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NUMERICAL RADIUS INEQUALITIES AND ESTIMATION OF

ZEROS OF POLYNOMIALS

SUVENDU JANA1, PINTU BHUNIA2 and KALLOL PAUL2

Abstract. Let A be a bounded linear operator defined on a complex Hilbert space

and let |A| = (A∗A)1/2 be the positive square root of A. Among other refinements of

the well known numerical radius inequality w2(A) ≤ 1

2
‖A∗A+AA∗‖, we show that

w2(A) ≤ 1

4
w2 (|A|+ i|A∗|) + 1

8

∥

∥|A|2 + |A∗|2
∥

∥+
1

4
w (|A||A∗|)

≤ 1

2
‖A∗A+AA∗‖.

Also, we develop inequalities involving numerical radius and spectral radius for the

sum of the product operators, from which we derive the following inequalities

wp(A) ≤ 1√
2
w(|A|p + i|A∗|p) ≤ ‖A‖p

for all p ≥ 1. Further, we derive new bounds for the zeros of complex polynomials.

1. Introduction

Let H be a complex Hilbert space with usual inner product 〈·, ·〉 and the correspond-

ing norm ‖ · ‖ induced by the inner product. Let B(H ) denote the C∗-algebra of

all bounded linear operators on H . For A ∈ B(H ), |A| = (A∗A)1/2 is the posi-

tive square root of A. The numerical range of A, denoted as W (A), is defined by

W (A) = {〈Ax, x〉 : x ∈ H , ‖x‖ = 1} . Let ‖A‖, r(A) and w(A) denote the operator

norm, the spectral radius and the numerical radius of A, respectively. Recall that

w(A) = sup {|〈Ax, x〉| : x ∈ H , ‖x‖ = 1} . The numerical radius w(·) defines a norm

on B(H ), (is equivalent to the operator norm ‖·‖) is satisfying the following inequality

1

2
‖A‖ ≤ w(A) ≤ ‖A‖. (1.1)

The first inequality becomes equality if A2 = 0 and the second one turns into equality

if A is normal. Similar as the operator norm, numerical radius also satisfies the power
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inequality:

w(An) ≤ wn(A) for every n = 1, 2, 3, . . .. (1.2)

It is well known that for A ∈ B(H ),

r(A) ≤ w(A). (1.3)

The inequality (1.3) is sharp. In fact, if A is normal, then r(A) = w(A) = ‖A‖. For

A,B ∈ B(H ), we have r(AB) = r(BA) and r(An) = rn(A) for every positive integer

n. Over the years many eminent mathematicians have studied various refinements of

(1.1) and obtained various bounds for the zeros of a complex polynomial, we refer

the readers to [2, 3, 5, 7, 15, 18, 22, 23] and the references therein. In [14], Kittaneh

improved the inequalities in (1.1) to prove that

1

4
‖A∗A+ AA∗‖ ≤ w2(A) ≤ 1

2
‖A∗A + AA∗‖. (1.4)

In this article, we develop new refinements of the second inequality in (1.4). We

obtain inequalities involving numerical radius and spectral radius of the sum of the

product operators, from which we achieve a nice refinement of the classical inequality

w(A) ≤ ‖A‖. As application of the numerical radius inequalities, we give new bounds

for the zeros of a complex monic polynomial which improve on the existing ones.

2. Numerical radius inequalities

We begin the section with the following lemmas.

Lemma 2.1. [13](Generalized Cauchy-Schwarz inequality) If A ∈ B(H ) and 0 ≤ α ≤
1, then

|〈Ax, y〉|2 ≤ 〈|A|2αx, x〉〈|A∗|2(1−α)y, y〉
for all x, y ∈ H .

Lemma 2.2. [21](Holder-McCarthy inequality) Let A ∈ B(H ) be positive. Then the

following inequalities hold:

〈Arx, x〉 ≥ ‖x‖2(1−r)〈Ax, x〉r, when r ≥ 1

〈Arx, x〉 ≤ ‖x‖2(1−r)〈Ax, x〉r, when 0 ≤ r ≤ 1

for any x ∈ H .

