
1.  Introduction
Terrestrial water storage (TWS) encompasses various components of water near the Earth's surface, includ-
ing groundwater, soil moisture, surface waters, and snow water equivalent (Humphrey et  al.,  2023; Tapley 
et al., 2019). Accurate assessment of TWS is essential for food security, human and ecosystem health, energy 
supply, and socioeconomic development (Huggins et al., 2022; Pokhrel et al., 2021; Shen et al., 2022). As the 
primary water source for humans, surface water supplies are becoming increasingly unpredictable with more 
droughts and floods (Kundzewicz et al., 2007; Rodell & Li, 2023; Tabari et al., 2021), which has led to a growing 
dependence on groundwater as a resilient water supply during droughts (Famiglietti, 2014; Scanlon et al., 2023; 
Taylor et al., 2013). Globally, over 2 billion people rely on groundwater as their primary source of freshwater 
(Gleeson et al., 2012). With precipitation and river hydrology undergoing significant changes (Syed et al., 2010), 
certain regions face an increasing threat to biodiversity (Vorosmarty et al., 2010), while approximately 4 billion 
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resources effectively.
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people worldwide suffer from severe water deficits (Mekonnen & Hoekstra, 2016). The decline in aquifer water 
levels will only worsen throughout the 21st century due to the increasing food demand driven by global popu-
lation growth (Turner et al., 2019). Therefore, it is crucial to track global or regional changes in TWS (TWSC).

However, monitoring global or regional TWSC has become challenging due to limited publicly shared in situ 
data from hydrological stations, primarily driven by political and economic pressures (J. Chen et  al.,  2016). 
Fortunately, satellite remote sensing and geodesy offer an excellent solution to this problem, providing a global 
perspective that transcends political boundaries (Famiglietti et al., 2015). In particular, the Gravity Recovery and 
Climate Experiment (GRACE) mission and its follow-on, GRACE-FO, have presented a new opportunity for 
water resource monitoring (Landerer et al., 2020; Tapley et al., 2004). Previous studies have demonstrated that 
GRACE detected TWS deficits in various regions, particularly those with intensive irrigated agriculture and high 
population densities, for example, the North China Plain (Feng et al., 2013; Huang et al., 2015; Long et al., 2023), 
northern India (Tiwari et al., 2009), the Middle East (Amiri et al., 2023; Joodaki et al., 2014), and California's 
Central Valley (P. W. Liu et al., 2022). GRACE has also been successful in monitoring drought-induced water 
storage depletion, as observed during the Central European droughts in 2018 and 2019 (Boergens et al., 2020), 
and the Yangtze River Basin drought in 2019 (Y. Ran et al., 2021). Furthermore, the shrinking of glaciers or ice 
sheets has been observed in regions such as the Gulf of Alaska coast (Luthcke et al., 2013), southeastern Tibetan 
Plateau (Li et al., 2022; Zhao et al., 2022), Patagonia (J. Chen et al., 2007; Tapley et al., 2019), and Greenland, 
and Antarctica (J. Ran et al., 2021; Velicogna et al., 2020). On the other hand, some regions have experienced 
an increase in TWS, including the northern Great Plains, Okavango River Basin, southeastern South America, 
eastern Australia (Rodell et al., 2018), and southeastern China (Mo et al., 2016). However, fewer studies have 
compared the different TWS trend values derived from GRACE across global basins (Scanlon et al., 2016).

The GRACE mission has been successfully applied to monitor phenomena such as glacier melting and ocean 
mass change, yielding promising results (Ramillien et al., 2008; Wouters et al., 2014). Typically, the TWS anom-
aly (TWSA) time series is decomposed into a seasonal term and a trend term calculated through various fitting 
methods. Several studies have utilized the magnitude of TWS trends to evaluate the severity of water deficits and 
rank areas based on water stress (Famiglietti, 2014; Richey et al., 2015). Recently, other studies have employed 
the percentage of trend variance relative to the total TWS variance or R 2 value (Rodell et al., 2018; Scanlon 
et al., 2022; Shamsudduha & Taylor, 2020), and the ratio of the trend to interannual variability from reconstructed 
TWS data, or the GRACE data (Scanlon et al., 2022; Vishwakarma et al., 2021). Inspired by these studies and 
considering two challenges faced in previous trend assessments: (a) the lack of a clear understanding of the varia-
tion range and time series scale within an individual region, hindering the identification of trend drivers; (b) each 
region has its own specific range of TWS variation, and identical trend values do not indicate the same level of 
water stress. For instance, a “−1 mm/yr” trend in water storage may have a minor effect in one region within the 
range of regional TWS variability, but it could exert significant pressure on another region, surpassing tolerable 
TWSC. Therefore, relying solely on the magnitude of the trend does not provide comprehensive information on 
the severity of TWSC. Consequently, we propose a new criterion based on a century-long GRACE-REC data 
set (Methods section for details) that considers internal climate variability. This criterion helps us understand the 
degree of TWSC when combined with GRACE trends.

