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Abstract: Conformal field theories can exchange energy through a boundary interface.
Imposing conformal boundary conditions for static interfaces implies energy conservation at
the interface. Recently, the reflective and transmittive properties of such static conformal
interfaces have been studied in two dimensions by scattering matter at the interface impurity.
In this note, we generalize this to the case of dynamic interfaces. Motivated by the connections
between the moving mirror and the black hole, we choose a particular profile for the dynamical
interface. We show that a part of the total energy of each side will be lost in the interface.
In other words, a time-dependent interface can accumulate or absorb energy. While, in
general, the interface follows a time-like trajectory, one can take a particular limit of a
profile parameter(β), such that the interface approaches a null line asymptotically(β → 0).
In this limit, we show that for a class of boundary conditions, the interface behaves like a
semipermeable membrane - it behaves like a (partially) reflecting mirror from one side and
is (partially) transparent from the other side. We also consider another set of conformal
boundary conditions for which, in the null line limit, the interface mimics the properties
expected of a horizon. In this case, we devise a scattering experiment, where (zero-point
subtracted) energy from one CFT is fully transmitted to the other CFT, while from the other
CFT, energy can neither be transmitted nor reflected, i.e., it gets lost in the interface. This
boundary condition is also responsible for the thermal energy spectrum which mimics Hawking
radiation. This is analogous to the black hole where the horizon plays the role of a one-sided
‘membrane’, which accumulates all the interior degrees of freedom and radiates thermally
in the presence of quantum fluctuation. Stimulated by this observation, we comment on
some plausible construction of wormhole analogues.

Keywords: Black Holes, Scale and Conformal Symmetries, AdS-CFT Correspondence,
Field Theories in Lower Dimensions

ArXiv ePrint: 2401.11451

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP05(2024)329

https://orcid.org/0000-0001-9457-028X
mailto:parthajitbiswas8@gmail.com
mailto:suchetan1993@gmail.com
mailto:dindaanirban@gmail.com
https://doi.org/10.48550/arXiv.2401.11451
https://doi.org/10.1007/JHEP05(2024)329


J
H
E
P
0
5
(
2
0
2
4
)
3
2
9

Contents

1 Introduction 1

2 CFT with static interface: a brief review 3
2.1 Interface gluing conditions 3
2.2 Collider experiment 4

3 CFT with moving interface 6
3.1 Set up for collider experiment 6
3.2 A different gluing condition 13

4 Connection to eternal black hole 14

5 Discussions 22

A Details of computing translation and reflection coefficients 26
A.1 For CFTL 26
A.2 For CFTR 29

B A detail study of (3.29) 29

1 Introduction

Boundary conditions play a crucial role in constraining dynamics in the real world. In
particular, for studying non-equilibrium physics, the role of boundary condition is extremely
important, e.g., thermalization from quench [1]. An interesting question in this context
is whether we can mimic thermal-like behavior by imposing suitable boundary conditions.
As was first shown in [2–4], a real-time dynamical mirror indeed captures certain thermal
features which eventually mimic black hole physics [5]. The setup involves a quantum field
on 2D flat spacetime with a perfectly reflecting boundary. Particles are created when the
moving mirror undergoes an acceleration. If the mirror trajectory is suitably chosen, the
average particle flux can be identified as the average particle production in the background
of a collapsing black hole. Considering moving mirror as a boundary profile in the context of
boundary conformal field theory (BCFT) [6], Akal et al. [7, 8] have computed time evolution
of entanglement entropy for different moving mirror boundary profiles, and in particular
for the set-up which mimics black hole formation and evaporation they have found an ideal
Page curve.1 This interesting analogy between a dynamical boundary and black hole physics
still lacks a formal identification or definition of the horizon and beyond horizon physics.
A natural generalization of this program is to study different boundary conditions in such
dynamical mirror profiles for which two different theories can interact along the interface.2

1Different entanglement measures in the moving mirror setup can be found in [9, 10].
2To the best of our knowledge, dynamical (or moving) interface has not been studied in the literature.

However, [11] (and references therein) addressed semi reflecting moving mirror in other context.
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Figure 1. Static interface from dynamical interface using conformal mapping.

Such interfaces allow the two CFTs to interact, thereby allowing the exchange of energy
between them. The fraction of energy transport across the interface is characterized by
transport coeffecients [12, 13]. The proportion of energy that is transmitted through the
interface is called transmission coefficient(T ), and the proportion of energy that is bounced
back from the interface is called reflection coefficient(R). T and R are defined through the
expectation values of the stress tensor [13]; they depend on the details of the CFTs and also
on the boundary conditions used to consistently glue CFTs along the interface.

In [13], the authors have studied transport coefficients in great detail by considering
two 2D CFTs, CFTL and CFTR glued along a static interface. The idea was to prepare an
excitation far from the interface and let it collide with the interface and then compute T
and R by computing the fraction of energy that has been transmitted and reflected by the
interface. In particular, they have used a boundary condition known as conformal boundary
condition, which ensures that the amount of energy flowing towards the interface is the same as
the amount of energy that is flowing away from the interface; in other words, their boundary
condition ensures that the interface neither absorb nor radiate any energy. Obviously, they
get transmission and reflection coefficients which satisfy T +R = 1.

In this note, we generalize their setup to the case when the interface is dynamical. We
then compute the transmission and reflection coefficients in this setup and discuss some
probable connections with black holes. We will use the conformal map method [7, 8] to map
the dynamical interface to a static interface (see figure 1 for a schematic representation).
After going to the static interface, we will use conformal boundary condition of the product
CFTs CFTL ⊗ CFTR [13]. The crucial feature of this conformal map is that the left-moving
and right-moving energy flux are mapped differently. Even though the net energy flux in
both sides will be the same due to this boundary condition, the moving interface profile itself
contributes to the energy. So, in our case, we will not get T +R = 1. The value of T +R
depends on the details of the interface profile. However, in this note, we will only consider
one particular interface profile, namely escaping-mirror profile, which is known to model
Hawking radiation from a black hole formed by a collapsing null shell. In the static case,
reflection and transmission coefficients surprisingly do not depend on any details of the state
where we measure energy in the collider experiment. However, in our dynamical case, these
transport coefficients indeed depend on the profile of the interface as well as the position
of incoming excitations where the initial state is prepared. This is a clear manifestation
of the breaking of conformal symmetries of the moving interface. In a particular limit of
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the parameter of the interface profile (β → 0), we could obtain R → 0 or T → 1. This
feature will motivate us to study another set of boundary conditions which is a conformal
boundary condition of product CFTs CFTL ⊗ CFTR. We can embed it in the standard
two-sided ICFT picture by exchanging chiral and anti-chiral sectors of one CFT. In this
setup, we modify the scattering experiment discussed in [13] to make it consistent with this
exchange. This setting is natural for such gluing conditions. For a particular solution to this
gluing condition (3.29), we can perform the modified scattering experiment for which the
interface behaves like a one-sided transmitter with no reflection from either side at β → 0
when the interface coincides with null coordinate. This is one of the defining properties of
a classical horizon that is realized in our moving interface setup. One can also argue that
the thermal spectrum of Hawking radiation could be obtained using this same boundary
condition in a similar manner to moving mirror setup. The same gluing condition could
also be realized as an ICFT if we reverse the time direction of one copy. In this case, we
could also perform a scattering experiment where the past and future (null) infinity of one
side will be reversed. In this setting, we will show that the two CFTs subjected to gluing
condition (3.29) behave like two exteriors of an eternal black hole. We make this connection
more precise by obtaining Hawking radiation in each side and by identifying the vacuum
as a thermofield double(TFD) state with respect to future observers.

The rest of the note is organized as follows: in section 2, we will briefly review CFTs in
the presence of a static interface; we will discuss computations of transmission and reflection
coefficients following a collider experiment. In section 3.1, we will generalize the computation
of transmission and reflection coefficients for a dynamical interface by using the conformal
map method [8]. In the limit, when the interface becomes null, we will show that the interface
behaves like a semipermeable membrane. In section 3.2, we will consider a slightly different
boundary condition and will compute transmission and reflection coefficients. We will show
that the interface again behaves like a semipermiable membrane but, contrary to the previous
case, gives thermal Hawking flux, thus providing connections with black hole physics. In
section 4, we will consider the later boundary condition and will do a parity and time-reversal
transformation to get a natural ICFT interpretation, keeping the boundary condition intact
and will interpret these two CFTs as two exteriors of an eternal black hole. We will end with
discussions and future directions in section 5. Various technical details will be presented
in appendices A and B.

2 CFT with static interface: a brief review

In this section, we will briefly review the computations of transmission and reflection coeffi-
cients in the presence of a static interface as described in [13].

2.1 Interface gluing conditions

Consider two Lorentzian CFTs, CFTL, and CFTR, separated by an interface (defect/impurity)
placed at x = 0. The two CFTs, in general, may have different central charges. On the
interface, the stress tensors of the two CFTs are subject to the following conformal gluing
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condition [12].

TL(u) + T̄R(v) = T̄L(v) + TR(u)
∣∣∣
u=v

, u ≡ t− x, v ≡ t+ x (2.1)

These gluing conditions at the interface capture the coupling of the two CFTs via some
boundary interactions localized on the interface. Two extreme solutions to the above equation
correspond to having no coupling between the CFTL and CFTR or complete transparency
between them. We refer to these as ‘factorizing gluing condition’ and ‘transparent gluing
condition’, respectively.

• Factorizing gluing condition

TL(u) = T̄L(v) TR(u) = T̄R(v) . (2.2)

This results in two decoupled BCFTs.

• Transparent gluing condition

TL(u) = TR(u) T̄L(v) = T̄R(v). (2.3)

With this condition, the left-moving and right-moving stress tensors become continuous
across the interface, and the theory becomes independent of the location of the interface.

Between these two extreme cases, one may have interfaces with partial reflectivity, which
can be encoded in nonvanishing reflection and transmission coefficients.

The two-point functions of the stress tensors on the same side are completely fixed
by conformal symmetry.

⟨TL(u1)TL(u2)⟩I = cL/2
(u1 − u2)4 ⟨TR(u1)TR(u2)⟩I = cR/2

(u1 − u2)4 (2.4)

⟨T̄L(v1)T̄L(v2)⟩I = cL/2
(v1 − v2)4 ⟨T̄R(v1)T̄R(v2⟩I = cR/2

(v1 − v2)4 (2.5)

While computing the left-right stress tensor correlations, new coefficients that encode the
coupling of the two theories will appear.

⟨TL(u1)TR(u2)⟩I = cLR/2
(u1 − u2)4 ⟨T̄L(v1)T̄R(v2)⟩I = cLR/2

(v1 − v2)4 (2.6)

⟨TL(u)T̄L(v)⟩I = (cL − cLR)/2
(u+ v)4 ⟨TR(u)T̄R(v)⟩I = (cR − cLR)/2

(u+ v)4 (2.7)

Here, cL and cR are the central charges of the two CFTs, respectively. cLR is the coefficient
of the two-point function of the stress tensors across a static interface [13]. In this note, we
will be interested in parity invariant CFTs for which cL = c̄L, cR = c̄R and cLR = c̄LR.