Lemma 2.3. [9](Buzano’s inequality) Let x, e, y ∈ H with ‖e‖ = 1, then

|〈x, e〉〈e, y〉| ≤ 1

2
(‖x‖‖y‖+ |〈x, y〉|) .
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Now, we are in a position to present our results. First we develop the following upper

bound for the numerical radius.

Theorem 2.4. Let A ∈ B(H ). Then

w2(A) ≤ 1

4
w2 (|A|+ i|A∗|) + 1

8

∥

∥|A|2 + |A∗|2
∥

∥+
1

4
w (|A||A∗|) .

Proof. Let x ∈ H with ‖x‖ = 1. Then we have

|〈Ax, x〉|2

≤ 〈|A|x, x〉〈|A∗|x, x〉 (by Lemma 2.1)

≤ 1

4
(〈|A|x, x〉+ 〈|A∗|x, x〉)2

=
1

4

(

〈|A|x, x〉2 + 〈|A∗|x, x〉2 + 2〈|A|x, x〉〈|A∗|x, x〉
)

≤ 1

4

{

|〈|A|x, x〉+ i〈|A∗|x, x〉|2 + ‖|A|x‖‖|A∗|x‖+ |〈|A|x, |A∗|x〉|
}

(by Lemma 2.3)

≤ 1

4

{

|〈(|A|+ i|A∗|)x, x〉|2 + 1

2
‖|A|x‖2 + 1

2
‖|A∗|x‖2 + |〈|A∗||A|x, x〉|

}

≤ 1

4
w2 (|A|+ i|A∗|) + 1

8

∥

∥|A|2 + |A∗|2
∥

∥+
1

4
w (|A||A∗|) .

Taking supremum over all x ∈ H with ‖x‖ = 1, we get the desired inequality. �

Clearly, we see that

1

4
w2 (|A|+ i|A∗|) + 1

8

∥

∥|A|2 + |A∗|2
∥

∥+
1

4
w (|A||A∗|)

≤ 1

4

∥

∥|A|2 + |A∗|2
∥

∥+
1

8

∥

∥|A|2 + |A∗|2
∥

∥+
1

4
‖|A||A∗|‖

=
3

8

∥

∥|A|2 + |A∗|2
∥

∥+
1

4

∥

∥A2
∥

∥

≤ 3

8

∥

∥|A|2 + |A∗|2
∥

∥+
1

8

∥

∥|A|2 + |A∗|2
∥

∥

=
1

2

∥

∥|A|2 + |A∗|2
∥

∥ .

Thus, we would like to remark that the upper bound obtained in Theorem 2.4 refines

the second inequality in (1.4). Next result reads as follows.

Theorem 2.5. Let X, Y ∈ B(H ), and 0 ≤ α ≤ 1, 0 ≤ β ≤ 1. Then for each x ∈ H

with ‖x‖ = 1,

|〈Xx, x〉〈Y x, x〉|

≤ 1

4

∥

∥α|X|2 + (1− α)|X∗|2 + β|Y |2 + (1− β)|Y ∗|2
∥

∥+
1

8

∥

∥|X|2 + |Y ∗|2
∥

∥+
1

4
w(YX).
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Proof. We have

|〈Xx, x〉〈Y x, x〉|

≤ 1

4
{|〈Xx, x〉|+ |〈Y x, x〉|}2

=
1

4

{

|〈Xx, x〉|2 + |〈Y x, x〉|2 + 2|〈Xx, x〉||〈Y x, x〉|
}

≤ 1

4

{

〈|X|2αx, x〉〈|X∗|2(1−α)x, x〉 + 〈|Y |2βx, x〉〈|Y ∗|2(1−β)x, x〉+ 2|〈Xx, x〉||〈x, Y ∗x〉|
}

(using Lemma 2.1)

≤ 1

4

{

〈|X|2x, x〉α〈|X∗|2x, x〉(1−α) + 〈|Y |2x, x〉β〈|Y ∗|2x, x〉(1−β) + ‖Xx‖‖Y ∗x‖ + |〈Xx, Y ∗x〉|
}

(using Lemma 2.2 and Lemma 2.3 )

≤ 1

4

{

α〈|X|2x, x〉+ (1− α)〈|X∗|2x, x〉 + β〈|Y |2x, x〉 + (1− β)〈|Y ∗|2x, x〉
}

+
1

4

{

1

2

(

〈|X|2x, x〉+ 〈|Y ∗|2x, x〉
)

+ |〈YXx, x〉|
}

≤ 1

4
‖α|X|2 + (1− α)|X∗|2 + β|Y |2 + (1− β)|Y ∗|2‖+ 1

8
‖|X|2 + |Y ∗|2‖+ 1

4
w(Y X).

