
AN UNSUPERVISED SEGMENTATION OF VOCAL BREATH SOUNDS

Shivani Yadav1, Dipanjan Gope2, Uma Maheswari K.3, Prasanta Kumar Ghosh4

1BioSystems Science and Engineering, Indian Institute of Science (IISc), Bangalore-560012, India
2Electrical Communication Engineering, Indian Institute of Science (IISc), Bangalore-560012, India
3Pulmonary Medicine, St. Johns National Academy of Health Sciences, Bangalore-560034, India

4Electrical Engineering, Indian Institute of Science (IISc), Bangalore-560012, India

ABSTRACT
Breathing is essential to human survival, which carries informa-
tion about a person’s physiological and psychological state. Mostly
breath sound boundaries are marked manually before being used for
any task such as classification, spectral analysis, etc., which is very
tedious. Various techniques have been proposed to segment breath
sounds recorded at the chest, and trachea but vocal breath sounds
(VBS) are under-explored. An unsupervised algorithm for VBS
segmentation has been proposed in this work. Each breath phase
in continuous breaths has been modeled using triangles, where the
end points of triangles representing breath boundaries are estimated
using dynamic programming. Data from 60 subjects (31 healthy,
29 asthmatic patients) having 307 breaths have been used. The
proposed method’s performance was found to be comparable with
the manually marked boundaries. Comparable asthmatic versus
healthy subject mean(standard deviation) classification accuracy
using manually marked and predicted boundaries are 75%(± 11%)
and 72%(±15%), respectively are found.

Index Terms— Dynamic programming, Breath sound, Asthma,
Segmentation, Vocal sounds

1. INTRODUCTION

Breathing is an irreplaceable process for human survival. Irregu-
lar breathing rate is one of the vital signs to indicate underlying poor
psychological states like stress, anxiety as well as physiological con-
ditions like cardiac arrest, asthma, COPD, etc. [1]. To determine
lung health, breath sound analysis is an emerging technique among
physicians and researchers. Breath sounds can be recorded from the
chest (also referred to as lung sounds), trachea, nose, and mouth.

One of our research interest is vocal sounds(sounds which are
recorded at the mouth) based asthma monitoring and diagnosis.
First work in this thread was the classification between asthmatic
and healthy subjects using sustained phonations, cough and breath
sounds (also referred as VBS) [2], where among all the sounds, vo-
cal breath sounds performed the best for the classification. Another
work of ours shows that [3] the classification performance between
asthmatic and healthy subjects is better with prior knowledge of
breath boundaries as compared to randomly picked segments of
breath signal from continuous breath cycles. In all our works breath
sounds have been marked manually by the visual inspection of the
spectrogram and listening, which is a very time-consuming task.
In the literature, various methods such as by Palaniappan et al. [4],
Aras et al. [5], Feng et al. [6], Yildirim et al. [7], Cam et al. [8] have
been reported for the segmentation of breath sounds recorded at the
chest and trachea but the segmentation of vocal breath sounds is
least explored.

In this work, we propose an algorithm for the segmentation of
breath sounds recorded at the mouth (referred as vocal breath sounds
(VBS)). Unlike breath sounds at the chest and trachea, the micro-
phone can easily record breathing sounds at the mouth with min-
imum effort and no physical contact with the patient. VBS data,
we used in this work, is recorded in the hospital’s natural noisy
environment. The database consists of healthy and asthmatic pa-
tients’ breath samples; hence, the proposed method also considers
the variability of normal and abnormal breathing rates. As most of
the breath signal information is present in a frequency range up to
2kHz, all breath samples are low pass filtered to 2kHz. The nearly
periodic nature of the VBS energy has been exploited to find out
the boundaries of VBS and its phases (’inhale’ and ’exhale’). Each
breath phase in continuous breaths has been modelled using trian-
gles, where the end points of triangles representing breath bound-
aries are estimated using dynamic programming with prior breathing
duration and number of breaths information. A method to estimate
breath duration and the number of breaths has also been proposed in
this work. An evaluation metric has been used to quantify, matched,
missing, inserted, and deleted boundaries as given in the work by
Ghosh et al. [9]. From the proposed method, we have found 89%
boundary matched out of them 79% segment match with overlap
rate [10] (mean(standard deviation)) of 88(±13)%). Even the classi-
fication performance between asthmatic and healthy subjects using
estimated boundaries found to be comparable with that of ground
truth boundaries.