2.2 Collider experiment

We now briefly review the collider experiment set-up introduced in [13]. The idea is to
scatter conformal matter in one theory towards the interface and compute the amount of
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Figure 2. The interface which separates two CFTs, is placed at x = 0.

energy flux obtained after reflection and transmission at the interface. This flux is given
by the ANEC operators [14], defined below:

E = − 1
2π

∫ ∞

−∞
duT (u) Ē = − 1

2π

∫ ∞

−∞
dvT̄ (v) (2.8)

These compute the total energy flux at infinity towards the right or the left, respectively.
In ICFT, the two independent components of the stress tensor move freely in the bulk but
interact through the interface (see fig 2 for schematic representation). Using these ANEC
operators, one can define the transmission and reflection coefficients for energy flux across
an interface as follows

T = transmitted energy
incident energy R = reflected energy

incident energy (2.9)

Energy conservation implies T +R = 1, and positivity of the total energy transmitted
and reflected leads to T ≥ 0 and R ≥ 0. A priori, one expects that T and R would depend
on the details of the states. But remarkably, one can show that in a generic CFT, they are
completely independent of the details of the incoming excitation. More precisely, one can
show that they are entirely determined by the central charges of the two CFTs cL, cR and
cLR (2.6). This is an important universal feature of a static interface [13].

Being a scale-invariant theory, there are no well-defined asymptotic states in CFT. We
follow the procedure described in [13] to create scattering experiments. One can define a
one-parameter family of states:

|OL, D
〉

I
=
∫
d2xf(u)f(v +D)OL(u, v)|O

〉
I

(2.10)

f(u) is some appropriate square integrable wave packet.∫ ∞

−∞
|f(u)|du = 1, f(u) = 0 if |u| > l (2.11)

where the support of the wave packet is u ∈ (−l, l).
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Here, D signifies how far the state is from the interface. We have introduced this
parameter to set up scattering-like experiments. As D → ∞, the effect of the boundary
condition on the interface will vanish. In this way, we can define asymptotic states in the
collider experiment. The normalization of the states reads as

lim
D→∞

〈
OL, D|OL, D

〉
I
=
〈
OL, D|OL, D

〉
(2.12)

As D → ∞ limit prepares a state with no interface, we can drop the index I. Having defined
the states, we are going to define the observables

TL = lim
D→∞

⟨OL, D|ER|OL, D⟩I

⟨OL, D|EL|OL, D⟩

RL = lim
D→∞

⟨OL, D|ĒL|OL, D⟩I − ⟨OL, D|ĒL|OL, D⟩
⟨OL, D|EL|OL, D⟩

TR = lim
D→∞

⟨ŌR, D|ĒL|ŌR, D⟩I

⟨ŌR, D|ĒR|ŌR, D⟩

RR = lim
D→∞

⟨ŌR, D|ER|ŌR, D⟩I − ⟨ŌR, D|ER|ŌR, D⟩
⟨ŌR, D|ĒR|ŌR, D⟩

(2.13)

The transmission coefficients for the static interface have the following expressions [13]

TL = cLR

cL
, TR = cLR

cR
. (2.14)

For the two special solutions of the gluing condition, the transmission coefficients are

Totally reflective : TL = TR = 0
Totally transmissive : TL = TR = 1

(2.15)

One can show the following bounds from the energy conservation and positivity of the
total energy transmitted and reflected.

0 < cLR < min(cR, cL), 0 < TL < min
(
1, cR

cL

)
, 0 < TR < min

(
1, cL

cR

)
(2.16)

3 CFT with moving interface

3.1 Set up for collider experiment

Moving interfaces. In this section, we generalize the discussion of the previous section
to the case when the defect is moving along a time-like curve x = Z(t), which in terms of
the light cone coordinates (u, v) can be expressed as v = p(u) (see figure 3). The choice of
the function p(u) determines different trajectories of the interface.

Following [7], one can map the dynamical interface problem to the static one (see figure 4)
using the following conformal transformations:

ṽ = v, ũ = p(u), where ũ = t̃− x̃, ṽ = t̃+ x̃. (3.1)
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Figure 3. The moving interface profile: the blue line presents the motion of the mirror.

ṽũ

x̃

t̃

CFTR

CFTL

Figure 4. After the transformation, the interface gets mapped to the blue solid line. The red-shaded
area is not accessible [8].

In the new (ũ, ṽ) coordinates, the position of the interface will be at x̃ = 0. In this note,
we will only consider the escaping interface profile, which has the following form:

p(u) = −β log
(
1 + e

−u
β

)
, β ≥ 0 (3.2)

In the u → ∞, p(u) → −βe−
u
β . On the other hand, if we take u → −∞, the profile

becomes p(u) → u. This essentially states that in the far past, the interface was static at
x = 0, and at very late time, it becomes null (see figure 3).

Using the map (3.1), one can compute the vacuum energy ⟨Tuu(u)⟩|I in the presence
of the interface. This has the following form

⟨TL
uu(u)⟩|I = cL

48πβ2

(
1− 1

(1 + e
u
β )2

)
; ⟨TR

uu(u)⟩|I = cR

48πβ2

(
1− 1

(1 + e
u
β )2

)
(3.3)

– 7 –
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In the asymptotic limit u → ∞, this takes the form:

⟨TL
uu(u)⟩|I ≈ cL

48πβ2 ; ⟨T
R
uu(u)⟩|I ≈ cR

48πβ2 (3.4)

While in the u → −∞ limit, we get

TL
uu = TR

uu = 0 (3.5)

Interestingly, as is clear from the expressions for the stress tensors (3.3), the asymptotic
limits in u can also be approached instead by taking a limit in β, keeping u fixed and positive.
If we consider β → 0 for a fixed positive u we recover (3.4), while if we instead consider
β → ∞ for a fixed u, then we recover (3.5). These late-time features are very crucial for
some of our later results presented in the next section.

Radiative ICFT. In the same spirit as [8], we define ‘Radiative ICFTs’ by mapping the
standard ICFT boundary condition imposed on the static interface (2.1) to the moving
interface3

(p′(u))−2TR(u)− T̄R(v) = (p′(u))−2TL(u)− T̄L(v) at v = p(u) (3.6)

In the static frame, this reduces to its standard form, i.e.

TR(ũ)− T̄R(ṽ) = TL(ũ)− T̄L(ṽ) at ṽ = ũ (3.7)

As noted earlier, (3.7) is an energy-conserving gluing condition. In other words, in the static
frame, ‘x̃t̃’ component of the stress tensor is continuous along the interface at x̃ = 0. Even
though it is not in the moving frame.

Transmission and reflection coefficients. We will now compute the transmission (T )
and reflection (R) coefficients for this dynamical interface. T and R are defined as the
expectation values of ANEC operators with respect to the asymptotic states defined in
section 2.2. We start with the transmission coefficient. In this setting, we will use conformal
transformations (3.1) to map the dynamical interface to a static interface and use (3.7).

TL = lim
D→∞

∫∞
−∞ du ⟨O1

L(u1, D)|TR(u)|O2
L(u2, D)⟩I∫∞

−∞ du ⟨O1
L(u1, D)|TL(u)|O2

L(u2, D)⟩ (3.8)

The subscript L in T denotes the origin of the incoming excitation. Instead of considering
any generic primary or quasi-primary excitation, we will consider only chiral or anti-chiral
operators here. The main reason for working with only the chiral or anti-chiral operators
is that the general form of the three-point function of the stress tensor with two primary
operators cannot be determined by symmetries alone, except when the operators are purely
(anti) chiral.4

When defining our observables, we put the D dependency explicitly. For the calculations,
for the CFTL, we will put the D dependency on the v coordinate, and for CFTR, we will put

3Here we subtracted the vacuum energy part of the stress tensor. In other words here T → T − ⟨T ⟩vac.
4We need the exact form of the three-point function to evaluate the integrals explicitly.
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the D dependency on u coordinate.5 In other words, if we define the excitation in CFTR,
the explicit D dependency will appear in u, not in v. In this way, we can take the D → ∞
limit safely because all our calculations are done in the presence of either chiral or anti-chiral
primaries. Hence, for the computations of TL and RL we may drop the explicit D dependency,
but, to emphasize its importance, we will keep it till the end of the calculations.

The numerator. Let’s look at the numerator after a generic conformal transformation

⟨OL, D|ER|OL , D⟩I = − 1
2π

∫ (
du1
dũ1

)
dũ1

〈
0
∣∣∣f(p−1(ũ1))

(
∂ũ1
∂u1

)h1

u1=p−1(ũ1)
O1

L(ũ1)
∣∣∣

×
∫ (

du

dũ

)
dũ

[(
∂ũ

∂u

)2

u=p−1(ũ)
TR(ũ) +

cR

12{ũ, u}
]

×
∣∣∣ ∫ (du2

dũ2

)
dũ2f(p−1(ũ2))

(
∂ũ2
∂u2

)h2

u2=p−1(ũ2)
O2

L(ũ2)
∣∣∣0〉

I

(3.9)

Subtracting the zero point energy, which is coming from the Schwarzian part, we get

⟨OL, D|ER|OL , D⟩I = − 1
2π

∫ (
du1
dũ1

)
dũ1

〈
0
∣∣∣f(p−1(ũ1))

(
∂ũ1
∂u1

)h1

u1=p−1(ũ1)
O1

L(ũ1) (3.10)

×
∣∣∣ ∫ (du

dũ

)
dũ

(
∂ũ

∂u

)2

u=p−1(ũ)
TR(ũ)

∣∣∣ ∫ (du2
dũ2

)
dũ2f(p−1(ũ2))

(
∂ũ2
∂u2

)h2

u2=p−1(ũ2)
O2

L(ũ2)
∣∣∣0〉

I

To proceed further, we use the following identity:

〈
O1

L(ũ1)TR(ũ)O2
L(ũ2)

〉
I
=
(
cLR

cL

)〈
O1

L(ũ1)TL(ũ)O2
L(ũ2)

〉
(3.11)

This identity comes from the definition of OPE, which is valid even when a dynamical
interface is present.6 The above identity can be derived for any general three-point correlation,
e.g., where the fields are not necessarily (anti)chiral. For more details, we refer the readers
to the reference [15]. We will also need the form of three-point function of the stress tensor
with two primary operators. In the absence of an interface, this is given by:

〈
O1

L(ũ1)TL(ũ)O2
L(ũ2)

〉
= h

[
1

(ũ− ũ1)2(ũ1 − ũ2)2h
+ 1

(ũ− ũ2)2(ũ1 − ũ2)2h

− 2
(ũ− ũ1)(ũ1 − ũ2)2h+1 − 2

(ũ− ũ2)(ũ1 − ũ2)2h+1

] (3.12)

5Since, to reach the past infinity from the left side of the interface we need to take v → −∞ and to reach
from the right side of the interface we need to take u → −∞.