In summary, the objectives of this study were as follows: (a) to estimate the trend bounds of long-term water 
storage induced by internal climate variability over a fixed time period using a century-long GRACE-REC data 
set; (b) to verify the reliability of these trend bound estimates and our method; and (c) to apply our method 
to assess the degree of GRACE trends, precipitation-induced (PI) trends, and non-precipitation-induced (NPI) 
trends during the GRACE era. TWS changes can be attributed to natural variability, climate change, and anthro-
pogenic influences (An et al., 2021; Zhong, Bai, et al., 2023). Here, we utilize GRACE observations, GRACE-
REC data, and other supplementary data sets to provide an integrated attribution of the TWS trends. The PI TWS 
trend is estimated from the GRACE-REC data set (Humphrey & Gudmundsson, 2019), and the NPI TWS trend is 
determined by subtracting the PI TWS trend from the GRACE trend. This separation of the GRACE trend enables 
us to understand different contributions to TWS change. GRACE-FO data is also utilized to analyze the impact 
of using different windows to evaluate TWS trends. We selected and studied 266 global basins (Figure S1 in 
Supporting Information S1), but due to the coarse spatial resolution of GRACE data, our focus is on analyzing the 
driving mechanisms of trends in global large basins (areas ≥ 500,000 km 2) (Scanlon et al., 2016). Additionally, 
we analyze trends in several basins further using precipitation and evapotranspiration (ET) data.
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2.  Data and Methods
2.1.  Data

The data can be broadly classified into five categories: GRACE mascon data, GRACE-REC data, boundaries of 
global major river basins, precipitation and ET data, and ancillary data. Please refer to Table 1 for the specific 
acquisition of the data sets.

2.1.1.  GRACE Data

The JPL mascon RL06_v02 (JPLM_RL06) is used to estimate the TWS trend considering that every 3° mascon is 
relatively uncorrelated (Rodell et al., 2018) and available GRACE-REC data (Humphrey & Gudmundsson, 2019). 
The mascon grid is sampled at 0.5°   resolution for further application. The GRACE mascon data from JPL 
have been used that do not require any post-processing steps (Watkins et  al.,  2015). We refer the readers to 
Wiese et al. (2016, 2019) for more details about JPL mascons. The period of January 2003 to December 2016 is 
extracted for TWS trend estimates.

2.1.2.  GRACE-REC Data

GRACE-REC data set published by Humphrey and Gudmundsson  (2019) is generated by using a statistical 
relation between daily precipitation, temperature, and detrended and deseasonalized TWS. The model formu-
lation is primarily inspired by the basic principles of hydrological modeling. During the training process, the 
trends of GRACE TWS and temperature are removed, while the potential TWS trends caused by long-term 
precipitation are not eliminated in the published GRACE-REC data set (Humphrey & Gudmundsson, 2019). 
Therefore, the GRACE-REC data set can be utilized to evaluate precipitation-induced (PI) TWS trends. The 
reconstructed TWSA, with a spatial resolution of 0.5° and temporal scales ranging from days to months, is based 
on two GRACE processing centers (JPL and GSFC) and three meteorological forcing time series (Multi-Source 
Weighted-Ensemble Precipitation [MSWEP], ERA5, and Global Soil Wetness Project Phase 3), resulting in six 
groups GRACE-REC data set (Humphrey & Gudmundsson, 2019). This study uses two GRACE-REC data sets 
(i.e., JPL-GSWP3 (1901–2014) and JPL-MSWEP (1979–2016)). The century-long JPL-GSWP3 data is used to 
estimate the upper and lower bounds of TWS trends under natural conditions. Since the JPL-MSWEP data is 
not available beyond 2016, the JPL-MSWEP data is used to derive the PI trend for the period 2003–2016. The 
GRACE-REC JPL-MSWEP data is expected to provide the most accurate estimate for the time of 1979–2016 
(Humphrey & Gudmundsson, 2019).

