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A DILATION THEORETIC APPROACH TO APPROXIMATION

BY INNER FUNCTIONS

DANIEL ALPAY, TIRTHANKAR BHATTACHARYYA, ABHAY JINDAL AND
POORNENDU KUMAR

Abstract. Using results from theory of operators on a Hilbert space, we prove
approximation results for matrix-valued holomorphic functions on the unit disc
and the unit bidisc. The essential tools are the theory of unitary dilation of a
contraction and the realization formula for functions in the unit ball of H∞. We
first prove a generalization of a result of Carathéodory. This generalization has
many applications. A uniform approximation result for matrix-valued holomor-
phic functions which extend continuously to the unit circle is proved using the
Potapov factorization. This generalizes a theorem due to Fisher. Approximation
results are proved for matrix-valued functions for whom a naturally associated
kernel has finitely many negative squares. This uses the Krein-Langer factoriza-
tion. Approximation results for J-contractive meromorphic functions where J

induces an indefinite metric on CN are proved using the Potapov-Ginzburg Theo-
rem. Moreover, approximation results for holomorphic functions on the unit disc
with values in certain other domains of interest are also proved.

1. Introduction

LetMN (C) be the Banach algebra of allN×N complex matrices with the operator
norm. For Ω = D or Ω = D2, a holomorphic function F : Ω → MN(C) is called
rational if every entry is a rational function with the poles off Ω and is called inner

if the boundary values of the function on the unit circle/torus are unitary matrices
almost everywhere.
Carathéodory, in his study of holomorphic functions from the open unit disc

D = {z ∈ C : |z| < 1} of the complex plane to the closed unit disc D, proved the
following theorem, see Section 284 in [18]. Later, Rudin generalized this to functions
taking values in D but defined on the polydisc Dn, see [33].

Theorem (Carathéodory and Rudin). Let Ω denote the open unit disc D or the
bidisc D2. Any holomorphic function ϕ : Ω → D can be approximated (uniformly
on compact subsets) by rational inner functions.
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Such a function ϕ is said to be in the Schur class. There is a proof of this
theorem through the fact that any solvable Pick-Nevanlinna interpolation problem
has a rational inner solution. This technique carries over to matrix-valued functions.
For decades now, the theory of bounded operators on Hilbert spaces has been

successfully used to give new proofs of complex analytic theorems. Two prominent
examples are Sarason’s approach to H∞ interpolation [34] and Agler’s proof of
Lempert’s theorem [3]. See also [7].
We shall give a new proof of the theorem above in a more general setting, viz.,

when the target set D is replaced by certain compact sets of interest in higher
dimension. This includes matrix-valued functions. We shall use the state space
method, a term coined in [26], motivated by the huge contribution of linear system
theory to function theoretic operator theory by the transfer function realization
formula for operator-valued holomorphic functions on appropriate domains in C or
Cn. See [16] and [27]. The second tool in our kitty is a dilation theorem due to O.
Nevanlinna [31], greatly popularized later by Levy and Shalit in [30].
Carathéodory’s (and Rudin’s) theorem is striking because the approximants map

the unit disc onto itself whereas the approximated function is only required to map
the unit disc into itself. In our proof using the “state space method”, the idea is to
start with the fact that any Schur class function has a realization

ϕ(z) = A+ zB(I − zD)−1C

with the associated system matrix (colligation)
(

A
C

B
D

)

contractive and then pro-

duce approximants ϕm in terms of unitary colligations
(

A
Cm

Bm

Dm

)

. We can ensure
that these unitary colligations act on finite dimensional spaces, thereby making ϕm

rational and inner. The convergence question is converted into showing a matrix
convergence:

BmD
k
mCm → BDkC as m → ∞, for all k ≥ 1.

Carathéodory’s theorem for matrix-valued functions and an appealing character-
ization of matrix-valued rational inner functions on the unit disc by Potapov lead
us to a generalization of Fisher’s theorem. Using the Blaschke product description
of scalar rational inner functions, Fisher proved the following well-known result in
[25].