6We also don’t put the D dependency as it is true in general and doesn’t depend on how one creates a
state.
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It is zero unless h1 = h2 = h. Finally, plugging (3.12) and (3.11) in (3.10), we get

⟨OL, D|ER|OL , D⟩I = − h

2π
cLR

cL

∫ (
du1
dũ1

)
dũ1f(p−1(ũ1))

(
∂ũ1
∂u1

)h1

u1=p−1(ũ1)

×
∫ (

du2
dũ2

)
dũ2f(p−1(ũ2))

(
∂ũ2
∂u2

)h2

u2=p−1(ũ2)

∫ (
du

dũ

)
dũ

(
∂ũ

∂u

)2

u=p−1(ũ)

×
[

1
(ũ− ũ1)2(ũ1 − ũ2)2h

+ 1
(ũ− ũ2)2(ũ1 − ũ2)2h

− 2
(ũ− ũ1)(ũ1 − ũ2)2h+1 − 2

(ũ− ũ2)(ũ1 − ũ2)2h+1

]
. (3.13)

Till now, all the discussions are valid for a generic interface. In what follows, we will
restrict our discussions to the escaping mirror profile (3.2). This can be mapped to a static
interface ũ = ṽ by the following conformal transformation

ũ = −β log(1 + e−u/β) , ṽ = v

⇒ u = −β log
(
e
− ũ

β − 1
)

dũ

du
= e−u/β

1 + e−u/β
= 1− eũ/β ,

du

dũ
= 1

1− eũ/β
.

(3.14)

If we evaluate the above integration, we will get7

⟨OL,D|ER|OL ,D⟩I (3.15)

=lim
ϵ→0

∫
dũ1dũ2f(p−1(ũ1))f(p−1(ũ2))

(
∂ũ1
∂u1

)h1−1(
∂ũ2
∂u2

)h2−1
2h

(ũ1−ũ2)2h

[
4−2eũ1/β−2eũ2/β

]
1
ϵ
.

We obtained the expression of the numerator without the u1 and u2 integrations. In the
above expression ϵ is a UV regulator. Ultimately, we will take ϵ→ 0 limit. We will regulate
the denominator with the same UV regulator ϵ. These two ϵ’s will cancel against each
other, leaving us with a finite result.

The denominator. We can follow the same steps for the denominator. However, the
denominator is defined by the correlation function evaluated when no interface exists. So,
we don’t need to do the coordinate transformations. The expression of the denominator
after doing the u-integration is given by

⟨OL, D|EL|OL , D⟩ = lim
ϵ→0

− 1
2π

∫
du1du2f(u1)f(u2)

[
2
ϵ

h

(u1 − u2)2h

]
(3.16)

Before going further, we need to choose some profiles of the wave packets. We choose the
delta function as our wave packet

f(u) = δ(u− ℓ) . (3.17)
7More details of the calculations in this section are given in appendix A.
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ℓ is the point where the delta function is located, and our results crucially depend on
ℓ. Evaluating the integrations with the delta functions, we finally get the transmission
coefficient for CFTL

TL = cLR

cL

(
2

1 + e
ℓ
β

)
(3.18)

We will now move on to the computation of the reflection coefficient

RL = lim
D→∞

∫∞
−∞ dv ⟨O1

L(u1, D)|T̄L(v)|O2
L(u2, D)⟩I −

∫∞
−∞ dv ⟨O1

L(u1, D)|T̄L(v)|O2
L(u2, D)⟩∫∞

−∞ du ⟨O1
L(u1, D)|TL(u)|O2

L(u2, D)⟩
(3.19)

As we have transformed only the u coordinate, not the v coordinate, the T̄ (v), which is
the anti-chiral part of the stress tensor, will remain the same. But the operators, which
are used to create the state, are chiral and will transform. So, after the transformation
in the numerator, we get

⟨OL,D|ĒL|OL ,D⟩I=− 1
2π

∫ 0

−∞

(
du1
dũ1

)
dũ1

〈
0
∣∣∣f(p−1(ũ1))

(
∂ũ1
∂u1

)h1

u1=p−1(ũ1)
O1

L(ũ1)
∣∣∣∫ ∞

−∞
dṽ T̄L(ṽ)

×
∣∣∣∫ 0

−∞

(
du2
dũ2

)
dũ2f(p−1(ũ2))

(
∂ũ2
∂u2

)h2

u2=p−1(ũ2)
O2

L(ũ2)
∣∣∣0〉

I
(3.20)

Though the numerator is different, the denominator will remain the same. The identity,
which comes from the OPE, is

〈
O1

L(ũ1)T̄L(ṽ)O2
L(ũ2)

〉
I
=
(
cL − cLR

cL

)〈
O1

L(ũ1)TL(ṽ)O2
L(ũ2)

〉
(3.21)

Using (3.21), we can do the integration, and the result is the following

RL =
(
cL − cLR

cL

)
(3.22)

We are getting the same result as if the interface is static.
Eqs. (3.18) and (3.22) are the main results of our paper. As we have seen earlier, for a

static interface, the coefficients are fixed by the central charges of the two CFTs and the
coefficient of the two-point functions between the left and the right stress tensors. They
are not dependent on the specific choices of the state. But, this is not true for a dynamical
interface. In our dynamical situation, the transmission and reflection coefficients are given by

TL = cLR

cL

(
2

1 + e
ℓ
β

)
, RL = cL − cLR

cL
, ⇒ TL +RL = 1− cLR

cL

(
e

ℓ
β − 1
e

ℓ
β + 1

)
(3.23)

A few comments are in order:

• The transmission coefficient changes due to the dynamical interface, but the reflection
coefficient remains the same as the static interface.
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• The transmission coefficient explicitly depends on β, but the reflection coefficient does
not. In the limit (β → 0), there is only reflection, no transmissions.

• The reflection and transmission coefficients are always less than one, which respects uni-
tarity [16]. If we add the two coefficients, it is one only when we take the (β → ∞) limit.

We can similarly compute TR and RR. Here, we will quote the result (see appendix A
for details).

TR = cLR

cR
, RR = cR − cLR

cR

(
2

1 + e
ℓ
β

)
=⇒ TR +RR = 2

1 + e
ℓ
β

+ cLR

cR

(
e

ℓ
β − 1
e

ℓ
β + 1

)
(3.24)

When the origin of the incoming excitation is in the right CFT (CFTR), we find:

• The reflection coefficient changes due to the dynamical interface, but the transmission
coefficient remains the same. We saw the opposite for the CFTL.

• Now, the reflection coefficient explicitly depends on β. In (β → 0) limit, there is only
transmissions, no reflection (again, this is the opposite of what happens for CFTL).

• The reflection and transmission coefficients are always less than one, as expected from
unitarity. if we add the two coefficients, it is one only when we take (β → ∞).

• In the (β → 0) limit, there is only (partial) reflection, no transmissions from the left
CFT, but for the right CFT, there is only (partial) transmission, no reflection. This
means the moving mirror behaves as a semipermeable membrane as β → 0. However,
it should be noted that in neither case do we get pure transmission or reflection since
the transmission and reflection coefficients are always less than one, which implies that
the interface absorbs energy.

Both TL +RL and TR +RR are less than one, which implies energy is getting lost due to
absorption by the interface. If we add TL, RL, TR and RR we get

TL +RL + TR +RR = 2−
(
e

ℓ
β − 1
e

ℓ
β + 1

)(
1 + cLR

cL
− cLR

cR

)
(3.25)

As, cLR/cL − cLR/cR always lies within −1 and +1 the above quantity is always less than two.
This quantifies the amount of energy absorbed at the interface when we throw excitations
from both sides toward the interface at the same time. We end this section with some
comments on some special solutions to the gluing condition.

• For factorizing gluing condition in the case of the static interface, one must have cLR = 0.
Then, for the moving interface, we get, TL = 0, RL = 1. and TR = 0 and RR = 2

1+eℓ/β .
In β → 0, RR → 0. Hence, for factorizing cases, the interface behaves like a one-sided
mirror. The right side is completely frozen in β → 0.
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• For transparent static interfaces, one has cLR = cL = cR. Substituting this value in our fi-
nal result, we end up with one-sided transmission, i.e., TR = 1 and RR = TL = RL = 0.8

3.2 A different gluing condition

In earlier sections, we have mostly engaged with the natural ICFT boundary condition of
the form (3.6). In this section, however, we discuss the same scattering problem with a
different set of interface gluing conditions.

TR(ũ) + TL(ũ) = T̄R(ṽ) + T̄L(ṽ), at ṽ = ũ . (3.26)

We could get (3.26) from the ICFT gluing condition (2.1), by interchanging either
TL(u) ↔ T̄L(v) or by TR(u) ↔ T̄R(v), and so one can interpret this as a gluing condition
at the interface between CFTL and CFTR. Equivalently, in the folded picture, this may
also be naturally thought of as the conformal boundary condition imposed at the boundary
of a tensor product BCFT of CFTL ⊗ CFTR.

As before, we get to the case of the moving mirror profile by doing a conformal transfor-
mation, after which the boundary condition corresponding to (3.26) will be of the form9

(p′(u))−2(TR(u) + TL(u)) = T̄R(v) + T̄L(v) at v = p(u) (3.27)

From (3.27), it is again clear that the boundary condition in the moving frame is not conformal.

Transmission and reflection coefficients. For (3.26) or (3.27), we will compute trans-
mission and reflection coefficients. As mentioned earlier, the gluing condition is most
naturally understood as a conformal boundary condition for a tensor product BCFT - CFTs
CFTL ⊗ CFTR, both of which live on the same side of the boundary. For instance, we can
choose both CFTL,R live on the Left(L) side(x̃ < 0). In this setup, we can define transmission
coefficients(which determine the transmission of energy from one CFT to the other) as follows:

TL = lim
D→∞

⟨OL,D|
∫∞
−∞ dv T̄R(v)|OL,D⟩I

⟨OL,D|
∫∞
−∞ duTL(u)|OL,D⟩

, TR = lim
D→∞

⟨OR,D|
∫∞
−∞ dv T̄L(v)|OR,D⟩I

⟨OR,D|
∫∞
−∞ duTR(u)|OR,D⟩

.

(3.28)
The reflection coefficients will be: RL = 1− cLR̄

cL
,RR = 1− cRL̄

cR
. Here we defined ⟨TLT̄R⟩ ∝ cLR̄

and ⟨T̄LTR⟩ ∝ cL̄R.10 For the special subset of gluing condition:

TL = T̄R, T̄L = TR at ũ = ṽ (3.29)

We can immediately see cLR̄ = cL = c̄R and cL̄R = c̄L = cR. This gluing condition is studied
in great detail in appendix B. Hence for this case, TL,R = 1 and RL,R = 0. In other words,
all the energy from one CFT will be transmitted to the other one in this gluing condition.

8Naively, one might expect that transparent boundary condition should be akin to having no boundary at
all, and so one should expect completely transparent transmission from either side. However, in this case, the
non-trivial conformal transformation to the escaping profile creates a geometry in which one gets one-sided
transmission across the topological interface.

9Here again, we subtracted the vacuum energy part of the stress tensor. In other words here T → T − ⟨T ⟩.
10However, in this gluing condition ⟨TLTR⟩ = 0 which can be shown by exchanging TR ↔ T̄R in the usual

ICFT gluing (2.1).
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We could also interpret (3.26) as a gluing condition at the interface of CFTL and CFTR

living on either side of the interface. The interchange of CFTR with CFTR suggests that we
set up a slightly modified scattering experiment as follows: when we create an excitation in the
Left(L) region(x̃ < 0) and scatter it to the Right(R) region(x̃ > 0), in CFTR we interchange
TR ↔ T̄R. Similarly, when we send an excitation from R to L, we must interchange TL ↔ T̄L.11

Mathematically, this amounts to modifying the definitions of the transmission coefficients.