Data set Time span Spatial Temporal Access

JPLM_RL06 April 2002–December 2021 0.5° Monthly https://grace.jpl.nasa.gov

GRACE-REC/JPL-GSWP3 1901–2014 0.5° Monthly https://doi.org/10.6084/
m9.figshare.7670849GRACE-REC/JPL-MSWEP 1979–2016

Global major river basins – – – https://www.bafg.de/SharedDocs/
ExterneLinks/GRDC/mrb_

shp_zip.html

MSWEP 1980–2016 0.5° Daily http://www.gloh2o.org/mswep/

GLEAM_v3.6a 1980–2016 0.25° Monthly https://www.gleam.eu/

RGI 6.0 2017 – – https://www.glims.org/RGI/
rgi60_dl.html

Glacier mass loss data set 2003–2016 0.5° Monthly https://doi.org/10.6096/13

Global map of irrigation areas 2013 5' – https://www.fao.org/aquastat/
en/geospatial-information/

global-maps-irrigated-areas/

ISIMIP 1861–2099 0.5° Monthly https://www.isimip.org/outputdata/

ICE-5G (VM2) – 0.5° – https://podaac-tools.jpl.nasa.gov/

ICE-6G_D (VM5a)

Table 1 
Collection of All Data Sets for This Study
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2.1.3.  Global Major River Basins

The Global Runoff Data Centre (GRDC) serves 520 major river basins throughout the world, with complete cita-
tion and reference to incorporated data from the HydroSHEDS database. However, we only select 266 basins with 
an area larger than 40,000 km 2, which are divided into different size classes: large (40 basins, ≥500,000 km 2), 
medium (81 basins, 100,000–500000 km 2), and small (145 basins, 40,000–100,000 km 2) (Scanlon et al., 2016).

2.1.4.  Precipitation and ET Data

Following the analysis from Rodell et al. (2018) and An et al. (2021), we calculate the mean annual precipitation 
change based on the MSWEP data set for the periods 2003–2016 and 1980–2016 (precipitation climatology), 
hereafter referred to as APC0316. The precipitation anomaly (PA) relative to 1980–2016 mean is calculated. Addi-
tionally, we determine the changes in ET based on the Global Land Evaporation Amsterdam Model (GLEAM) 
data set between 2003-2016 and 1980–2016 (ET climatology), hereafter expressed as AETC0316. The ET anomaly 
(ETA) relative to 1980–2016 mean is calculated, and we also calculate the net water flux anomaly (i.e., PA-ETA). 
The ET from GLEAM is selected considering that the MSWEP precipitation is its forcing data. It is assumed that 
precipitation and ET remain in dynamic equilibrium under normal conditions. According to the water balance 
equation (Equation  1), if the mean annual precipitation (2003–2016) exceeds the normal situation, it would 
contribute to a positive TWS anomaly, while lower precipitation may lead to a negative TWS anomaly. The 
impact of ET on TWS is the opposite concerning precipitation.

ΔS = 𝑃𝑃 − ET −𝑄𝑄� (1)

ΔS is the changes in TWS over a specific period, P is precipitation, ET is evapotranspiration, and Q is streamflow 
(Bai et al., 2022).

2.1.5.  Ancillary Data

This study utilizes multi-source auxiliary data sets to analyze the driving mechanisms of trends. To investigate the 
impact of glacier mass changes on TWSA trends, we utilized the Randolph Glacier Inventory (RGI 6.0) glacier 
outline and glacier mass change data. The global map of irrigation areas data, published by the Food and Agri-
culture Organization of the United Nations, was used to study the effect of water use on water storage depletion. 
Water use data collected by the Inter-Sectoral Impact Model Intercomparison Project was also investigated to 
study the irrigation, industrial, and domestic water use in these basins. Additionally, glacial isostatic adjustment 
(GIA) models (ICE-6G_D (VM5a) and ICE-5G (VM2)) used for corrections to JPLM_RL06 and JPLM_RL05 
products, respectively, were utilized to discuss the possible sources of uncertainty in GRACE trends.

Most data sets have a resolution of 0.5° × 0.5°, and the other data sets with different resolutions are resampled to 
0.5° × 0.5° to further extract the basin-average estimates.