Theorem (Fisher). Let f be analytic on D, continuous on D, and bounded by
one. Then f may be uniformly approximated on D by convex combinations of finite
Blaschke products.

Potapov showed in [32] that any N ×N matrix-valued rational inner function Φ
is of the form

Φ(z) = U

M
∏

m=1

(

bαm
(z)Pm + (ICN − Pm)

)

for z ∈ D,
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where M is a natural number, U is an N×N unitary matrix, the Pm are projections
onto certain subspaces of CN , the αm are points in the open unit disc and

bα(z) :=
z − α

1− αz
for α ∈ D

stands for a Blaschke factor. Such functions came to be known as Blaschke-Potapov
products with a function of the form bαPM + (ICN − PM) being called a Blaschke-
Potapov factor because bα is a Blaschke factor.
As one of the principal applications of Theorem 2.6, we shall reap a uniform

approximation result for matrix-valued holomorphic functions on D which are con-
tinuous on D as well. This generalizes Fisher’s theorem. The crucial input which
makes this possible is the Blaschke-Potapov formula. This is done in Section 3.
Theorem 2.6 has further applications. The fact that a matrix-valued contractive

holomorphic function F satisfies I ≥ F (z)F (z)∗ as well as, equivalently,

KF (z, w) =
I − F (z)F (w)∗

1− zw
� 0,

where K � 0 for a kernel means that it is positive semi-definite, leads to general-
izations in two different directions. Relaxing the positivity condition, we prove the
following in Section 4. The proof of this uses the Krein-Langer Theorem.
One way to study non self adjoint operators is through their characteristic func-

tions. This inexorably leads to J-contractive functions, where J ∈ CN×N is a
signature matrix, i.e., J = J−1 = J∗, see page 62 of [17] for example. We have ap-
proximation results for J-contractive meromorphic functions as well as for functions
whose kernel corresponding to J (analogous to KF above, but now J replacing the
identity operator) has finitely many negative squares. The terminologies are ex-
plained in the relevant section.
We also have two results about functions taking values into the symmetrized

bidisc Γ or into the tetrablock E. The sets Γ and E as well as the Γ-inner functions
and the E-inner functions will be described in the context in the final section when
we prove the results.
We thank the referees for valuable comments which have greatly improved the

paper.

2. Approximation by dilation

We start with a proposition which is a slight improvement of Lemma 6.2 of [28].
It has the same proof and the proof also carries verbatim in the case the function
F takes its values in rectangular matrices instead of square ones.

Proposition 2.1. Any holomorphic function F : Dn → MN (C) with ‖F (z)‖ < 1
for all z ∈ Dn, can be approximated (uniformly on compact subsets) by matrix-valued
polynomials Pm with ‖Pm‖∞,Dn < 1, for all m ≥ 1.

We now quote a useful tool.
3
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Theorem 2.2 (Realization formula for the disc). Let F : D → MN (C) be a rational
function such that ‖F‖∞ ≤ 1. Then there exist a positive integer d and a contractive
matrix

[

A B

C D

]

: CN ⊕ C
d → C

N ⊕ C
d

such that
F (z) = A+ zB(I − zD)−1C.

This finite-dimensional realization formula is the disc version of the celebrated
Kalman-Yakubovich-Popov lemma; see [21] for an indefinite version of it and [28],
Proposition 4.2 for a recent proof. These two proofs give different points of view.
See also [15].
The next result is the most crucial step towards proving the main theorem.

Theorem 2.3. Any rational function F : D → MN (C) with ‖F (z)‖ ≤ 1 for all z ∈
D can be approximated (uniformly on compact subsets) by MN(C)-valued rational
inner functions.