T̃L = lim
D→∞

⟨OL,D|
∫∞
−∞ dv T̄R(v)|OL,D⟩I

⟨OL,D|
∫∞
−∞ duTL(u)|OL,D⟩

, T̃R = lim
D→∞

⟨ŌR,D|
∫∞
−∞ duTL(u)|ŌR,D⟩I

⟨ŌR,D|
∫∞
−∞ dv T̄R(v)|ŌR,D⟩

.

(3.30)
The reflection coefficients will remain unchanged. Using a similar computation as before,12

we get

T̃L = cLR̄

cL
, RL = 1− cLR̄

cL
, T̃R = cLR̄

c̄R

(
2

1 + e
ℓ
β

)
, RR =

(
1− cLR̄

c̄R

) 2
1 + e

ℓ
β

. (3.31)

β → 0 limit and a horizon connection. In the β → 0 limit, the above coefficients (3.31)
reduces to

T̃L = cLR̄

cL
, RL = 1− cLR̄

cL
, T̃R → 0, RR → 0 . (3.32)

Hence, from the Right side, nothing can transmit and reflect in this limit. Now let us
comment on some features in the β → 0 limit.

• If we consider the special case of total transmission (3.29), we can see T̃L = 1 and
RL = RR = 0. Also in the β → 0, T̃R → 0. Hence, this boundary condition makes the
interface to be one-sided transparent subjected to the scattering experiment defined
as (3.30).

• Following [8], one can also compute the Bogoliubov coefficients between in and out
modes constructed on past and future null infinities, respectively. In this setting, if
we consider copies of scalar fields subjected to (3.29), the computation of an average
number of particle production at future null infinity will be exactly the same to that
in [3, 8]. Thus, using (3.29) one can reproduce Hawking radiation in β → 0 limit.

• Also as mentioned earlier, in β → 0, the moving interface v = p(u) approaches to null
line v = 0.

The above three facts suggest that at β → 0, the interface subjected to (3.29), behaves like a
horizon. In the next section, we will connect this result with the eternal black hole.

4 Connection to eternal black hole

The analysis of the previous section suggests an analogy of the moving interface with the
eternal black hole or wormhole geometry. Under the gluing condition (3.29), we have observed

11At this stage, we have no precise understanding of what such a chiral-anti chiral exchange implies physically.
12Since the computation is analogous to the previous case, we are not presenting here.
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that the L region behaves like a left exterior, and the R region behaves like an interior of a
black hole subjected to a chiral anti-chiral exchange in the CFTR. We can similarly model
an interior with respect to the right exterior using the following boundary conditions:

TL(ũ′) = T̄R(ṽ′); TR(ũ′) = T̄L(ṽ′), at ṽ′ = ũ′; where ṽ′ = p(v) and ũ′ = u (4.1)

This means if we choose the interface profile as u = p(v), then (4.1) implies one-sided trans-
mission from R to L side, in the β → 0 limit, following the same scattering experiment (3.30)
as described in the last section. However, to mimic a connecting wormhole-like geometry, we
need to provide evidence that it has properties similar to that of a wormhole geometry. For
example, we must understand Hawking radiation in future infinities of the exterior part. In
this section, we would like to make some connections regarding this. Before proceeding, let
us briefly point out some key features of eternal two-sided black holes.

TFD and eternal black hole. An eternal two-sided black hole or a black hole in thermal
equilibrium is often characterized by the existence of the thermal vacuum, which is the so-
called Hartle-Hawking-Israel state [17, 18]. This is a maximally entangled state constructed
out of the eigenstates associated with the fock space of two exterior regions of the Penrose
diagram. Most notably in AdS/CFT [19], this is described by a thermofield double (TFD)
state constructed out of two copies of CFTs [20]. The entangled structure of the state is
solely responsible for thermal Hawking radiation detected by asymptotic observers of each
region. Geometrically, the non-zero connected correlators in such a TFD state are an artifact
of the connectedness of the spacetime through a smooth interior. In modern terminology,
this feature is described as ER=EPR [21], where the wormhole or Einstein-Rosen bridge is
the geometrization of a maximally entangled TFD state. An independent construction of
TFD state or modeling a wormhole solution in order to study the validity of ER=EPR as
well as to understand the dynamics of the black hole interior is an area of active research.
Some key properties of TFD state are as follows [22, 23].

• The maximally entangled TFD state in a Hilbert space H = HR ⊗HL can be written as

|ψT F D⟩ = 1√
Z(β)

∑
n

e−βEn |nL⟩|nR⟩ (4.2)

Where |nL,R⟩ are eigenstates of Hamiltonian HL,R.

• Two-sided connected correlators are non-vanishing.

⟨OLOR⟩T F D − ⟨OL⟩T F D⟨OR⟩T F D ̸= 0 (4.3)

• |ψT F D⟩ remains time independent for evolution under HR −HL. However, if we evolve
it with HR +HL, then the state becomes time-dependent.

|ψ(t)⟩T F D =
∑

n

e−βEn−2iEnt|nL⟩|nR⟩ (4.4)

The dynamics of the black hole can be studied in such a time-dependent way (interesting
physics might happen after much larger than scrambling time. In fact, most of the inte-
rior dynamics could be captured by the late time limit of the time-dependent TFD state.
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• The consequence of the above fact is geometrized as the time direction of the eternal
black hole in the right side is upward while that on the left side is downward. Left-Right
correlator can be rewritten as Left-Left correlator with certain analytic continuation
in t→ t− iβ

⟨OL(x1, 0)OL(x2, t)⟩T F D = ⟨OL(x1, 0)O†
R(x2, t− iβ)⟩T F D (4.5)

Bogoliubov coefficients. Here, we want to make a connection between two exteriors of a
black hole and CFTR,L. We start with a tensor product of two copies of CFTs (L and R)
satisfying the boundary condition (3.29) at the static boundary. The mapping from moving
(u, v) to static frame (ũ, ṽ) does not cover the entire spacetime in (ũ, ṽ) coordinate. Since
p(u) < 0 for any value of u, ũ is always negative (ũ < 0). The mapping tells that the boundary
maps to x̃ = 0, t̃ < 0. The right region (R) corresponds to (x̃ > 0 ∪ ũ < 0) . Initially, the two
CFTs in this description reside in R region. Now we consider a parity transformation (x̃→ −x̃)
in CFTL such that it maps to the left region (L) (x̃ < 0 ∪ ṽ < 0). However, this transformation
will interchange TL ↔ T̄L. If we change the time direction in L to downwards, i.e., (t̃→ −t̃),
then in L ũ → −ũ and ṽ → −ṽ. This again keeps the boundary condition (3.29) intact.13

Note that this construction of CFTL in L is reminiscent of CRT transformation [24, 25]
in the usual Rindler or two-sided black hole picture. However, the anti-unitary operator
J = CRT transforms an algebra of operators to its commutant [24, 25]. Usually, a commutant
is causally inaccessible to the other side. Our construction is different from that, where
the CFTs can interact via the interface. In β → 0 limit, this transformation from R to L
corresponds to the following analytic continuation from right to left in (u, v) coordinates:
u → u+ iπβ and v → −v. Note that if v = 0, this exactly translates to t → t+ iπβ.

We start by considering two copies of free massless scalar field theory denoted as ϕL,R

in L and R region. Since we are considering free massless scalars, they can move freely in
left-moving ϕ−(v) and right-moving ϕ+(u) component before reaching the interface. At the
interface, they interact, maintaining the gluing condition (3.29) in a static frame. One of
those solutions is referred to as the standard positive frequency (ω) incoming modes ϕin

(R,L),ω
having both left moving and right moving sectors, defined on I−

R and I+
L and we have an

expansion of fields in terms of these positive frequency incoming modes as the following:

ϕ(u, v) =
∫ ∞

0
dω
[
aR,ωϕ

in
R,ω + a†R,ωϕ

in∗
R,ω + aL,−ωϕ

in
L,−ω + a†L,−ωϕ

in∗
L,−ω

]
(4.6)

where a, a† are annihiliation and creation operators such that aR,L|0⟩in = 0. Note that, at
null infinities, the asymptotic structures of the fields are essentially the same in both moving
and static frames, as the boundary effect is negligible. |0⟩in is the vacuum defined on I−

R and
I+

L . The normal ordered stress tensor for free scalar has the form T± =: ∂±ϕ∂±ϕ :.14 Since
scalar field equation is unchanged under 2D conformal transformation, we can expand any
mode solution ϕω(ũ, ṽ) in terms of positive frequency modes ϕ+, ϕ− as ϕω = (ϕ+

ω + ϕ−ω ) and

13One should keep in mind, here TL(ũ) =⇒ TL(−ũ). Also, this opposite time direction enforces continuity
of Tx̃t̃ in both sides.

14Here + refers to ũ and − refers to ṽ.
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ϕ =
∫∞

0 dω[aωϕω + a†ωϕ
∗
ω], the solution of (3.29) is simply of the form:15

∫ ∞

0
dω∂+ϕ

+
L,−ω∂+ϕ

+∗
L,−ω =

∫ ∞

0
dω′∂−ϕ

−
R,ω′∂−ϕ

−∗
R,ω′ at ṽ = ũ (4.7)∫ ∞

0
dω∂+ϕ

+
R,ω∂+ϕ

+∗
R,ω =

∫ ∞

0
dω′∂−ϕ

−
L,−ω′∂−ϕ

−∗
L,−ω′ at ṽ = ũ (4.8)

We take one simple solution of the above boundary condition in the following form

∂+ϕ
+
L,−ω = ∂−ϕ

−
R,ω at ṽ = ũ (4.9)

∂+ϕ
+
R,ω = ∂−ϕ

−
L,−ω at ṽ = ũ (4.10)

Since in left region, time is reversed or ũ → −ũ and ṽ → −ṽ, the positive frequency mode
in the left region should be understood as ϕL,−ω.16 The opposite direction of time in both
sides maintains the continuity of the stress tensor across the interface. We will now construct
the incoming and outgoing modes in R region.

The incoming modes ϕin
R defined in I−

R has both left going and right going modes. The
standard left going modes must have the form e−iωv all over the region from I−

R (for v < 0
region) upto the interface [3]. The incoming mode from v > 0 (ṽ > 0) region of I−

R will
never reach the interface v = p(u) (ṽ = ũ). These are called trapped modes and they end
in (I+

L ∩ (v > 0)). We will neglect these modes in the rest of the note as those are not
important in the connection to Hawking radiation [4]. However, the right-moving modes will
be modified due to the Doppler effect from the surface of the accelerating interface due to
the boundary condition (4.9).17 In static frame, (4.9) implies the right moving part will be
fixed as ϕ+ = e−iωũ [2]. Thus in (u, v) coordinate the form is fixed as e−iωp(u). Hence, we
can uniquely fix the positive frequency incoming mode for both left and right regions as

ϕin
R,ω = ϕin

L,−ω = i√
4πω

(
e−iωvθ(−v) + e−iωp(u)

)
(4.11)

One can similarly find the outgoing ϕout modes in I+
R . The standard right moving modes

will be of the form e−iωu from I+
R to the interface if we trace back it in time. Hence in

static frame (ũ, ṽ), the right moving mode is e−iωp−1(ũ). However, the left moving modes,
which are sourced from the ϕL, will be complicated again due to the boundary condition
of accelerating interface trajectory. The positive frequency right moving part of outgoing
mode in I−

L is also having the same form e−iωp−1(ũ). Thus the boundary condition (4.9)
fixes the left moving part as ϕ− = e−iωp−1(ṽ). Thus in (u, v) coordinate the form is fixed
as e−iωp−1(v). Thus, using boundary condition, we can uniquely fix the left moving sector
of ϕout, and we get the positive frequency out mode as

ϕout
R,ω = ϕout

L,−ω = i√
4πω

(
e−iωp−1(v)θ(−v) + e−iωu

)
(4.12)

15Here we took the expectation value of the stress tensor in corresponding vacuum.
16Also in general one could also have ∂+ϕ+

L,ω = −∂−ϕ−
R,ω and ∂+ϕ+

R,ω = −∂−ϕ−
L,ω. However, we can check

this does not affect the end result, and for the physical interface, the plus sign will be more natural, as we will
see later.