2.2.  Methods

It is hard to evaluate the changes in TWS in a basin only relying on the trend value derived from GRACE (referred 
to as TrendG). To provide a comprehensive understanding of TWS trends over a specific period, we utilize the 
one century-long GRACE-REC data set as a reference for estimating the upper and lower bounds of natural 
TWS trends. The upper bound and lower bound of the TWS anomaly trend (hereafter referred to as TrendUB and 
TrendLB) represent the maximum variation of the TWS anomaly trend under natural conditions. By consider-
ing  TrendUB and TrendLB, we can further interpret the TWS anomaly trend for the GRACE era.

The study period spans 14 years during the GRACE era, specifically from 2003 to 2016. The trend derived 
from GRACE-REC/JPL-MSWEP data for this period (14 years) is used to represent the precipitation-induced 
(PI) water storage trend (hereafter referred to as TrendPI). Additionally, the difference between the TrendG for 
2003–2016 and the TrendPI for the same period is denoted as the non-precipitation-induced (NPI) TWS trend 
(hereafter referred to as TrendNPI). The relationship between these trends is expressed in Equation 2. We calculate 
the trends for every 14-year period starting from 1901, with a step length of 1 year, based on the JPL-GSWP3 
data (i.e., 1901–1914, 1902–1915, …, 2001–2014), resulting in 101 trend series. The maximum (minimum) trend 
estimate is represented as TrendUB (TrendLB).

TrendG = TrendPI + TrendNPI� (2)
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The trends of TrendG, TrendPI, TrendUB, and TrendLB are estimated by least squares fitting (Scanlon et al., 2016), 
and their uncertainties are one standard deviation (±1σ). The uncertainty of TrendNPI is estimated by error prop-
agation from the uncertainties of TrendG and TrendPI.

Under natural processes without human intervention, the rate of TWS changes should generally fall within the 
range defined by TrendUB and TrendLB. When comparing TrendG with TrendUB and TrendLB (Figure 1), several 
typical cases can be observed. First, if TrendG exceeds TrendUB, three scenarios are possible: Case (a), TrendPI 
is also greater than TrendUB, then TrendPI contributes significantly to the increase in TWS (Figure 1a); Case 
(b), both TrendPI and TrendNPI are less than TrendUB, and they jointly contribute to a significant TWS increase 
(Figure 1b); Case (c), TrendNPI exceeds TrendUB (Figure 1c), suggesting that the TWS trends are primarily caused 
by TrendNPI. Conversely, if TrendG is lower than TrendLB, indicating severe TWS depletion, three scenarios are 
typically observed: Case (d), TrendPI is also less than TrendUB, and TrendPI contributes to this water storage 
depletion (Figure  1d); Case (e), both TrendPI and TrendNPI are greater than TrendLB, leading to a significant 
TWS decline (Figure 1e); and Case (f), TrendNPI is lower than TrendUB (Figure 1f), indicating that the TWS 
trends are likely caused by TrendNPI. Additionally, there is also a case where TrendNPI is below TrendLB, while 
TrendG and TrendPI fall within the range defined by TrendUB and TrendLB (Figure 1g). In such a case, poten-
tial non-precipitation-induced factors, including glacier melt, groundwater withdrawal, and increased ET, can 
contribute to TWS loss, which may be difficult, or even impossible, to recover. It should be noted that Figure 1 
includes most cases in this study, but not all possible scenarios.

Figure 1.  An illustration for the different cases when the TrendG/TrendPI/TrendNPI are beyond the TrendUB/LB. The blue arc 
represents the TrendUB and the red arc curves the TrendLB in a basin. The location of points indicates whether the TrendG/
TrendPI/TrendNPI is beyond TrendUB/LB or not.
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To further demonstrate our method, we present five typical basins in Figure S2 in Supporting Information S1. 
The TrendUB and TrendLB are clearly observed over the century-long period. Moreover, the severity of TrendG 
relative to the 100-year trends, as well as the variation characteristics of the trends and time series in individual 
basins, are clearly visible.

The trend in TWS can be influenced by both precipitation and non-precipitation factors, such as ET, tempera-
ture, and human activities. When the TrendPI falls outside the range defined by TrendUB and TrendLB, it indicates 
a significant positive or negative trend in TWS due to precipitation. Similarly, when the TrendNPI falls outside 
TrendUB or TrendLB, it indicates a significant positive or negative trend in TWS due to the non-precipitation 
factors. It is important to note that the estimation of TrendPI in this study is solely based on JPL-MSWEP data, 
encompassing the impact of natural variability and long-term climate changes in precipitation (Humphrey & 
Gudmundsson, 2019). However, TrendPI may not fully capture the contribution of changes in precipitation from 
2003 to 2016 relative to the long-term precipitation climatology (1980–2016) in certain basins. For example, 
if annual precipitation increased by 20 mm each year during 2003–2016 compared to the long-term average, 
it could disrupt the regional water balance equilibrium and lead to an increase in TWS. However, this change 
may not be reflected in the reconstructed precipitation-induced TWSA, as the parameters of the reconstruction 
model remain unchanged. Therefore, further analysis of changes in multi-year mean precipitation is conducted to 
explain specific TWS trends observed by GRACE in certain basins.