�

Applying the inequality in Theorem 2.5 we derive the following upper bound for the

numerical radius.

Corollary 2.6. If A ∈ B(H ), then

w2(A) ≤ 1

4

∥

∥µ|A|2 + (2− µ)|A∗|2
∥

∥+
1

8

∥

∥|A|2 + |A∗|2
∥

∥+
1

4
w(A2),

for 0 ≤ µ ≤ 2.

Proof. Putting X = Y = A in Theorem 2.5, and then taking supremum over all x ∈ H

with ‖x‖ = 1, we get

w2(A) ≤ 1

4

∥

∥(α + β)|A|2 + (2− α− β)|A∗|2
∥

∥+
1

8

∥

∥|A|2 + |A∗|2
∥

∥+
1

4
w(A2),

for 0 ≤ α, β ≤ 1. This implies the desired bound. �

It follows from Corollary 2.6 that

w2(A) ≤ 1

4
min
µ∈[0,2]

∥

∥µ|A|2 + (2− µ)|A∗|2
∥

∥+
1

8

∥

∥|A|2 + |A∗|2
∥

∥+
1

4
w(A2). (2.1)
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Remark 2.7. Clearly, We have

min
µ∈[0,2]

1

4

∥

∥µ|A|2 + (2− µ)|A∗|2
∥

∥+
1

8

∥

∥|A|2 + |A∗|2
∥

∥+
1

4
w(A2)

≤ 1

4
‖|A|2 + |A∗|2‖+ 1

8
‖|A|2 + |A∗|2‖+ 1

4
w(A2) (by taking µ = 1)

=
3

8
‖|A|2 + |A∗|2‖+ 1

4
w(A2)

≤ 3

8
‖|A|2 + |A∗|2‖+ 1

4
w2(A)

≤ 3

8
‖|A|2 + |A∗|2‖+ 1

8
‖|A|2 + |A∗|2‖ (using the second inequality of (1.4))

=
1

2
‖|A|2 + |A∗|2‖.

Thus, we would like to remark that inequality (2.1) is stronger than that in (1.4).

We also note that the minimum value is not always attained for µ = 1. For example,

consider the matrix A =







0 1 0

0 0 2

0 0 0






. Then, min

µ∈[0,2]
‖µ|A|2 + (2− µ)|A∗|2‖ = 32

7
for

µ = 8
7
, and we see that

1

4
min
µ∈[0,2]

∥

∥µ|A|2 + (2− µ)|A∗|2
∥

∥+
1

8

∥

∥|A|2 + |A∗|2
∥

∥+
1

4
w(A2) =

113

56
≈ 2.01785714

<
5

2
=

1

2
‖|A|2 + |A∗|2‖.

To prove our next result we need the following two lemmas. First one is a gen-

eralization of the inequality in Lemma 2.1, and the second one is known as Bohr’s

inequality.

Lemma 2.8. ([19, Th. 5]) Let A,B ∈ B(H ) with |A|B = B∗|A|. Let f, g be two

non-negative continuous functions on [0,∞) such that f(t)g(t) = t for all t ≥ 0. Then

|〈ABx, y〉| ≤ r(B)‖f(|A|)x‖‖g(|A∗|)y‖,

for all x, y ∈ H .

Lemma 2.9. ([24]) For i = 1, 2, · · · , n, let ai ≥ 0. Then
(

n
∑

i=1

ai

)p

≤ np−1

n
∑

i=1

a
p
i ,

for all p ≥ 1.

By using the above lemmas we prove the following inequality involving numerical

radius and spectral radius.
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Theorem 2.10. Let Ai, Bi ∈ B(H ) be such that |Ai|Bi = B∗
i |Ai| for i = 1, 2, · · · , n.

Then

wp

(

n
∑

i=1

AiBi

)

≤ np−1

√
2
w

(

n
∑

i=1

rp(Bi)
(

f 2p(|Ai|) + ig2p(|A∗
i |)
)

)

,

for all p ≥ 1.

