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Dynamics of soap bubble inflation
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Bubbles have always captivated our curiosity with their aesthetics and complexities
alike. While the act of blowing bubbles is familiar to everyone, the underlying physics
of these fleeting spheres often eludes reasoning. In this Letter, we discuss the dynamics of
inflating a soap bubble using controlled airflow through a film-coated nozzle. We assess
and predict the rate of inflation by varying the source pressure. Visualizing the previously
unexplored internal flow reveals that air enters the bubble as a round jet, emerging from the
nozzle opening and impinges on the expanding concave bubble interface to form a toroidal
vortex. Several scaling laws of the associated vortical flow spanning the entire bubble and
the vortex core are reported. The observed dynamics of this bubble-confined vortex ring
formation indicate universality in certain aspects when compared to the free laminar vortex
rings.

DOI: 10.1103/PhysRevFluids.9.L051602

Introduction. Soap bubbles have been a source of wonder for researchers and the general public
alike for generations, yet our continued exploration still unveils nuances that keep us engaged with
these iridescent objects [1]. Among these exciting features are the vivid interference patterns [2],
bursting films [3], minimal surfaces [4], and even the demonstration of a soap bubble as an optical
cavity to generate a laser [5]. This Letter specifically delves into the physics of soap bubble inflation,
revealing the remarkable flow that happens inside. Notably, the internal flow exhibits a toroidal
vortex structure as illustrated in Fig. 1.

The dynamics associated with bubble inflation have been examined from different perspectives
throughout the literature. In the most general sense, the soap bubble anatomy consists of a thin film
of soap liquid stretching against a gas flow. This soap film is usually pinned or held over an aperture
through which the air is introduced, enabling the inflation process. The aperture can be a ring or a
wand, where a free jet or stream of gas is used for blowing the bubble [6–9]. Another possibility
is a closed configuration where an opening at the tube end with the gas efflux is the aperture over
which the soap film is pinned [10]. These studies primarily focused on the motion or stretching
of the soap film. It has been shown that in the case of blowing using a free gas jet, there exists a
critical velocity beyond which a bubble forms and detaches from a soap film [6,7]. Blowing a bubble
through a constriction in a fixed mass system depicts an unstable growth of the bubble interface [10].
However, beyond these considerations, the associated internal flow structure of the gas phase being
used for inflation is rarely explored or reported.

The soap films were also extended to study two-dimensional flows where the incumbent vortical
dynamics were rigorously observed and studied for the flowing film [11,12] and bubbles [13,14].
This study, however, focuses on the vortical dynamics of the gas phase flow within a growing soap
bubble.
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FIG. 1. (a) A schematic of the experimental setup for inflating a soap bubble with an air supply at a
prescribed pressure, seeded with olive oil droplets. A laser sheet is used to illuminate these particles for flow
visualisation captured through a high-speed camera. (b) Long exposure image of the flow within the bubble
during inflation depicting vortex structure. (c) Nomenclature associated with the nozzle (inner radius ri, outer
radius r0, jet area Aj), bubble geometry (spherical cap radius R, height h), and airflow (jet velocity uj , static
gauge pressure inside bubble p = 4σ/R, where σ is air-soap interface surface tension).

The anatomy of an inflating bubble can be extended to other systems where a membrane or
interface is stretched against a fluid flow. This involves problems spanning from filling a simple
rubber balloon [15] to the flow focusing within microdroplets [16]. Containers like plastic bottles
or glass vessels are produced by blow moulding, i.e., inflating a plug in a mould of a prescribed
shape, where flow-induced cooling depends on the internal fluid motion [17]. Soft robotics and
medical devices [18] involve controlled inflation and deflation of tubes, balloons, or chambers,
where a uniform flow and pressure distribution might be necessary. Furthermore, the membrane-
based systems involving engulfment flows induced by forced membrane motion will also depict
similar flow characteristics. The jellyfish-like locomotion [19,20], the flow inside the heart chambers
[21], or even artificial organs are a few examples.