17More precisely, the counterpart of (4.9) in (u, v) frame.
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Note that the normalization of ϕout
R,L and ϕin

R,L are fixed using normalizability of Klein-Gordon
inner product at Cauchy slices I+ and I− which are of the form:

(ϕin
R,ω, ϕ

in
R,ω′)K.G = −i

∫ ∞

−∞
dv
(
ϕin

R,ω∂v(ϕin
R,ω′)∗ − (ϕin

R,ω′)∗∂vϕ
in
R,ω

)
= δ(ω − ω′) (4.13)

(ϕout
R,ω, ϕ

out
R,ω′)K.G = −i

∫ ∞

−∞
du
(
ϕout

R,ω∂u(ϕout
R,ω′)∗ − (ϕout

R,ω′)∗∂uϕ
out
R,ω

)
= δ(ω − ω′) (4.14)

The interesting fact is that the expression for ϕin,out
R are the same up to a relative

negative sign between the left and right moving sectors, with that of one-sided moving
mirror case with Dirichlet boundary condition at mirror [3]. In the mirror case, we demand
ϕ = 0 at the mirror location.18

We do not need to impose this in our case since the modes of one copy are transmitted
into the other one. That is why we do not use the solution of boundary condition ∂+ϕ

+
L,−ω =

−∂−ϕ−∗
R,ω and ∂+ϕ

+
R,ω = −∂−ϕ−∗

L,−ω. However, we will see that we end up getting similar
Bogoliubov coefficients for this case, and the expectation value of the number operator
precisely matches that for a single-sided black hole at a sufficiently late time.

Similar to (4.6), the field ϕ can also be expanded in terms of outgoing modes respectively as

ϕ(u, v) =
∫ ∞

0
dω
[
bR,ωϕ

out
R,ω + b†R,ωϕ

out∗
R,ω + bL,−ωϕ

out
L,−ω + b†L,−ωϕ

out∗
L,−ω

]
(4.15)

Here bω’s are annihilation operators and b†ω’s are creation operators. Using Bogoliubov
transformation, we can write positive frequency L(R) out modes in terms of positive frequency
incoming modes of R(L). This decomposition is natural from the boundary condition imposed
on the modes:

ϕout
R,ω =

∫ ∞

0
dω′(αRL∗

ωω′ ϕin
L,−ω′ − βRL

ωω′ϕin∗
L,−ω′) (4.16)

A similar expression also holds for the left(L) sector as

ϕout
L,−ω =

∫ ∞

0
dω′(αLR∗

ωω′ ϕin
R,ω′ − βLR

ωω′ϕin∗
R,ω′) (4.17)

We can evaluate the Bogoliubov coefficients αωω′ , βωω′ as

αIJ
ωω′ = (ϕout

I,ω, ϕ
in
J,ω′)K.G , βIJ

ωω′ = −(ϕout
I,ω, ϕ

in∗
J,ω′)K.G for (I, J) = R,L . (4.18)

We can, in principle, invert the above relations, i.e., writing ϕin
R,L in terms of ϕout

R,L as the
following:

ϕin
R,ω =

∫ ∞

0
dω′(αLR

ωω′ϕout
L,−ω′ + βLR

ωω′ϕout∗
L,−ω′) (4.19)

18Note that if we would like to construct in and out state in right region for the topological interface
boundary condition, i.e., TL = TR, T̄L = T̄R at ṽ = ũ, we need to satisfy the following boundary condition on
the scalar fields: ∂+ϕ+

R = ∂+ϕ+
L , ∂−ϕ−

R = ∂−ϕ−
L . Thus, the left(right)moving part will always be Left(right)

moving, and there will be no Doppler effect due to the nature of the interface. For this case, one can argue
the positive frequency modes are ϕR

in = e−iωv + e−iωu = ϕR
out. Thus, there will be no particle creation for the

topological interface.
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This is possible when the following relations are true:19∫ ∞

0
dω′(|αLR

ωω′ |2 − |βLR
ωω′ |2) = δ(ω − ω′) (4.20)

Similarly we could also express ϕin
L in terms of ϕout

L,R as the following:

ϕin
L,−ω =

∫ ∞

0
dω′(αRL

ωω′ϕout
R,ω′ + βRL

ωω′ϕout∗
R,ω′) (4.21)

This is also true given some constraints of Bogoliubov coefficients as in (4.20).∫ ∞

0
dω′(|αRL

ωω′ |2 − |βRL
ωω′ |2) = δ(ω − ω′) (4.22)

Using (4.19) and (4.21), one can see that the number operator expectation value, which is
defined as the average number of particles created at I+

R and I−
L is related to βRL

ωω′ and βLR
ωω′ as

bR,ω|0in⟩ = a†L,−ωβ
RL∗
ωω′ |0in⟩, bL,−ω|0in⟩ = a†R,ωβ

LR∗
ωω′ |0in⟩ ,

⟨0in|b†R,ωbR,ω|0in⟩ ≡
∫ ∞

0
dω′|βRL

ωω′ |2, ⟨0in|b†L,−ωbL,−ω|0in⟩ ≡
∫ ∞

0
dω′|βLR

ωω′ |2 . (4.23)

Since we are interested in understanding the nature of particle creation due to (3.29),
we only need to evaluate βRL

ωω′ = βLR
ωω′ . As Klein Gordon inner product is independent

of the Cauchy slice we choose, we evaluate the coefficients on I−
R . Using (4.11), (4.12)

and (4.13) we have

βRL
ωω′=−(ϕout

R,ω,ϕ
in∗
L,−ω′)K.G,I−

R
(4.24)

= i

4π
√
ωω′

∫ 0

−∞
dv
[
−iω′e−iω′v(e−iωp−1(v)+e−iωu)+iω(p−1(v))′e−iωp−1(v)(e−iω′v+e−iω′p(u))

]
u=−∞

Since the late time behavior of the interface profile gives rise to thermal stress-energy tensor,
we approximate the relevant form of the profile as

p(u) ≈ −βe−
u
β , p−1(v) ≈ −β log

(
− v
β

)
. (4.25)

In (4.24), the integrals containing u dependent part vanishes simply due to the fact that
ω, ω′ > 0. To do the integrals, we first regulate it by using v → v + iϵ with ϵ → 0+.20

Then, after choosing the integration contour to the negative imaginary axis by substituting
v = − ix

ω′ and using (4.25), we have

βRL
ωω′ =

e−
βπω

2

4π

( 1
β

)iβω

(ω′)−iβω

 1
iω′Γ(1 + iβω)

√
ω′

ω
+ βΓ(iβω)

√
ω

ω′


= e−

βπω
2

2π

( 1
β

)iβω−1
(ω′)−iβω

√
ω

ω′Γ(iβω) (4.26)

19There might be a constant factor appearing in the r.h.s. , which we can absorb and redefine Bogoliubov
coefficients accordingly.

20A related discussion of the integrals in the context of Unruh radiation is discussed in [26].
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Hence, we can easily see

|βRL
ωω′ |2 = |βLR

ωω′ |2 = β

4π2ω′
1

e2πβω − 1 (4.27)

Remarkably, this gives the exact same number operator expectation value as that of a single
moving mirror and of a single-sided 2D black hole formed under null shell collapse [3, 5, 27].
In a similar fashion, we can obtain the other Bogoliubov coefficient:

αRL
ωω′ =

e
βπω

2

2π

( 1
β

)−iβω−1
(ω′)iβω

√
ω

ω′Γ(−iβω) (4.28)

Also, one can see

|αLR
ωω′ |2 = |αRL

ωω′ |2 (4.29)

Thus, one could check (4.20), (4.22) are satisfied trivially.21 Hence, we end up with

⟨0in|b†R,ωbR,ω|0in⟩ = ⟨0in|b†L,ωbL,ω|0in⟩ =
∫ ∞

0
dω′ β

4π2ω′
1

e2πβω − 1 (4.30)

Hence, the average number operators on both sides at future infinities are the same in β → 0.
In other words, both R and L regions are thermal objects having a thermal stress tensor with
inverse temperature β. This concludes a first step toward the construction of a wormhole.

Maximal entanglement and connectedness. We have already constructed the state
|0in⟩ defined in I+

L and I−
R from the quantization of field. Similarly we could construct

the combined out state as |0out⟩ defined in I−
L and I+

R . The particle production in future
infinities suggests that the two states will not be the same. Since we compute all the
Bogoliubov coefficients, it is a well-known straightforward exercise to write down |0in⟩ in
terms of |0out⟩ [26]. One can show that in β → 0 limit,

|0in⟩ =
1√
Z(β)

∑
n

e−βEn |nL⟩|nR⟩ (4.31)

where |nR⟩ ≡ 1√
n!(b

†
ω,R)nω |0out⟩ and |nL⟩ ≡ 1√

n!(b
†
−ω,L)nω |0out⟩. Thus, the future observer will

see a thermal vacuum. This is exactly the TFD state we want to construct. The construction
suggests the state is analogous to the thermal Hartle-Hawking state. Hence, it will naturally
satisfy all the desired properties of TFD. Though we have studied the free scalar field in the
TFD construction, it should be generalized to arbitrary ICFT. We might be able to generalize
the construction for two copies of CFTs, CFTL and CFTR, separated by interface satisfying
boundary condition (3.29) in the static frame. The ICFT vacuum state |Ih⟩ should be similar
to the TFD state. The state satisfying (3.29) will be of the form22

(TL(ũ)− T̄R(ṽ))|Ih⟩ = 0 , |Ih⟩ =
∑

k⃗

|h, k⃗⟩L|h, k⃗⟩R , (4.32)

21Upto a constant normalization factor which is unimportant and can be absorbed in the definition of the
coefficients.

22For more details see appendix B.
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where |h, k⃗⟩ is orthonormal basis of the Verma module. However, these states are non-
normalizable (infinite norm). One standard way to define a suitable normalizable state is
to regularize the state in Euclidean path integral by e−ϵ(HL+HR) with cut-off ϵ. Then the
state will be of the form

|Ih⟩ =
1√
Z(ϵ)

∑
k⃗

e−ϵE(k⃗)|h, k⃗⟩L|h, k⃗⟩R (4.33)

where Z =∑
k⃗
e−ϵE(k⃗) and E(k⃗) is the total energy at kth level. This is very similar to TFD

state once we could identify ϵ = β. However, this choice of regularization is not unique. To
uniquely fix this, we need to construct the state with moving interface conditions like (3.27),
or we must find the basis of states in the original moving frame. This is an interesting future
work to settle this. However, for the purpose of showing the maximal entanglement, the form
of |Ih⟩ without unique regularization is enough and suggestive.

