the model selection.
Estimating 𝜆 parameter Setting a threshold with respect to avail-
able RAM is a crucial aspect of running a model efficiently and
preventing memory-related issues. RAM is a finite resource, and
deep learning models can be memory-intensive. When running a
model, it’s essential to ensure that it fits within the available RAM
to avoid crashes, slowdowns, or out-of-memory errors. Hence we
set the threshold 𝜆 by estimating the memory usage considering
the different stages, such as loading weights (𝑅𝐿), and training with
back-propagation (𝑅𝑇 ) of the sub-model selected.

𝜆 = 𝑅𝑇 + 𝑅𝐿
𝑅𝐿 is the estimated RAMusagewhile loading the weight tensors and
related information from a checkpoint to the model before training
commences. 𝑅𝑇 includes both the memory required to store the
model parameters (weights and biases) and the memory required
for intermediate computations during forward and backward passes
(activations, gradients, optimizer specific parameters etc). We use
the “get parameter info" function in the Figure 1, to extract the
number of parameters in each layer of the model from the flatbuffer
format.

Overall, at each round, the choice of sub-model to be trained
should be based on practical considerations such as computational
resources and time constraints. We use this approach to deploy our
model on mobile devices to efficiently train the sub-models based
on the resource availability.

3.3 Training procedure
Due to limited resources available on mobile phones, on-device
training has to make sure that sufficient resources are made avail-
able to train the model long enough to learn the mapping, but
careful enough not to overfit the training data. We propose Algo-
rithm 2, Resource-aware on-device training process, keeping these
two constraints in check. The algorithm is as follows:
• The training procedure begins after the sub-model has been
determined and continues as long it satisfies the stopping
criteria threshold. The stopping criteria is a combination of
two thresholds: the first threshold is battery, and memory-
based, while the second one is accuracy-based.
• The training procedure is halted either when mobile phones’
current battery (𝐵𝑎) degrades below a certain percentage (b
%), or if it reaches the lower memory threshold (m).
• The accuracy threshold stops the training procedure if the
model does not improve over the “p" (patience parameter)
number of epochs.

Given the limited storage available onmobile phones, we propose
an approach to handle the training data efficiently. We train the
selected sub-model with N utterances and then remove the stored
data upon completing one training session. The next session is

Algorithm 2: Resource-aware on-device training process
Input: No. of epochs 𝑇 , battery threshold 𝑏, memory

threshold𝑚, patience parameter 𝑝
1 𝑅𝑡 ← Get RAM information from the mobile phone
2 model← GetTrainingModel(𝑅𝑡 , 𝜆)
3 𝑖 ← 0, past_WER← 0
4 current_patience← 0 stopping_criteria← 𝑇𝑟𝑢𝑒

5 while (𝑖 < 𝑇 ) and (stopping_criteria) do
6 𝐵𝑎, 𝑅𝑎 ←

Get battery, and available memory information
7 if (𝐵𝑎 ≤ 𝑏) 𝑜𝑟 𝑅𝑎 <=𝑚 then
8 stopping_criteria← False
9 else
10 current_WER← Train(model)
11 if current_WER ≤ past_WER then
12 current_patience← current_patience + 1
13 if current_patience ≥ 𝑝 then
14 stopping_criteria← False
15 else
16 current_patience← 0

17 past_WER← current_WER
18 𝑖 ← 𝑖 + 1

Table 1: Total number of trainable parameters, and WER for
sub-models. The initial WER before training is 37.46%.

Name Sub-models No. of trainable WER
parameters

S1 CONV 1-FC 2 30.24M 27.37
S2 CONV 2-FC 2 30.23M 28.08
S3 CONV 3-FC 2 30.21M 28.13
S4 BLSTM 1-FC 2 30.19M 27.7
S5 BLSTM 2-FC 2 19.97M 28.27
S6 BLSTM 3-FC 2 13.67M 29.72
S7 BLSTM 4-FC 2 7.38M 31.42
S8 FC 1-FC 2 1.08M 35.19

resumed after N new utterances are acquired. In each session, we
train the sub-model using the train signature for T epochs with a
batch size of B. The checkpoints at the end of each epoch are saved
and restored using save and load signature functions. The decision
to save the on-device trained model or resume training is outlined
by the stopping criteria as described previously. The personalized
model saved at the end of training is then used to translate the
newly saved recordings using the predict signature. Figure 1 shows
the optimized model with the workflow for training.