Proof. The sequence of MN(C)-valued rational inner functions which approximates
F will actually be constructed by mixing two ingredients. First we invoke the
Realization Formula, viz., Theorem 2.2 and set some notations. Let T denote the
contraction

[

A B

C D

]

: CN ⊕ C
d → C

N ⊕ C
d

with DT ∗ and DT being the defect operators (I − TT ∗)1/2 and (I − T ∗T )1/2 respec-
tively. Let

DT ∗ =

[

S1 S2

S3 S4

]

and DT =

[

T1 T2

T3 T4

]

as operators from CN ⊕Cd into itself. Let H := CN ⊕Cd. The second ingredient is a
finite dilation of the contraction T, i.e., for any m ≥ 1, a space Hm consisting of the
direct sum of (m+1) copies of H and a unitary Um on it such that T j = PHU

j
m|H for

j = 1, . . . , m. This idea originated with [31], see also [30]. A sequence of functions
Fm induced by the unitaries Um will be the approximating sequence.
To that end, consider the space

Km
def
= C

d ⊕H ⊕ · · · ⊕ H ⊕ C
N ⊕ C

d,

where H occurs (m− 1) times. Now, consider the block operator matrix

Um :=





















A B 0 . . . 0 S1 S2

C D 0 . . . 0 S3 S4

T1 T2 0 . . . 0 −A∗ −C∗

T3 T4 0 . . . 0 −B∗ −D∗

0 0 IH . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . IH 0 0
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acting on the space CN ⊕Km. A straightforward calculation will show that Um is a

unitary matrix. This Um is our

[

A Bm

Cm Dm

]

alluded to in the introduction. We note

that

Bm =
[

B 0 . . . 0 S1 S2

]

, Cm =
[

C T1 T3 0 . . . 0
]t
,

and

Dm =

















D 0 . . . 0 S3 S4

T2 0 . . . 0 −A∗ −C∗

T4 0 . . . 0 −B∗ −D∗

0 IH . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . IH 0 0

















.

For fixed k ≥ 1, we shall show that

BmD
k
mCm = BDkC (2.1)

for all m ≥ k + 2. First note that for m ≥ 3, the matrix DmCm : CN → Cd ⊕CN ⊕
C

d ⊕ C
N ⊕ C

d ⊕ · · · ⊕ C
N ⊕ C

d is given by
[

DC T2C T4C T1 T3 0 . . . 0
]t
.

Also, a simple calculation gives the following

Dk
mCm =

[

DC ∗ ∗ ∗ . . . ∗ 0 0
]t
, for m ≥ k + 2,

where the asterisk symbols mean that certain matrices are there which do not enter
later computation. A matrix multiplication then yields (2.1).
To summarize, we have proved that there is a sequence of finite-dimensional

Hilbert spaces Hm, viz., the direct sum of m + 1 copies of H and a sequence of
unitary matrices Um on them satisfying a convergence property as follows.

Hm = C
N ⊕Km and

[

A Bm

Cm Dm

]

: CN ⊕Km → C
N ⊕Km

and BmD
k
mCm → BDkC (in norm) for all k ≥ 1. We are ready to define the

approximants.
Consider the matrix-valued functions Fm defined as

Fm(z) = A + zBm(I − zDm)
−1Cm.

The functions Fm are rational inner because

[

A Bm

Cm Dm

]

are unitary matrices. Fix

a compact set S ⊂ D. For given ǫ > 0, there exists M0 ∈ N such that

|z|l < ǫ for all l ≥ M0 and z ∈ S.
5
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Now,

‖F (z)− Fm(z)‖

=‖z

∞
∑

k≥0

(BmD
k
mCm −BDkCzk)‖

≤|z|

∞
∑

k≥0

‖BmD
k
mCm −BDkC‖|z|k

=|z|

M0−1
∑

k≥0

‖BmD
k
mCm − BDkC‖|z|k + |z|

∞
∑

k≥M0

‖BmD
k
mCm −BDkC‖|z|k

≤|z|
M0−1
∑

k≥0

‖BmD
k
mCm − BDkC‖|z|k + ǫ

2|z|

1− |z|

=ǫ
2|z|

1− |z|
( for all m ≥ M0 + 1).

