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1 Introduction

Krylov complexity (K-complexity in short) has recently been proven to be a useful probe in
diagnosing scrambling and quantum chaos [3, 4]. In particular, Krylov-complexity growth is
conjectured to upper bound the growth of Lyapunov exponent at any finite temperature [3,
5]. Correspondingly, the Lanczos coefficients, an output of the Lanczos algorithm [6, 7],
which is the basic machinery of computing K-complexity, show distinct “asymptotic” be-
havior in its integrable and chaotic evolution, albeit some exceptions [8, 9]. The behavior
of Lanczos coefficients and correspondingly K-complexity captures both the early time as
well as late time chaos [10–13]. While the initial coefficients usually show different scalings
for integrable and chaotic cases characterizing the early time distinction, in late times, the
two cases are distinguished by observing the fluctuations in the coefficients, dubbed as the
Krylov localization [11]. This phenomenon is manifested in the late-time saturation of K-
complexity, with chaotic systems showing higher saturation than integrable counterparts.

In our previous works [1, 2], we initiated a systematic study of such formalism in
open quantum systems (see [14–24] for some recent works on operator growth and chaos
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on non-Hermitian and open quantum systems). A long-term motivation for such a study
is to sharpen the understanding of black hole physics by considering open quantum field
theories [25]. Unlike the closed systems, the open system operator evolution (under the
realm of Markovian dynamics [26]) is characterized by a non-unitary evolution through
the exponentiated non-Hermitian Lindbladian Lo · = [H, · ] + iT , where the second term
represents the non-Hermitian part [27, 28]. The knowledge of the system and its interac-
tion with the environment is assumed through the Hamiltonian and some Lindblad (jump)
operators. In such cases, the previous study of spin chains [1] and dissipative Sachdev-Ye-
Kitaev (SYK) [2] generalize the result of [3], by proposing two sets of Lanczos coefficients,
characterizing the operator growth in generic systems. Both use Arnoldi iteration [29]
which generalizes the Lanczos algorithm to the non-Hermitian evolution, the coefficients
show distinct and consistent exploration of the Krylov basis for integrable and chaotic
parameter regimes. However, on the Arnoldi basis, the Lindbladian does not reduce to a
pure tridiagonal matrix, rather it features an upper-Hessenberg form. Due to such a finitely
large number of coefficients (however small they are), the computation of the complexity
becomes increasingly difficult with system sizes. However, some analytic results have been
obtained in dissipative SYK [2], where the complexity appears to be suppressed and in-
versely proportional to the dissipation parameter for a particular class of Lindbladian [30].
Although the results feature the dynamics of an inherently chaotic system, a substantial
class of dissipative integrable systems remains largely unexplored.

In this paper, we bridge this gap by performing systematic studies of spin chains that
can be smoothly tuned to integrable and chaotic regimes. We also focus on a specific in-
tegrable interacting system. The first example is the transverse-field Ising model (TFIM)
while the second one is the interacting XXZ chain. We work with a different algorithm
known as the bi-Lanczos algorithm which is an efficient algorithm for evolution under a
non-Hermitian Lindbladian superoperator. This is conceptually different from the previ-
ously studied Arnoldi iteration [1, 2]. Both algorithm essentially tackles the same problem
yet falls into a distinct class of projection method. The bi-Lanczos algorithm deals with the
evolving “bra” and “ket” vectors separately, therefore constructing two Krylov bases instead
of one. We find that a successful implementation of the bi-Lanczos algorithm explores the
Krylov basis efficiently. Unlike the Arnoldi iteration, in the bi-orthogonal basis (we continue
to call it Krylov basis unless any confusion arises), the Lindbladian can be recast in a fully
tridiagonal form. The imaginary diagonal coefficients contain the information on the dissi-
pation, while the off-diagonal elements depend on the integrable nature of the Hamiltonian.
This simple tridiagonal form enables us to compute the complexity efficiently, especially
its late-time saturation. However, the effect of dissipation makes the late-time chaos more
involved compared to the closed system. In particular, we carefully study the role of dissi-
pation in the suppression of complexity which is ascribed as “Krylov localization” [11]. In
both of our models, featuring integrable and chaotic regimes, we find similar results.

The rest of the paper is structured as follows. In section 2, we explain the closed system
Lanczos algorithm and the bi-Lanczos algorithm applied to the open system evolution. We
also define the normalized version of the K-complexity that we will be using throughout. In
section 3, we introduce our main model (TFIM) and the results, especially subsection 3.2
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present our main results for open TFIM. Finally, in section 4, we conclude with some future
directions. Various appendices contain supporting information. In appendix A, we show
how the bi-Lanczos algorithm reduces to Lanczos for unitary evolution. In appendix B, we
discuss the open XXZ model and the results obtained there, which agree with the results
of open TFIM, presented in the main text. In appendix C, we discuss some extensions of
the bi-Lanczos algorithm to spread complexity.

2 Krylov algorithms for closed and open systems

In this section, we briefly introduce the construction of the Krylov basis in both closed and
open systems. In the closed system, the straightforward procedure is to apply the Lanczos
algorithm. However, in the open systems, there exist two different algorithms, Arnoldi
iteration, and the bi-Lanczos algorithm. Both algorithms come with their own advantages
and disadvantages. Arnoldi iteration was previously applied in dissipative spin chains and
dissipative SYK [1, 2].1 Here, we introduce the bi-Lanczos algorithm in subsection 2.2,
which will be our main concern in this paper.

2.1 Closed system and Lanczos algorithm

We start our discussion with the closed systems where the Liouvillian is Hermitian. Hence,
the operator evolution is unitary. In this case, the time-evolved operator in Heisenberg
evolution can be written as

O(t) = eiHt O(0) e−iHt = O(0) + it[H,O(0)] + (it)2

2 [H, [H,O(0)]] + · · · = eiLtO(0) ,

where L · = [H, · ] is the Liouvillian. A convenient way to study the growth of a simple
operator is to realize them as states, namely O(0) ≡ |O0), and to introduce a notion of an
inner product. We will be dealing with the infinite-temperature inner product, also known
as the Frobenius norm

(Om|On) = Tr [O†mOn]
Tr [ I ] . (2.1)

Our task is to build a fully orthonormal basis out of the repetitive action of L on |O0). The
conventional way to do this is to perform the well-known Lanczos algorithm. The resulting
basis, known as the Krylov basis satisfies

L|On) = bn|On−1)− bn+1|On+1) . (2.2)

1Closed system Lanczos basis has also been applied to open systems [14]. Refer to [2] for a comprehensive
discussion between different approaches.
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with the matrix element of the Liouvillian given by a tridiagonal matrix

Lmn = (Om|L|On) ⇒ L =



0 b1 0
b1 0 b2

b2 0 . . .
. . . . . . bm

bm 0 . . .

0 . . . . . .


. (2.3)

In this basis, the diagonal elements vanish and the full information of the growth of the
operator contains in the set of coefficients bn, known as the Lanczos coefficients. In fi-
nite dimensional systems, the set of bn is finite and terminated once the Krylov space is
exhausted. Nevertheless, an asymptotic growth can still be understood by considering a
suitable region of bn, usually termed as “Lanczos ascent” [31]. For chaotic systems, the
growth is conjectured to be linear in n, [3], while the integrable systems usually show
sublinear growth [3] (some exceptions were also found in [8, 9]).

A consistent understanding of the spread of an operator in the Krylov basis can be
developed by expanding the time-evolved operator in the following manner

|O(t)) =
K−1∑
n=0

inφn(t)|On) , (2.4)

where the time-dependent coefficients, known as Krylov wavefunctions φn(t) are understood
as the probability amplitudes of finding the operators in the n-th Krylov basis at time
t. For a unitary evolution, this results in the probability conservation equation, namely∑K−1

n=0 |φn(t)|2 = 1. The Krylov complexity (K-complexity in short) in this basis is then
defined as the average position of the Krylov operator satisfying K̂|On) = n |On):

K(t) = (O(t)|K̂|O(t)) =
K−1∑
n=0

n |φn(t)|2 . (2.5)

The growth of Lanczos coefficients directly reflects in the growth of K-complexity. The
linear growth of Lanczos coefficients gives rise to the exponential growth of complexity,
while the sublinear growth of Lanczos coefficients correspond to the polynomial growth of
K-complexity [3, 4].

2.2 Open system: Arnoldi and bi-Lanczos algorithms

In the case of open systems, the analog of Liouvillian within the Born-Markovian approx-
imation is the Lindbladian (Lo), which is non-Hermitian. This makes the evolution eiLot

becomes non-unitary. In this case, apart from the usual commutator term, there exists an
extra piece constructed out of the Lindblad (jump) operators. These Lindblad operators,
built out of system operators, reflect the interaction of the system with its environment.

In such cases, the usual Lanczos algorithm fails to work efficiently, precisely due to its
non-Hermiticity. Generalizing to the open systems leads to consideration of the Arnoldi
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iteration that can generate a systematic orthonormal basis from the non-Hermitian Lind-
bladian. However, as found in [1, 2], it recasts the Lindbladian into an upper-Hessenberg
form, which is not ideally suitable to compute probabilities and complexity due to the
existence of a substantial number of elements in the matrix. In this work, we use the bi-
Lanczos algorithm, a complementary approach compared to the Arnoldi iteration. Without
the environmental interaction, it reduces to the usual Lanczos algorithm. This algorithm,
however, turns out to be efficient in computing probabilities and complexity since it recasts
the Lindbladian into a pure tridiagonal form. The primary idea is to generate two separate
Krylov basis sets; in particular, one defines them as two sets of bi-orthonormal vectors |pn⟫
and |qn⟫ such that

⟪qm|pn⟫ = δmn , (2.6)

where the “double braces” indicates that the vectors are constructed using the Choi-
Jamiołkowski (CJ) isomorphism [32, 33]. This efficiently takes care of the non-Hermitian
vectors after the action of the non-Hermitian Lindbladian. The reason is that a general
element |pn⟫ of the ket-Krylov basis will be non-Hermitian and will generically not be
orthonormal to itself i.e., ⟪pm|pn⟫ 6= δmn. However, once two separate bases are generated
consistently as two bi-orthogonal vector spaces, the construction makes sure that eq. (2.6)
is satisfied for all the elements of the two bases. This notion was first hinted in [1, 2, 34].2
In this case, the action of Lo on the ket space |pn⟫ from left is realized the generalized
Lanczos algorithm while the action of Lo on bra space ⟪qn| is realized by acting L†o on the
ket space generated by |qn⟫. The starting vector is usually taken as |p0⟫ = |q0⟫ before
applying the Lindbladian. However, in general |pn⟫ 6= |qn⟫ for n > 0. This extends the
Lanczos algorithm to the non-Hermitian case by a two-sided iterative algorithm, namely by
bi-orthogonalizing via a two-sided Gram-Schmidt procedure. The two Krylov sequences [35]

Kj(Lo, p0) = {p0,Lo p0,L2
o p0, . . .} ,

Kj(L†o, q0) = {q0,L†o q0, (L†o)2 q0, . . .} ,

themselves do not generate orthonormal subspace. However, the two sequences of vectors
{qi} and {pi} are generated using the three-term recurrences

cj+1|pj+1⟫ = Lo|pj⟫− aj |pj⟫− bj |pj−1⟫ (2.7)
b∗j+1|qj+1⟫ = L†o|qj⟫− a∗j |qj⟫− c∗j |qj−1⟫ . (2.8)

The vectors {pi} and {qi} are called bi-Lanczos vectors, they span Kj(Lo, p0) and Kj(L†o, q0)
respectively and are bi-orthonormal.

In order to express the Lindbladian in this bi-orthonormal basis, it is customary to
define vectors in matrix notation as follows

P = (p0 p1 . . . pm . . .) , Q = (q0 q1 . . . qm . . .) . (2.9)

2We thank Xiangyu Cao for suggesting this to us during the preparation of the work [1].
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Then the Lindbladian is expressed as

[Lo] = Q†LoP =



a0 b1 0
c1 a1 b2

c2 a2
. . .