For the aforementioned systems, the precise knowledge of internal flow dynamics of the fluid
phase enclosed within a membrane-like entity is deemed necessary for a better understanding
and control of the associated phenomenon. The exact flow conditions will differ vastly from our
canonical bubble inflation problem; however, a prominent vortical structure is usually associated,
either due to fluid-structure interaction or unsteady inlet flow conditions. This problem thus casts
a basis for a class of problems involving a confined, unsteady toroidal vortex continually being
fed with a mass flux, unlike the traditional self-propelled free vortex rings, where the feeding is
discontinued after it pinches off from the orifice [22,23].

In the current exposition, we consider inflating a soap bubble by expanding a soap film deposited
at the tube end opening with air. The first part of the study looks into the dynamics associated with
the soap film motion and uses first principles to deduce the scaling laws for the bubble growth
rate. The second part delves further into the internal airflow dynamics within this growing bubble.
The incoming airflow conforms into a toroidal vortex initially. Eventually, as the bubble grows,
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FIG. 2. (a) Vorticity and vector fields associated with internal flow of an inflating bubble at various
normalised time instances for the case of dimensionless source pressure p̃0 ≈ 28 or equivalently p0 = 646Pa
(b) LIC (Line Integral Convolution) flow visualization for the same flow instances.

air enters as a round jet which impinges on the concave bubble surface, forming a wall jet that
eventually separates to form a localized toroidal vortical structure (see Figs. 2, 3, and movies 1–6 in
the Supplemental Material [24]).

Experiments. The schematic of the experimental setup is depicted in Fig. 1(a). Air supply at a
constant pressure from the reservoir is utilized for bubble inflation, where the downstream pressure

FIG. 3. A schematic depicting the sequence of events for a soap bubble inflation. (1) Thin film deposited
over the nozzle aperture. (2) Film expansion induced by airflow leading to hemispherical bubble. (3) Bubble
growth conforming a spherical cap with the gas phase flow within, depicting a toroidal vortex spanning the
whole volume. (4) Further film expansion with the incoming round air jet impinging on bubble interior,
developing a wall jet which separates to form a localized vortex.
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is controlled using a pressure regulator. A seeder arrangement in line with the flow circuit introduces
olive oil droplets of size ∼1–5 µm, which is essential for internal airflow visualisation during bubble
blowing. A manometric gauge is used for pressure measurement between the regulator and the
seeder. Through valve ‘1’ and PU tubes, the output of this apparatus is connected to an acrylic nozzle
at the other end having inner and outer diameters of di = 2ri = 6 mm and d0 = 2r0 = 10 mm,
respectively. To generate a soap bubble, the nozzle is dipped in a soap solution (Commercial -
Bubble Magic) to deposit a soap film at the opening. For repeatability, the nozzle tip is dipped to
approximately the same depth of ∼1–2 mm for each run, and the nozzle end is held within a large
acrylic enclosure. Valve ‘2’ is closed, and valve ‘1’ is opened during the inflation process, where
the input pressure is preadjusted through the regulator. To measure the actual stagnation pressure
just after the regulator, valve ‘1’ is closed, and valve ‘2’ is opened after every run. The pressure
measured through the manometer is then considered an equivalent source supply pressure for the
system. The air-liquid surface tension σ = 28.56 mN/m of the soap solution was measured using
the pendant droplet method, and viscosity ηl = 132.49 mPa s was determined using an Anton Paar
model rheometer.

The flow visualization is achieved using a high-speed dual pulsed Nd:YLF laser (pulse energy
of 30 mJ, emission wavelength 527 nm, Photonics, Inc.), where a laser sheet from a cylindrical lens
is passed through the symmetry axis of the bubble and tube system. The images of the illuminated
seeded particles for particle image velocimetry (PIV) were captured at 95 frames per second, using
a high-speed camera (Photron Mini UX) at a pixel resolution of 1280×1024 pixels with a field of
view of 86×70 mm. The outlines of the bubble interfaces in these images [see Fig. 1(b)] were used
to determine the geometrical parameters like height h and radius R, considering the bubble to be a
spherical cap pinned over the outer edge of the nozzle. The associated nomenclature is depicted in
Fig. 1(c).