One could also study the Left-Left(LL) or Right-Right(RR) correlator. Now for the
boundary condition (3.29), we first use conformal transformation ũ = p(u) and ṽ = v to write
them as correlator in the presence of static interface, and we get

⟨OR(u1, v1)OR(u2, v2)⟩I,β =
(
∂ũ1
∂u1

)h (∂ṽ1
∂v1

)h (∂ũ2
∂u2

)h (∂ṽ2
∂v2

)h

⟨OL(ũ1, ṽ1)OR(ũ2, ṽ2)⟩I

−−−→
β→0

β−2h sinh(u2 − u1
2β )−2h 1

(v1 − v2)2h
(4.34)

This is similar to the thermal two-point function or LL correlator in TFD case if we take
v = 0 of the probe operators. We can also compute the Left-Right(LR) correlator from the
Right-Right(RR) correlator using analytic continuation t→ t+ iπβ as we mentioned earlier.
This is analogous to the analytic continuation in time for computing LR correlator in TFD
state. To compute connectedness, we need to compute:

⟨OL(u1, v1)OR(u2, v2)⟩I,β − ⟨OL(u1, v1)⟩I,β⟨OR(u2, v2)⟩I,β (4.35)

On the other hand, with the same boundary condition, the purely left(right) )-sided correlators
will be unaffected; therefore, in particular, the one-point function will vanish. i.e.,

⟨OL(u1, v1)⟩I,β =
(
∂ũ1
∂u1

)h (∂ṽ1
∂v1

)h

⟨OL(ũ1, ṽ1)⟩I = 0 (4.36)

Thus, the connected correlator gives a maximum value. This is again consistent with the
connected TFD correlator. Hence, the appearance of TFD state, along with the properties
of correlators in our setting, provides a one-to-one map between moving interface with two
exteriors of eternal BH.

Transmission and reflection coefficient. In the usual eternal BH settings, the two
exteriors are disconnected, and there will be no interaction between them. Even though we
get two-sided Hawking radiation, in our setup of oppositely time-directed CFTs separated by
a moving interface with boundary condition (3.29), the two CFTs seemed to have interacted
via the interface. However, here we see this will not be the case when we take β → 0
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limit. Here, the reflection coefficients RL,R are vanishing in this case by definition. To
get the transmission coefficients, we again do a scattering experiment as discussed in the
last section as in (3.30). In L, the total incoming energy is

∫∞
−∞ dvT̄L(v), defined in I+

L .
To measure transmitted energy

∫∞
−∞ duTR(u) and

∫∞
−∞ dvT̄R(v), we prepare an anti-chiral

state |ŌL,D(v)⟩. Then the (modified) transmission coefficients in the original moving frame
(u, v) for boundary condition (3.29) corresponding to static (ũ, ṽ) frame are defined as (in
a similar fashion to (3.30)):

T̃L = lim
D→∞

⟨ŌL,D|
∫∞
−∞ duTR(u)|ŌL,D⟩I

⟨ŌL,D|
∫∞
−∞ dvT̄L(v)|ŌL,D⟩

, T̃R = lim
D→∞

⟨ŌR,D|
∫∞
−∞ duTL(u)|ŌR,D⟩I

⟨ŌR,D|
∫∞
−∞ dvT̄R(v)|ŌR,D⟩

(4.37)

A similar analysis as in the previous section gives:

T̃L = 2
1 + e

ℓ
β

, T̃R = 2
1 + e

ℓ
β

, TL = TR = 0 (4.38)

In β → 0 limit, we get T̃R,L → 0. This suggests the interface subjected to (3.29) becomes
non-interacting when β → 0. This is consistent with the two exteriors of eternal BH spacetime.

5 Discussions

Summary. In this paper, we have generalized the idea of ‘radiative BCFT’ introduced
in [8] to a broader class of boundary conditions which we rephrase as ‘radiative ICFT’. The
crucial feature of radiative boundary conditions is that the right and left-moving energy-
momentum tensors of those boundaries are not on equal footing. This, in turn, provides a
non-vanishing energy flux at the boundary. In our construction, we consider two different
gluing conditions for ICFT constructed out of two CFTs interacting at the radiative interface.
For the ICFT of CFTL and CFTR, we have found that R+ T ̸= 1 in each side. In particular,
we have (R, T ) < 1 for any finite β. However, at β → ∞,23 we will always have R+ T = 1.
On the other hand, the departure of R + T from one is maximum when we take β → 0
limit when the interface approaches a null line. In this limit, the interface behaves like a
‘semipermeable membrane’.

These observations suggest that the dynamical profile of the interface is solely responsible
for the absorption or radiation of energy for whatever boundary conditions we impose. On
the other hand, if we consider the ICFT boundary conditions for CFTL and CFTR where
the net energy flux of one side is exactly the same but negative with respect to the other side,
the interface behaves like a horizon (for totally transmitive solution) in β → 0 limit. In this
case, if we perform a modified scattering experiment, we find that the CFTR is completely
frozen with no transmission or reflection while the CFTL purely transmits energy from L
to R. This feature motivated us to model an eternal black hole (or wormhole) like setting.
In this context, we have argued when we consider ICFT subjected to the same boundary
condition (3.29) with an upward time direction in R and downward time direction in L, the
average particle production in each side is similar to that in the exteriors of eternal black
hole. This, in turn, makes the vacuum of the ICFT as the TFD state, which has the defining

23Eventually, that mimics u → −∞ limit when the dynamical interface approaches a static one.

– 22 –



J
H
E
P
0
5
(
2
0
2
4
)
3
2
9

properties of a wormhole state following ER=EPR. By computing transmission coefficients,
we have shown that both copies are actually non-transmittive in the same limit. Based on
our observations, we will now make some comments and speculative remarks that, we feel,
might provide some potential future directions worth exploring.

Evolution of interior. Using the gluing condition (3.29), we have shown that we may
interpret two CFTs as models of exterior-interior or exterior-exterior of an eternal black hole
by showing thermal particle production in the exterior as well as by studying scattering
experiments defined naturally in these settings. We may think of this as a CFT toy version
of ER=EPR. However, we could argue that the growth of a wormhole or Einstein-Rosen
bridge has an implicit structural similarity to the transmitivity of moving interface with
different boundary conditions.

We first summarize the interface boundary conditions (at ũ = ṽ) of CFTL⊗CFT I and the
corresponding reflection and transmission coefficients we have studied so far in the last section.

• Gluing condition I :

TL = T̄I , T̄L = TI , (5.1)
RL = RI = 0; T̃L = 1, T̃I −−−→

β→0
0 . (5.2)

The one-sided transmitivity of the interface reflects the classical smooth horizon-like
property of eternal black hole geometry. This boundary condition is reminiscent of the
usual ingoing boundary condition for a smooth horizon.

• Gluing condition II :

TL + TI = T̄I + T̄L, (5.3)

RL = 1− cLĪ

cL
, RI −−−→

β→0
0; T̃L = cLĪ

cL
, T̃I −−−→

β→0
0 (5.4)

Eq. (5.3) is the most general conformal boundary condition for CFTL ⊗CFT I and (5.1)
is one special solution of that. Since T̃L < 1, the smoothness of the interface, aka the
horizon (as defined through the previous case) is modified. The non-zero RL mimics
that there is a possibility of a structure at the horizon that has no classical general
relativity analog. The I region remains unaffected, though.

• Gluing condition III :

TL = T̄L, T̄I = TI , (5.5)
RL = 1, RI −−−→

β→0
0; T̃L = 0, T̃I −−−→

β→0
0 (5.6)

For this condition, we must have cL̄I = 0. This condition reflects the transmitivity from
the left side is completely lost in the relevant β → 0 limit. The interface behaves like
an opaque brick wall. L and I regions become disconnected and unentangled. Again,
this has no analogous semiclassical gravity description.
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In the context of an eternal black hole, we know spatial slices inside the interior grow in
time. This time dependency of the interior is a remarkable feature even when the black hole
is in thermal equilibrium [28–30]. The growth of those slices is linear in time, as expected
classically. However, after a long time, the volume of the ER bridge approaches its maximum
value, and the growth saturates there. This is expected to be around a very large time scale
t ∼ eS [28, 29]. The bound of this growth is purely a quantum effect, which provides a
time scale where the classical general relativity breaks down. The classical linear growth,
as well as quantum mechanical saturation, have a striking similarity to the computational
complexity [28–30]. Another way to understand this growth is by studying connected LR
correlators in the eternal black hole background. Initially, at t = 0 the correlator has its
maximum value. As time increases, it decreases exponentially in time. It is expected when
the wormhole length attains its maximum value, the correlator vanish.

We will now return to our observation to connect wormhole-like physics in the presence
of a moving interface. From the observation of (5.1)–(5.5), we can speculate a similar story
in our model for CFTI . The total (time-averaged) volume of I region in β → 0 limit will
be proportional to net energy accumulation from L to I subjected to different boundary
conditions. In other words, we can say that the quantity (T̃L − T̃I) characterizes the net
energy flow from L to I.

From (5.1), this implies a linear constant growth of I region. Eq. (5.3) suggests a slight
decrease of growth rate since T̃L − T̃I = cLR̄

cL
< 1. In (5.5), the quantity becomes zero,

and hence the I region becomes stagnant. Note that the sequence (5.1)→(5.3)→(5.5) is
self-consistent from the point of view of changing boundary conditions from one to another.
One can not tune (5.1) to (5.5) without passing through (5.3). For example, consider the
following intermediate semi-transparent boundary condition24

TL = αT̄L + (1− β)T̄I (5.7)

A similar condition can be applied for TI with some coefficients. From (5.7), we could see
when α = β = 0, we can tune to (5.1). After increasing α, β, we can have a similar structure
of (5.3). When we reach α = β = 1 we have (5.5). Thus, changing α, β from 0 to 1 gives a
sequence of boundary conditions in the same way from (5.1) to (5.5). Hence, we see that
the sequence of changing boundary conditions has a one-to-one correspondence with the
wormhole growth at different epochs of time.

It would be an interesting future problem to make all these claims more concrete by
studying complexity in the presence of a moving interface along the line of [31–36]. In this
context, it would also be interesting to study holographic entanglement entropy [37–39]. The
ground states of the ICFT under different boundary conditions will be different. Hence,
to construct the state corresponding to (5.5) from (5.1), we need to use multiple unitary
gates(here operators) that tune α, β of (5.7). Similarly, we could also study connected LR
correlator for the sequence of boundary conditions from (5.1) to (5.5). While for (5.1) it
is maximally connected, in (5.5) it is completely disconnected. We hope to return more
concretely in this direction in the near future.