2. DATASET

For this work, data has been recorded from a total of 60 (24F, 36M)
subjects, out of which 31 (12F, 19M) healthy controls and 29 (12F,
17M) patients. The subjects’ age varies from 15 years to 53 years,
where the average age of patients is 37.17 years, and for controls is
30.38 years. We have recorded data in the noisy condition of the
hospital, which includes noises like people talking, fan, AC, phones
ringing, etc. An informed consent form has been taken from each
subject before recording. All patient recordings have been done
in st. Johns Medical college hospital under the doctor’s guidance.
St. Johns medical college and hospital, Bangalore, Karnataka, India,
Ethics Committee approved the study (Protocol number: IEC study
ref no. 382/2018) on 12th, February, 2019. All recordings have been
done at the sampling rate of 44.1kHz and 16 bits using a ZOOM H6
handy recorder microphone. The microphone is kept at a distance
of 3cm-5cm from the mouth while recording. While recording, the
subject’s nose is closed with the nose clip, breathing only through
the mouth. Deep breaths of the subjects have been recorded. On av-
erage, 5 breath sounds have been recorded per subject. In total, 151
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controls’ and 156 patients’ breath sounds have been recorded. Hence
the total 307. The average duration of breath sound is 2.97 secs, and
the standard deviation is 1.47 secs. The minimum and maximum
duration of breaths are 1.125 secs and 11.356 secs, respectively.

The two annotators have annotated recorded data by inspecting
the spectrogram and waveform by using Audacity [11]. An example
of an annotated waveform is given in Fig. 1. A noisy breath sample
with 3 breaths is shown in Fig. 1. Inhale and exhale boundaries are
marked separately (shown in red color) for each breath, and breath
boundaries are shown in green.

Fig. 1. Manually annotated breath sound sample file. Inhale and
exhale boundaries are shown in green color and breath boundary is
in red.
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Fig. 2. Samples of energy signal. The left column shows the short-
time energy signal with the ground truth boundary, and the right col-
umn shows the corresponding signal with the predicted boundary
using triangle fitting.

3. PROPOSED BREATH SEGMENTATION

The Block diagram of our proposed method is represented in Fig.
3. The proposed method has three main steps. The first is the pre-
processing step, which helps remove the high-frequency noise and
estimates the signal’s energy. The second step involves estimating
average breath duration and number of breaths in a recording and
using this information to find the boundaries using dynamic pro-
gramming. Each part of the block diagram is explained below in
detail.

3.1. Pre-processing

The energy of the breath signal (referred as B[u], where u shows
sample index), is present below 2kHz [12]. Therefore recorded
breath sounds are low-pass filtered at cut-off 2kHz.Filtered signal
has been framed with window size (ws) and overlap (wo). The
energy of each frame has been calculated, and energy signal (E[n])
is obtained, where n denotes the frame index.

3.2. Breath Phase boundary prediction

3.2.1. Breath Phase Modeling

A breath has two components inhale and exhale. The energy of the
breath signal taken from 4 subjects is shown in Fig. 2. In Fig. 2, left
column shows energy signal with ground truth boundaries of breath
phases marked, whereas the right column shows the correspond-
ing predicted boundaries using the proposed method in addition to
ground-truth boundaries. From Fig. 2 we can see that the energy
signal is periodic in nature. However, the amplitude of short-time
energy varies a lot due to the noisy nature of recordings and breath-
ing patterns across subjects and within a signal itself. In this work,
we utilize this periodic nature of the energy signal envelop shape.
Each phase of breath is modelled by a triangle with varying duration
where the endpoints of the triangle give the boundary. Hence, the
short-time energy contour of a breath energy signal can be approx-
imated by a sum of triangles, where number of triangles is equal to
number of breath phases in the signal, and triangles, endpoints will
give breath phase boundary. To understand how the triangle fitting
has been done for each phase, consider a short-time energy contour
x[k] in a range of k = 0, 1, 2, ...M , where k denotes sample index.
To fit a triangle to x[k], between any three points (k1, 0), (k2, x[k2])
and (k3, 0), where k1 < k2 < k3 is given by F [k] where x[k2] is
indicated as α. F [k] is shown below.