For PIV, the images were post-processed in Davis 8.4 software to obtain the velocity field of
the internal flow. This involves a cross-correlation technique with a constant multipass interrogation
window of size 32×32 pixels with 50% overlap. The velocity vectors and the vorticity field for
a particular source pressure at different normalised time instances are depicted in Fig. 2(a) (these
normalized parameters are defined later). The Line Integral Convolution (LIC) representation [25]
depicting streamline-like features in a continuous fashion is illustrated in Fig. 2(b). Two counter-
rotating vortices are clearly visible in Fig. 2, portraying a dominant toroidal vortex engulfed within
the bubble. The internal flowfield hence obtained will be utilised to assess the vorticity dynamics.

A phenomenological sequence of events for the inflation process is depicted in Fig. 3. Bubble
inflation is achieved from the tube end with a soap film deposited at the opening. Initially, the
incoming air fills the bubble volume, and the flow conforms to the concave confinement within the
expanding film. The bubble is eventually hemispherical with a minimum radius of curvature and
grows in radius later with further inflation. The internal flow forms a toroidal vortex, which spans
the small bubble volume initially. Later, as the bubble grows, the incoming air assumes a round jet
form. This laminar jet impinges the soap film at the other end of the bubble, forming a wall jet that
moves along the curved inner surface of the bubble. This wall jet eventually separates to form a
toroidal vortical structure engulfed within a growing bubble.

Inflation dynamics. To emulate bubble inflation, a simple model based on Bernoulli’s principle is
employed. Applying this between points (A) and (B) [refer to Fig. 1(a)] gives a simple equation for
airflow from the source to the bubble as

p0 = 4σ

R
+ 1

2
ρau2

j + �ploss, (1)

where R is the radius of the bubble considered to be as the spherical cap, p0 is the stagnation
gauge pressure at source [measured at (A) in Fig. 1(a)], ρa is the air density and σ is the air-
soap interface surface tension. The term 4σ/R represents the Laplace pressure and is assumed to
be uniform static pressure within the bubble, including the nozzle exit (B) [see Fig. 1(a)]. The
average air jet velocity u j at the nozzle exit can be expressed in terms of the volumetric flow rate
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FIG. 4. (a) Growth of normalized bubble height h̃3 with a modified dimensionless time p̃0̃t taking into
account the source pressure, indicating linear variation of bubble volume with time. (b) Steady-state air jet
Reynolds number depicting a linear correlation with the dimensionless source pressure.

Q and exit area Aj as u j = Q/Aj . �ploss is the viscous pressure loss along the pipe and can be
expressed as �ploss = �Q, where � is the equivalent frictional resistance for the piping system. For
a given setup, the experimental parameter � should be roughly the same. For a Poiseuille’s pipe flow
� ∼ 8πμaLeff

A2
eff

, where μa is the air viscosity; Leff and Aeff are the effective length and cross-sectional
area for the piping system, respectively. Eq. (1) can be further simplified to obtain an expression
for Q, which can be equated to the rate of increase in the bubble volume using mass balance. On
simplification, the expression for the dimensionless version of the bubble height h̃ [see Fig. 1(c) for
bubble and nozzle geometry details] is obtained as

dh̃

dt̃
= 1

1 + h̃2

⎧⎪⎨⎪⎩−�̃ +
√√√√�̃2 + 8

(
p̃0 − 2̃h

1 + h̃2

)⎫⎪⎬⎪⎭, (2)

where h̃ = h
ro

, t̃ = t
τ

with time-scale τ = π
2

√
ρar7

o

A2
jσ

, �̃ = �

√
A2

j ro

ρaσ
, and p̃0 = p0

4σ/r0
. In the experiments,

we observe a linear growth of the bubble volume with time, except for a very short early phase. In
the limit of a large bubble h̃ � 1, h ≈ 2R and Eq. (2) approximates to

h̃3 ≈ 12

�̃
p̃0̃t . (3)