4 EXPERIMENTAL SETTING
This section details the experimental setup used for resource based
on-device training approach deployed on mobile phones.

4.1 Resource-aware on-device training
In this section, wewill discuss both the baseline ASRmodel used and
the model size compression techniques used to deploy on mobile
devices. For our experiments, we utilized a pre-trained end-to-end
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acoustic model with a DeepSpeech2 [3] architecture as the acoustic
model. Appendix A and B provides specifications regarding the
model and datasets used. During each training round, the sub-model
extraction approach involves the selection of a specific sub-model
from the available categories, as described in Section 3.2. Table 1
shows the various sub-models , along with the number of trainable
parameters for each sub-model and WER when deployed on a
Oneplus 7T phone with available RAM 𝑅𝑎=4.7GB, and trained for 4
epochs. We can infer that the final WER achieved after 4 epochs is
declining with freezing of layers of the models. Given the multitude
of possible sub-models, we have chosen three representativemodels,
namely 𝑆1, 𝑆5, and 𝑆8, which cover distinct parameter ranges.

We determined the value of 𝜆 for the sub-models by incorporat-
ing the parameters involved in the training process. As outlined
in Section 3.2, we initially estimated 𝑅𝑇 and 𝑅𝐿 for the model. To
compute the memory footprint required for training, we considered
the various stages of training while using the function “train" in
the Figure 1, where parameters need to be stored in memory. These
stages include loading the input and output (𝑛𝑖 ), size of the model
(𝑛𝑚), loss calculation (𝑛𝑙 ), storing gradients (𝑛𝑔), activations (𝑛𝑎),
errors (𝑛𝑒 ) and optimizer parameters (𝑛𝑜 ). To find the total number
of parameters to be stored, we summed up all these components
appropriately, giving us the total size 𝑁𝑇 to be stored. Since all the
parameters are in the 32-bit floating-point data type, we calculated
the estimated memory required for training in giga bytes (GB) as
𝑅𝑇 =

𝑁𝑇 ∗4
10243 . The memory requirement 𝑅𝐿 is for executing the re-

store function in Figure 1. It is determined based on the model’s
parameter size (𝑛𝑚) with additional overhead needed to store node
names and data types of the weight tensors. Moreover, both the
checkpoint and the model in flatbuffer format need to be loaded
into RAM during this process.

4.2 Dataset
A critical step in an on-device personalization framework is to adapt
the model to user-specific data [22, 30]. The limited computational
power, memory, and storage capacity of the mobile phones, can
hinder the collection and processing of large amounts of audio
data required for effective on-device personalization. Annotating
and labeling the recorded speech data is a labor-intensive task
[29, 31]. In our setup, we load pre-filled speech transcriptions for
the user to create training dataset by recording N utterances with
transcripts displayed on the mobile screen, chosen at random from
the transcriptions. The utterances are saved in the storage of the
mobile phone. The application supports the user to either choose
to save the utterance into the storage or re-record based on the
clarity of the recordings. In our future work, we aim to address this
challenge by incorporating pseudo labelling [35] or semi-supervised
learning [34] techniques to handle scenarios where clean labels are
not readily available.

To simulate unique speakers with various accents, we use the
audio corpus detailed in Appendix B. The validation set is created in
such a way that a few of the words are derived from the root words
presented in the training set. This explains whether the model
can predict the similar words in the test set effectively, without
overfitting to the data. Furthermore, to evaluate our approach, we

collected real-time recorded data from two subjects (1 each from
male and female voice) using the application.