F [k] =

{
α(k−k1)
k2−k1

, k1 ≤ k ≤ k2,
α(k−k3)
k2−k3

, k2 ≤ k ≤ k3

To find the optimum (k2, α) we need to minimize the following ob-
jective function.

J(k1, k3) =minimize
k2,α

k2∑
k=k1

(x[k]− α(k − k1)

k2 − k1
)2+ (1)

k3∑
k=k2+1

(x[k]− α(k − k3)

k2 − k3)
)2

By differentiating Eq. 1 with respect to α and equating it to zero we
get the following equation in terms of k2 and α,

α =

∑k2
k=k1

x[k]k
k2

+
∑k3

k=k2+1
x[k](k−k3)

k2−k3∑k2
k=k1

k2

k2
2
+

∑k3
k=k2+1

(k−k3)2

(k2−k3)2

(2)

As from Eq. 2 we can see that (k2, α) cannot be solved analytically,
therefore k2 varies from 1 to k3 − 1 and at each given value of k2,
α has been calculated. Hence, for given (k2, α) value of Eq. 1 can
be calculated. From all calculated values of the objective function in
Eq. 1, α and k2 corresponding to the minimum value of will be the
best fit.

3.2.2. Objective function for phase segmentation in breath signal

In this work, we have two assumptions. The first assumption is that
breath starts from the first audio signal sample and ends at the last
sample, which means there is no silence at the beginning and end of
the signal. Secondly, the breath phases is continuous which means
the endpoint of exhale is the beginning of the next inhale, and the
endpoint of inhale is the beginning of next exhale. As explained in
section 3.2.1, triangle fitting can be a good way to find the bound-
aries; therefore, we can say E[n] is a train of triangles where con-
secutive triangles share boundaries. Hence finding the boundaries is
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Fig. 3. Block diagram of our proposed method. B[u], E[n], P and d, indicates breath
signal, energy signal, number of breath phases and breath phase duration,
respectively. u and n, denotes samples index and frame index.

Fig. 4. Demonstration of triangle fitting.

formulated in terms of minimizing the following objective function.
Let’s assume if we know already number of phases (P ) in the short-
time energy signal E[n] where 0 ≤ n ≤ M , then breath phases
boundaries, n∗

1, n
∗
2, ...n

∗
P+1 can be estimated by solving Eq. 3.

n∗
1, n

∗
2, ...n

∗
P+1 = argmin

n1,n2...np+1

P∑
p=1

J(np, np+1) (3)

subject to n1 = 0, nP+1 = M,

{n2, n3..np} ∈ {2, ....M − 1}, np+1 > np

Eq. 3 is the iterative cost function, which depends on the cost
of fitting the previous breath phases; therefore, Eq. 3 can be solved
using dynamic programming (DP) problem.

Steps to solve the Eq. 3 by using DP is given in Algorithm 1.

Algorithm 1 Breath phase boundary detection by solving equation
Eq. 3.