A derivation for Eqs. (2) and (3) is presented in the Supplemental Material [24]. The experimental
data considered in the dimensionless form is hence plotted in Fig. 4(a); a dimensional counterpart for
which is also depicted in the Supplemental Material (Fig. S1 [24]). h̃3 varies linearly with a modified
dimensionless time p̃0̃t taking into account the source pressure, as expected from Eq. (3). The curves
overlap and the slopes at various pressures assimilate to give a fairly constant �̃ ≈ 600, validating
our model. This dimensionless resistance agrees with the prediction from Poisuelle’s hypothesis
within the order of magnitude. Furthermore, as the bubble volume Vb ∝ h3, the slope dh3/dt ∝
Q ∝ uj [24]. The rate of the bubble volume growth observed in the experiments was therefore used
to evaluate the air jet velocity, which agrees with the PIV results within an error margin of 10%. The
air jet velocity is unsteady only in the early phase of inflation, and a steady state is approached as
the bubble grows, i.e., the radius R increases and the opposing Laplace pressure within the bubble
diminishes. Defining the air jet Reynolds number as Re j = u jdi/νa, from Eq. (3), Re j ∝ p̃0. The
linear correlation is observed in the experimental realisations as depicted in Fig. 4(b). From this
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FIG. 5. (a) Contour B for bubble circulation evaluation from experimental data. This contour can be
segmented into B1 (dashed lines) and B2 (dotted lines) for simplified analysis. (b) Variation of the dimensionless
bubble circulation with time depicting the scaling 
∗

b ∼ t∗1/3. The inset illustrates an enlarged view of this
scaling.

analysis and experimental observations, we deduce the scaling for the bubble radius with time as
h ∼ R ∼ t1/3 for inflation using a constant pressure supply. The phenomenon was investigated
within the range Re j = 50–500 and a corresponding Weber number range of We = 0.02–0.5,
following the definition We = ρau2

j d0/σ .
Vortical dynamics. The flow inside the bubble depicts a fascinating toroidal vortex structure as

depicted in Fig. 2. The vortical flow spans the whole bubble volume and is similar to a Hill’s vortex
[26] in the early phase when the bubble is small as depicted in Fig. 3. Impingement of the incoming
round jet later forms a wall jet at the expanding concave interface, which separates eventually and
rolls up to form a vortex localized to the lower part of the bubble as it grows (see Figs. 2 and 3). The
incoming jet feeds mass to this growing vortex and the bubble as a whole.

The velocity vector field obtained from PIV is analysed to understand the vortical dynamics
associated with the internal flow. The circulation 
b associated with the flow inside the bubble is
deduced for the right half within the contour B as depicted in Fig. 5(a) using 
b = ∫

B ω dA. The
variation of the dimensionless circulation enclosed within bubble 
∗

b = 
b
u j di

with time t∗ = tu j/di is

depicted in Fig. 5(b). We observe the scaling 
∗
b ∼ t∗1/3 in the later stages of inflation. This can be

deduced by dividing the contour B into two segments B1 and B2 as depicted in Fig. 5(a). Then the
circulation can be also expressed as 
b = ∫

B1
u.dl + ∫

B2
u.dl, where it can be shown that

∫
B1

u.dl �∫
B2

u.dl and
∫

B1
u.dl ∼ u jh [24]. As the height h ∼ t1/3 when the bubble is large, this predicts the

observed scaling 
b ∼ t1/3. However, a slight deviation from this scaling can be observed for lower
source pressure cases, depicted in the inset of Fig. 5(b). This is anticipated because, for the large
bubble limit, it was assumed that the centerline air jet velocity would be uniform with a small portion
at the bottom over which stagnation occurs, which may not be true for incoming jets with lower
momentum (or Re j). Also, effects like coupling between the airflow and thin film flow associated
with liquid film stretching during inflation and draining induced by gravity were neglected, which
may affect the proposed scaling. The air wall jet may impose shear stress and forced convection
over the soap film, affecting film drainage, evaporation rate, stability, and lifetimes of these bubbles.