. . . . . . bm

cm am
. . .

0 . . . . . .


. (2.10)

Below, we outline the detailed algorithm to construct such bases. The algorithm goes as
follows [36, 37]:

1. Let |p0⟫, |q0⟫ ∈ Cn be arbitrary vectors with ⟪q0|p0⟫ = 1., i.e., we choose |p0⟫ =
|q0⟫ ≡ |O0) at the initial step.

2. The initial iteration steps are given as follows:

(a) Let |r′0⟫ = Lo|p0⟫ and |s′0⟫ = L†o|q0⟫.
(b) Compute the inner product a0 = ⟪q0|r′0⟫.
(c) Define |r0⟫ = |r′0⟫− a0|p0⟫ and |s0⟫ = |s′0⟫− a∗0|q0⟫.

3. for j = 1, 2, . . ., perform the following steps:

(a) Compute the inner product ωj = ⟪rj−1|sj−1⟫.
(b) Compute the norm cj =

√
|ωj | and bj = ω∗j /cj .

(c) If cj 6= 0, let

|pj⟫ = |rj−1⟫
cj

& |qj⟫ = |sj−1⟫
b∗j

. (2.11)

(d) If required, perform the full orthogonalization3

|pj⟫ = |pj⟫−
j−1∑
i=0
⟪qi|pj⟫ |pi⟫ , |qj⟫ = |qj⟫−

j−1∑
i=0
⟪pi|qj⟫ |qi⟫ .

(e) Let |r′j⟫ = Lo|pj⟫ and |s′j⟫ = L†o|qj⟫.
(f) Compute aj = ⟪qj |r′j⟫.
(g) Define the vectors:

|rj⟫ = |r′j⟫− aj |pj⟫− bj |pj−1⟫ , |sj⟫ = |s′j⟫− a∗j |qj⟫− c∗j |qj−1⟫ .
and go back to step 3.

4. If cj = 0 for some j = K − 1, where K is the Krylov dimension, let P =
(p0 p1 . . . pK−1), and Q = (q0 q1 . . . qK−1). The Lindbladian is then given
by [Lo] = Q†LoP .

3We have explicitly performed this full re-orthogonalization after each iteration and therefore the basis
is exactly bi-orthonormal.
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2.3 Properties based on observation

Here we list down the observations based on the results derived from the application of
the bi-Lanczos algorithm on various models. As we have stated earlier, the bi-Lanczos
algorithm gives the Lindbladian of the form (2.10). The matrix elements have the following
properties:

1. Im(cn) = 0 since cn =
√
|ωn| which is always real.

2. In general, bn 6= cn. To see this, assume that bn = cn, so that by definition

cn =
√
|ωn| & bn = ω∗n

cn
,

bn = cn ⇒ |ωn| = ωn .

which in turn means that ωn must be positive real number but from definition ωn =
⟪rn−1|sn−1⟫ which in general is a complex number.

3. However, |bn| = |cn| since by construction

cn =
√
|ωn| ⇒ |ωn| = c2

n .

bn = ω∗n
cn

⇒ |bn| =
|ωn|
|cn|

= |cn| .

Note that in this case, by construction, there are no further matrix elements. Since |bn| =
|cn|, they can differ only by a phase factor. In fact, we numerically find that bn = cn ∈ R+

and diagonals an are purely imaginary (an = ian) and positive4 (an ∈ C+). Therefore in
further calculations, we take bn = cn = |bn| and an = i|an|. We, therefore, end up with an
effective tridiagonal matrix of the following form

Lo =



i|a0| |b1| 0
|b1| i|a1| |b2|

|b2| i|a2|
. . .

. . . . . . |bm|

|bm| i|am|
. . .

0 . . . . . .


. (2.12)

In later sections, we consider specific examples and construct the corresponding Lindbla-
dian.

4In some special cases, some of the purely imaginary diagonals might be negative, although the trace of
the tridiagonalized matrix will still be positive. We thank Niklas Hörnedal for pointing this out to us.
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2.4 Probability and Krylov complexity

Unlike isolated closed systems, in open quantum systems, one would in general expect the
probability of finding the operator within the system Krylov basis to decay with time. This
is expected because the operator spread in this case is not limited to the system subspace
and can always get support from the environment. Within the open system treatment, al-
though we construct a systematic bi-orthogonal basis, we find the above-mentioned expec-
tation results from the non-Hermitian Lindbladian. More precisely, this happens due to the
purely imaginary diagonals in the tridiagonal representation of the Lindbladian after imple-
menting the bi-Lanczos algorithm. In the most general setting, the bi-Lanczos algorithm
leads the following expansions for the evolution of the state (ket) and its dual (bra) vectors

|O(t)〉 =
K−1∑
i=0

inφn(t)|pn⟫ , 〈O(t)| =
K−1∑
i=0
⟪qn|(−i)nψ∗n(t) . (2.13)

Using the above expression, the probability of finding the operator at n-th element of the
bi-orthogonal Krylov basis becomes the following

P (t) = 〈O(t)|O(t)〉 =
K−1∑
n=0

ψ∗n(t)φn(t) . (2.14)

However, since in the cases studied in this paper, we find bn = cn ∈ R+, if we look at
equations (2.7) and (2.8), which would give the corresponding equations5 for the wavefunc-
tions φn and ψn, it is easy to see that taking the complex conjugate of (2.8), one would
find the equation followed by ψ∗n. It turns out that this equation is exactly the same as
the equation followed by the complex conjugate of φn. In other words, if bn = cn, one can
write ψ∗n = (φn)∗.

Given the above fact, in our studies, we can effectively treat the probability still as
P (t) = ∑K−1

n=0 φ
∗
n(t)φn(t). Note that the probability for a closed system with unitary dy-

namics will always be equal to one as the bi-Lanczos algorithm reduces to the Lanczos
algorithm in that case (see appendix A). However, in the case of the open systems, the
evolution is non-unitary, and hence the probability is expected to decay due to the dissi-
pative effects. This decay is expected to be very similar to the decay due to decoherence
discussed in the equation (5.9) of [21]. Similarly, we can try to (naively) define the K-
complexity in the bi-Lanczos basis as

K(t) =
K−1∑
n=0

nφ∗n(t)φn(t) . (2.15)

This usual notion of complexity is problematic because the probability itself decays with
time. Therefore, for the open quantum systems, we study the normalized K-complexity6

Ko(t) =
∑K−1

n=0 nφ
∗
n(t)φn(t)∑K−1

n=0 φ
∗
n(t)φn(t)

. (2.16)

5The equation with |qj+1〉 would give wavefunction ψn because there the ψ∗
n is associated to the “bra”

version of the qn vectors.
6From now onwards, we refer to the normalized K-complexity simply as K-complexity.
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The corresponding differential equation followed by these coefficients is the following

φ̇n(t) = cnφn−1(t)− bn+1φn+1(t) + ianφn(t) , (2.17)

and an equivalent one for the ψn(t). In the r.h.s. of the discretized differential equation,
the coefficient multiplied by φn(t) is ian. However, as mentioned previously, the diagonals
themselves are purely imaginary (by replacing an = i|an| → ian = −|an| and cn = bn = |bn|
ignoring the overall phase factors in cn as finite size errors). Hence the differential equation
becomes

φ̇n(t) = |bn|φn−1(t)− |bn+1|φn+1(t)− |an|φn(t) , (2.18)

where the particular term proportional to φn(t) in the r.h.s. now makes each of the solved
φn(t) go through an exponentially decaying behavior. This precisely results in the decay
of probability as well.

For a finite number of Lanczos coefficients, We solve K such differential equations to
get the behavior of probability and the complexity valid till very late times. To do so, we
solve the simplified matrix differential equation as follows

dΦ(t)
dt

= d

dt



φ0(t)
φ1(t)
φ2(t)
...

φK−2(t)
φK−1(t)


=



−|a0| −|b1| 0
|b1| −|a1| −|b2|

|b2| −|a2|
. . .

. . . . . . −|bK−2|
|bK−2| −|aK−2| −|bK−1|

0 |bK−1| −|aK−1|





φ0(t)
φ1(t)
φ2(t)
...

φK−2(t)
φK−1(t)


= S · Φ(t) . (2.19)

Notice that the big matrix S ≡ SK×K in the r.h.s. is slightly different from the tridiagonal
representation of the non-Hermitian Lindbladian Lo that we obtained earlier. This matrix
is written by looking at the form of the equation followed by the φn(t). Now solving the
matrix differential equation for the column vector Φ(t), we can afterward get the probability
and un-normalized K-complexity by simply computing the norm of the column vectors Φ(t)
(P (t) = Norm[Φ(t)]2) and

√
K (t)n =

√
nφn(t) respectively. Remember that once we solve

the column vector Φ(t), we have the φn(t) for all n. Therefore, it is easy to form the column
vector

√
K (t)

√
K (t) =



0φ0(t)
√

1φ1(t)
√

2φ2(t)
...

√
K − 2φK−2(t)
√
K − 1φK−1(t)


, (2.20)

the norm of which is the un-normalized K-complexity, given by K(t) = ∑K−1
n=0 n|φn(t)|2 =

Norm[
√

K (t)]2.
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Finally, we get the normalized K-complexity for the open systems by computing the
following

Ko(t) = Norm[
√

K (t)]2
Norm[Φ(t)]2 . (2.21)

Note that this definition is essentially the same as eq. (2.16), with the advantage of being
numerically efficient in our case. In the next section, we introduce our model and discuss
the numerical results.

3 Setup and results: transverse-field Ising model

In open systems, the Born-Markov approximation gives the quantum master equation,
which dictates the non-unitary evolution of the open system [27, 28]

Lo[ • ] = [H, • ]− i
∑

k

[
L†k • Lk −

1
2{L

†
kLk, •}

]
, (3.1)

where Lo is the Lindbladian superoperator acting on an operator, denoted by the “bullet”
•. Unlike isolated closed systems, the evolution is in terms of a non-Hermitian Lindbladian

O(t) = eiLotO(0) . (3.2)

The non-Hermitian part of the Lindbladian is constructed out of the Lindblad operators Lk,
which are, in fact, signatures of the interaction of the system with its environment. There-
fore, it is the interaction that generates and introduces non-Hermiticity in the Lindbladian.
See [1, 2] for more details. In the following, we concentrate on the model we study, which
is the open transverse-field Ising model (TFIM). We discuss the results for Lanczos coeffi-
cients and complexity found in the integrable and non-integrable regimes. Similar results
can be found for the open interacting XXZ spin chain which we present in appendix B.