The flowchart depicting our method and the major content is illustrated in Figure 2. The description of abbrevia-
tions appearing in the study is presented in Table S2 in Supporting Information S1.

3.  Results
3.1.  Spatial Distribution of Basins Beyond TrendUB and TrendLB

From a global perspective, there are few regions where TWS trends are significantly affected by PI factors 
(Figure  3). However, evident positive TWS trends driven by precipitation can be observed in the west of 
the Ganges River Basin, central North America, and southeast South America, while noticeable negative 
precipitation-induced trends occur in the Don River Basin and northeastern South America (Figure 3b). These 
regions correspond to the basins shown in Figures 4c and 4d. In contrast, TWS trends in more regions are related 
to non-precipitation factors (Figure 3c), with specific basins identified in Figures 4e and 4f.

To analyze the spatial distribution of basins with TrendG, TrendPI, and TrendNPI beyond the range of TrendUB or 
TrendLB, we present a plot for 266 global basins in Figure 4. Figures 4a and 4b show that more basins experience 
severe TWS deficits than those with significant TWS increases. Globally, only 10 basins exhibit TrendPI exceed-
ing the TrendUB, while only six basins fall below the TrendLB (Figures 4c and 4d). It is understood that since the 
TrendPI is compared with the century-long range of TrendPI. Several basins with TrendNPI exceeding TrendUB 
are located in northeast America and central Africa (Figure 4e). Most basins with significant negative TrendNPI 
(Figure 4f) are in the groundwater depletion or glacier regions.

3.2.  Comparison of Trends (TrendG, TrendPI, TrendNPI) With TrendUB and TrendLB

To better check the magnitude of the trends (TrendG, TrendPI, TrendNPI) beyond the range of TrendUB and TrendLB 
and interpret the severity of these trends to some extent, we plot a scatter plot of the trends (TrendG, TrendPI, 
TrendNPI) for 266 basins against the TrendUB and TrendLB (Figure 5). It reveals that most basins exhibit localiza-
tion within Region B and Region C concerning the TrendG, TrendPI, and TrendNPI. None of the large basins exceed 
a deviation of 5 mm/yr above the TrendUB, whereas three large basins deviate by 5 mm/yr below the TrendLB 
(Figure 5a). Specifically, for the TrendPI, only one basin, namely the Stikine River Basin, exceeds the TrendUB by 
5 mm/yr, and no basin falls below the TrendLB by the same margin. As for the TrendNPI, similar to TrendG, no large 
basin exceeds the TrendUB by 5 mm/yr, but four large basins deviate by 5 mm/yr below the TrendLB (Figure 5c).

3.3.  Reliability of the Estimated TrendUB and TrendLB

To assess the reliability of TrendUB and TrendLB estimates, we calculated the trends for every 14 years from 
1979 to 2014 with a 1-year interval based on GRACE-REC/JPL-MSWEP and JPL-GSWP3 data (Data Set S1). 
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This calculation resulted in 23 trend series. The bound of the trend series for JPL-MSWEP is expressed as 
TrendUB(M79-14)/TrendLB(M79-14), and for JPL-GSWP3, it is expressed as TrendUB(G79-14)/TrendLB(G79-14). The scat-
ter plot in Figure  6a displays the differences between TrendUB(M79-14) and TrendUB(G79-14), as well as between 
TrendLB(M79-14) and TrendLB(G79-14), for the global 266 basins. Approximately 76.7% of the global basins exhibit 
an absolute deviation between TrendUB(M79-14) and TrendUB(G79-14) of less than 2 mm/yr, and 70.3% of the basins 
show an absolute deviation between TrendLB(M79-14) and TrendLB(G79-14) of less than 2 mm/yr. Only six basins and 
nine basins exceed a 2 mm/yr absolute deviation between TrendUB(M79-14) and TrendUB(G79-14), and TrendLB(M79-14) 
and TrendLB(G79-14), respectively, among the global 39 arid basins. Thus, the TrendUB and TrendLB estimates from 
JPL-GSWP3 are considered reliable to some extent.