4.3 Mobile phone based deployment
To demonstrate the on-device training for ASR models, we develop
an Android application for mobile phones. To extract the necessary
resource information, we utilize the Android developers’ tools for
memory management and the Android battery manager. With the
memory management tool, we can closely monitor memory usage
of the ASR model throughout the training process. Meanwhile, the
Android battery manager enables us to track the battery consump-
tion of the mobile phone during training. The detailed description
about the hardware specifications of the mobile phones used and
Android application details are given in Appendix C. In our work,
we deploy our resource-aware on-device training protocol aimed at
improving speech recognition across multiple mobile devices. This
provides an insight on deployment constraints such as training
time, accuracy, and memory for different hardware specifications.

4.4 Experiments
We conducted exhaustive experiments to study the efficacy of per-
sonalization. These experiments include training for multiple ac-
cents over multiple rounds. Also, we tested the approach with
real-time recordings from a limited set of users.

4.4.1 Hyperparameter tuning. Our intent is to measure the effect
of batch size on the model size, RAM usage, and CPU utilization for
on-device training. Given a model, we find the best possible config-
uration for training in a mobile environment. For this experiment,
we randomly select one speaker and train the model using Adam
[20] optimizer with learning rate of the model to 10e-5.

Along with batch size, another critical tuning parameter for
training a model on-device is learning rate, as it determines the
convergence time and accuracy of results. We compare two learning
rates, 10e-5 and 10e-6 for different sub-models. We chose a learning
rate of 10e-5, as the pre-trained baseline model was trained with
same. We compare it with a lower learning rate of 10e-6, as we are
fine-tuning the model for a particular user. Hence, a lower learning
rate might move towards the minimum and prevent overshooting.

4.4.2 CPU and RAM utilization. In this experiment, our intention
is to study the CPU utilization and RAM usage during the training
process on multiple phones. We use the Android memory manage-
ment and battery manager toolkit to measure the real-time data
usage of our application after every second.

4.4.3 Training multiple accents for multiple rounds. We study the
performance of model saved during multiple rounds of training,
using WER based stopping criteria. We use the multiple accented-
dataset detailed in Appendix B for this experiment. We set 𝑁 = 80
for our experiments, with 60 samples for training and 20 samples
for validation.

We implement a simple training pipeline to personalize the base-
line model with user-specific data in two rounds. In round one, after
the data acquisition, the model weights are updated till 𝑇 𝑡ℎ epoch.
The best weights are saved at epoch 𝐸 based on their respective
stopping criteria. This signals the end of one round. The stored
data is deleted, and second round commences when the user inputs
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new 𝑁 utterances . For round two, first, we load the weights saved
after round one to the model, then we extract the sub-model-based
on the resource information, and resume training with the newly
added dataset. Our intent is to study the generalization of the model
trained with new data instances for each round.

4.4.4 Real-time recordings. To show the efficacy of the on-device
training approach, we use TTS generated samples which do not
have external noise or other artifacts. However, it is actually im-
portant to validate the framework when directly used by the end
users. To this end, in our experiment, we took one mobile phone
and requested the speakers to read out the transcripts displayed on
the application’s GUI screen as shown in Figure 6a. We recorded the
samples on the phones, in the same location, to ensure that the mo-
bile phone capture data from similar recording environment. Thus,
we validate that the on-device training with real-time recordings
are behaving as expected.

5 EXPERIMENTAL RESULTS
In this section, we present the experimental results from our on-
device training settings explained in Section 4. By using the setup
explained in Section 4.1, we estimated 𝜆 for the complete model
as 2GB with 𝑅𝑇 , and 𝑅𝐿 as 1.65GB and 325MB respectively. The
detailed overview about the estimation of 𝜆 for the selected model
is given in Appendix D. We set the battery threshold 𝑏 as 25%.

Table 2: Time taken per epoch for training 𝑆1 model in One
Plus 7T for different batch sizes.