3.1 Hamiltonian: TFIM

The transverse-field Ising model (TFIM) Hamiltonian describes the behavior of a collection
of interacting spins arranged in a lattice, with each spin described by Pauli matrices. The
Hamiltonian includes two terms: the first represents the interactions between the spins,
and the second represents the interactions between the spins and an external transverse
field. The behavior of the system is controlled by the ratio of the couplings g and h, with
different regimes of behavior observed as this ratio varied. The TFIM is of great interest
due to its close relationship with the quantum phase transition phenomena and the ability
to use it to investigate the properties of quantum systems. The Hamiltonian is given by

HTFIM = −
N−1∑
j=1

σz
jσ

z
j+1 − g

N∑
j=1

σx
j − h

N∑
j=1

σz
j , (3.3)

where g and h are the coupling parameters. Given h = 0, the Hamiltonian is integrable
for all values of g, where it can be mapped to the free-fermionic model [38]. On the
other hand, it goes away from integrability for nonzero longitudinal coupling h. In the

– 10 –



J
H
E
P
1
2
(
2
0
2
3
)
0
6
6

◆

◆

◆

◆

◆
◆
◆
◆
◆
◆
◆
◆
◆◆
◆◆◆◆◆◆◆◆◆◆
◆
◆
◆
◆
◆◆
◆

◆
◆

◆

◆
◆

◆

◆◆
◆
◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆
◆◆

◆
◆
◆
◆
◆
◆◆

◆

◆

◆◆◆◆

◆◆
◆

◆

◆
◆
◆
◆◆
◆◆

◆

◆

◆

◆

◆◆
◆

◆

◆

◆

◆

◆

◆
◆
◆
◆◆

◆
◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆◆
◆
◆◆
◆
◆◆

◆

◆◆

◆
◆
◆
◆

◆

◆◆◆
◆

◆◆

◆

◆
◆

◆

◆
◆◆◆
◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆
◆◆
◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆
◆

◆

◆

◆◆

◆

◆

◆◆

◆

◆

◆

◆◆

◆

◆

◆

◆
◆

◆

◆

◆

◆◆

◆

◆

◆

◆
◆

◆

◆

◆

◆
◆

◆

◆◆

◆◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆◆

◆

◆◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆
◆

◆◆

◆
◆

◆

◆◆

◆

◆
◆

◆

◆

◆

◆

◆

◆◆
◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆
◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆◆
◆

◆

◆

◆

◆

◆

◆◆

◆
◆
◆

◆

◆
◆

◆
◆

◆

◆

◆

◆

◆

◆
◆

◆◆

◆◆

◆◆

◆◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆◆
◆
◆

◆

◆

◆

◆
◆◆◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆◆

◆◆

◆

◆

◆

◆

◆

◆◆
◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆◆

◆
◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆
◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆◆

◆
◆

◆

◆
◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆
◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆◆

◆

◆
◆

◆

◆
◆◆
◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆◆

◆

◆◆

◆

◆
◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆◆

◆

◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆◆
◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆◆

◆

◆◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆◆

◆
◆◆

◆◆

◆

◆

◆◆

◆

◆
◆

◆

◆◆◆

◆◆
◆
◆

◆◆

◆
◆

◆

◆
◆◆

◆

◆
◆

◆◆◆◆◆◆
◆◆

◆

◆◆

◆
◆

◆
◆

◆

◆
◆
◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆
◆

◆

◆

◆
◆

◆
◆◆
◆
◆
◆
◆◆

◆

◆

◆

◆

◆

◆
◆◆

◆
◆

◆◆

◆

◆

◆◆

◆

◆

◆◆

◆◆

◆

◆

◆

◆◆

◆
◆
◆

◆
◆

◆
◆
◆

◆
◆
◆
◆

◆
◆

◆
◆
◆◆
◆
◆
◆

◆
◆

◆
◆

◆
◆

◆

◆
◆

◆

◆
◆

◆

◆
◆

◆
◆◆

◆

◆

◆

◆

◆
◆
◆
◆

◆
◆

◆

◆
◆

◆◆

◆

◆

◆
◆

◆

◆

◆
◆

◆
◆

◆

◆

◆

◆
◆◆

◆

◆

◆◆

◆
◆◆

◆

◆◆

◆

◆

◆◆
◆◆

◆
◆◆◆

◆
◆

◆◆

◆◆

◆
◆

◆◆

◆

◆
◆

◆
◆◆

◆
◆

◆◆

◆

◆◆

◆
◆
◆

◆◆

◆

◆◆◆
◆

◆

◆

◆◆

◆◆
◆

◆◆

◆

◆

◆
◆◆

◆

◆

◆
◆◆
◆◆

◆◆
◆◆

◆

◆

◆
◆

◆◆

◆

◆

◆

◆

◆

◆
◆
◆
◆

◆
◆

◆
◆
◆

◆◆

◆

◆◆◆
◆◆

◆◆

◆◆

◆

◆

◆
◆
◆◆
◆◆
◆

◆
◆

◆

◆
◆
◆◆

◆◆
◆

◆◆

◆◆
◆

◆

◆

◆

◆
◆

◆

◆
◆

◆

◆◆
◆

◆
◆

◆

◆
◆

◆◆

◆
◆

◆

◆

◆◆

◆◆

◆
◆

◆◆
◆

◆

◆◆
◆◆
◆◆
◆
◆◆

◆◆
◆◆

◆
◆◆

◆◆

◆

◆◆
◆

◆◆

◆
◆
◆

◆◆
◆
◆◆◆

◆◆
◆

◆◆◆

◆◆◆
◆

◆◆
◆

◆

◆

◆
◆

◆
◆

◆◆

◆

◆

◆
◆

◆◆
◆

◆
◆

◆
◆

◆◆

◆

◆◆◆

◆

◆

◆
◆

◆◆◆◆◆◆
◆

◆

◆

◆
◆

◆◆

◆

◆◆

◆

◆
◆◆◆
◆

◆

◆◆

◆◆

◆◆

◆
◆

◆
◆

◆

◆

◆◆◆

◆

◆

◆◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆◆

◆

◆
◆
◆

◆
◆

◆

◆

◆

◆

◆
◆
◆

◆

◆◆
◆◆◆

◆
◆

◆

◆◆

◆

◆
◆
◆

◆
◆

◆

◆◆

◆
◆

◆

◆

◆

◆◆

◆

◆
◆

◆

◆

◆

◆◆

◆
◆

◆

◆

◆

◆◆

◆◆
◆

◆◆◆

◆
◆

◆
◆

◆

◆
◆

◆

◆

◆

◆◆
◆
◆

◆

◆

◆

◆

◆
◆

◆
◆
◆
◆

◆◆

◆
◆

◆
◆
◆
◆
◆

◆◆

◆

◆

◆
◆
◆

◆

◆◆

◆
◆

◆◆

◆◆

◆
◆
◆

◆

◆
◆
◆

◆
◆

◆

◆
◆
◆

◆

◆

◆

◆

◆

◆

◆

◆◆◆

◆

◆

◆

◆◆

◆◆

◆
◆

◆

◆
◆

◆

◆

◆

◆

◆
◆

◆

◆◆
◆◆
◆

◆

◆

◆

◆

◆

◆

◆◆
◆

◆

◆◆

◆

◆

◆

◆
◆

◆

◆◆
◆

◆

◆
◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆◆◆

◆◆

◆
◆

◆

◆◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆
◆

◆

◆◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆
◆

◆
◆

◆

◆

◆

◆

◆

◆◆

◆

◆◆
◆
◆
◆
◆◆
◆

◆◆
◆

◆

◆

◆◆

◆◆

◆

◆
◆

◆

◆

◆

◆◆◆

◆

◆

◆

◆
◆
◆

◆

◆

◆

◆

◆

◆

◆

◆
◆
◆
◆

◆

◆◆
◆

◆◆◆

◆

◆

◆◆

◆
◆
◆
◆

◆

◆
◆
◆
◆

◆

◆◆

◆

◆
◆
◆

◆

◆

◆

◆

◆
◆

◆

◆
◆

◆

◆

◆
◆

◆◆

◆
◆

◆

◆

◆

◆

◆

◆

◆
◆◆

◆

◆

◆

◆

◆

◆◆
◆◆

◆

◆

◆

◆◆

◆

◆
◆

◆

◆

◆

◆
◆
◆

◆
◆

◆

◆

◆◆◆

◆

◆◆

◆

◆

◆
◆

◆

◆

◆

◆
◆

◆

◆
◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆◆
◆
◆
◆

◆

◆
◆◆◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆
◆

◆

◆◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆◆

◆◆
◆◆

◆

◆

◆

◆◆
◆

◆◆
◆

◆

◆

◆◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆◆◆

◆

◆

◆
◆
◆◆

◆◆◆

◆

◆◆◆

◆

◆
◆

◆◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆
◆
◆
◆
◆

◆

◆◆

◆

◆

◆

◆◆
◆
◆◆

◆◆

◆◆◆

◆
◆

◆◆

◆

◆

◆

◆
◆
◆

◆◆◆

◆◆
◆

◆
◆

◆

◆

◆

◆
◆

◆◆

◆

◆

◆

◆◆

◆

◆

◆

◆◆◆
◆

◆

◆
◆

◆

◆

◆

◆

◆
◆

◆

◆◆◆

◆

◆
◆

◆
◆

◆
◆

◆
◆
◆
◆

◆
◆◆

◆
◆

◆
◆◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆
◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆◆◆

◆◆

◆

◆

◆

◆

◆◆
◆
◆

◆

◆

◆

◆◆

◆
◆◆

◆◆

◆◆

◆

◆

◆

◆

◆
◆

◆

◆

◆
◆◆◆

◆

◆

◆
◆◆

◆

◆◆

◆

◆

◆◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆◆

◆

◆

◆◆

◆◆

◆
◆
◆

◆◆

◆
◆

◆

◆

◆◆
◆

◆

◆

◆

◆◆

◆

◆

◆◆◆◆
◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆
◆

◆◆

◆

◆

◆

◆◆◆

◆

◆
◆

◆
◆

◆

◆

◆

◆

◆

◆◆

◆
◆
◆
◆
◆

◆
◆

◆◆◆

◆

◆

◆

◆

◆

◆
◆◆

◆◆

◆

◆

◆
◆

◆
◆

◆
◆

◆

◆
◆

◆◆◆◆

◆◆◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆
◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆◆
◆

◆

◆

◆

◆
◆◆

◆

◆
◆

◆

◆

◆

◆

◆

◆
◆
◆

◆

◆◆

◆

◆

◆
◆

◆

◆
◆

◆
◆◆

◆

◆
◆

◆

◆

◆◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆
◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆◆
◆

◆

◆

◆

◆

◆

◆

◆
◆
◆◆

◆◆

◆

◆

◆
◆

◆
◆◆

◆

◆

◆
◆

◆
◆
◆

◆

◆

◆

◆
◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆◆
◆

◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆◆◆

◆
◆

◆

◆

◆◆
◆
◆

◆

◆

◆

◆
◆

◆

◆

◆
◆
◆
◆

◆

◆

◆

◆
◆◆
◆

◆◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆
◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆
◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆◆

◆
◆◆
◆

◆

◆◆
◆◆◆

◆
◆

◆

◆
◆◆

◆

◆
◆
◆

◆

◆◆

◆

◆
◆

◆

◆◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆◆
◆◆

◆

◆◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆◆
◆

◆

◆

◆

◆

◆◆◆

◆

◆

◆
◆
◆

◆

◆

◆

◆

◆
◆◆◆

◆
◆◆

◆

◆◆

◆◆

◆

◆◆
◆

◆
◆
◆◆

◆

◆

◆
◆
◆◆

◆

◆
◆

◆

◆◆

◆◆

◆◆

◆

◆

◆

◆

◆

◆

◆
◆

◆◆

◆

◆

◆

◆
◆

◆

◆
◆
◆

◆

◆
◆

◆
◆

◆

◆

◆
◆

◆
◆

◆◆◆
◆

◆

◆

◆
◆

◆◆

◆
◆◆
◆

◆◆

◆

◆

◆

◆
◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆
◆

◆
◆◆

◆

◆◆
◆

◆

◆

◆

◆

◆
◆◆◆

◆
◆◆◆

◆◆
◆◆
◆

◆

◆

◆

◆

◆

◆

◆

◆
◆◆

◆
◆
◆

◆

◆
◆

◆
◆

◆

◆

◆

◆

◆◆
◆

◆◆
◆◆
◆◆

◆

◆

◆

◆◆
◆

◆
◆

◆◆

◆

◆

◆
◆

◆◆

◆

◆◆

◆

◆

◆

◆
◆

◆◆

◆

◆
◆◆

◆

◆

◆

◆
◆
◆

◆
◆

◆

◆
◆◆◆◆◆

◆
◆◆
◆

◆

◆◆

◆

◆

◆
◆

◆

◆

◆◆

◆

◆

◆

◆◆
◆
◆

◆

◆

◆

◆
◆

◆◆
◆

◆

◆

◆

◆
◆

◆

◆

◆

◆
◆

◆
◆
◆
◆◆

◆
◆

◆

◆

◆

◆
◆

◆

◆

◆
◆

◆
◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆◆

◆

◆
◆

◆
◆

◆

◆

◆

◆
◆
◆
◆
◆

◆
◆

◆

◆◆

◆

◆

◆

◆

◆
◆
◆

◆

◆

◆◆

◆

◆
◆

◆
◆

◆

◆

◆

◆

◆

◆

◆
◆◆

◆

◆
◆

◆◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆
◆◆

◆
◆
◆

◆
◆◆◆

◆
◆
◆
◆
◆
◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆◆
◆
◆

◆◆
◆

◆◆

◆
◆

◆

◆

◆

◆

◆◆

◆

◆
◆

◆

◆
◆

◆

◆
◆

◆◆

◆

◆
◆

◆

◆
◆

◆
◆

◆

◆
◆◆◆

◆

◆
◆◆

◆◆

◆◆◆
◆◆◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆
◆
◆◆◆

◆

◆

◆
◆
◆◆◆

◆
◆

◆

◆

◆◆
◆
◆◆
◆

◆
◆

◆◆◆

◆

◆
◆
◆
◆◆
◆

◆
◆

◆
◆

◆
◆◆

◆
◆
◆◆
◆◆
◆

◆◆

◆

◆

◆

◆

◆
◆

◆

◆

◆
◆

◆

◆◆

◆

◆◆

◆◆◆
◆

◆
◆◆

◆

◆

◆

◆

◆

◆
◆◆
◆
◆◆◆◆

◆◆

◆◆
◆
◆

◆

◆

◆

◆

◆
◆

◆◆◆

◆

◆
◆◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆◆
◆◆◆
◆◆

◆◆
◆
◆
◆◆◆◆
◆

◆

◆

◆◆

◆
◆
◆◆
◆

◆
◆

◆

◆
◆

◆

◆
◆

◆

◆
◆
◆

◆

◆

◆
◆◆◆

◆

◆

◆

◆
◆

◆

◆

◆

◆◆
◆
◆

◆
◆

◆

◆

◆
◆
◆
◆

◆

◆

◆

◆

◆
◆

◆
◆
◆

◆

◆◆◆◆
◆

◆
◆◆

◆

◆

◆

◆

◆
◆◆

◆

◆◆◆

◆
◆

◆

◆
◆

◆
◆

◆
◆

◆

◆

◆

◆

◆

◆

◆◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆◆

◆◆◆

◆

◆

◆

◆

◆

◆

◆
◆

◆
◆

◆

◆

◆◆
◆

◆
◆

◆

◆

◆◆
◆

◆

◆
◆
◆◆

◆

◆◆

◆

◆

◆◆
◆

◆
◆◆◆

◆

◆

◆

◆

◆

◆

◆◆◆

◆

◆

◆
◆

◆

◆

◆
◆◆

◆
◆
◆◆
◆
◆
◆

◆

◆

◆

◆
◆

◆◆

◆

◆

◆

◆◆
◆

◆

◆

◆

◆
◆◆◆

◆

◆
◆◆◆

◆◆
◆◆

◆◆

◆

◆
◆

◆◆◆

◆

◆◆

◆◆

◆
◆◆◆◆

◆

◆

◆◆

◆
◆

◆
◆
◆◆

◆

◆◆

◆
◆

◆
◆
◆◆
◆◆

◆

◆

◆

◆

◆

◆◆

◆

◆◆
◆

◆

◆
◆

◆

◆◆◆
◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆
◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆
◆

◆

◆
◆

◆

◆

◆

◆
◆
◆

◆
◆
◆
◆
◆◆
◆

◆◆
◆◆
◆◆

◆
◆
◆◆

◆

◆

◆◆

◆

◆

◆
◆◆
◆

◆
◆

◆

◆◆

◆

◆

◆

◆
◆

◆
◆
◆

◆
◆
◆

◆

◆
◆◆
◆◆

◆
◆
◆

◆

◆

◆

◆◆

◆

◆

◆◆

◆◆

◆

◆

◆◆◆
◆
◆
◆
◆

◆
◆
◆

◆◆
◆
◆
◆◆◆◆◆
◆◆

◆

◆◆

◆◆
◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆
◆
◆

◆

◆
◆

◆

◆

◆

◆
◆

◆

◆
◆

◆

◆

◆

◆
◆

◆◆

◆

◆

◆

◆◆

◆

◆◆
◆

◆

◆

◆◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆◆

◆◆◆◆

◆

◆
◆
◆
◆

◆◆
◆

◆

◆
◆
◆

◆

◆

◆◆

◆

◆

◆

◆◆
◆

◆

◆
◆

◆

◆◆◆◆
◆
◆

◆
◆◆
◆
◆

◆
◆

◆
◆

◆

◆
◆
◆

◆

◆

◆

◆

◆
◆◆◆

◆◆
◆◆◆
◆

◆

◆◆

◆

◆

◆

◆

◆

◆◆

◆

◆
◆

◆
◆◆

◆

◆

◆

◆

◆

◆
◆◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆◆

◆

◆◆
◆

◆

◆

◆
◆
◆◆

◆

◆

◆

◆

◆◆◆
◆

◆

◆◆

◆

◆
◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆◆

◆◆

◆

◆

◆

◆

◆

◆◆

◆
◆

◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆
◆
◆
◆◆

◆

◆

◆

◆

◆

◆
◆
◆
◆

◆

◆
◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆◆
◆◆

◆

◆

◆

◆
◆
◆
◆

◆◆◆◆
◆

◆◆◆

◆

◆

◆

◆

◆

◆

◆

◆

◆◆◆

◆

◆

◆◆

◆

◆

◆
◆◆

◆◆◆

◆

◆

◆
◆

◆
◆
◆◆

◆◆

◆

◆

◆

◆
◆

◆◆

◆

◆
◆◆
◆

◆
◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆
◆◆◆

◆

◆

◆

◆

◆

◆

◆

◆
◆◆◆

◆

◆

◆
◆

◆

◆◆

◆
◆

◆

◆

◆

◆

◆

◆
◆
◆
◆
◆

◆

◆
◆

◆

◆
◆

◆

◆
◆◆

◆
◆

◆

◆

◆

◆

◆

◆
◆

◆
◆
◆

◆

◆
◆

◆

◆
◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆◆

◆

◆◆
◆

◆

◆

◆
◆

◆

◆

◆◆

◆
◆
◆

◆

◆

◆

◆

◆

◆

◆
◆

◆◆

◆

◆◆

◆

◆
◆
◆

◆
◆

◆

◆

◆

◆

◆

◆◆

◆

◆◆
◆

◆

◆

◆

◆

◆

◆
◆
◆
◆

◆◆◆

◆

◆

◆
◆

◆

◆◆◆◆

◆◆

◆

◆◆◆

◆

◆

◆

◆

◆

◆◆
◆
◆

◆

◆

◆

◆

◆

◆

◆◆
◆
◆

◆

◆
◆
◆
◆

◆◆
◆
◆

◆◆

◆
◆
◆◆

◆

◆
◆

◆
◆

◆◆

◆

◆

◆

◆

◆

◆

▲

▲

▲

▲
▲
▲

▲

▲

▲

▲▲▲
▲
▲▲
▲▲
▲▲▲

▲
▲▲▲▲▲
▲
▲
▲
▲
▲
▲▲
▲▲
▲▲

▲▲▲
▲
▲
▲▲
▲
▲

▲▲
▲▲▲

▲

▲

▲
▲
▲▲
▲
▲▲▲
▲▲
▲▲▲
▲
▲▲▲▲
▲
▲
▲
▲▲▲
▲▲▲▲
▲▲
▲
▲
▲
▲▲▲
▲▲
▲
▲
▲▲▲
▲
▲
▲▲
▲▲
▲
▲
▲▲
▲▲▲▲
▲▲▲▲▲▲▲▲

▲▲
▲
▲
▲▲▲▲▲
▲

▲▲

▲
▲▲
▲▲▲▲▲▲▲▲▲▲
▲▲▲▲
▲
▲▲
▲▲▲▲
▲
▲▲

▲
▲▲▲▲
▲▲
▲▲▲
▲
▲
▲▲▲
▲▲▲▲▲
▲▲▲
▲▲▲
▲▲
▲▲
▲▲
▲▲▲

▲
▲▲▲▲▲▲▲▲▲▲

▲▲▲
▲▲
▲▲
▲
▲
▲
▲
▲▲▲
▲▲
▲
▲
▲
▲▲▲▲▲▲▲▲▲
▲▲
▲
▲
▲▲▲

▲
▲
▲
▲
▲
▲
▲
▲

▲▲▲
▲▲▲
▲▲▲▲▲
▲
▲▲▲▲▲▲
▲
▲▲
▲
▲
▲
▲▲
▲
▲
▲▲▲
▲▲▲
▲▲
▲▲▲
▲▲▲
▲
▲▲
▲
▲▲▲▲▲
▲▲
▲▲
▲▲▲
▲
▲▲▲
▲▲▲▲▲▲▲▲▲
▲
▲
▲▲
▲▲▲▲▲▲
▲
▲▲
▲▲▲
▲
▲
▲

▲

▲▲
▲▲
▲
▲▲▲▲
▲
▲
▲
▲▲▲▲▲▲
▲

▲▲
▲▲

▲▲
▲▲
▲

▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲
▲
▲▲
▲▲▲
▲▲▲
▲▲
▲

▲
▲▲▲▲
▲
▲
▲
▲▲▲
▲▲▲▲▲▲▲▲
▲▲▲▲▲
▲
▲
▲▲▲
▲▲▲▲
▲▲▲▲
▲▲
▲
▲
▲▲
▲
▲▲
▲▲▲▲▲
▲
▲
▲
▲▲▲▲▲▲
▲

▲▲▲

▲▲▲
▲▲▲
▲▲
▲▲▲▲▲
▲
▲▲▲▲▲▲▲▲▲
▲
▲▲▲▲
▲▲▲▲▲▲▲
▲▲
▲▲
▲▲▲▲
▲▲
▲▲
▲
▲
▲▲
▲▲▲▲▲▲▲▲▲▲▲▲
▲▲
▲▲▲
▲
▲▲
▲
▲
▲▲▲
▲▲▲▲
▲▲
▲▲▲▲▲▲▲
▲▲▲▲▲
▲▲▲
▲▲▲▲▲▲▲▲▲▲
▲▲▲
▲▲▲▲▲▲▲
▲

▲
▲▲
▲
▲▲▲
▲

▲▲
▲
▲
▲
▲▲
▲▲▲▲▲▲▲▲▲▲▲
▲▲
▲

▲▲▲▲
▲
▲▲▲▲
▲
▲
▲▲
▲▲▲
▲▲▲
▲
▲▲▲▲▲
▲▲
▲
▲▲▲▲
▲
▲
▲▲▲
▲▲▲▲▲
▲▲▲▲
▲
▲▲
▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲
▲
▲▲▲
▲▲
▲▲
▲▲

▲▲▲▲▲▲▲▲
▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲
▲
▲
▲
▲
▲▲▲▲
▲
▲▲
▲▲▲
▲▲▲
▲
▲▲
▲▲
▲▲▲
▲
▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲
▲▲
▲▲
▲▲▲▲▲▲▲
▲▲▲▲
▲
▲
▲
▲
▲▲
▲
▲▲▲
▲

▲
▲▲▲
▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲
▲
▲▲▲▲▲▲▲▲▲
▲
▲
▲▲▲
▲
▲▲
▲▲

▲
▲
▲
▲
▲▲
▲▲▲
▲▲▲▲▲
▲▲
▲▲▲▲▲▲▲
▲▲
▲▲▲
▲
▲▲▲
▲▲
▲
▲
▲▲▲
▲▲
▲▲▲▲▲
▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲
▲
▲▲
▲
▲▲▲▲
▲▲▲
▲▲▲▲▲▲
▲
▲▲▲
▲▲
▲
▲▲▲▲▲▲▲▲
▲▲▲
▲▲▲
▲▲▲▲▲
▲▲▲▲
▲▲▲▲▲▲▲▲▲
▲
▲▲
▲
▲
▲▲▲▲▲▲▲
▲▲
▲▲
▲
▲▲▲▲▲▲▲▲▲
▲
▲▲▲▲▲▲▲
▲
▲▲
▲▲▲▲
▲

▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲
▲
▲
▲
▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲
▲
▲
▲
▲▲▲▲▲
▲▲▲▲▲
▲▲▲▲
▲
▲
▲
▲▲▲▲
▲▲
▲▲
▲▲
▲
▲▲
▲▲▲
▲
▲▲▲
▲▲
▲▲
▲
▲▲▲▲▲
▲▲
▲▲▲▲▲▲
▲
▲▲
▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲
▲▲▲▲
▲
▲▲
▲▲
▲▲
▲▲
▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲▲▲▲
▲▲▲▲▲
▲▲▲▲▲
▲▲
▲
▲▲▲▲
▲▲▲▲▲▲▲
▲▲▲
▲▲▲▲
▲▲
▲▲▲▲
▲▲▲
▲
▲▲▲
▲▲
▲
▲▲▲
▲▲▲
▲
▲▲▲▲
▲
▲▲▲▲▲▲
▲
▲▲

▲▲
▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲
▲
▲▲
▲▲▲▲▲▲▲
▲▲▲▲▲▲▲
▲▲▲
▲▲
▲▲
▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲
▲▲▲▲▲
▲▲▲
▲
▲
▲▲▲▲▲▲
▲▲▲▲▲▲
▲▲
▲▲▲
▲▲▲▲▲▲
▲▲
▲
▲▲▲▲▲▲▲
▲▲
▲
▲
▲
▲
▲▲▲
▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲
▲▲▲▲▲
▲▲▲▲▲▲▲
▲▲▲▲
▲▲▲▲
▲▲▲▲▲▲▲
▲▲
▲▲▲▲▲
▲▲▲▲▲▲▲
▲▲▲▲▲
▲▲▲▲
▲▲▲▲▲▲
▲
▲▲▲
▲▲▲
▲▲▲▲
▲▲▲▲▲▲
▲
▲▲
▲
▲▲▲▲
▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲
▲▲▲▲▲▲▲▲
▲
▲▲
▲▲▲▲▲▲
▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲
▲▲
▲▲▲▲▲
▲
▲
▲▲▲
▲▲▲▲▲▲
▲
▲▲▲▲
▲▲▲▲▲▲▲▲
▲
▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲
▲
▲▲▲▲
▲▲▲
▲
▲▲
▲▲▲▲
▲▲
▲▲▲▲
▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲
▲▲▲
▲▲▲
▲▲▲▲
▲▲▲▲▲▲▲▲
▲▲▲
▲

▲
▲▲▲▲▲▲▲
▲▲▲▲▲
▲
▲
▲
▲
▲
▲
▲
▲▲
▲▲▲▲
▲
▲
▲▲▲▲▲
▲▲
▲
▲
▲▲▲▲▲▲
▲
▲
▲▲▲▲▲▲
▲▲▲
▲▲
▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲
▲▲▲▲▲▲
▲▲▲
▲▲▲▲▲▲▲▲▲▲▲
▲▲
▲
▲▲▲▲▲▲▲
▲▲
▲
▲▲▲▲▲▲▲▲
▲▲▲▲▲
▲▲▲▲
▲▲
▲
▲▲▲
▲▲▲▲
▲▲▲▲▲▲▲
▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲
▲
▲▲
▲▲
▲▲▲▲▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲▲
▲▲▲
▲▲▲▲
▲▲▲▲▲▲▲
▲
▲▲▲▲▲▲▲
▲▲
▲▲▲
▲
▲▲▲▲
▲
▲▲▲▲▲▲▲
▲▲▲▲
▲▲▲▲
▲
▲▲▲▲▲▲▲▲
▲▲▲▲▲
▲▲▲▲▲
▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲
▲▲▲
▲
▲▲
▲▲
▲
▲▲▲▲▲▲▲▲
▲
▲▲▲
▲▲▲▲▲
▲▲▲▲▲▲▲
▲▲
▲▲▲▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲
▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲
▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲
▲
▲
▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲
▲▲▲
▲▲▲▲▲▲
▲▲▲
▲▲▲▲▲▲▲▲
▲▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲
▲
▲
▲▲
▲▲▲▲
▲▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲
▲▲
▲
▲
▲▲▲
▲▲▲
▲
▲▲
▲▲
▲▲▲▲
▲
▲▲▲▲▲▲▲▲
▲▲▲
▲
▲▲▲▲▲
▲▲
▲
▲▲
▲▲
▲▲▲
▲▲▲▲▲
▲

▲▲
▲
▲▲
▲
▲▲▲▲▲▲▲
▲▲▲▲▲
▲▲▲▲▲
▲
▲
▲
▲▲▲▲▲▲▲▲▲
▲▲
▲
▲
▲▲▲▲▲
▲▲▲▲
▲▲▲▲▲▲▲▲▲▲
▲
▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲
▲
▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲▲
▲▲
▲
▲▲▲▲▲
▲▲
▲▲
▲
▲▲▲
▲▲▲▲▲▲▲▲▲
▲
▲▲▲▲▲▲▲
▲
▲▲▲▲
▲▲▲▲▲
▲
▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲▲
▲
▲▲▲▲▲▲
▲▲▲
▲▲▲▲▲▲▲
▲
▲▲▲▲▲▲▲▲
▲▲▲
▲
▲▲▲
▲▲▲▲▲
▲▲▲
▲▲▲▲▲
▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲
▲
▲▲▲▲
▲▲▲▲▲
▲▲
▲
▲▲▲▲
▲▲▲▲▲▲▲
▲▲▲▲
▲▲▲▲
▲▲▲▲▲▲▲▲▲

▲▲▲▲▲
▲
▲▲▲▲▲▲▲▲▲▲▲
▲
▲
▲▲▲▲▲▲▲▲
▲
▲
▲▲▲
▲
▲▲
▲▲▲▲▲▲
▲
▲
▲▲▲▲▲▲
▲
▲▲▲▲
▲▲▲▲▲▲
▲▲
▲▲
▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲
▲▲▲▲▲▲▲▲
▲▲▲
▲
▲▲▲▲▲▲▲
▲▲▲▲▲
▲▲
▲▲
▲▲
▲▲▲▲
▲▲
▲▲▲▲▲▲▲
▲▲
▲▲▲▲▲
▲
▲
▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲
▲▲▲▲▲▲
▲
▲▲
▲▲▲▲▲▲
▲
▲▲
▲
▲
▲
▲▲▲▲
▲▲
▲▲▲
▲▲
▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲
▲
▲
▲▲▲▲▲▲▲▲▲
▲
▲▲
▲▲
▲
▲▲▲▲
▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲
▲▲
▲▲▲▲▲
▲▲▲▲
▲
▲▲▲
▲
▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲
▲
▲

▲▲
▲▲▲▲▲▲▲▲▲
▲
▲▲▲
▲
▲
▲
▲
▲
▲▲
▲▲
▲▲▲▲▲▲
▲
▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲
▲▲▲▲▲

▲▲
▲▲▲
▲
▲
▲▲▲▲▲▲
▲
▲
▲▲▲▲▲▲
▲
▲▲▲
▲▲▲
▲
▲▲▲▲▲▲▲▲▲
▲▲▲▲
▲▲▲
▲▲
▲▲▲▲
▲
▲
▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲
▲
▲▲▲
▲
▲▲▲
▲
▲
▲
▲▲
▲▲▲
▲
▲▲▲▲▲
▲
▲
▲▲▲
▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲
▲
▲
▲
▲
▲
▲▲▲
▲▲▲▲▲▲
▲▲▲▲
▲▲
▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲
▲
▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲
▲
▲▲▲▲▲
▲▲▲▲▲
▲
▲
▲▲▲▲▲▲
▲
▲▲▲
▲▲▲▲▲▲
▲
▲▲
▲▲▲▲▲▲▲
▲▲
▲▲▲▲▲▲
▲▲▲▲▲
▲▲
▲▲▲▲▲
▲
▲▲
▲
▲▲▲▲▲▲▲
▲▲▲▲
▲▲▲
▲
▲▲
▲▲
▲
▲▲
▲▲
▲
▲▲▲▲▲▲
▲
▲
▲▲▲▲▲▲▲
▲▲▲▲
▲▲▲
▲
▲▲▲▲▲
▲
▲▲
▲▲▲▲
▲
▲▲▲▲▲▲▲
▲▲▲▲
▲
▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲
▲
▲
▲▲▲▲
▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲
▲▲▲
▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲

▲▲▲
▲▲▲▲
▲
▲▲▲
▲▲
▲
▲
▲
▲
▲▲
▲▲
▲▲
▲▲▲▲▲
▲
▲▲▲
▲
▲▲▲▲▲▲▲▲▲▲▲▲
▲
▲▲▲▲▲▲
▲
▲
▲
▲
▲▲▲
▲
▲

▲
▲▲▲▲▲▲
▲▲▲▲▲▲
▲
▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲
▲▲▲▲
▲
▲▲▲▲▲
▲
▲▲
▲▲
▲▲▲
▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲
▲
▲▲▲
▲▲▲▲▲▲▲▲▲▲▲
▲
▲▲
▲▲▲▲▲▲
▲▲▲
▲
▲
▲▲▲
▲
▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲
▲
▲▲▲▲▲
▲▲▲▲▲

▲
▲▲▲▲▲▲▲▲
▲▲▲▲
▲
▲
▲▲▲▲▲▲▲
▲▲
▲▲▲▲▲▲▲
▲▲
▲▲▲
▲
▲▲▲▲
▲
▲
▲▲▲▲▲
▲
▲▲
▲▲▲▲
▲
▲▲
▲
▲▲▲▲▲
▲
▲
▲
▲▲▲▲
▲▲
▲
▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲
▲▲▲
▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲
▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲
▲
▲▲▲▲▲▲
▲▲
▲
▲▲▲▲▲
▲▲
▲▲▲▲▲▲▲
▲

▲
▲▲▲▲
▲▲
▲
▲
▲▲▲
▲▲▲▲▲▲▲▲▲▲▲
▲
▲
▲▲▲▲▲▲▲
▲▲
▲
▲
▲
▲▲▲
▲
▲▲▲
▲

▲
▲
▲
▲
▲
▲▲▲▲▲▲▲▲▲▲▲▲
▲
▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲▲
▲▲▲▲
▲▲▲
▲
▲▲▲▲
▲
▲▲
▲
▲▲▲▲
▲▲
▲
▲▲▲▲
▲
▲▲▲
▲▲▲▲▲▲▲▲
▲
▲
▲▲▲▲
▲▲▲
▲
▲

▲
▲▲
▲
▲
▲

▲
▲
▲
▲
▲▲▲
▲
▲▲
▲▲▲▲▲▲
▲▲▲▲▲
▲▲▲▲▲▲▲
▲
▲▲▲▲▲▲▲
▲
▲▲
▲
▲▲▲
▲▲
▲▲
▲
▲
▲▲▲
▲▲▲
▲
▲
▲
▲
▲
▲
▲▲
▲▲
▲▲
▲
▲▲
▲