Proof. Let x ∈ H with ‖x‖ = 1. Then we have

∣

∣

∣

∣

∣

〈
(

n
∑

i=1

AiBi

)

x, x〉
∣

∣

∣

∣

∣

p

=

∣

∣

∣

∣

∣

n
∑

i=1

〈AiBix, x〉
∣

∣

∣

∣

∣

p

≤
(

n
∑

i=1

|〈AiBix, x|
)p

≤
(

n
∑

i=1

r(Bi)‖f(|Ai|)x‖‖g(|A∗
i |)x‖

)p

(by Lemma 2.8)

=

(

n
∑

i=1

r(Bi)〈f 2(|Ai|)x, x〉
1

2 〈g2(|A∗
i |)x, x〉

1

2

)p

≤
(

n
∑

i=1

r(Bi)
〈f 2(|Ai|)x, x〉+ 〈g2(|A∗

i |)x, x〉
2

)p

≤ np−1
n
∑

i=1

rp(Bi)

(〈f 2(|Ai|)x, x〉 + 〈g2(|A∗
i |)x, x〉

2

)p

(by Lemma 2.9)

≤ np−1

2

n
∑

i=1

rp(Bi)
(

〈f 2(|Ai|)x, x〉p + 〈g2(|A∗
i |)x, x〉p

)

(by convexity of f(t) = tp)

≤ np−1

2

n
∑

i=1

rp(Bi)
(

〈f 2p(|Ai|)x, x〉+ 〈g2p(|A∗
i |)x, x〉

)

(by Lemma 2.2)

≤ np−1

√
2

∣

∣

∣

∣

∣

n
∑

i=1

rp(Bi)
(

〈f 2p(|Ai|)x, x〉+ i〈g2p(|A∗
i |)x, x〉

)

∣

∣

∣

∣

∣

(as |a+ b| ≤
√
2|a+ ib| for all a, b ∈ R)

≤ np−1

√
2

∣

∣

∣

∣

∣

n
∑

i=1

rp(Bi)〈
(

f 2p(|Ai|) + ig2p(|A∗
i |)
)

x, x〉
∣

∣

∣

∣

∣

≤ np−1

√
2
w

(

n
∑

i=1

rp(Bi)
(

f 2p(|Ai|) + ig2p(|A∗
i |)
)

)

.
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Now, taking supremum over all x ∈ H , ‖x‖ = 1 we get,

wp

(

n
∑

i=1

AiBi

)

≤ np−1

√
2
w

(

n
∑

i=1

rp(Bi)
(

f 2p(|Ai|) + ig2p(|A∗
i |)
)

)

.

as desired.

�

Observe that the inequality in Theorem 2.10 indeed does not depend on the number

n of summands in the case p = 1. In particular, considering p = n = 1, A1 = A,

B1 = B, f(t) = g(t) =
√
t in Theorem 2.10, we get the following corollary.

Corollary 2.11. Let A,B ∈ B(H ) be such that |A|B = B∗|A|. Then

w(AB) ≤ 1√
2
r(B)w(|A|+ i|A∗|).

In particular, for B = I we have the following inequality (also obtained in [8]):

w(A) ≤ 1√
2
w(|A|+ i|A∗|). (2.2)

Note that the bound (2.2) refines that in (1.4), see [8, Remark 2.16]. Again, considering

Bi = I for i = 1, 2, · · · , n in Theorem 2.10 we have the following inequality for the sum

of operators.

Corollary 2.12. Let Ai ∈ B(H ) for i = 1, 2, · · · , n, and let f, g be two non-negative

continuous functions on [0,∞) such that f(t)g(t) = t for all t ≥ 0. Then

wp

(

n
∑

i=1

Ai

)

≤ np−1

√
2
w

(

n
∑

i=1

(

f 2p(|Ai|) + ig2p(|A∗
i |)
)

)

,

for all p ≥ 1.

In particular, for n = 1 and f(t) = g(t) =
√
t in Corollary 2.12, we get the following

upper bound for the numerical radius.

Corollary 2.13. If A ∈ B(H ), then

wp(A) ≤ 1√
2
w(|A|p + i|A∗|p),

for all p ≥ 1.