Therefore, the sequence of rational inner functions Fm converges uniformly on com-
pact subsets of D. �

Theorem 2.4. Any holomorphic function F : D → MN (C) with ‖F (z)‖ ≤ 1 for
all z ∈ D can be approximated (uniformly on compact subsets) by MN (C)-valued
rational inner functions.

Proof. By maximum norm principle, [Theorem 2, [19]], either ‖F (z)‖ < 1 for all
z ∈ D, or ‖F (z)‖ ≡ 1.
Case-1: ‖F (z)‖ < 1 for all z ∈ D.

In this case, Proposition 2.1 and Theorem 2.3 together will give us an approximation
of F by matrix-valued rational inner functions.
Case-2: ‖F (z)‖ ≡ 1.

By Theorem 4 of [19], there are N ×N constant unitary matrices U and V, and an
analytic function G : D → MN−1 with ‖G(z)‖ ≤ 1 for all z ∈ D, such that

F (z) = U

[

1 0
0 G(z)

]

V. (2.2)

So, ifN = 2, then Caratheodory’s Theorem together with the equation (2.2) will give
us an approximation of F by matrix-valued rational inner functions. Inductively,
we can prove the result for N > 2. �

The approximation theorem above continues to hold for matrix-valued functions
on the bidisc. We shall outline the proof below. The finite dimensional realization
formula we need has recently been proven by Knese in [28].

Theorem 2.5 (Realization formula for the bidisc). Let F : D2 → MN (C) be a
rational function such that ‖F‖∞ ≤ 1. Then there exist positive integers d1, d2 and

6
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a contractive matrix
[

A B

C D

]

: CN ⊕ C
d → C

N ⊕ C
d with d = d1 + d2

such that with the notation Z = z1Id1 ⊕ z2Id2, we have

F (z1, z2) = A+BZ(I −DZ)−1C.

Theorem 2.6. Any holomorphic function F : D2 → MN(C) with ‖F (z1, z2)‖ ≤ 1
for all (z1, z2) ∈ D2 can be approximated (uniformly on compact subsets) by MN(C)-
valued rational inner functions.

Proof. Let F : D2 → MN (C) be a holomorphic map with ‖F (z1, z2)‖ ≤ 1 for all
(z1, z2) ∈ D2. Then in view of Lemma 6.1 of [28], it is enough to consider the case
when ‖F (z1, z2)‖ < 1 for all (z1, z2) ∈ D

2. Now by Proposition 2.1, we can take
F to be a polynomial. Invoke Theorem 2.5 to get positive integers d1, d2 and a
contractive matrix

T =

[

A B

C D

]

: CN ⊕ C
d → C

N ⊕ C
d with d = d1 + d2

such that with the notation Z = z1Id1 ⊕ z2Id2 , we have

F (z1, z2) = A+BZ(I −DZ)−1C.

Consider them-unitary dilation
(

A Bm

Cm Dm

)

of T on CN⊕Km. A matrix multiplications
then yields that

BmZm(DmZm)
kCm = BZ(DZ)kC, for m ≥ k + 2

where Zm = diag (Z, ∗, ∗, . . . , ∗) be any diagonal operator acting on Km and the
asterisk symbols stand for diagonal matrices whose diagonal entries are either z1 or
z2 or eiθ for some θ. Consider the matrix-valued rational inner functions Fm on D2

defined as
Fm(z1, z2) = A+BmZm(I −DmZm)

−1Cm.

A similar argument as in the case of the disc will give that the sequence of rational
inner functions Fm converges to F uniformly on compact subsets of D2.

�

Remark 2.7. A comment about the case of the polydisc Dn is in order for n > 2.
Let ϕ be a function from the Schur-Agler class, i.e., ϕ is in H∞

n in the notation of
[2]. Let {z1, z2, . . . } be a countable dense subset of Dn. Consider for every m ≥ 1,
the solvable Pick-Nevanlinna interpolation data {(z1, ϕ(z1)), . . . , (zm, ϕ(zm))}. It
is known that this has a rational inner solution ϕm from the Schur-Agler class.
Montel’s theorem then proves that there is a subsequence of {ϕm} converging to ϕ

uniformly over compact subsets of Dn. This technique carries over to matrix-valued
functions of Schur-Agler class. This matrix-valued version of Rudin’s result is not
known if ϕ is in Schur class because the Schur class is bigger than the Schur-Agler
class. Also, the state space method cannot be applied to prove the result even for

7
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the Schur-Agler class because a finite realization for rational inner functions on the
polydisc is not known. This is a limitation for the state space method.