24We want to thank Bobby Ezhuthachan for pointing out this interesting observation.
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Holography. One interesting future study is to visualize our construction in holography.
Recently, authors of [40, 41] have computed energy reflection and transmission coefficients
using thin-brane holographic duals, which consists of two AdS3 slices joined by a brane having
tension σ. The bulk junction condition is enough to capture the ICFT transmission and
reflection coefficient subjected to a CFT scattering experiment. Transmission and reflection
coefficients depend on the radius of the AdS3 slices, which is related to the central charges
cL and cR of two CFTs through the Brown-Henneaux formula [42], it also depends on the
tension of the brane σ. On the other hand, in the CFT computation [13], transmission and
reflection coefficients depend on central charges cL and cR, as well as on cLR defined through
the expectation value of left and right stress tensor. The holographic computations, therefore,
give a gravitational derivation of this CFT data. It would be an interesting problem to
generalize their method [40, 41] in our case, where we hope to get a genuine match as all the
CFT data have already been fixed in terms of gravitational parameters. However, a more
direct bulk scattering experiment(by sending shockwaves from the boundary) dual to CFT
one is itself an interesting area to look at. Apart from that, to materialize the BH connection
in the bulk, it would be very interesting to construct the dual corresponding to (3.29). This
might tell exactly how to create a real interior by merging two different spacetimes using
dynamical branes. As of now, we are working on an analogue CFT toy version. To address
most of the interior geometry as well as bulk scattering experiments, holography could be
the best way to look at it. We hope to return to address some of these in the near future. It
would also be important to understand evaporating black holes in our framework. For that,
we may need to study the kink interface profile [8] and its gravitational dual.

Comments about moving mirror-black hole connection. In the original moving
mirror-black hole connection picture, the horizon remained obscure due to the lack of an
independent definition. In the one-sided picture, ũ = 0 or u = ∞ was considered to be
the horizon. In our case, we see at β → 0 limit, this eventually coincides. However, in
moving mirror, there is no region beyond the horizon, aka interior. Nevertheless, the analogy
was still striking due to the evidence of Hawking radiation at the null future boundary as
well as the thermal stress tensor profile. In our framework (for instance, see (5.5)), we find
pieces of evidence that when the interface becomes a one-sided mirror, the smoothness of
the horizon(aka the interface) goes away. This becomes an opaque boundary. A recent
study in [43] also finds pieces of evidence that in a Planckian stretched horizon (brick-wall)
framework; one can still get thermal Hawking radiation(up to exponentially small correction
in entropy) in spite of the lack of smoothness. This was eventually a model for typical
states.25 From the geometric point of view, the transition from transparency to opaqueness
of the boundary condition (for instance, (5.1) to (5.5)) suggests a dramatic change in the
smoothness of the horizon. Our results are very indicative of the plausibility of firewall
in typical states26 [46]. We have some evidences that the bulk dual of the moving mirror
is very similar to brick wall geometry where the ETW brane itself behaves like a horizon.
Hence, from our moving interface results, we are tempted to view the moving mirror as
a typical state or state created by natural processes like collapse having a firewall rather

25See also [44, 45] where some aspects of thermality in stretched horizon background have been explored.
26Here what we mean by typical states are those geometries formed by collapse.
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than a mimicker of an eternal black hole. We hope to return with some interesting results
soon to make this discussion concrete.
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A Details of computing translation and reflection coefficients

In this appendix, we will give details of computations of the transmission coefficient (eq. (3.18))
and reflection coefficient (eq. (3.22)).

A.1 For CF TL

The transmission coefficient. Firstly we will do the ũ integration of ⟨OL, D|ER|OL , D⟩I

, and leave the other integrations for later. ⟨OL, D|ER|OL , D⟩I without the ũ1 and ũ2
integration is

− h

2π
cLR

cL

∫ 0

−∞
dũ

(1− eũ/β)2

1− eũ/β

[
1

(ũ− ũ1)2(ũ1 − ũ2)2h
+ 1

(ũ− ũ2)2(ũ1 − ũ2)2h

− 2
(ũ− ũ1)(ũ1 − ũ2)2h+1 − 2

(ũ− ũ2)(ũ1 − ũ2)2h+1

]

= − h

2π
cLR

cL

∫ 0

−∞
dũ

[
(1− eũ/β)

(ũ− ũ1)2(ũ1 − ũ2)2h
− 2h(1− eũ/β)

(ũ− ũ1)(ũ1 − ũ2)2h+1

]
+ (ũ1 ⇐⇒ ũ2)

= − h

2π
cLR

cL

(
A

(ũ1 − ũ2)2h
− 2B + 2C

(ũ1 − ũ2)2h+1

)
+ (ũ1 ⇐⇒ ũ2)

(A.1)
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Where,

A =
∫ ũ1−ϵ

−∞

1− eũ/β

(ũ− ũ1)2 dũ+
∫ 0

ũ1+ϵ

1− eũ/β

(ũ− ũ1)2 dũ

=
β − ϵeũ1/βEi

(
− ϵ

β

)
+ β

(
−e

ũ1+ϵ

β

)
+ β

(
1− e

ũ1−ϵ

β

)
+ ϵeũ1/β

(
Γ
(
0, ũ1

β

)
− Γ

(
0,− ϵ

β

))
βϵ

B =
∫ ũ1−ϵ

−∞

eũ/β

ũ− ũ1
dũ+

∫ 0

ũ1+ϵ

eũ/β

ũ− ũ1
dũ (A.2)

= eũ1/βEi
(
− ϵ

β

)
+ eũ1/β

(
Γ
(
0,− ϵ

β

)
− Γ

(
0, ũ1
β

))
C =

∫ ũ1−ϵ

− 1
ϵ

1
ũ− ũ1

dũ+
∫ 0

ũ1+ϵ

1
ũ− ũ1

dũ

= log
(
− ũ1ϵ

ũ1ϵ+ 1

)
, if

(
ũ1 +

1
ϵ

)
> ϵ

In the limit ϵ → 0, we have the followings

lim
ϵ→0

ϵA = 2− 2eũ1/β , lim
ϵ→0

ϵB = 0 , lim
ϵ→0

ϵC = 0 . (A.3)

Using (A.3), we get the final answer for the integration (A.1) to be

− h

2π
cLR

cL

1
(ũ1 − ũ2)2h

[
4− 2 eũ1/β − 2 eũ2/β

]
1
ϵ
. (A.4)

The denominator. Let’s look at the denominator after a generic transformation.

⟨OL,D|EL|OL ,D⟩ (A.5)

=− h

2π

∫ ∞

−∞
dudu1du2f(u1)f(u2)

[
1

(u−u1)2(u1−u2)2h
− 2
(u−u1)(u1−u2)2h+1 +(ũ1⇐⇒ ũ2)

]

Like the numerator, we will evaluate the u-integration first.

− h

2π

∫ ∞

−∞
du

[
1

(u− u1)2 − 2
(u− u1)

+ (ũ1 ⇐⇒ ũ2)
]

(A.6)

The first term of the u-integration

h

(u1 − u2)2h

∫ ∞

−∞

du

(u− u1)2 diverges at u = u1

= lim
ϵ→0

h

(u1 − u2)2h

[ ∫ u1−ϵ

−∞

du

(u− u1)2 +
∫ ∞

u1+ϵ

du

(u− u1)2

]

== lim
ϵ→0

h

(u1 − u2)2h

[
− 1
u1 − ϵ− u1

+ 1
u1 + ϵ− u1

]

= lim
ϵ→0

h

(u1 − u2)2h

2
ϵ

(A.7)
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The second term of the u-integration

− 2h
(u1 − u2)2h+1

∫ ∞

−∞

du

u− u1

= lim
Λ→∞
ϵ→0

− 2h
(u1 − u2)2h+1

[ ∫ u1−ϵ

−Λ

du

u− u1
+
∫ Λ

u1+ϵ

du

u− u1

]

= lim
Λ→∞
ϵ→0

− 2h
(u1 − u2)2h+1

[
log u1 − ϵ− u1

u1 + ϵ− u1
− log −Λ− u1

Λ− u1

]

= 0

(A.8)

So, the denominator after doing the u-integration is

⟨OL, D|EL|OL , D⟩ = lim
ϵ→0

− 1
2π

∫
du1du2f(u1)f(u2)

[
2
ϵ

h

(u1 − u2)2h

]
(A.9)

So, the final expression after only evaluating the u-integration is

TL= lim
D→∞

∫∞
−∞du⟨O1

L(u1,D)|TR(u)|O2
L(u2,D)⟩I∫∞

−∞du⟨O1
L(u1,D)|TL(u)|O2

L(u2,D)⟩

= cLR

cL

1∫
du1du2f(u1)f(u2) 2h

(u1−u2)2h

(A.10)

×
∫
dũ1dũ2f(p−1(ũ1))f(p−1(ũ2))

(
∂ũ1
∂u1

)h1−1(
∂ũ2
∂u2

)h2−1
2h

(ũ1−ũ2)2h

[
4−2eũ1/β−2eũ2/β

]

Notice that the ϵ terms cancel each other from the numerator and the denominator. Now we
are going to do the ũ1 and ũ2 integration. We finally chose some profiles for the states.

f(u) = δ(u− ℓ), u = ℓ −→ ℓ̃ = −β log(1 + e−ℓ/β) (A.11)

Now we are doing the integral, taking ℓ1 and ℓ2 into account.

f(u1) = δ(u1 − ℓ1) ℓ̃1 = −β log(1 + e−ℓ1/β)
f(u2) = δ(u2 − ℓ2) ℓ̃2 = −β log(1 + e−ℓ2/β)

(A.12)

TL = lim
D→∞

∫∞
−∞ du ⟨O1

L(u1, D)|TR(u)|O2
L(u2, D)⟩I∫∞

−∞ du ⟨O1
L(u1, D)|TL(u)|O2

L(u2, D)⟩

= cLR

cL

1∫∞
−∞ du1

∫∞
−∞ du2δ(u1 − ℓ1)δ(u2 − ℓ2) 2h

(u1−u2)2h

(A.13)

×
∫ 0

−∞
dũ1

∫ 0

−∞
dũ2δ(ũ1 + β log(1 + e−ℓ1/β))δ(ũ2 + β log(1 + e−ℓ2/β))

(
1− eũ1/β

)h1

×
(
1− eũ1/β

)h2 2h
(ũ1 − ũ2)2h

[
4− 2eũ1/β − 2eũ2/β

]
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Here, we can easily take the limit D → ∞ as there is no anti-chiral part. After using δ

functions, and also h = h1 = h2, we have arrived at

TL = cLR

cL
(ℓ1 − ℓ2)2h

(
e
− ℓ1

β

1 + e−ℓ1/β

)h

×
(

e
− ℓ2

β

1 + e−ℓ2/β

)h

× 1(
β log

(
1+e−ℓ2/β

1+e−ℓ1/β

))2h

× e−ℓ1/β + 2e−
ℓ1+ℓ2

β + e−ℓ2/β

(1 + e−ℓ1/β)(1 + e−ℓ2/β)

TL = cLR

cL

(
ℓ1 − ℓ2
β

)2h
1(

log
(

1+e−ℓ2/β

1+e−ℓ1/β

))2h

× e
−h( ℓ1+ℓ2

β
)(e−ℓ1/β + 2e−

ℓ1+ℓ2
β + e−ℓ2/β)

(1 + e−ℓ1/β)h+1(1 + e−ℓ2/β)h+1

(A.14)