Batch Opt. model CPU RAM Time per epoch
size size in (max) (max) Oneplus-7T
(B) (MB) (in %) (in GB) (mins)
1 152.3 25 2.1 80
2 153.3 25 2.3 51
5 156.2 25 3 22
10 161 25 4.3 13

5.1 Optimal hyperparameters selection
5.1.1 Batch size. The training was carried out on a OnePlus 7T
phone with available RAM of 4.5GB, while the battery was being
charged. Due to the ample resources, our resource-aware on-device
training procedure, as described in Section 3.3, selected the sub-
model 𝑆1 for this particular experiment. Table 2 shows the time
taken per epoch during training, the size of the model created for
different batch sizes, the maximum CPU utilized, and RAM usage
during training. We train our model with learning rate of 10e-5 and
varying batch size. As the batch size increases from 1 to 10, the size
of the model increases from 152.3 to 161 MB. For the batch size
of 1, the time taken to complete an epoch while training is nearly
80 minutes, and the memory used is 2.1 GB. As we increase the
batch size to 10, the time per epoch decreases to 13 minutes, but
the memory consumption increases to 4.3 GB. Therefore, as the
batch size increases, the RAM consumption also increases to about
96%. We selected an optimal batch size of 5 for our subsequent
experiments. We conclude that selecting the right batch size is
crucial to RAM utilization, and training time.

Table 3: Comparison of different learning rate for sub-models
on OnePlus 7T with different RAM conditions.

10e-6 10e-5
Models WER Epochs WER Epochs

(%) (E) (%) (E)
Baseline 19.49 - 19.49 -
𝑆1 13.4 12 14.2 1
𝑆5 13.4 13 13.4 2
𝑆8 19.02 4 17.04 3

5.1.2 Learning rate. In this experiment, we evaluated multiple
sub-models on a One Plus 7T phone. We employed our training pro-
cedure and selected each sub-model by manipulating the available
RAM on the phone through the addition of background apps.

Table 3 compares the two learning rates of the different sub-
models using the minimumWER and the number of training epochs
required. The baselinemodel achieves aWER of 19.49%. As expected,
the minimum WER achieved by all models for each learning rate
is lower than that of the baseline model. Therefore, we can infer
that the model has learned from user-specific data for both learning
rates. The learning rate of 10e-5 converges to least WER faster than
10e-6, across all models. The 𝑆1 model converges to a WER of 13.4%
at 12th epoch with 10e-6 learning rate, whereas it converges to
14.2% in one epoch with 10e-5 learning rate. 𝑆5 model achieves the
same least WER of 13.4% for both learning rate. The downside is
that 10e-6 learning rate takes nearly 10 more epochs compared to
learning rate of 10e-5. The training time for 𝑆8 model is shorter
but the least WER achieved is nearly 5% higher compared to other
models.

5.2 CPU and RAM utilization
Our experiment focused on examining the impact of training on the
CPU performance and memory of an android phone. Specifically,
we utilized a OnePlus 7T phone that ran on Android 10 and had
4.5GB of available RAM out of 8GB. Our resource-aware model
selection algorithm determined that the 𝑆1 model was the best
choice for our training purposes.

We use a learning rate of 10e-5 and batch size of 5. We train the
model for one epoch on US Male voice, and measure the resources
by sampling the data every 1 second during the various processes
of on-device training and presented it in Figure 2. From Figure 2,
we observe several trends during the different stages of training
process.

In the pre-processing stage, the input mel-spectrogram features
are extracted from an audio file. During this stage, we observe sharp
spikes in CPU utilization from an average of 12% to 25%. The ma-
jority of the CPU is used by transformation functions in the feature
extraction algorithm. However, the memory consumption during
pre-processing is very small (around 1MB for sample). During the
training process, the CPU utilisation is almost constant with an
average of 12% but with occasional spikes leading to a 15% CPU
usage. However, memory consumption is high during the training
process. It can be divided into 3 different sub-phases. Before the
start of training, the optimized model is invoked and the existing
weights are loaded into the model. This is the first phase of the
model. During this phase, we can see that the memory gradually
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Figure 2: RAM utilization for OnePlus7T with batch size 5 with an initial available memory of 3.8 GB
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Figure 3: Round 1 results for multiple accents.
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Figure 5: WER for real-time recorded voices

increases by an amount of 430 MB. During the training phase, we
can see that there is a further increase of 1.5 GB. This state of
memory is continued throughout the phase of training. The next
phase involves the saving of trained weights. This phase consumes
a memory of 330 MB. To summarize, the training phase consumes
the maximum memory out of all the phases.