▲
▲

▲

▲▲
▲
▲
▲
▲
▲▲▲▲▲▲
▲
▲▲▲▲▲
▲▲
▲▲
▲
▲
▲▲▲
▲
▲
▲

▲
▲
▲▲
▲▲
▲▲
▲▲▲▲

▲

▲▲▲▲▲
▲
▲
▲▲▲
▲

▲

▲

▲▲▲
▲
▲▲
▲▲▲
▲
▲▲▲▲▲▲▲▲
▲▲
▲

▲

▲▲▲▲
▲

▲
▲
▲
▲▲▲▲
▲▲
▲▲▲▲
▲▲▲
▲▲▲▲▲
▲▲▲
▲
▲
▲

▲▲▲
▲
▲
▲
▲
▲▲▲
▲
▲▲
▲▲
▲
▲

▲▲
▲▲▲
▲
▲▲
▲

▲

▲

▲
▲

▲
▲
▲

▲▲▲▲▲▲▲▲▲

▲

▲
▲
▲
▲

▲
▲▲▲
▲
▲

▲

▲

▲

▲
▲
▲
▲
▲
▲
▲
▲
▲▲▲
▲
▲
▲▲▲
▲
▲
▲
▲

▲

▲
▲▲▲
▲
▲▲
▲
▲
▲▲▲
▲
▲▲
▲

▲

▲
▲▲▲
▲▲
▲▲▲
▲
▲
▲
▲▲

▲

▲
▲
▲

▲

▲▲
▲

▲
▲
▲

▲

▲

▲

▲
▲
▲
▲
▲
▲
▲

▲

▲
▲
▲

▲

▲
▲
▲

▲
▲
▲

▲

▲▲▲

▲

▲

▲

▲

▲
▲
▲

▲

▲
▲

▲
▲
▲
▲▲
▲

▲
▲

▲
▲
▲

▲
▲
▲

▲

▲

▲

▲

▲

▲
▲

▲
▲
▲

▲

▲

▲

▲
▲

▲

▲

▲

▲

0 1000 2000 3000 4000

0

2

4

6

8

n

b
n

▲
▲
▲
▲▲
▲▲
▲
▲▲▲

▲▲
▲▲▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲

◆
◆
◆◆
◆◆
◆◆
◆◆◆

◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆

5 10 15 20 25 30
0

2

4

6

8

n

b
n

(a)

integrable

non-integrable

0 1000 2000 3000 4000 5000 6000
0

500

1000

1500

2000

t

K
(t
)

(b)

Figure 1. (a) Growth of Lanczos coefficients bn for the probe operator σz
3 in integrable (g = 1, h =

0, red) and chaotic (g = −1.05, h = 0.5, blue) limits as mentioned below eq. (3.3) by implementing
the bi-Lanczos algorithm. The system size is N = 6. Since this is a closed system, the Lanczos and
bi-Lanczos algorithm yields the same results. The behavior of the first few coefficients is shown
in the inset image. In the Lanczos descent, there are more fluctuations for the integrable case
compared to the non-integrable one. (b) The behavior of K-complexity for integrable (red) and
chaotic (blue) limits. Observe that the saturation value in the chaotic limit is higher (∼ K/2,
dashed black line) than the saturation value in the integrable limit.

integrable regime, we choose g = 1, h = 0, while we choose g = −1.05, h = 0.5 for the
non-integrable/chaotic regime [39].7

We encode the interaction between the system and the environment by the following
jump operators [1, 40]

L−1 =
√
ασ+

1 , L0 =
√
ασ−1 ,

LN+1 =
√
ασ+

N , LN+2 =
√
ασ−N , Li = √γ σz

i , i = 1, 2, · · · , N . (3.4)

where σ±j = (σx
j ± iσy

j )/2. The set of operators Lk with k = −1, 0, N + 1, andN + 2
captures the boundary amplitude damping with amplitude α > 0, and the bulk dephasing
is encoded by the operators Li, i = 1, 2, · · · , N with amplitude γ > 0.

3.2 Results

Here we implement the bi-Lanczos algorithm for the open TFIM as explained previously.
We get an effective tridiagonal matrix for the Lindbladian. The α = γ = 0 case corresponds
to the closed TFIM case, for which we get back the closed system behavior. For all our
examples, we choose the system size N = 6.

3.2.1 Closed systems

We are interested in studying the operator growth for the initial operator at site i = 3 (in
the system size N = 6), i.e., O3 ≡ σz

3 . The Krylov dimension, in this case, is of the order
K ∼ 4000. For the closed case, we get an exact agreement with the results of [12] (see
also [41]).

7In all further results reported on the TFIM model, we will refer to these values of g and h as integrable
and non-integrable/chaotic limits.
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Figure 2. Growth of Lanczos coefficients for (a) integrable (g = 1, h = 0) and (b) chaotic
(g = −1.05, h = 0.5) systems for α = 0.01, γ = 0.01. The system size is N = 6. The yellow and
cyan lines in the respective plots show the averaged values, done only to better understand the
overall Lanczos descent. One can easily see that in the case of open systems, even the chaotic bn

have fluctuations for large n resulting in the same saturation value of K-complexity as the integrable
case. The information of integrability, therefore, washes out at higher times, or higher n. (c) shows
the comparison between |an| plots for integrable and non-integrable cases with α = 0.01, γ = 0.01.

• The diagonal coefficients an are vanishing. Also, the other two sets of coefficients, bn

and cn, which are in general of the same magnitude, become exactly equal.

• The integrable and the chaotic bn for small n (up to 30) are differentiable (inset of
figure 1 (a)). In the integrable case, the initial coefficients grow sub-linearly, whereas,
in the non-integrable case, they grow almost linearly.

• For large n iterations, the integrable coefficients exhibit more fluctuations than the
chaotic ones. See figure 1 (a). This results in a lower saturation of K-complexity for
the integrable regime, compared to the chaotic ones (figure 1 (b)). This phenomenon,
in integrable case, is usually attributed to the presence of stronger disorder in the
Lanczos sequence, known as the Krylov localization [11]. However, the saturation
value of complexity for the chaotic case is ∼ K/2 ∼ 2000, which is in agreement
with [12].

3.2.2 Open systems

For the open systems, the extra component is the diagonal elements in the tridiagonal rep-
resentation of the Lindbladian as explained in the previous section. The purely imaginary
nature of the diagonals results in a decay of the amplitude associated with each of the
φn(t). The behavior of the diagonals (an) and off diagonals (bn) are as follows.

• Initially, the integrable and non-integrable Lanczos sequences are indistinguishable
from the closed system, which is manifested in the first few Lanczos coefficients.
However, the distinguishability appears in the later and larger n. We find that, in this
regime, similar to the integrable one (figure 2 (a)), there exists a substantial amount
of fluctuations8 in the non-integrable case (figure 2 (b)), unlike the closed system

8Apart from the usual fluctuations that were present in a closed system, there exists a substantial
number of outliers (very large fluctuations) in the plot, which we get rid of by implementing a maximum
cut-off by hand.
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γ ηint ηnon−int

0.01 0.0026 0.0028
0.05 0.0130 0.0142
0.10 0.0261 0.0284
0.15 0.0391 0.0425

α ηint ηnon−int

0.01 0.0020 0.0019
0.05 0.0101 0.0096
0.10 0.0203 0.0192
0.15 0.0305 0.0289

Table 1. Table for comparison of the slopes for the initial growth of the diagonal coefficients |an|
with (left) fixed α = 0 and various γ, (right) fixed γ = 0 and various α.

analysis. It is important to note that in the closed system studies, the lesser amount
of fluctuations in the non-integrable case compared to the integrable case made the
chaotic complexity saturate at a higher value than the integrable ones. Therefore,
the open system Lanczos sequence suggests that at later times, the distinguishability
between the integrable and chaotic regimes is lost.

• The purely imaginary diagonal elements of the Lindbladian initially grow with n and
then saturate (figure 2 (c)). The saturation appears due to the finite size of the
system. The behavior of these elements is almost similar for integrable and non-
integrable cases.

• The initial growth is linear and seems to be universally true for both integrable and
non-integrable cases. In general, the behavior of the initial diagonals before reaching
saturation is the following

|an| ∼ η (α, γ)n+ k , (3.5)

with η (α, γ) is some constant and depends on the environmental couplings. Here k is
some offset which can be set to zero. In the table 1 a) and b), we compare the slopes
between integrable and non-integrable cases for i) fixed γ with varying α and ii) fixed
α with varying γ. Although there is no straightforward proof of this statement, a
probable reason is due to the operator size concentration, i.e., n-th Krylov basis is a
linear combination of size n (i.e., Pauli basis supported on n sites). In large q SYK,
this property has been proven to hold for any generic dissipation [2, 15].

• From, figure 3 (a) and figure 3 (b), we observe that the behavior of η ≡ η (α, γ) is
linear with both α and γ. Therefore, we find

η = c1α+ c2γ , (3.6)

where c1 and c2 are some constants (depending on the system size) and can be ob-
tained by the linear fit of the data. For our purposes, the slopes are not important, al-
though we see that c1 higher for the integrable regime, while c2 is higher in the chaotic
regime. This linearity is consistent with the results of the dissipative SYK model [2].

The above behavior results in a decay of the probability. We plot the normalized
K-complexity (eq. (2.21)) and observe the following behavior.
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Figure 3. Behavior of η with α and γ, according to eq. (3.6). In both cases, the plots show linear
growth. We use values from table 1 (a) and (b).
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Figure 4. Comparison of K-complexities between integrable (g = 1, h = 0, red) and non-integrable
(g = −1.05, h = 0.5) limit for fixed γ = 0.01 with (a) α = 0.01 and (b) α = 0.1. (c) shows the
decay of probabilities for γ = 0.01 and α = 0.01.
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Figure 5. Comparison of K-complexities between the integrable (g = 1, h = 0, red) and the
non-integrable (g = −1.05, h = 0.5) for fixed α = 0.05 with (a) γ = 0 and (b) γ = 0.01 and (c)
γ = 0.05.

• The K-complexity for both integrable and non-integrable cases grows initially before
showing decay and saturation to a constant value (figure 4 and figure 5). The ini-
tial growth of complexity is more pronounced for the non-integrable case than the
integrable case (figure 4 (a) and figure 5 (a)). As we increase the environmental
coupling parameters α and/or γ, the initial peak (before the decay) value decreases
for the chaotic case (figure 4 (b) and figure 5 (b) and (c)). The integrable peak value
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also decreases, but the decay for the integrable case is far less pronounced than the
non-integrable ones.

• The late-time saturation value of the complexity seems to be universal in open sys-
tems. This comes from the fact that the late-time complexity is governed by the
Lindblad jump operators while the early-time growth is controlled by the Hamilto-
nian.9 The saturation appears to be the same for the integrable and non-integrable
cases and does not change with increasing α or γ. For larger environmental couplings,
the initial peak of complexity for the integrable and the non-integrable cases becomes
almost the same.

Apart from the numerical observations mentioned above, there are a couple of facts
worth mentioning here. It is known that the eigenvalues of the Lindbladian (iLo) come in
complex conjugate pairs, with their real part being always negative [1]. Therefore the non-
unitary evolution of the initial operator through eiLotO(0) = eL̃otO(0) always gives rise to
a decay, which is known in mathematics as controlled systems. For such systems, various
physical observables are known to be bounded and never reach infinity. The criterion of our
system to be a controlled system is therefore dictated by the eigenvalues of the Lindbladian
which can be explicitly checked through the Routh-Hurwitz stability criterion [45, 46]. We
have checked this with our tridiagonal form with the numerical values, and find that the
criterion is satisfied.

3.2.3 Finite-size effect and the choice of the initial operator

In the previous section, we studied the TFIM model with the number of sites N = 6 and
initial operator O(0) having nontrivial support only in the third site, i.e.,

O(0) = σz
3 ≡ I ⊗ I ⊗ σz ⊗ I ⊗ I ⊗ I . (3.7)

For this case, the upper bound for the Krylov space dimension is K ≤ (D2−D+1) ≈ 4000,
with D = 26 being the Hilbert space dimension. This small size restricts us to conclude
whether the observed properties are universal or simply due to the finite-size effect. To
remedy this, we increase the system size and observe the generic trend of the bi-Lanczos
coefficients. In particular, we discuss how the initial Lanczos coefficients behave when the
system size is increased. We study the following two cases:

Case 1. System size N = 8 and the initial operator having nontrivial support at the
fourth site.