Initialization:
P=number of phases, d=phase duration, δ=.3
Ed[n]=downsampled energy signal, 0 ≤ n ≤ M
O(1, n2) = min

n2
J(1, n2), (Eq.1) ⌊d(1 − δ)⌋ ≤ n2 ≤ ⌊d(1 + δ)⌋

I(1, n2) = argmin
n2

J(1, n2), ⌊d(1 − δ)⌋ ≤ n2 ≤ ⌊d(1 + δ)⌋

Recursion:

for k varies from 2 to P do
O(k, nk+1) = min

k⌊d(1−δ)⌋≤nk≤k⌊d(1+δ)⌋
{O(k − 1, nk) + J(nk, nk+1)}

I(k, nk+1) = argmin
k⌊d(1−δ)⌋≤nk≤k⌊d(1+δ)⌋

{O(k − 1, nk) + J(nk, nk+1)}

∀ nk+1 ∈ (k + 1)⌊d(1 − δ)⌋ ≤ nk+1 ≤ (k + 1)⌊d(1 + δ)⌋
end for
Back tracking:
n∗
P+1= M

for each phase (l) from P to 1 do
n∗
l = I(l, n∗

l+1);

end for
return: n∗

1 , n
∗
2 , ..., n

∗
P+1

3.2.3. Number of breath phases (P)

As we explained in the previous block, boundaries of B[u] can be
found out by using DP, but DP requires information about the aver-
age duration of the breath phase (referred to as d) and Number of
breath phases (referred as P ). As E[n] is a nearly periodic signal,
a peak in the signal’s magnitude spectrum should occur at this fre-
quency of the signal. This property of E[n] has been used to find
P . From the spectrum of E[n], the peak has been picked between
our data’s minimum and maximum breathing rate. The frequency at
which peak has been picked is used as breath frequency from which

Table 1. Inter-annotator agreement interms of Mean of Match(M),
Insertion(I), Deletion(D), Segment match(S) and mean and standard
deviation of Overlap rate(OvR) for segment matched breath sounds.

Total
Boundaries M(%) D(%) I(%) S(%) OvR

mean(std)
367 97 3 3 82 92(11)

P has been estitmated by doubling it. d is estimated by dividing
length of E[n] by P . These estimated values of d and P are used as
input to DP.

3.3. Reducing complexity

To reduce the time complexity of the DP, E[n] is downsampled
downsampled by a factor of 10 and the δ is used, which controls
the search range around d. Both approaches reduce the time taken
by the algorithm to find the boundaries to a great extent.

4. EXPERIMENTS AND RESULTS

To measure the performance of the algorithm, we calculated match,
deletion, segment match, and insertion by comparing the locations
of predicted and ground truth boundaries as described by Ghosh et
al. [9]. If a ground truth boundary is in ± threshold of the predicted
boundary, then it is called a match (M); otherwise, the ground truth
boundary is considered deleted (D). Two consecutive matches are re-
ferred to as segment match (S). All the predicted boundaries which
are not matched to any ground truth boundaries are known as in-
serted boundaries (I). All M, D, S, and I are given in percent.

Another evaluation metric, Overlap Rate (referred to as OvR)
[10], quantifies how much segment-matched breaths and their pre-
dicted counterparts overlapped. OvR is defined as the ratio of the
common duration between reference and predicted boundary divided
by the maximum possible duration of the breath. OvR can lie be-
tween 1 (fully overlapped) and 0 (no overlap).

4.1. Inter-annotater difference

In the current work, breath, boundaries are annotated by two an-
notators. To find the agreement among annotators, one annotator
marked breath boundaries is considered as reference and other anno-
tator marked boundaries considered predicted. Mean of the M, I, D,
S, and OvR has been reported. From Table 1, it can be observed that
inter-annotator agreement is good. In this work, results are reported
using only one annotator boundaries as ground truth.
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4.2. Experimental settings

Breath sound signal (B[u]) has been low pass filtered at the cut-off
of 2kHz by using the 6th order Butterworth filter. B[u] has been
framed at Nw = .1sec with Nw = 10ms shift. The energy of
each frame has been calculated to compute signal E[n]. To decrease
the time complexity of DP, E[n] is downsampled to 10 samples/sec
from 100 samples/sec. δ = .3 is set to reduce the complexity of DP.
To estimate P and d, FFT of the E[n] has been computed with FFT
points twice the length of E[n]. The peak has been picked between
the maximum and minimum breathing frequency of 0.833 Hz and
0.089 Hz from the E[n] spectrum, respectively.