5.3 Training multiple accents
We intend to evaluate our on-device training procedure on multiple
accents. We conduct our experiment on the dataset for accents
defined in Section 4.2. Moving forward, we train the same 𝑆1 model
with batch size, B=5, and learning rate 10e-5, as these were the
most effective hyperparameter values selected from our previous
experiments.

Figure 3 shows the results, where the WER from the baseline
model in blue and the WER from the saved model trained with
stopping criteria in red. The average WER before training is 25.11%,
and after training is 17.7%. We see an average drop of 44% for the
WER across all accents. The results clearly show that on-device
training improves the acoustic model for each speaker.

Figure 3b shows the WER trend versus epochs for the first round
of training. The trend indicates that WER values are monotonically
decreasing with the increase in training epochs. The * symbol de-
notes the epoch where the minimum metric value (WER) or when
the battery percentage or RAM is below the threshold is obtained,
and the checkpoints are saved for the next round. We see that the
steepest decrease in metric value is in the first epoch, and WER
decreases slowly over the successive epochs. We do not observe
any particular trend concerning accent or gender.

5.4 Training for multiple rounds
In this experiment, we aim to show the efficacy of on-device person-
alization by running multiple rounds. With this, we intend to show
how the model adapts to a user’s voice over time. With the stopping
criteria in place, we ensure that the model is not overfitting and has
enough battery backup to carry out training. For this experiment,
we consider four accents. We perform the second round of training
using the model saved after using the stopping criteria in the first
round.

Figure 4a shows the initial and saved model values of WER for
the second round of training. We observe a reduction in WER for all
accents. This confirms that themodel is improving upon training for

multiple rounds. We also present the WER trend for two training
rounds in Figure 4b. The trend of the first round is depicted in
solid lines, and the second round is shown in dashed lines for all
accents. The metric values gradually decrease in small increments
as compared to round one. The majority of accents take greater
than ten epochs to converge to minimum WER.

5.5 Real-time recordings
Finally, we validate our on-device training framework using real-
time human speech recordings. We record samples from one male
and a female subject with an Indian accent and train the baseline
model. From Figure 5, we can see a significant decrease in WER for
the male voice. In contrast, the female voice does not show much
improvement. The male subject is trained for eight epochs, and the
female subject stopped at the first epoch.

6 SUMMARY
In this paper, we present a methodology for implementing voice-
personalized ASR models by training on multiple mobile phone
brands. Our approach involves a resource-aware sub-model-based
training method that considers mobile phones’ limited RAM and
battery capabilities. Through our investigation of the relationship
between available resources and training time, we highlight the
effectiveness of using sub-models in such scenarios. By taking into
account the evaluation metrics and battery constraints, we can
perform efficient training and halt the process when necessary.
We created a speech dataset with multiple accents and trained the
model with a single accent each time to simulate a real user. We
use longer speech utterances of 7 to 12 seconds in length, with a
maximum label length of 180 characters. Thus, we demonstrate
the full functionality of our methodology by simulating a much
more complex task than simple tasks such as speech command
recognition, which typically are fixed-size shorter utterances. Fur-
thermore, we provide insights into CPU and memory usage at
various stages of training on a variety of mobile phones. Our sys-
tem is well-suited for use in real-world federated learning ASR
tasks as well as voice-controlled home automation applications that
require locally trained ASR models.
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Table 4: Total number of trainable parameters for different
parts of the model.