Case 2. System size N = 10 and the initial operator having nontrivial support at the
fifth site.

Now, we restrict our study in these higher system size cases only to the initial few
Lanczos coefficients due to the limitations of numerical resources, thus we resist commenting
on the finite-size effect on late-time behavior of the K-complexity. To be more specific, for

9The late-time saturation might be described by random matrix theory (RMT) universality and Ginibre
ensemble [42–44]. We thank Shinsei Ryu for the discussions on this point.
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Figure 6. (a) Growth of initial Lanczos coefficients bn in the integrable (g = 1, h = 0) limit
by implementing the bi-Lanczos algorithm for N = 6 (purple), N = 8 (red), and N = 10 (blue)
system sizes, with the probe initial operators spaced at σz

3 , σz
4 and σz

5 positions respectively. (b)
The growth of diagonal Lanczos coefficients for integrable (g = 1, h = 0) limit. N = 6 (purple),
N = 8 (red), and N = 10 (blue) system sizes are compared with probe initial operators spaced
at σz

3 , σz
4 and σz

5 positions respectively. All plots have been done for zero bulk dephasing and the
boundary dephasing is set to α = 0.1.

N = 8, the Krylov space dimension turns out to be K ≈ 65000, and for N = 10, K ≈ 106.
However, as we will see, we can get a good understanding of how the K-complexity would
behave for higher system size from these initial Lanczos coefficients.

In figure 6 and figure 7, we compare the growth of bn and an for different sizes in the
integrable and the non-integrable limit. We observe that as we increase the system size, the
growth of the bn persists for larger n before the finite-size effect kicks in. Interestingly, the
slopes or the general behavior of bn for the integrable and the non-integrable regimes seem
to be universal before the finite-size effect hits, i.e., bn only captures the integrability of
the system and increasing the system size increases its saturation value, thus corroborating
the previous studies in closed SYK [47] and open SYK [2].

Similarly, we observe that as the system size is increased, the slope of the magnitude
of the diagonal coefficients an remains unchanged while the growth starts in higher values
of n (see figure 6 (b) and figure 7 (b)). This can be understood from the fact that as we
increase the system size with the initial operator supported in the middle of the chain, it
takes more iterations (or analogously more time) to grow and reach the boundary, where
dephasing operators act. As a result, the diagonal coefficients, which are purely a result
of the dissipative effect and the non-Hermiticity of the Lindbladian, start showing nonzero
values later for larger system sizes. Surprisingly, the generic behavior of an seems to be
linear in both integrable and non-integrable systems and saturates due to the finite-size
effect, corroborating our previous studies with Arnoldi iteration [1, 2].10

Further, in figure 6 and figure 7, we note that there is a slight delay in the number
of steps n1 where an start growing compared to the number of steps n2 where bn start to

10The above results allow us to comment on the K-complexity at the early-time regime but not late-time.
Since the initial growth is mostly controlled by bn, it would persist longer for larger-sized systems.
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Figure 7. (a) Growth of initial Lanczos coefficients bn in the non-integrable (g = −1.05, h = 0.5)
limit by implementing the bi-Lanczos algorithm for N = 6 (purple), N = 8 (red), and N = 10
(blue) system sizes, with the probe initial operators spaced at σz

3 , σz
4 and σz

5 positions respectively.
(b) The growth of diagonal Lanczos coefficients for integrable (g = 1, h = 0) limit. N = 6 (purple),
N = 8 (red), and N = 10 (blue) system sizes are compared with probe initial operators spaced
at σz

3 , σz
4 and σz

5 positions respectively. All plots have been done for zero bulk dephasing and the
boundary dephasing is set to α = 0.1.

saturate. The operator hitting on the wall can be defined when the n-th Krylov basis has
at least support on one operator of size n. This happens on step n1 slightly earlier than
step n2 when operator completely hits the wall. This is the step when the operator size
concentration [2] holds and bn saturates. These two situations arise because of the presence
of boundary dissipation only and absence of bulk dissipation. The bulk dissipation makes the
operator decay along with its growth; hence, the an starts to grow even from the first step.

We briefly explain the operator size concentration in this context. In the general
operator Hilbert space for N -site Hamiltonian, we can always write the n-th Krylov basis
operator as

On =
{N}∑

i={1}
c{i}σ{i} , (3.8)

where c{i} are a class of real coefficients and σ{i} denotes the combination of Pauli spin
operators which has support on i sites. For example, σ{3} would mean a set of all operators
having nontrivial support on any three of the N sites. In this language, the scrambling
time can be characterized by the time when the n-th Krylov operator On is majorly dom-
inated by the set of operators (σ{N}) having support on the full size (N) of the system.
Mathematically this means that at t = tscr, we have c{N} � c{i}, for all i < N . In con-
junction with the previous paragraph, this happens after n2 number of Lanczos iterations.
On the other hand, n1 corresponds to the Lanczos step when N site-supported coefficients
c{N} become nonzero for the first time, but the contribution need not dominate over the
contributions from lesser supported operators.

We also discuss the results of the increasing support of the initial operator for a given
system size N = 6. It can already be intuitively understood from our results - once the
support of the initial operator is increased from one site to many, the operator becomes more
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Figure 8. (a) Comparison of the decay of total probabilities for different weights (operator weight
one σz

3 (blue) and three σz
2 ⊗ σz

3 ⊗ σz
4 (purple) respectively) of the initial operator in the integrable

(g = 1, h = 0) limit. Here the Lindblad couplings are γ = 0 and α = 0.1. (b) Comparison of the
decay of total probabilities for different boundary dephasing couplings α = 0.02, γ = 0 (blue), and
α = 0.05, γ = 0 (red) and α = 0.02, γ = 0.05 (purple) in the non-integrable (g = −1.05, h = 0.5)
limit. We choose the initial operator σz

3 . In both cases, the system size is N = 6.

non-local and would come across the boundary dissipation with less number of iterations.
As a result, an would start showing nonzero values in a smaller number of iterations.

We compare the total probabilities for different weights of the initial operators. From
figure 8 (a), we can see that as the weight of the initial operator is increased, the total
probability starts decaying earlier. This agrees with the above-mentioned intuition that
with increasing initial operator weight, the operator evolution is exposed to the environment
quicker. However, the rates of decay seem comparable to each other. As a result of this, the
complexities would also start decaying earlier with increasing operator weight. Therefore
the peak of the complexity seems to get lower for increased operator size since the decay
regime will kick in earlier.

In addition, in figure 8 (b), we show the time evolution of probability in the non-
integrable regimes with different coupling strengths for the Lindbladian jump operators.
While the blue and red plots suggest that with increasing boundary dephasing, the rate
of probability decay becomes more, the purple plot shows that bulk dephasing in addition
to the boundary dephasing exposes the system to an even stronger non-Hermiticity (the
interaction with the environment) that results in an even quicker decay of total probability.
It is worth noting that the decay rate only depends on the environmental coupling but not
on the operator weight.

Finally, we make a comment on the thermodynamic limit. In this limit (N →∞), the
behavior shown in figure 6 and figure 7 suggests that the operator will take a large number
of iterations to reach the boundary where the dissipation acts. Hence, the an coefficients
will always vanish. This in turn means that open quantum systems in thermodynamic
limits with only boundary dissipation behave very similar to closed systems characterized
by asymptotically growing bn coefficients and no substantial effect of an coefficients. Just
like the closed systems in the thermodynamic limit, the scrambling time then tends to
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infinity and the initial growth of K-complexity persists. This situation will dramatically
change when we introduce all-site bulk dephasing. The dissipation will be present even
in the thermodynamic limit, and both an and bn will grow depending on the integrability
of the system. However, for chaotic systems, we expect both coefficients to show linear
growth. This will make the K-complexity saturate at a time that decreases logarithmically
with increasing dissipation strength [2, 15].

4 Conclusion and outlook

In this paper, we extended our previous studies of operator growth and K-complexity for
open quantum systems. We have considered two models, the open TFIM and the open
XXZ spin chains. The main text contains the results for the open TFIM whereas similar
results for the open XXZ chain are given in appendix B. For both models, we implement the
bi-Lanczos algorithm to construct the tridiagonal matrix representation of the Lindbladian.
The Krylov space dimension in both cases is of similar order (∼ 4000) for spin size N = 6.
Our main conclusions of the paper are listed below.

Early time and small n behavior. The behavior of the coefficients present in the
tridiagonal representations for a small number of iterations (small n) controls the early
time behavior of the K-complexity.

• The bi-Lanczos algorithm reduces to the closed system Lanczos algorithm when the
environmental coupling parameters α and γ are taken to be zero. This can be un-
derstood in the level of the algorithm itself, as explained in appendix A.

• For zero environmental couplings, we get back the closed system K-complexity plots
which agree with previous studies (figure 1). The initial growth rate of complexity is
more pronounced for the non-integrable case compared to the integrable ones. This
can be traced back to the initial growth rate of the Lanczos coefficients.

• For nonzero environmental couplings, the bi-Lanczos algorithm recasts the Lindbla-
dian into a purely tridiagonal matrix. This is to be contrasted with the Arnoldi
iteration, where the Lindbladian is obtained in the upper Hessenberg form [1, 2].

• The diagonal coefficients of the Lindbladian are purely imaginary and nonzero, unlike
the closed system case, where the diagonal elements vanish. These purely imaginary
diagonals cause decay in the amplitudes φn(t), which in turn results in the decay of the
probability distribution and K-complexity for both the integrable and non-integrable
cases (figure 4 (c)).

• For small n, the magnitude of the diagonal coefficients shows a linear growth, which
is similar for both integrable and non-integrable regimes. Therefore, unlike the off
diagonals bn, one can not distinguish between integrable and non-integrable regimes
by observing the diagonal coefficients. The slope appears to be increasing with the
increasing environmental coupling parameters.
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• In the off-diagonal coefficients bn for small n (up to 50), we see exactly similar be-
havior as the closed system. Hence the distinguishability between integrable and
non-integrable cases remains intact initially, resulting in a distinguishability in the
early growth of the K-complexity.

• Once the environmental coupling parameters are increased, the growth rate of the
magnitudes of the diagonal coefficients increases, resulting in a loss of early-time
distinguishability between the integrable and non-integrable cases. This essentially
means that with increasing environmental couplings, the information on integrability
washes out quickly.

• We also compare the small n behavior of the Lanczos coefficients for different system
sizes, with different weights of initial operators. The finite-size effect has a strong
impact on the saturation of bn, especially the saturation value increases with system
sizes. A similar conclusion can be drawn for an as well but here the saturation value
remains comparable for different system sizes while the saturation happens at higher
n values for larger system sizes. This behavior appears to be “universal” in the sense
that the off-diagonal elements of the Lindbladian are sensitive to the integrability of
the system while the diagonal elements (an) capture the dissipation.

• It is also worth noting that for boundary dissipation, the appearance of diagonal co-
efficients is delayed as the system size is increased. From this we conjectured that for
boundary dissipation in the thermodynamic limit, the diagonal coefficients would take
forever to appear and K-complexity will behave very similar to the closed systems.

Therefore, the main conclusion for early times is that the integrable and the non-integrable
regimes are distinguishable in the early times through the initial growth of the K-complexity
only for small environmental couplings.

Late time and large n behavior. In the following, we address the late-time distin-
guishability between integrable and non-integrable regimes, which is controlled by the large
n behavior of the coefficients an and bn.

• The diagonal coefficients saturate after an early-time linear growth. This saturation
value, for boundary dissipation, is independent of system size and depends on the
non-hermitian coupling.

• The off-diagonal coefficients, however, exhibit a bi-Lanczos descent until the system
Krylov space is fully explored.