It is easy to verify that 1√
2
w(|A|p+ i|A∗|p) ≤ ‖A‖p for all p ≥ 1. Therefore, we would

like to remark that Corollary 2.13 improves the classical bound w(A) ≤ ‖A‖ for all

p ≥ 1.

At the end of this section, we give a sufficient condition for the equality of w(A) =
1
2
‖A∗A+ AA∗‖1/2. For this purpose first we note the following known lemma.
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Lemma 2.14. [17] Let A,B ∈ B(H ) be positive. Then, ‖A+B‖ = ‖A‖+ ‖B‖ if and

only if ‖AB‖ = ‖A‖‖B‖.

Theorem 2.15. Let A ∈ B(H ). Then ‖A‖4 = ‖ℜ2(A)ℑ2(A)‖ implies

w2(A) =
1

4
‖A∗A + AA∗‖.

Proof. We have

‖A‖4 = ‖ℜ2(A)ℑ2(A)‖ ≤ ‖ℜ2(A)‖‖ℑ2(A)‖ = ‖ℜ(A)‖2‖ℑ(A)‖2

≤ 1

2

(

‖ℜ(A)‖4 + ‖ℑ(A)‖4
)

≤ max
(

‖ℜ(A)‖4, ‖ℑ(A)‖4
)

≤ w4(A) ≤ ‖A‖4.

This implies that

‖ℜ2(A)ℑ2(A)‖ = ‖ℜ(A)‖2‖ℑ(A)‖2. (2.3)

Also, we have

1

2

(

‖ℜ(A)‖4 + ‖ℑ(A)‖4
)

= max
(

‖ℜ(A)‖4, ‖ℑ(A)‖4
)

= w4(A). (2.4)

This implies that

‖ℜ(A)‖ = ‖ℑ(A)‖ = w(A). (2.5)

Now, by using lemma 2.14, it follows from the identity (2.3) that

1

2
‖ℜ2(A) + ℑ2(A)‖ =

1

2

(

‖ℜ2(A)‖+ ‖ℑ2(A)‖
)

=
1

2

(

‖ℜ(A)‖2 + ‖ℑ(A)‖2
)

= ‖ℜ(A)‖2 = w2(A) (using (2.5)).

This completes the proof.

�

It should be mentioned here that the converse of Theorem 2.15 is not true, in gen-

eral. For example, we consider A =







0 3 0

0 0 0

0 0 1






. Then, w2(A) = 1

4
‖A∗A + AA∗‖ = 9

4
,

however ‖A‖4 6= ‖ℜ2(A)ℑ2(A)‖.



NUMERICAL RADIUS INEQUALITIES AND ESTIMATION OF ZEROS OF POLYNOMIALS 9

3. Estimation of zeros of polynomials

Suppose p(z) = zn+anz
n−1+ . . .+a2z+a1 is a complex monic polynomial of degree

n ≥ 2 and a1 6= 0. Location of the zeros of p(z) have been obtained by applying

numerical radius inequalities to Frobenius companion matrix of the polynomial p(z).

The Frobenius companion matrix of the polynomial p(z) is given by

Cp =

















−an −an−1 .... −a2 −a1

1 0 ... 0 0

0 1 ... 0 0
...

...
. . .

...
...

0 0 .... 1 0

















.

The characteristic polynomial of Cp is the polynomial p(z). Thus, the zeros of p(z) are

exactly the eigenvalues of Cp, see [12, p. 316]. The square of Cp is given by

C2
p =























bn bn−1 ..... b3 b2 b1

−an −an−1 .... −a3 −a2 −a1

1 0 ... 0 0 0

0 1 ... 0 0 0
...

...
. . .

...
...

...

0 0 .... 1 0 0























,

where bj = anaj − aj−1 for j = 1, 2, . . . , n, with a0 = 0.

Also,

C3
p =



























cn cn−1 ..... c4 c3 c2 c1

bn bn−1 ..... b4 b3 b2 b1

−an −an−1 .... −a4 −a3 −a2 −a1

1 0 ... 0 0 0 0

0 1 ... 0 0 0 0
...

...
. . .

...
...

...
...