3. The convex hull of matrix-valued rational inner functions on

the disc

From now on, our functions will be on D. It follows from Potapov’s work that
every matrix-valued rational inner function is holomorphic in a neighbourhood of
the closed unit disc D. In this section, we shall give a description of the closed
convex hull of the matrix-valued rational inner functions generalizing the theorem
in [25].
Let F be an MN (C)-valued function which is holomorphic in D and continuous

on D. For 0 ≤ r ≤ 1, set

Fr(z) := F (rz) (z ∈ D). (3.1)

Clearly, Fr is holomorphic in D and continuous on D for any 0 ≤ r ≤ 1. The
following two lemmas follow from direct calculations.

Lemma 3.1. Let Φ,Ψ be two MN (C)-valued rational inner functions. Suppose for
some fixed r ∈ [0, 1], Φr,Ψr can be written as convex combination of rational inner
functions, then (ΦΨ)r can also be written as convex combination of rational inner
functions.

Lemma 3.2. Let Φ be an MN(C)-valued rational inner functions and U ∈ MN(C)
be a unitary. Suppose for some fixed r ∈ [0, 1], Φr can be written as convex combina-
tion of rational inner functions, then UΦr can also be written as convex combination
of rational inner functions.

Lemma 3.3. If Φ is any MN (C)-valued rational inner function, then for any 0 ≤
r ≤ 1, Φr can be written as convex combination of MN (C)-valued rational inner
functions.

Proof. Note that if ϕ is a scalar-valued rational inner function and P is an orthogonal
projection of CN onto some subspace, then the matrix-valued function ϕP +(ICN −
P ) is also rational inner. For a Blaschke factor b and for any 0 ≤ r ≤ 1, it follows
from [25] that br, as defined in (3.1) can be written as a convex combination of
scalar-valued rational inner functions. So the MN (C)-valued holomorphic function
brP + (ICN −P ) can be written as a convex combination of MN(C)-valued rational
inner functions. The rest of the proof follows from Lemma 3.1 and Lemma 3.2. �

Lemma 3.4. Let F be an MN (C)-valued function which is holomorphic in D and
continuous on D. Then Fr converges uniformly to F on D as r → 1.

Proof. If F is scalar-valued, then it follows from Mergelyan’s theorem. Since MN(C)
is finite dimensional, all norms on MN (C) are equivalent. So there exists a positive
constant cN such that

‖A‖ ≤ cN max
i,j

|aij|

8
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for all A = [aij ]N×N , where ‖A‖ is the operator norm of matrix A. Let F = [Fij ]N×N .

Let ǫ > 0 be given. Since each Fij is scalar-valued, there exists r close to 1 such
that

|Fij(z)− Fij(rz)| <
ǫ

cN

for all z ∈ D and for all i, j. So we get

‖F (z)− F (rz)‖ ≤ cN max
i,j

|Fij(z)− Fij(rz)| < ǫ

for all z ∈ D. This concludes the proof. �

We are now ready with the generalization of Fisher’s theorem.

Theorem 3.5. Let F be an MN (C)-valued function which is holomorphic in D and
continuous on D. Suppose ‖F (z)‖ ≤ 1 for all z ∈ D. Then F can be uniformly ap-
proximated on D by convex combinations of MN (C)-valued rational inner functions.

Proof. Let ǫ > 0 be given. By Lemma 3.4, there exists r ∈ (0, 1) such that

‖F − Fr‖∞,D <
ǫ

2
.