The incoming jet from the nozzle has a dominant shear layer with large vorticity, contributing
significantly to the bubble circulation evaluated earlier. In general, a large vorticity value does not
necessarily represent a vortex core region [27]. Therefore, the overall bubble circulation may not
adequately describe the dynamics associated with the core. The evolution of coherent structures
like a vortex core typically governs the interaction dynamics for various flow phenomena including
mixing, entrainment, heat transfer, and turbulence. Henceforth, the vortex identification schemes
were implemented to isolate the core for further analysis. The 
2 criteria [28] was used to identify
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FIG. 6. (a) The contour C depicting the connected region identified as core using the swirl strength (λci)
criteria with core center O determined from the 
2 method. (b) Variation of the dimensionless average core
vorticity ω∗

c with normalized time t∗ depicting the scaling ω∗
c ∼ t∗−1/2. (c) Peaks in the variation of average core

vorticity ωc,m correlated linearly with the source pressure p0. (d) Variation of dimensionless core circulation

c

∗∗ with normalized time t∗ depicting it approaches a constant value.

the location of the prominent core O, and the associated core region C was determined using swirl
strength or λci criteria [29], as depicted in Fig. 6(a). The 
2 criteria inspects the relative orientation
of velocity vectors in the neighborhood of a point to identify the core center, and the λci criteria
determines the core region based on the imaginary part of the eigenvalues of the velocity gradient
tensor. A brief discussion of these techniques can be found in the Supplemental Material [24].
The core dynamics is assessed through the average vorticity, defined as ωc = ∫

C ω dA/
∫

C dA and
circulation 
c = ∫

C ω dA. The variation of normalised average core vorticity ω∗
c = ωc

u j/di
with time

t∗ = tu j/di is depicted in Fig. 6(b). We observe the scaling ω∗
c ∼ t∗−1/2 after the peak core vorticity

is reached. A simple explanation is obtained by scaling vorticity to the velocity gradients where
incoming jet velocity u j serves as a suitable scale along with a characteristic length scale associated
with the core lc such that ωc ∼ u j/lc. The identified core C spans the swirling region in the
neighborhood of the core center O [depicted in the inset of Fig. 6(a)] to the high shear region in the
vicinity of the impingement where the jet turns and spreads along the concave soap film. Although
from the vector field visualization, a vortical structure is not apparent in this impingement region,
the eigenvalues of velocity gradient tensor (from λci criteria), however, predict a dominant rotational
component. This unsteady stagnation point flow and the overall recirculatory flow associated with
the wall jet separation contribute to core dynamics. Essentially, the wall jet feeds this vortex, and
hence, the viscous length scale lc ∼ √

νat is suitable to characterise the vortical dynamics of the
core [30,31]. Therefore, ωc ∼ u j/

√
νat , which explains the observed scaling ωc ∼ t−1/2 and the

peak associated with the core vorticity variation ωc,m ∝ u j ∝ p0 [see Figs. 6(b) and 6(c)]. There is
an anticipated flow transition around this peak delineating the flow into two broad regimes, i.e., prior
and post wall jet separation, as indicated in Fig. 3. Before the peak, the average core vorticity depicts
an increasing trend and roughly follows the scaling ω∗

c ∼ t∗. This transition in flow dynamics and
associated scaling is apparent in Figs. 5(b) and 6(b), which happens around t∗ ∼ O(102).

The core circulation is normalized using the bubble circulation such that 
∗∗
c = 
c/
b. The

variation is depicted in Fig. 6(d), where it is observed that this dimensionless core circulation
approaches a constant value with time, which means that the core circulation eventually follows
a scaling law similar to the bubble circulation.