0 0 .... 1 0 0 0



























,

where bj = anaj − aj−1 and cj = −anbj + an−1aj − aj−2 for j = 1, 2, . . . , n, with

a0 = a−1 = 0,
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and

C4
p =

































dn dn−1 ..... d5 d4 d3 d2 d1

cn cn−1 ..... c5 c4 c3 c2 c1

bn bn−1 ..... b5 b4 b3 b2 b1

−an −an−1 .... −a5 −a4 −a3 −a2 −a1

1 0 ... 0 0 0 0 0

0 1 ... 0 0 0 0 0
...

...
. . .

...
...

...
...

...

0 0 .... 1 0 0 0 0

































,

where bj = anaj − aj−1, cj = −anbj + an−1aj − aj−2, and dj = −ancj − an−1bj−1 +

an−2aj − aj−3 for j = 1, 2, . . . , n, with a0 = a−1 = a−2 = 0.

The exact value of ‖Cp‖ is well known (see in [18]), it is given by

‖Cp‖ =

√

α + 1 +
√

(α + 1)2 − 4|a1|2
2

, (3.1)

where α =
∑n

j=1 |aj |2.
An estimation of ‖C2

p‖ obtained in [16] is as follows

‖C2
p‖ ≤

√

δ + 1 +
√

(δ − 1)2 + 4δ′

2
, (3.2)

where δ = 1
2

(

α + β +
√

(α− β)2 + 4|γ|2
)

and δ′ = 1
2

(

α′ + β ′ +
√

(α′ − β ′)2 + 4|γ′|2
)

,

α =
∑n

j=1 |aj|2, β =
∑n

j=1 |bj |2, α′ =
∑n

j=3 |aj|2, β ′ =
∑n

j=3 |bj|2, γ = −
∑n

j=1 ājbj ,

γ′ = −
∑n

j=3 ājbj .

We note that

‖C2
p‖

1

2 ≤





√

δ + 1 +
√

(δ − 1)2 + 4δ′

2





1/2

≤

√

α + 1 +
√

(α+ 1)2 − 4|a1|2
2

= ‖Cp‖.

Motivated by the above estimation, here we will obtain an estimation of ‖C4
p‖1/4.

For this purpose first we note the following norm inequality for the sum of two positive

operators.

Lemma 3.1. [17] If A,B ∈ B(H ) are positive, then

‖A+B‖ ≤ 1

2

(

‖A‖+ ‖B‖+
√

(‖A‖ − ‖B‖)2 + 4
∥

∥

∥
A

1

2B
1

2

∥

∥

∥

2
)

.
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Now, we are in a position to obtain an estimation of ‖C4
p‖1/4. Let C4

p = R + S + T,

where

R =

















dn dn−1 ..... d5 d4 d3 d2 d1

cn cn−1 ..... c5 c4 c3 c2 c1

0 0 ..... 0 0 0 0 0
...

...
. . .

...
...

...
...

...

0 0 .... 0 0 0 0 0

















,

S =



























0 0 ..... 0 0 0 0 0

0 0 ..... 0 0 0 0 0

bn bn−1 ..... b5 b4 b3 b2 b1

−an −an−1 .... −a5 −a4 −a3 −a2 −a1

0 0 ... 0 0 0 0 0
...

...
. . .

...
...

...
...

...

0 0 .... 0 0 0 0 0



























and

T =

































0 0 ..... 0 0 0 0 0

0 0 ..... 0 0 0 0 0

0 0 ..... 0 0 0 0 0

0 0 .... 0 0 0 0 0

1 0 ... 0 0 0 0 0

0 1 ... 0 0 0 0 0
...

...
. . .

...
...

...
...

...

0 0 .... 1 0 0 0 0

































.

Now,

‖C4
p‖2 = ‖R + S + T‖2

= ‖(R + S + T )∗(R + S + T )‖
= ‖R∗R + S∗S + T ∗T‖ (since R∗S = R∗T = S∗R = S∗T = T ∗R = T ∗S = 0)

≤ ‖R∗R + S∗S‖+ ‖T ∗T‖

≤ 1

2

(

‖R‖2 + ‖S‖2 +
√

(‖R‖2 − ‖S‖2)2 + 4‖RS∗‖2
)

+ 1 (using Lemma 3.1).