Let Dr be the closed unit ball of radius r centered at 0. By Theorem 2.6, there exists
an MN (C)-valued rational inner function Φ such that

‖F − Φ‖∞,Dr
<

ǫ

2
.

This implies

‖Fr − Φr‖∞,D <
ǫ

2
.

So we get

‖F − Φr‖∞,D < ǫ.

By Lemma 3.3, it follows that Φr itself is a convex combination of MN (C)-valued
rational inner functions. �

4. Relaxing analyticity

4.1. Meromorphic functions.

Theorem 4.1. Let F be an MN (C)-valued meromorphic function on D. Suppose the

kernel KF (z, w) =
I−F (z)F (w)∗

1−zw
has finitely many negative squares. Let A(F ) ⊂ D be

the set on which F is analytic. Then F can be approximated uniformly on compact
subsets of A(F ) by rational functions which are unitary matrix-valued on the unit
circle. Moreover if F is continuous on the unit circle, then F can be approximated
uniformly on the unit circle T by convex combinations of quotient of matrix-valued
rational inner functions.

9
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Proof. There is a remarkable factorization of operator-valued functions, due to Krein
and Langer, for those functions F which satisfy that KF has finitely many negative
squares, see [29], [22]. Since our function is matrix-valued, the Krein-Langer fac-
torization in this context says that there exists a Blaschke-Potapov product B of
degree k and a matrix-valued holomorphic function on the disc L such that

F (z) = B(z)−1L(z)

and ‖L(z)‖ ≤ 1 for all z ∈ D. We apply Theorem 2.6 to get a sequence {Lm}
of matrix-valued rational inner functions converging to L uniformly on compact
subsets of D. Then, the sequence B(z)−1Lm(z) does the job.
In the case when F is continuous on the unit circle, we use holomorphicity of B

in a neighbourhood of D to conclude that the L obtained above is continuous on
T and ‖L(z)‖ ≤ 1 for all z ∈ T. Now we invoke Theorem 3.5 to get a sequence of
convex combinations of matrix-valued rational inner functions {Lm} such that Lm

converges to L uniformly on D. Define

Fm(z) = B(z)−1Lm(z).

Consider

‖F (z)− Fm(z)‖ = ‖B(z)−1(L(z)− Lm(z))‖ ≤ ‖B(z)−1‖‖L(z)− Lm(z)‖.

Since B is continuous on T, Fm converges to F uniformly on T.

If we apply the right Krein-Langer factorization, then

F (z) = R(z)B̃(z)−1.

By a similar calculation Rm(z)B̃(z)−1 will approximate F uniformly on T where Rm

approximates R as in Theorem 3.5. That completes the proof of Theorem 4.1. �

4.2. J-contractive functions. In a new direction of generalization, we consider
the case of indefinite metric in the coefficient space CN , that is kernels of the form

J − F (z)JF (w)∗

1− zw

where J ∈ C
N×N is a signature matrix. Such a matrix is unitarily equivalent to J0

defined by

J0 =

[

Ip 0
0 −Iq

]

, p+ q = N,

with J0 = IN if q = 0 and J0 = −IN if p = 0. We are interested in the case p > 0,
q > 0. In the sequel we focus on the case J = J0. The formulas presented are valid
for arbitrary J (for which p > 0 and q > 0 in the corresponding J0).
We will use the Potapov-Ginzburg transform (see [11, 17]), which allows to reduce

to the case J = J0 = IN . Following [9], we set

P =
IN + J0

2
and Q =

IN − J0

2
.

10
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For J = J0 at hand, we have

P =

[

Ip 0
0 0

]

and Q =

[

0 0
0 Iq

]

and

P +QF (z) =

[

Ip 0
F21(z) F22(z)

]

.

Writing F =

[

F11 F12

F21 F22

]

we will assume that detF22 6≡ 0.

Definition 4.2. The Potapov-Ginzburg transform of F is given by

Σ(z) = (PF (z) +Q) (P +QF (z))−1,

at those points where the inverse exists, with inverse given by

F (z) = (P − Σ(z)Q)−1(Σ(z)P −Q).