The classification setup is similar as given in [2]. Each train and
test set have 50 and 10 subjects, respectively. Five out of six folds
have 26 controls and 24 patients in the train set and 5 patients and 5
controls in the corresponding test set. The remaining one fold has 6
controls and 4 patients in the test set and 25 patients and 25 healthy
subjects in the train set.

5. RESULTS

5.1. Comparison of proposed method between patients and
healthy subjects

Table 2. Match(M), Insertion(I), Deletion(D), Segment match(S)
and mean and standard deviation (in %) of Overlap rate(OvR) for
segment matched breath sounds in patients and healthy.

Method
used

Predicted
Boundaries M(%) D(%) I(%) S(%) OvR

mean(std)
Patient 193 81 19 24 63 86(17)
Control 182 98 2 2 95 90(10)

As our data consists of both healthy and patients, we analyzed
the proposed method performance between groups. Table 2 shows
the results of the proposed method in healthy and patients. From
the results, we can see that performance is better among the control
group than patients as M is 98% and 81%, respectively. In the case
of patients, S is 63%, which is very low compared to S of control,
which is 95%. We also observe that in the case of patients, D and
I are very high compared to healthy subjects. The reason for poor
performance in the case of patients is due to incorrect prediction of
P and hence d. Poor prediction of P can be due to irregular breath
duration within continuous breath signal for a patient compared to
healthy subjects due to breathing difficulty. However, for healthy
subjects, the breath duration does not vary significantly.

5.2. Performance comparison with ground truth and predicted
P and d

Results of breath segmentation by using predicted and ground truth
boundaries P and d are shown in Table 3. From Table 3, it can
be seen that M and S are higher by using ground truth boundaries
as compared to estimated P , even though mean OvR is almost the
same, being 88% and 90%, respectively.

Table 3. Match(M), Insertion(I), Deletion(D), Segment match(S)
and mean and standard deviation (in %) of Overlap rate(OvR) for
segment matched breath sounds using estimated and ground truth P
and d.

P and d M(%) D(%) I(%) S(%) OvR
mean(std)

Estimated 89 11 13 79 88(13)
Ground truth 93 7 7 86 90(7)

The actual and predicted number of breaths in all 60 subjects are
307 and 315, respectively. Even though performance with ground
truth P is high, it is not close to 100%. The reason behind that can
be understood from the Fig. 5, where ground truth value of P lead
to poor breath boundary prediction because of the first longer in-
hale sound than others. Hence, all breath boundaries got displaced.
In this case, we got out of 7 breath boundaries 3 to be matched, 4
deleted, and 1 segment match. This example shows that our pro-
posed method depends on accurate estimation of d and P .
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Fig. 5. Predicted boundaries using predicted P and d performed
poor compared to ground truth P and d.

5.3. Asthmatic patients and healthy subjects classification

Fold-wise classification accuracy using estimated and ground-truth
boundaries have been given in table 4. Mean TCA using estimated
boundaries is 72%(± 15%), whereas, with ground truth boundaries,
it is 75%(± 11%). Classification using estimated boundaries is close
to the ground truth boundaries. Hence, the proposed method can be
used for the segmentation, and segmented data can be used for the
classification.

Table 4. Total classification accuracy (TCA)(%) between asthmatic
patients and healthy subjects is shown for each fold using estimated
boundaries and ground truth boundaries. Last column indicates the
mean(std) of TCA averaged across all folds.

Breath
Boundaries Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Mean

(std)

Ground Truth 60 80 90 70 81.81 66.67 75
(±11)

Estimated 60 70 100 60 71.57 66.66 72
(± 15)

6. CONCLUSION

In this work, a vocal breath segmentation algorithm is proposed. The
periodic nature of breath signal energy has been used to find the
boundaries using dynamic programming. Predicted boundaries have
good agreement with manually marked boundaries. Classification
performance between asthmatic and healthy subjects is found to be
comparable using estimated boundaries and ground truth boundaries.
Future work includes robust estimation of breath phase duration and
number of breath phases, estimation of breath phase boundaries hav-
ing pause in between.
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