• The off-diagonal coefficients, even for zero environmental couplings show more fluc-
tuations for the integrable case, as was found previously in [12], compared to the
non-integrable case, resulting in a lower saturation compared to the non-integrable
case after the initial growth.
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• For nonzero environmental couplings, both the integrable and non-integrable bn for
large n show even more fluctuations than the closed case. Since these later fluctu-
ations control the saturation value of the K-complexity, one would expect that the
integrable and the non-integrable cases should saturate in similar values, given the
diagonals also behave similarly for the two cases in open system analysis. We indeed
find the expected late-time behavior of the K-complexity, i.e., the saturation values
are almost indistinguishable for the integrable and non-integrable cases.

• The saturation appears to be universal for a given Krylov dimension (we expect it
to increase if the system size is increased, see [2] for dissipative SYK). The fact that
after this saturation the complexity remains saturated for a long time, indicates that
this might be a result of reaching a steady state. This in general depends both on
the system size and the dissipation strength [48].

Therefore we conclude that the notion of late-time chaos becomes completely unclear due
to more fluctuations coming from Lanczos coefficients, even for chaotic evolution. Unlike
the early-time behavior, the late-time saturation value of the K-complexity is always the
same. This is not only independent of the nature of the Hamiltonian (integrable or chaotic)
but also independent of the environmental couplings as long as they are non-vanishing.

Hence, it is clear that the information of integrability is there at early times for only
small enough dissipation. However, the distinguishability is always lost at late times for
open system dynamics, even for small dissipation. This indicates that however small the
dissipation might be, it washes out the information of integrability as we go further in time
and makes the complexity saturation value independent of the dissipation or integrability.
Therefore, at late times, all the cases studied in our paper for a given model, have almost the
same complexity. We, therefore, expect this saturation value to be an increasing function of
the system size. It would be however interesting to understand this behavior analytically.
We hope to explore this direction in future works.

We conclude with a few interesting future directions for this work. Firstly, given the
recent ventures of computing Krylov complexity in quantum field theories [8, 49, 50], it
would be interesting to study the thermal autocorrelation functions and Krylov complexity
in open QFTs [25]. The non-unitary evolution in such a case can be modeled by the
Feynman-Vernon influence functional along with the Schwinger-Keldysh formalism [51].
Further, the bi-Lanczos algorithm is applicable not only to operator growth but also to
any non-Hermitian evolution. For example, it should apply equally well in the studies of
the spread complexity in the Schrödinger picture given the Hamiltonian under which the
evolution happens, is non-Hermitian (see appendix C). A few of such scenarios, where a non-
Hermitian Hamiltonian evolution occurs, are i) the evolution of mixed state density matrix
in terms of an effective non-Hermitian Hamiltonian [21, 52] derived from the Lindblad
master equation and ii) the evolution of quantum states under projective measurements
after regular intervals (also known as the first passage problem) [53]. In the former case,
it might be interesting to understand the Liouvillian gap and the corresponding relaxation
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time scale from the operator growth perspective for integrable systems [54–56].11 We hope
to address some of the questions in future studies.

Acknowledgments

We wish to thank Xiangyu Cao, Rathindra Nath Das, Bidyut Dey, Hosho Katsura, Amin
Nizami, Tanay Pathak, Shinsei Ryu, Aninda Sinha, Julian Sonner, and Hironobu Yoshida
for useful discussions in related works. We also thank the anonymous referee for valuable
suggestions, which leads to the subsection 3.2.3. A.B. thanks the organizers of the workshop
on “QI in QFT and AdS/CFT III” and the hospitality of the Theory Division, Saha Insti-
tute of Nuclear Physics, where part of this work was presented. P.N. would like to thank
Princeton Center for Theoretical Science (PCTS), Princeton University for hosting him
through the overseas visiting program for young researchers (KAKENHI No. 21H05182)
during the final stages of the work. The work of A.B. is supported by the Polish Na-
tional Science Centre (NCN) grant 2021/42/E/ST2/00234. The work of P.N. is supported
by the JSPS Grant-in-Aid for Transformative Research Areas (A) “Extreme Universe”
No. 21H05190.

A Reduction of bi-Lanczos algorithm into Lanczos algorithm

Consider the application of the Lanczos algorithm on the Hermitian matrix. In this case,
we expect it to reduce to the Lanczos method.

Firstly, the original Lanczos algorithm can be written in the following way.

1. Let |q0⟫ ∈ Cn be an arbitrary vector with ‖q0‖ = 1.

2. Abbreviated initial iteration steps are the following:

(a) Let |r′0⟫ = A|q0⟫.
(b) Compute the inner product, α0 = ⟪r′0|q0⟫.
(c) Define |r0⟫ = |r′0⟫− α0|q0⟫.

3. For j = 1, 2, · · · , perform the following steps:

(a) Compute the norm, βj = ‖rj−1‖.
(b) If βj 6= 0, define |qj⟫ = |rj−1⟫/βj .
(c) Let |r′j⟫ = A|qj⟫.
(d) Compute the inner product, αj = ⟪qj |r′j⟫.
(e) Define |rj⟫ = |r′j⟫− αj |qj⟫− βj |qj−1⟫.
(f) If βj = 0, stop, otherwise go back to step 3.

4. Let Q be the matrix with columns q1, . . . , qm. Then T = Q∗AQ.
11We thank Hosho Katsura for discussions regarding this point.
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Here, note that this step-by-step algorithm is written so that one can make an easy com-
parison with the bi-Lanczos algorithm in the main text. By comparison, it is easy to see
that in case the operator A is Hermitian, the bi-Lanczos algorithm becomes redundant in
the sense that it is a double copy of the Lanczos algorithm where every ⟪qn| vector can be
identified as just the complex conjugate of |pn⟫. Similarly |r′j⟫ = |s′j⟫ and bj = cj = βj .
Also, the αj = aj coefficients become real in this case, due to the Hermiticity of the op-
erator. More specifically, for operator complexity, this becomes zero as the Liouvillian
superoperator involves commutation.

B Results for open XXZ Hamiltonian

The XXZ Hamiltonian is used to describe the behavior of a system of interacting spin-1/2
particles in a magnetic field. It has been used to study a wide range of physical systems,
including quantum spin chains, and has been the subject of extensive research in condensed
matter physics and quantum mechanics. The exact form of the Hamiltonian depends on
the specific physical system being modeled, but it generally includes terms that describe
the interactions between the spins of the particles as well as the interactions between the
spins and the external magnetic field. We will consider nearest-neighbor interaction, and
the Hamiltonian is given by

HXXZ =
N−1∑
i=1

J (Sx
i S

x
i+1 + Sy

i S
y
i+1) + Jzz S

z
i S

z
i+1 , (B.1)

where Sa
i = σa

i /2 where σa
i are he three Pauli matrices. This Hamiltonian is integrable for

all values of the coupling parameters J and Jzz. To break integrability, add the following
integrability breaking term [12]

Hd = SZ
j , (B.2)

with coupling parameter ε. The integrability of the model depends on ε, in particular, the
level statistics of it match with the GOE ensemble for ε = 0.5, which we will take our
definition of “chaotic” Hamiltonian for our calculation purpose [12].

Choice of sector. The XXZ Hamiltonian commutes with the operator denoting the total
spin of the system, given by

S =
N∑

i=1
Sz

i . (B.3)

Additionally, it commutes with the parity operator (P), meaning that it is invariant under
reflection with respect to the edge of the chain. The symmetries of the XXZ Hamiltonian,
specifically the conservation of total spin and parity, lead to degeneracy in the energy spec-
trum. By selecting a specific sector with a particular total spin and parity, we can remove
these symmetries and reduce the problem’s dimensionality. This can make it more numer-
ically efficient to study operator growth in large systems. By breaking the symmetries, we
can also gain a better understanding of the system’s underlying physics, as the symmetries
can obscure certain system features.
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Figure 9. Comparison of K-complexities between integrable (ε = 0) (red) and non-integrable
(ε = 0.5) (blue) for fixed γ = 0.01 with (a) α = 0.01 and (b) α = 0.05 for open XXZ Hamiltonian.
System size N = 16 with total spin S = 2 and parity P = +1, and initial operator (Sz

7 + Sz
10).

Choice of initial operator. Moreover, we will have to select the initial operator in
such a way that it stays within the specific sector of the Hamiltonian throughout the entire
evolution. We will choose the following from the initial operator

Sz
i + Sz

N−i+1 . (B.4)

Choice of Lindblad operators. To study the K-complexity for the open case, we will
have to evolve the system with the Lindbladian instead of the Hamiltonian. We choose
the Lindblad operators in such a way that they commute with the parity operator (P) and
the total spin operator (S), only then operator will evolution will take place within the
specific spin and parity sector. The bulk Lindblad operators can be chosen similarly to the
TFIM case as they commute with S and P. But the boundary Lindblad operators that we
choose for the TFIM case do not commute with P and S, and so we select the boundary
operators in the following manner

L1 =
√
α (σx

1σ
x
2 + σy

1σ
y
2) , LN =

√
α (σx

N−1σ
x
N + σy

N−1σ
y
N ) . (B.5)

We study the K-complexity for system size N = 16 with total spin S = 2 and parity
P = +1. We choose the initial operator at i = 7, i.e., Sz

7 +Sz
10. We choose the integrability

breaking parameter Hd = Sz
(N+1)/2 at the middle of the chain, and we study the non-

integrable case for ε = 0.5. For this system size and symmetry sector choice, the Krylov
dimension is of the order K ∼ 4000, which is similar to the TFIM case studied earlier.

Results. In this example, we again find that the K-complexity shows behavior similar to
the open TFIM results. The complexity grows initially, then decays followed by saturation.
The saturation values are similar for integrable and non-integrable cases (figure 9 (a)).
Finally, as we increase the non-Hermitian coupling, the initial peak of the non-integrable
case comes down closer to the integrable one (figure 9 (b)).
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C A generalized version of spread complexity

Our approach can be directly implemented to compute spread complexity [57]. For the
spread complexity, one can follow a similar algorithm. The only difference is that in this
case the evolution is of a state (unlike operator) and is generated by a non-Hermitian
Hamiltonian (instead of Lindbladian). The job is then to tridiagonalize the Hamiltonian
into the form [58]

H =



a0 b1 0
c1 a1 b2

c2 a2
. . .

. . . . . . bm

cm am
. . .

0 . . . . . .


. (C.1)

The basis is individually generated by |p0〉 and |q0〉, and they are bi-orthonormal according
to (2.6). Starting from by some initial state 〈w0| and |u0〉, one follows the following recursive
algorithm [58]:

|Qj+1〉 = (H − aj) |qj〉 − cj |qj−1〉 , 〈Pj+1| = 〈pj | (H − aj)− 〈pj−1| bj , (C.2)

where

aj = 〈pj |H|qj〉 , bj+1 = ||Qj+1|| , cj+1 = 1
bj+1

〈Pj+1|Qj+1〉 , (C.3)

〈pj+1| =
1

cj+1
〈Pj+1| , 〈qj+1| =

1
bj+1

〈Qj+1| . (C.4)

The algorithm recasts the Hamiltonian into the form (C.1) (and thereby (2.12)). There-
fore, one can choose an initial state (in a lattice system, this can be thought of as a ground
state of some arbitrary Hamiltonian, see [59] for an example) and evolve this with the
non-Hermitian Hamiltonian. In the case of a Hermitian Hamiltonian, the tridiagonalized
matrix form of the Hamiltonian is usually known to have real, but nonzero, diagonal co-
efficients [57, 60]. Hence, we expect that after the tridiagonalization of a non-Hermitian
Hamiltonian using bi-Lanczos algorithm, the diagonals would have both real and imaginary
parts. This was not encountered for the Lindbladian because the closed system tridiagonal-
ized Liouvillian has all the vanishing diagonals. Real diagonals give rise to a phase factor
in the solutions of the wavefunctions, whereas any imaginary part results a decay. Hence
we expect the overall behavior of the spread complexity evolving under a non-Hermitian
Hamiltonian to qualitatively mimic the operator K-complexity for open quantum systems.
Some of these aspects will be covered in an upcoming work by one of the authors (A.B.) [61].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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