The following formulas hold. See [9, p. 66], [10].

Σ(z) = (P − F (z)Q)−1(F (z)P −Q)

F (z) = (Q + PΣ(z))(P +QΣ(z))−1

IN − Σ(z)Σ(w)∗ = (P − F (z)Q)−1 (J0 − F (z)J0F (w)∗) (P − F (w)Q)−∗(4.1)

IN − Σ(w)∗Σ(z) = (P +QF (w))−∗ (J0 − F (w)∗J0F (z)) (P +QF (z))−1

A function F meromorphic in D is called J0-contractive if

F (z)J0F (z)∗ ≤ J0

at each point of analyticity of F in D. Such a function is in particular of bounded
type in D and admits non-tangential limits almost everywhere on the unit circle. A
matrix A is called J0-unitary if AJ0A

∗ = J0. A rational function F will be called
J0-inner if the limiting values exist and are J0-unitary everywhere on the unit circle
except possibly at a finite number of points. In the following theorem, we mention
a special case first for the sake of better exposition.

Theorem 4.3.

(1) Let F be J0-contractive, with domain of analyticity A(F ) ⊂ D. Then, F can
be approximated uniformly on compact subsets by rational J0-inner functions.

(2) Let F be meromorphic in the open unit disc with domain of analyticity
A(F ) ⊂ D such that the kernel

J0 − F (z)J0F (w)∗

1− zw

has a finite number of negative squares in A(F ). Then F can be approxi-
mated uniformly on compact subsets of A(F ) by rational J0-inner functions.
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Proof. The Potapov-Ginzburg transform of F exists by [23, Theorem 1.1, p. 14]. By
(4.1), Σ is contractive and meromorphic in the open unit disc, and hence contractive
and analytic there (the contractivity implies that the isolated singularities of F are
removable). Applying Theorem 2.6 to Σ we can write Σ = limm→∞ Bm, where the
Bm are finite Blaschke products and where the convergence is uniform on compact
subsets of the open unit disc. Writing Bm = ((Bm)ij)

2
i,j=1 where (Bm)22 is Cq×q-

valued, we have in particular

lim
m→∞

det(Bm)22 = detΣ22

and in particular detBm 6≡ 0 form large enough. It follows that the inverse Potapov-
Ginzburg transforms, say Fm, of the Bm exist for such m. The functions Fm are
rational and J0-inner. That completes the proof of part (1).
We now consider the case of negative squares and recall that its Potapov-Ginzburg

transform, say Σ, is well defined (see e.g. [12, Theorem 6.8]). It follows from (4.1)
that

IN − Σ(z)Σ(w)∗

1− zw
= (P − F (z)Q)−1J0 − F (z)J0F (w)∗

1− zw
(P − F (w)Q)−∗

and in particular the kernel IN−Σ(z)Σ(w)∗

1−zw
has a finite number of negative squares in

the open unit disc. We apply Theorem 4.1 to Σ, and we get an approximation for
F by taking the inverse Potapov-Ginzburg transform. Thus, we have proved part
(2) of Theorem 4.3. �

5. Γ-valued and E-valued functions

Let Ω be a bounded polynomially convex domain. The distinguished boundary
bΩ is the smallest closed subset of Ω on which every continuous function on Ω that
is analytic in Ω attains its maximum modulus.

Definition 5.1. A rational Ω− inner function is a rational analytic map x : D → Ω
with the property that x maps T into the distinguished boundary bΩ of Ω. The
degree, deg(x), of a rational Ω− inner function is defined to be the maximum of
degree of each components.

This section deals with functions which take values into the symmetrized bidisc

Γ = {(z + w, zw) : |z| ≤ 1, |w| ≤ 1}

or into the tetrablock

E = {(a11, a22, det(A)) : A =

[

a11 a12
a21 a22

]

satisfies ‖A‖ ≤ 1}.