By simple calculations, we have

‖R‖2 = ‖R∗R‖ = ‖RR∗‖

=
1

2

(

α1 + β1 +
√

(α1 − β1)2 + 4|γ1|2
)

= δ1,
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where α1 =
∑n

j=1 |dj|2, β1 =
∑n

j=1 |cj|2 , γ1 =
∑n

j=1 dj c̄j ,

‖S‖2 = ‖S∗S‖ = ‖SS∗‖

=
1

2

(

α + β +
√

(α− β)2 + 4|γ|2
)

= δ,

where α =
∑n

j=1 |aj |2, β =
∑n

j=1 |bj|2 , γ = −
∑n

j=1 bj āj ,

‖RS∗‖2

=
1

2

(

|γ2|2 + |γ3|2 + |γ4|2 + |γ5|2 +
√

((|γ2|2 + |γ3|2)− (|γ4|2 + |γ5|2))2 + 4|γ2γ̄4 + γ3γ̄5|2
)

= δ2,

where γ2 =
∑n

j=1 dj b̄j , γ3 =
∑n

j=1 djāj , γ4 =
∑n

j=1 cj b̄j , γ5 =
∑n

j=1 cj āj.

Therefore,

‖C4
p‖ ≤

√

1

2

(

δ1 + δ +
√

(δ1 − δ)2 + 4δ2

)

+ 1. (3.3)

We observe that the estimation of ‖C4
p‖1/4 in (3.3) is incomparable with the existing

estimation of ‖C2
p‖1/2 in (3.2). In the following theorem we derive an upper bound for

the spectral radius of the Frobenius companion matrix Cp, by using the estimations in

(3.2) and (3.3).

Theorem 3.2. The following inequality holds:

r(Cp) ≤
{

1

4

(

δ + 1 +
√

(δ − 1)2 + 4δ′

2

)

+
3

4

(

1

2

(

δ1 + δ +
√

(δ1 − δ)2 + 4δ2

)

+ 1

)
1

2

}
1

4

,

where δ′ = 1
2

(

α′ + β ′ +
√

(α′ − β ′)2 + 4|γ′|2
)

,

δ = 1
2

(

α + β +
√

(α− β)2 + 4|γ|2
)

,

δ1 =
1
2

(

α1 + β1 +
√

(α1 − β1)2 + 4|γ1|2
)

,

δ2 =
1
2

(

|γ2|2 + |γ3|2 + |γ4|2 + |γ5|2 +
√

((|γ2|2 + |γ3|2)− (|γ4|2 + |γ5|2))2 + 4|γ2γ̄4 + γ3γ̄5|2
)

,

α′ =
∑n

j=3 |aj|2, β ′ =
∑n

j=3 |bj |2, γ′ = −∑n
j=3 ājbj ,

α =
∑n

j=1 |aj |2, β =
∑n

j=1 |bj |2 , γ = −
∑n

j=1 bj āj,

α1 =
∑n

j=1 |dj|2, β1 =
∑n

j=1 |cj|2 , γ1 =
∑n

j=1 dj c̄j,

γ2 =
∑n

j=1 dj b̄j, γ3 =
∑n

j=1 dj āj, γ4 =
∑n

j=1 cj b̄j, γ5 =
∑n

j=1 cjāj .

Proof. Let A ∈ B(H ). Putting A = A2 in the inequality w2(A) ≤ 1
4
‖A∗A + AA∗‖ +

1
2
w(A2) (see [1, Th. 2.4]), we get

w2(A2) ≤ 1

4

∥

∥|A2|2 + |(A∗)2|2
∥

∥+
1

2
w(A4).
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It follows that

r2(A) = r(A2) ≤ w(A2) ≤
{

1

4

∥

∥|A2|2 + |(A∗)2|2
∥

∥+
1

2
w(A4)

}
1

2

,

i.e.,

r(A) ≤
{

1

4

∥

∥|A2|2 + |(A∗)2|2
∥

∥+
1

2
w(A4)

}
1

4

. (3.4)

Now, it follows from (3.4) and the inequality ‖C∗
pCp + CpC

∗
p‖ ≤ ‖Cp‖2 + ‖C2

p‖ (see [6,

Remark 3.9]) that

r(Cp) ≤
{

1

4

∥

∥|C2
p |2 + |(C∗

p)
2|2
∥

∥+
1

2
w(C4

p)

}
1

4

≤
{

1

4
(‖C2

p‖2 + ‖C4
p‖) +

1

2
‖C4

p‖
}

1

4

≤
{

1

4

∥

∥C2
p

∥

∥

2
+

3

4

∥

∥C4
p

∥

∥

} 1

4

.