In the initial phase of inflation, core vorticity and circulation depict an increasing trend prior to
the wall jet separation, presumably due to flow confinement. This leads to a prominent rotational
flow, which spans the whole bubble volume. Hence, a coupled growth of bubble size and vortical
characteristics is observed until the point where the flow starts to separate. After this, the core
vorticity starts to decay. Also, the initial phase is unsteady, with the bottom-most point of the bubble
accelerating significantly. In the later stages, the jet impingement is relatively steadier. The average
core vorticity of this confined vortex depicts a scaling law ω∗

c ∼ t∗−1/2 independent of the bubble

L051602-7



RAO, JAIN, AND BASU

growth rate. The core circulation, when normalized with the overall bubble circulation 
∗∗
c , depicts

a variation qualitatively similar to that of a free vortex ring formation [22,32] where it increases
rapidly, then achieves a constant value. In earlier studies, this ratio approached a value of 0.4–0.6
for free laminar vortex rings, where the total circulation of the half-vortex, including the trailing
jet, was used for normalization. This is similar to what is observed in the current study. Thus, in a
sense, the bubble-confined unsteady vortex ring under consideration here also retains these universal
characteristics associated with the generation of a free laminar vortex ring. Although the primary
source of vorticity generation is the boundary layer at the inner tube walls in the former case [33],
and the wall jet on the moving bubble interface acts as an additional source in the latter. To have
a better understanding of the universality of the vortical dynamics, further research is required into
the initial unsteady phase where the wall jet separation starts and sustains.

Furthermore, the jet impingement here differs from the conventional free jet impingement [34,35]
or vortex impingement [36] studies in terms of the confinement imposed by the bubble interface.
The consequences include the imposed entrainment and the vortex interacting with the jet itself. The
jet eventually becomes unstable as these effects become prominent for a higher Reynolds number
jet. This phenomenon is depicted in the Supplemental Material [24].

Conclusion. In closing, we have discussed the dynamics associated with an inflating soap bubble
and the associated internal flow, where we deduce several universal scaling laws associated with
the bubble growth and the prominent vortex that forms within. The bubble volume is found to
grow linearly in time with the bubble height following the scaling h̃3 ∼ p̃0̃t . The bubble circulation
follows the scaling 
∗

b ∼ t∗1/3 and the average core vorticity depicts ω∗
c ∼ t∗−1/2. The phenomenon

occurs prominently due to the round jet impingement with the bubble interface and was investigated
within the range Rej = 50–500. The universality extending from a free vortex ring formation,
vortical dynamics of the initial phase and the jet instability induced in the later phases are among
the compelling observations that are to be examined further.

Acknowledgments. S.J.R. and S.J. would like to thank the Prime Minister Research Fellowship
(PMRF) for the financial support. S.B. would like to thank the support from the Pratt and Whitney
Chair professorship.

[1] C. V. Boys, Soap Bubbles, Their Colours and the Forces which Mold Them (Dover Publications,
New York, 1959).

[2] N. S. Lalli and A. Giusti, Coherence effects on the interference colors of soap films, J. Appl. Phys. 134,
093103 (2023).

[3] H. Lhuissier and E. Villermaux, Soap films burst like flapping flags, Phys. Rev. Lett. 103, 054501 (2009).
[4] L. Giomi and L. Mahadevan, Minimal surfaces bounded by elastic lines, Proc. R. Soc. A 468, 1851 (2012).
[5] Z. Korenjak and M. Humar, Smectic and soap bubble optofluidic lasers, Phys. Rev. X 14, 011002 (2024).
[6] L. Salkin, A. Schmit, P. Panizza, and L. Courbin, Generating soap bubbles by blowing on soap films,

Phys. Rev. Lett. 116, 077801 (2016).
[7] M. Zhou, M. Li, Z. Chen, J. Han, and D. Liu, Formation of soap bubbles by gas jet, Appl. Phys. Lett. 111,