The sets Γ and E are non-convex and polynomially convex domains. The sym-
metrized bidisc was introduced by Agler and Young in [8] and the tetrablock was
introduced by Abouhajar, White and Young in [1]. A great deal of function theory
and operator theory has been done on these two domains. The following criteria
will be useful. Let G be the open symmetrized bidisc.

12
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Proposition 5.2. [8] Let (s, p) ∈ C2. The point (s, p) ∈ G (respectively Γ) if and
only if

|s| < (respectively ≤)2, and |s− sp| < (respectively ≤)1 − |p|2.

The point (s, p) ∈ bG if and only if |s| ≤ 2, |p| = 1, and s = sp.

There are similar criteria about the tetrablock.

Proposition 5.3. [1] Let (x1, x2, x3) ∈ C
3. The point (x1, x2, x3) ∈ E (respectively

E) if and only if

|x1 − x2x3|+ |x2 − x1x3| < (respectively ≤)1 − |x3|
2.

The point (x1, x2, x3) ∈ bE if and only if x1 = x2x3|, |x3| = 1, and |x2| ≤ 1.

Algebraic and geometric aspects of rational Γ− inner functions were studied in
[6]. For details about rational Γ− inner functions and rational E− functions, see
[5, 6, 13, 14].

Proposition 5.4. Any holomorphic function h = (s, p) : D → Γ can be approxi-
mated (uniformly on compact subsets) by rational Γ-inner functions.

Proof. Let h = (s, p) : D → Γ be a holomorphic function. Invoke Proposition 6.1
of [4] to obtain an analytic function F : D → M2(C) with ‖F (λ‖ ≤ 1 for all λ ∈ D

such that

h = (trF, detF ).

By Theorem 2.6, there exists a sequence of matrix-valued rational inner functions
{Fm} on D which approximates F uniformly on compact subsets of D. For each
m ∈ N, consider the holomorphic functions hm : D → Γ defined as

hm := (trFm, detFm).

It is easy to see that hm are rational functions.
To prove that hm are Γ-inner functions, we only need to make the elementary

observation that for a unitary matrix A, the eigenvalues λ1 and λ2 lie in T. So,
(trA, detA) = (λ1+λ2, λ1λ2) ∈ bΓ. Since Fm are inner, Fm(λ) are unitaries a.e. on
the circle. Thus, hm are Γ-inner functions.
Since Fm converges to F uniformly on compact subsets, it follows that (Fm)ij con-

verges to Fij uniformly on compact subsets. Therefore, hm converges to h uniformly
on compact subsets of D. �

We remark that the method of proof of Carathéodory’s theorem through Pick-
Nevanlinna interpolation can also be applied to approximate holomorphic functions
from D into the symmetrized bidisc because of a result of Costara, see Theorem 4.2
in [20].

Proposition 5.5. Any holomorphic function x = (x1, x2, x3) : D → E can be
approximated (uniformly on compact subsets) by rational E-inner functions.

13
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Proof. Let x = (x1, x2, x3) be as in the above Theorem. By Lemma 7 of [24], there
exists an analytic function F : D → M2(C) with ‖F (λ‖ ≤ 1 for all λ ∈ D such that

x = (F11, F22, detF )

where F = [Fij ]
2
i,j=1. Again by Theorem 2.6, there exists a sequence of matrix-valued

rational inner functions {Fm} on D which approximates F uniformly on compact
subsets of D. For m ∈ N, define the holomorphic maps xm : D → E by

xm = ((Fm)11, (Fm)22, detFm).

Now we shall prove that this xm will do our job. It is easy to see that xm are rational
functions. Now we shall prove that xm are E-inner functions. Since Fm are inner,
Fm(λ) are unitaries a.e. on the circle. It follows that xm(λ) ∈ bE a.e. λ ∈ T, see
Theorem 7.1 of [1]. Thus, xm are rational E-inner functions.
Since Fm converges uniformly on compact subsets to F , (Fm)11, (Fm)22, and

detFm converges uniformly on compact subsets to F11, F22 and detF respectively.
Hence xm converges uniformly on compact subsets of D to x. This completes the
proof. �
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