Therefore, the required inequality follows by using the estimations in (3.2) and (3.3).

�

By using the fact |λj(Cp)| ≤ r(Cp), where λj(Cp) is the j-th eigenvalue of Cp, we

infer the following estimation for the zeros of the polynomial p(z).

Theorem 3.3. If z is any zero of p(z), then

|z| ≤
{

1

4

(

δ + 1 +
√

(δ − 1)2 + 4δ′

2

)

+
3

4

(

1

2

(

δ1 + δ +
√

(δ1 − δ)2 + 4δ2

)

+ 1

)
1

2

}
1

4

,

where δ, δ1, δ2 and δ′ are same as in Theorem 3.2.

Applying the spectral mapping theorem, we conclude that if z is any zero of p(z) then

|z| ≤ ‖C4
p‖

1

4 . Thus, by using the inequality (3.3) we achieve another new estimation

for the zeros of p(z).

Theorem 3.4. If z is any zero of p(z), then

|z| ≤
{

1

2

(

δ1 + δ +
√

(δ1 − δ)2 + 4δ2

)

+ 1

}
1

8

,

where δ, δ1 and δ2 are given in Theorem 3.2.

Again, putting A = A2 in the inequality w(A) ≤ 1
2

(

‖A‖+ ‖A2‖ 1

2

)

(see [16, Th. 1]),

and proceeding as (3.4), we get

r(A) ≤
{

1

2
‖A2‖+ 1

2
‖A4‖ 1

2

}
1

2

. (3.5)
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Proceeding similarly as in Theorem 3.2 we obtain the following estimation by using

the inequalities in (3.5), (3.2) and (3.3).

Theorem 3.5. If z is any zero of p(z), then

|z| ≤







1

2

√

δ + 1 +
√

(δ − 1)2 + 4δ′

2
+

1

2

(

1

2

(

δ1 + δ +
√

(δ1 − δ)2 + 4δ2

)

+ 1

)
1

4







1

2

,

where δ, δ1, δ1 and δ′ are given in Theorem 3.2.

Finally, we compare the bounds obtained here for the zeros of p(z) with the existing

ones. First we note some well known existing bounds. Let z be any zero of p(z). Then

Linden [20] obtained that

|z| ≤ |an|
n

+

(

n− 1

n

(

n− 1 +

n
∑

j=1

|aj |2 −
|an|2
n

))
1

2

.

Montel [11, Th. 3] obtained that

|z| ≤ max {1, |a1|+ · · ·+ |an|} .

Cauchy [12] obtained that

|z| ≤ 1 + max {|a1|, · · · , |an|} .

Kittaneh [15] proved that

|z| ≤ 1

2






|an|+ 1 +

√

√

√

√

√(|an| − 1)2 + 4

√

√

√

√

n−1
∑

j=1

|aj|2






.

Fujii and Kubo [10] obtained that

|z| ≤ cos
π

n+ 1
+

1

2



|an|+

√

√

√

√

n
∑

j=1

|aj |2


 .

Bhunia and Paul [4, Th. 2.6] proved that

|z|2 ≤ cos2
π

n+ 1
+ |an−1|+

1

4

(

|an|+
√
α
)2

+
1

2

√

α− |an|2 +
1

2

√
α,

where α =
∑n

j=1 |aj |2.
We consider a polynomial p(z) = z3 + z2 + 1

2
z + 1. Different upper bounds for the

modulus of the zeros of this polynomial, mentioned above, are as shown in the following

table.
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Linden [20] 1.9492

Montel[11] 2.5

Cauchy[12] 2

Kittaneh[15] 2.0547

Fujii and Kubo[10] 1.9571

Bhunia and Paul[4] 1.96761

However, Theorem 3.3 gives |z| ≤ 1.38047091798, Theorem 3.4 gives |z| ≤ 1.3798438819

and Theorem 3.5 gives |z| ≤ 1.381095966, which are better than the above mentioned

bounds.
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