241604 (2017).
[8] C. A. E. Hamlett, D. N. Boniface, A. Salonen, E. Rio, C. Perkins, A. Clark, S. Nyugen, and D. J. Fairhurst,

Blowing big bubbles, Soft Matter 17, 2404 (2021).
[9] L. Ganedi, A. U. Oza, M. Shelley, and L. Ristroph, Equilibrium shapes and their stability for liquid films

in fast flows, Phys. Rev. Lett. 121, 094501 (2018).
[10] M. Grosjean and E. Lorenceau, Unstable growth of bubbles from a constriction, Phys. Rev. Fluids 8,

053602 (2023).
[11] P. Vorobieff, M. Rivera, and R. E. Ecke, Soap film flows: Statistics of two-dimensional turbulence,

Phys. Fluids 11, 2167 (1999).
[12] P. Roushan and X. L. Wu, Universal wake structures of Kármán vortex streets in two-dimensional flows,

Phys. Fluids 17, 073601 (2005).

L051602-8

https://doi.org/10.1063/5.0158178
https://doi.org/10.1103/PhysRevLett.103.054501
https://doi.org/10.1098/rspa.2011.0627
https://doi.org/10.1103/PhysRevX.14.011002
https://doi.org/10.1103/PhysRevLett.116.077801
https://doi.org/10.1063/1.5000439
https://doi.org/10.1039/D0SM01893G
https://doi.org/10.1103/PhysRevLett.121.094501
https://doi.org/10.1103/PhysRevFluids.8.053602
https://doi.org/10.1063/1.870078
https://doi.org/10.1063/1.1943469


DYNAMICS OF SOAP BUBBLE INFLATION

[13] F. Seychelles, Y. Amarouchene, M. Bessafi, and H. Kellay, Thermal convection and emergence of isolated
vortices in soap bubbles, Phys. Rev. Lett. 100, 144501 (2008).

[14] T. Meuel, Y. L. Xiong, P. Fischer, C. H. Bruneau, M. Bessafi, and H. Kellay, Intensity of vortices: From
soap bubbles to hurricanes, Sci. Rep. 3, 3455 (2013).

[15] D. Ilssar and A. D. Gat, On the inflation and deflation dynamics of liquid-filled, hyperelastic balloons,
J. Fluids Struct. 94, 102936 (2020).

[16] S. A. Vagner, S. A. Patlazhan, C. A. Serra, and D. Funfschilling, Vortex flow evolution in a growing
microdroplet during co-flow in coaxial capillaries, Phys. Fluids 33, 072010 (2021).

[17] J. Zimmer, G. Chauvin, and M. Stommel, Experimental investigation and numerical simulation of liquid
supported stretch blow molding, Polymer Eng. Sci. 55, 933 (2015).

[18] L. Manfredi, E. Capoccia, G. Ciuti, and A. Cuschieri, A soft pneumatic inchworm double balloon (SPID)
for colonoscopy, Sci. Rep. 9, 11109 (2019).

[19] J. H. Costello, S. P. Colin, J. O. Dabiri, B. J. Gemmell, K. N. Lucas, and K. R. Sutherland, The
hydrodynamics of jellyfish swimming, Ann. Rev. Marine Sci. 13, 375 (2021).

[20] M. Baskaran and K. Mulleners, Lagrangian analysis of bio-inspired vortex ring formation, Flow 2, E16
(2022).

[21] G. Di Labbio, J. Vétel, and L. Kadem, Material transport in the left ventricle with aortic valve regurgita-
tion, Phys. Rev. Fluids 3, 113101 (2018).

[22] M. Gharib, E. Rambod, and K. Shariff, A universal time scale for vortex ring formation, J. Fluid Mech.
360, 121 (1998).

[23] M. Krieg and K. Mohseni, A new kinematic criterion for vortex ring pinch-off, Phys. Fluids 33, 037120
(2021).