Layers Number of trainable Percentage
parameters

CONV 1-3 45.73k 0.14
BLSTM 1-4 29.11M 96.26
FC 1-2 1.08M 3.6
ALL 30.24M 100.0

Table 5: Partial models with the % of parameters

Training Modes Partial models Percentage

S1 CONV 1-FC 2 1.0
S2 CONV 2-FC 2 0.9999
S3 CONV 3-FC 2 0.9991
S4 BLSTM 1-FC 2 0.9985
S5 BLSTM 2-FC 2 0.6603
S6 BLSTM 3-FC 2 0.4521
S7 BLSTM 4-FC 2 0.2439
S8 FC 1-FC 2 0.0357

A MODEL
We use an end-to-end acoustic model with DeepSpeech2 (DS2) [3]
as the baseline model for ASR training. The architecture utilizes a
well-optimized RNN based training system that does not require ex-
tensive pre-processing using phonemes to train. The model consists
of three convolutional layers (CONV 1-3) for feature extraction,
four bi-directional long short term memory (BLSTM 1-4) layers
with 1024 units in each direction, and two fully connected layers
(FC 1-2) with 1024 units. The DS2 model has approximately 30.24M
trainable parameters. Table 5 shows the total number of parameters
for different parts of the model.

A.1 Partial models
In this section, we delve into the partial model-based training ap-
proach. By examining Table 4, we observe that the number of
parameters heavily relies on the layer type. Specifically, for the
DS2 model, the BLSTM layers alone account for 96.26% of the total
parameters.

To investigate further, we generated partial models by progres-
sively freezing the top layers and calculated the number of trainable
parameters in each subpart of the model. Table 5 presents all the
possible partial models that can be constructed using this approach.
We adopt a top-to-bottom methodology in creating these models,
as the bottom layers have a more significant impact on the training
process.

B DATASETS
We created an audio corpus using a text-to-speech (TTS) system
[10] for 6 different accented speakers to simulate unique clients.
The information regarding the various accents utilized and the
average length of speech samples per accent is presented in Table
6. Each speech sample is about 9-12 seconds, with an average label
length limited to 180 characters. We run the FL experiments by

Table 6: Speaker breakdown for on-device training dataset

Datasets Accents
Male

speakers
Female
speakers

No. Avg. len.
(s) No. Avg. len

(s)

TTS
US
UK
IND

1
1
1

9.3
11.57
11.96

1
1
1

10.0
10.47
11.6

Real-
time IND 1 10.2 1 10.7

Table 7: List of training datasets

Dataset Total Duration Male Female
(hrs) (%) (%)

LibriSpeech [23] 960 52 48
Commonvoice [4] 2000 45 15
TEDlium [25] 250 66 34
Fischer [8] 2000 53 47

associating one speaker data to one client. The objective of this
experiment to make the global model robust to multiple accents
by learning from different accented clients. We use an end-to-end
acoustic model similar to DeepSpeech2 [3] architecture, collectively
trained on datasets such as Librispeech [23], commonvoice [4] and
tedlium [25] as our initial global model. The input speech samples
are divided into windows of 32 milliseconds with 50% overlap and
converted to frequency domain. From each frame, a 80-dimensional
log-melspectrogram is extracted to be given as input to the network.

C MOBILE PHONE BASED EVALUATION
The application has a GUI to record samples for training procedure
as shown in Figure 6a. Once we have enough data, we can train
the underlying model and results will be displayed on the screen as
shown in Figure 6b. There is also a GUI to initiate only on-device
inference and this is shown in Figure 6c. The resource informa-
tion from the mobile phone is collected using the aforementioned
Android application.

The android application is installed on 4 mobile phones from
three manufacturers with hardware specifications as mentioned
in Table 8. We save the datasets for training and testing in the
storage cache of the mobile phone. The application supports the
user to either record the samples or use the dataset available in the
cache. Table 8 shows the hardware specifications of the multiple
mobile phones considered in our work. We use four mobile phones
with different resource capabilities to evaluate our approach. We
considered phones with 6GB and 8GB RAM, and Snapdragon pro-
cessors from 6xx series to 8xx series. The column related to RAM
also shows the available memory.

D ESTIMATING THE MEMORY FOOTPRINT
In this section, we discuss the methodology we adopted to find
the memory footprint of the model. To estimate the value of 𝜆
for the model, we initially estimated 𝑅𝑇 and 𝑅𝐿 . Here we show
the calculation of 𝜆 for S1. For determining 𝑅𝑇 , we first find the
number of parameters required to store size of the model (𝑛𝑚), loss
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Table 8: Details about device hardware.