If we take the limit ℓ1 −→ ℓ2 = ℓ , we get the final expression for the transmission coefficient

TL = cLR

cL
e
− 2hℓ

β (e−
ℓ
β )−2h 2

(1 + e
ℓ
β )

= cLR

cL

(
2

1 + e
ℓ
β

) (A.15)

A.2 For CF TR

The same computation can be done for the right CFTR. For this case, the states are created
by anti-chiral operators belonging to CFTR

TR = lim
D→∞

∫∞
−∞ dv ⟨Ō1

R(v1, D)|T̄L(v)|Ō2
R(v2, D)⟩I∫∞

−∞ dv ⟨Ō1
R(v1, D)|T̄R(v)|Ō2

R(v2, D)⟩
(A.16)

When defining the states of CFTR, the dependency of D will be on u, not on v, so we
can take the D → ∞ limit. The calculations are straightforward. We will get different results
compared to the above calculations as we have transformed only the u coordinates, not the
v. Following the same steps described above, we get

TR = cLR

cR
, RR = cR − cLR

cR

(
2

1 + e
ℓ
β

)
, (A.17)

TR +RR = 2
1 + e

ℓ
β

+ cLR

cR

(
e

ℓ
β − 1
e

ℓ
β + 1

)
. (A.18)

B A detail study of (3.29)

Here, we discuss everything in Euclidean 2D manifold(u ≡ x + iτ, v ≡ x − iτ) to use the
powerful complex analysis structure of 2D CFT. All of these Euclidean results can be
generalized to Lorentzian after suitable analytic continuation, which we used in the main text.
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Ward identity. Consider a tensor product CFT (TL⊗1R+1L⊗TR). We would like to under-
stand Ward identity for mixed correlator X(u1, v1, u2, v2) ≡ ⟨O(h1,h̄1)

L (u1, v1)O(h2,h̄2)
R (u2, v2)⟩

satisfying the boundary condition

TL(u) + TR(u) = T̄L(v) + T̄R(v), at u = v (B.1)

For infinitesimal conformal transformation u → u + ϵ(u) and v → v + ϵ̄(v), the general
conformal Ward identity for the tensor product CFT is

δϵ1,ϵ2,ϵ̄1,ϵ̄2X (B.2)

= 1
2πi

∮
UHP

du⟨(ϵ1(u)TL(u)+ϵ2(u)TR(u))X⟩− 1
2πi

∮
UHP

dv⟨
(
ϵ̄1(v)T̄L(v)+ ϵ̄2(v)T̄R(v)

)
X⟩

Here, the subscript UHP refers to the contour of the integral to be the upper half-plane. We
will now consider a special class of solution as in (3.29). In Euclidean notation, this implies

TL(u) = T̄R(v), T̄L(v) = TR(u); at u = v (B.3)

One need to further specify the relation between (ϵi, ϵ̄i) to be consistent with the boundary
condition:

ϵ1(u) = ϵ̄2(v), ϵ̄1(v) = ϵ2(u); at u = v. (B.4)

Using (B.4) in (B.2), we get

δϵ1,ϵ2X (B.5)

= 1
2πi

∮
UHP

du⟨(ϵ1(u)TL(u)+ϵ2(u)TR(u))X⟩− 1
2πi

∮
UHP

dv⟨
(
ϵ2(v)T̄L(v)+ϵ1(v)T̄R(v)

)
X⟩

Now along the real line (u = v), all the above two terms will be canceled due to (B.3).
Then, using the doubling trick, we can rewrite the UHP integral to a closed contour over
full complex plane as the following:

δϵ1,ϵ2X = 1
2πi

∮
c
duϵ1(u)⟨T1(u)X⟩+ 1

2πi

∮
c
duϵ2(u)⟨T2(u)X⟩ (B.6)

where T1,2 is defined as

T1(u) =TL(u) when Im(u) > 0,
T̄R(v) when Im(u) < 0. (B.7)

T2(u) =TR(u) when Im(u) > 0,
T̄L(v) when Im(u) < 0. (B.8)

Hence the two completely independent conformal transformation ϵ1,2 associated to T1,2 will
give rise to two sets of ward identity for X(u1, v1, u2, v2). Ward identities associated to T1 are27

Translation: (∂u1 + ∂v2)X(u1, v1, u2, v2) = 0 (B.9)

Scaling:
(
u1∂u1 + h1 + v2∂v2 + h̄2

)
X(u1, v1, u2, v2) = 0 (B.10)

SCT:
(
u2

1∂u1 + 2h1u1 + v2
2∂v2 + 2h̄2v2

)
X(u1, v1, u2, v2) = 0 (B.11)

27Here SCT refers to special conformal transformation.
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Similarly for T2 we have the following Ward identities:

Translation: (∂u2 + ∂v1)X(u1, v1, u2, v2) = 0 (B.12)

Scaling:
(
u2∂u2 + h2 + v1∂v1 + h̄1

)
X(u1, v1, u2, v2) = 0 (B.13)

SCT:
(
u2

2∂u2 + 2h2u2 + v2
1∂v1 + 2h̄1v1

)
X(u1, v1, u2, v2) = 0 (B.14)

Using both of these Ward identities, one can easily fix X as

X(u1, v1, u2, v2) = c′δh1,h̄2
δh2,h̄1

(u1 − v2)−(h1+h̄2)(u2 − v1)−(h2+h̄1) (B.15)

Where c′ is an undetermined constant that can be absorbed in the field redefinition. Using
those Ward identities, we can also fix the form of a mixed three-point correlator up to an
undetermined structure constant. On the other hand, if one considers purely chiral operators,
the mixed two-point correlators can be again fixed by those Ward identities:

⟨O(h1,0)
L (u)Ō(0,h̄2)

R (v)⟩ = c′

(u− v)h1+h̄2
δh1,h̄2

(B.16)

⟨O(h1,0)
L (u1)O(h2,0)

R (u2)⟩ = 0 (B.17)

Virasoro algebra. We define ⟨TLT̄R⟩ ∝ cLR̄ and ⟨T̄LTR⟩ ∝ cL̄R. Then from (B.3),
we can see

cLR̄ = cL = c̄R; cL̄R = c̄L = cR. (B.18)

On the other hand from (B.16), we can see ⟨TLTR⟩ = ⟨T̄LT̄R⟩ = 0. Let us define the
modes of T1,2 as

L1
n ≡ 1

2πi

∮
duun+1T1(u) (B.19)

L2
n ≡ 1

2πi

∮
duun+1T2(u) (B.20)

Using (B.7), we get the commutator

[L1
n,L

1
m] =

( 1
2πi

)2 [(∫
UHP

du1u
n+1
1 TL(u1) +

∫
LHP

dv1v
n+1
1 T̄R(v1)

)
,(∫

UHP
du2u

m+1
2 TL(u2) +

∫
LHP

dv2v
m+1
2 T̄R(v2)

)]
(B.21)

Here, the contours UHP and LHP refer to the unit semicircles in the upper half plane and
lower half-plane, respectively, with a clockwise direction.

[L1
n,L

1
m] =

( 1
2πi

)2 [∫
UHP

duun+1
1 TL(u1),

∫
UHP

du2u
m+1
2 TL(u2)

]
+
( 1
2πi

)2 [∫
LHP

dv1v
n+1
1 T̄R(v1),

∫
LHP

dv2v
m+1
2 T̄R(v2)

]
(B.22)
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Since TLT̄R and T̄LTR OPE has non-zero contribution at the real line ui = vi, one can
show that commutators involving those terms will be zero.28 Using the TT OPE and the
following identity [∫

c
dua(u),

∫
c
dωb(ω)

]
=
∫

c
dω

∮
ω
dua(u)b(ω) (B.23)

we get( 1
2πi

)2 [∫
UHP

du1u
n+1
1 TL(u1),

∫
UHP

du2u
m+1
2 TL(u2)

]
=
( 1
2πi

)2 ∫
UHP

du2u
m+1
2

∮
u2
du1u

n+1
1

(
cL

2(u1 − u2)4 + 2TL(u2)
(u1 − u2)2 + ∂TL(u2)

u1 − u2

)
= 1

2πi
cL

12n(n
2 − 1)

∫
UHP

du2u
m+n+1
2 + (n−m)

2πi

∫
UHP

du2u
m+n+1
2 TL(u2) (B.24)

Similarly, we will also get( 1
2πi

)2 [∫
LHP

dv1v
n+1
1 T̄R(v1),

∫
LHP

dv2v
m+1
2 T̄R(v2)

]
= 1

2πi
c̄R

12n(n
2 − 1)

∫
LHP

dv2v
m+n+1
2 + (n−m)

2πi

∫
LHP

dv2v
m+n+1
2 T̄R(v2) (B.25)

Thus combining (B.24) and (B.25) we have,

[L1
n,L

1
m] = 1

2πi

(
cL

12n(n
2 − 1)

∫
UHP

du2u
m+n+1
2 + c̄R

12n(n
2 − 1)

∫
LHP

dv2v
m+n+1
2

)
+

+ (n−m)
2πi

(∫
UHP

du2u
m+n+1
2 TL(u2) +

∫
LHP

dv2v
m+n+1
2 T̄R(v2)

)
(B.26)

Since cL = c̄R and in the real line u2 = v2 , TL(u2) = T̄R(v2), the UHP and LHP contour
merges to give a closed contour of unit circle i.e.

∫
IHP +

∫
LHP →

∮
c. Hence, we finally get

[L1
n,L

1
m] = cL

12n(n
2 − 1)δn+m,0 + (n−m)L1

n+m (B.27)

In a similar fashion, we will also have,

[L2
n,L

2
m] = cR

12n(n
2 − 1)δn+m,0 + (n−m)L2

n+m (B.28)

Since the OPE of TLTR, T̄LT̄R, TLT̄L and TRT̄R are vanishing, the commutator [L1
n,L

2
m] = 0.

Thus, we end up with two copies of Virasoro algebra.

Boundary state. The boundary condition (B.3) defines a boundary state

(TL − T̄R)|Ih⟩ = 0, (T̄L − TR)|I ′h⟩ = 0 (B.29)

If we expand TL =∑
n u

−n−2L1
n and TR =∑

n u
−n−2L2

n(similarly for anti-holomorphic part),
then the boundary states are defined as29

(L1
n − L̄2

−n)|Ih⟩ = 0, (L2
n − L̄1

−n)|I ′h⟩ = 0 (B.30)
28Since the closed contour integration reduces to real line integration, the two integrals commute trivially.
29The standard way to construct this is to map UHP to a disk and use mode expansion there.
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If we take copies of the same CFT then we can construct same orthonormal basis of states
|⃗k, h⟩ and L1

n |⃗k, h⟩ = L2
n |⃗k, h⟩. Here |⃗k, h⟩ is an orthonormal basis of descendants, and k⃗

refers to infinite dimensional vectors which represent the weight of the descendants at each
level.30 Once this is true, we know |Ih⟩ and I ′h⟩ have a similar form of Ishibashi state.

|Ih⟩ =
∑

k⃗

|⃗k, h⟩L ⊗ |¯⃗k, h⟩R̄, |I
′
h⟩ =

∑
k⃗

|⃗k, h⟩R ⊗ |¯⃗k, h⟩L̄ (B.31)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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