[24] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.9.L051602 for the
derivation of the expressions for the bubble geometry evolution and the enclosed circulation; brief
discussion on the vortex core identification schemes; instability observed in the jet at higher Reynolds
numbers; supplementary movies 1–6 depicting internal airflow visualisation in bubbles during inflation
and their respective descriptions. The Supplemental Material also contains Refs. [27–29].

[25] B. Cabral and L. C. Leedom, Imaging vector fields using line integral convolution, in Proceedings of the
20th Annual Conference on Computer Graphics and Interactive Techniques (ACM, Anaheim CA, 1993),
pp. 263–270.

[26] M. J. M. Hill and O. M. F. E. Henrici, VI. On a spherical vortex, Philos. Trans. Roy. Soc. London A 185,
213 (1997).

[27] J. Jeong and F. Hussain, On the identification of a vortex, J. Fluid Mech. 285, 69 (1995).
[28] L. Graftieaux, M. Michard, and N. Grosjean, Combining PIV, POD and vortex identification algorithms

for the study of unsteady turbulent swirling flows, Meas. Sci. Technol. 12, 1422 (2001).
[29] J. Zhou, R. J. Adrian, S. Balachandar, and T. M. Kendall, Mechanisms for generating coherent packets of

hairpin vortices in channel flow, J. Fluid Mech. 387, 353 (1999).
[30] C. Tung and L. Ting, Motion and decay of a vortex ring, Phys. Fluids 10, 901 (1967).
[31] J. J. Allen and M. S. Chong, Vortex formation in front of a piston moving through a cylinder, J. Fluid

Mech. 416, 1 (2000).
[32] M. Rosenfeld, E. Rambod, and M. Gharib, Circulation and formation number of laminar vortex rings,

J. Fluid Mech. 376, 297 (1998).
[33] P. S. Krueger, An over-pressure correction to the slug model for vortex ring circulation, J. Fluid Mech.

545, 427 (2005).
[34] J. M. Bergthorson, K. Sone, T. W. Mattner, P. E. Dimotakis, D. G. Goodwin, and D. I. Meiron, Impinging

laminar jets at moderate Reynolds numbers and separation distances, Phys. Rev. E 72, 066307 (2005).
[35] P. Aillaud, L. Y. M. Gicquel, and F. Duchaine, Investigation of the concave curvature effect for an

impinging jet flow, Phys. Rev. Fluids 2, 114608 (2017).
[36] T. Ahmed and B. D. Erath, Experimental study of vortex ring impingement on concave hemispherical

cavities, J. Fluid Mech. 967, A38 (2023).

L051602-9

https://doi.org/10.1103/PhysRevLett.100.144501
https://doi.org/10.1038/srep03455
https://doi.org/10.1016/j.jfluidstructs.2020.102936
https://doi.org/10.1063/5.0057353
https://doi.org/10.1002/pen.23961
https://doi.org/10.1038/s41598-019-47320-3
https://doi.org/10.1146/annurev-marine-031120-091442
https://doi.org/10.1017/flo.2022.9
https://doi.org/10.1103/PhysRevFluids.3.113101
https://doi.org/10.1017/S0022112097008410
https://doi.org/10.1063/5.0033719
http://link.aps.org/supplemental/10.1103/PhysRevFluids.9.L051602
https://doi.org/10.1098/rsta.1894.0006
https://doi.org/10.1017/S0022112095000462
https://doi.org/10.1088/0957-0233/12/9/307
https://doi.org/10.1017/S002211209900467X
https://doi.org/10.1063/1.1762240
https://doi.org/10.1017/S002211200000865X
https://doi.org/10.1017/S0022112098003115
https://doi.org/10.1017/S0022112005006853
https://doi.org/10.1103/PhysRevE.72.066307
https://doi.org/10.1103/PhysRevFluids.2.114608
https://doi.org/10.1017/jfm.2023.501