Device Model RAM CPU OS SoC (Snapdragon)
OnePlus 7T 4.5|8 GB Octa-core Max 2.96 GHz Oxygen 10 (Android 10) 855 Plus
OnePlus 5T 4|6 GB Octa-core Max 2.45 GHz Oxygen (Android 10 ) 835
Redmi Note 10 Pro Max 4.5|8 GB Octa-core Max 2.3 GHz MIUI V12.5.2(Android 11) 732G
Redmi Note 7 Pro 2.8|6 GB Octa-core Max 2.02 GHz MIUI V12.5.1(Android 10) 675

(a) GUI for recording samples (b) On-device training (c) On-device inference

Figure 6: Experimental setup

calculation (𝑛𝑙 ), storing gradients (𝑛𝑔), activations (𝑛𝑎), errors (𝑛𝑒 )
and optimizer parameters (𝑛𝑜 ). For the DS2 architecture, the total
number of parameters in the complete model is 𝑛𝑚 = 30, 242, 752 ≈
30.24𝑀 . The total number of trainable parameters is only 30,240,574,
and there are 2,178 non-trainable parameters in the model. The
parameters to be stored during back-propagation including the
number of gradients, errors per parameter and optimizer parameters
depends only on the number of trainable parameters. Hence, we
get 𝑛𝑔 = 𝑛𝑒 = 30, 240, 574. For adaptive optimizer like Adam with
momentum parameters this becomes 𝑛𝑜 = 2 × 𝑛𝑔 . We also find
the size of the activations from each layer, which is required to
be stored for calculating the gradients in back-propagation. We
get 𝑛𝑎 = 68, 816, 40, which is twice that of the model size 𝑛𝑚 .
Since it is difficult to find the memory requirement for a dynamic
programming based loss function like CTC loss, where it consider
many possible alignments between input and labels. We evaluated
the memory requirement for this separately. For loss calculation,
first we need to do forward propagation which need 𝑛𝑚 , and 𝑛𝑎
parameters in memory, and then calculate loss for a mini-batch of
5 samples with an extra 100MB with CTC function, (𝑛𝑚+𝑛𝑎∗5)∗410242 +
100 = 350𝑀𝐵. Now we calculate the total size required for training
a mini-batch of 5 samples, to get 𝑁𝑇 . We also added an extra 200MB
overhead for other parameters which is not accounted and system
implementation. From this we calculated the memory required for
training 𝑅𝑇 = 1.65𝐺𝐵. Similarly, we calculated 𝑅𝐿 using 𝑛𝑚 with

Table 9: Selected partial models S1, S5 and S8 (trainingmodes)
with the % of parameters, and estimated 𝜆 (GB)

Training Modes Percentage Estimated 𝜆

S1 1.0 1.98
S5 0.6603 1.63
S8 0.0357 0.96

additional space for tensor information, and checkpoint size, and
obtained 𝑅𝐿 ≈ 325𝑀𝐵. Hence, we get 𝜆 ≈ 2𝐺𝐵 for the complete
model.

Similarly, we calculated 𝜆 for all the selected sub-models as
shown in the Table 9, where the number of trainable parameters
vary according to the layers selected.


	Abstract
	1 Introduction and Motivation
	2 Related works
	3 Resource-aware adaptive on-device personalization Methodology
	3.1 Model for training
	3.2 Resource-aware model selection
	3.3 Training procedure

	4 Experimental setting
	4.1 Resource-aware on-device training
	4.2 Dataset
	4.3 Mobile phone based deployment
	4.4 Experiments

	5 Experimental Results
	5.1 Optimal hyperparameters selection
	5.2 CPU and RAM utilization
	5.3 Training multiple accents
	5.4 Training for multiple rounds
	5.5 Real-time recordings

	6 Summary
	References
	A Model
	A.1 Partial models

	B Datasets
	C Mobile phone based Evaluation
	D Estimating the memory footprint