Figure 6b presents the same information as Figure 6a but for the 54 large and medium basins that extend beyond 
the bound values. The statistics of the absolute difference values of trend bounds between JPL-MSWEP and 
JPL-GSWP3 are summarized in Table  2. In most basins, the absolute deviation between TrendUB(G79-14) and 
TrendUB(M79-14), as well as between TrendLB(G79-14) and TrendLB(M79-14), is less than 2 mm/yr (Figure 6b), indicating 
greater consistency compared to the global 266 basins (Figure 6a). Therefore, the analysis of trend bounds in 
the 54 basins is considered reliable. Notably, there are significant deviations of 8.9, 4.9, and 9.0 mm/yr between 
TrendUB(M79-14) and TrendUB(G79-14) for the humid Cuanza River Basin, semi-arid Kunene River Basin, and Volta 
River Basin, respectively, and 6.8 mm/yr between TrendLB(M79-14) and TrendLB(G79-14) for the semi-arid Okavango 
River Basin. Further discussions on specific basins listed in Table 2, are presented in Section 4.

Figure 2.  The flow chart of this study.

 19447973, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035817 by T

he L
ibrarian, W

iley O
nline L

ibrary on [28/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

ZHONG ET AL.

10.1029/2023WR035817

8 of 21

3.4.  Comparison With Trend to Variability Ratio

Vishwakarma et al. (2021) proposed a metric called the trend to variability ratio (TVR) to assess the intensity 
of GRACE TWS trends. The TVR is defined as the multi-year TWS trend multiplied by the corresponding 
number of years and divided by the standard deviation of multi-decadal TWS natural interannual variability from 
GRACE-REC. Our method identifies most of the basins that are also identified by the TVR metric (Table 3 and 
Table S4 in Supporting Information S1). For basins such as the Kolyma, Lake Chad, and Jubba River Basin, the 
TVRs fall within the range of −2 to 2, indicating no significant trend, as the values of TrendG are small. However, 
the TrendG or TrendNPI exceeds the TrendUB/LB, which are also small in magnitude.

Figure 3.  Global grid-scale (a) Gravity Recovery and Climate Experiment, (b) precipitation-induced, and (c) 
non-precipitation-induced trends map from 2003 to 2016 based on JPLM and GRACE-REC/JPL-MSWEP. The boundaries of 
20 large basins analyzed in this study are bold.
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While the TVR method considers the standard deviation of internal variability, our method assesses the maximum 
and minimum trends induced by the internal climate variability of one-century water storage. In cases where a 
catchment experiences large magnitude decadal cycles, the TVR method may not flag the trend as significant. 
Our method, on the other hand, improves upon TVR by providing a better understanding of the severity of trends 
observed during the 14-year GRACE period relative to changes in interannual variability over the same period. 
Additionally, both components of TrendG, namely TrendPI, and TrendNPI, are used to determine if a basin falls 
beyond the TrendUB/LB. Therefore, in some basins, TrendPI and TrendNPI exceed the TrendUB/LB and are flagged, 
while TVRs remain within −2 to 2. Examples of such basins include the Kolyma, Indigirka, Pur, Vistula, Cania-
piscau, and Cuanza River Basin. These basins are highlighted by bold or underlined text as the contributions of 
PI and NPI factors to the GRACE TWS trend are in opposite directions.

4.  Trend Analysis of Global Large Basins
Trend estimates (TrendUB, TrendLB, TrendG, TrendPI, and TrendNPI) for global 266 basins are presented in Data Set 
S2. Global 20 large basins with one of TrendG, TrendPI, and TrendNPI beyond the TrendUB or TrendLB are analyzed. 
The trend estimates for these 20 basins are provided in Table 3. The basins have been sorted and analyzed based 
on their respective continents. The location of 20 basins is presented in Figure 3 and numbered in Figure S1 in 
Supporting Information S1.

Figure 4.  Spatial distribution of global basins beyond TrendUB and TrendLB. (a) TrendG of 45 basins (16.9%) exceeds the TrendUB, (b) TrendG of 50 basins (18.8%) is 
below the TrendLB, (c) TrendPI of 10 basins (3.8%) exceeds the TrendUB, (d) TrendPI of 6 basins (2.3%) is below the TrendLB, (e) TrendNPI of 38 basins (14.3%) exceeds 
the TrendUB, and (f) TrendNPI of 55 basins (20.7%) is below the TrendLB.
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4.1.  Eurasia

The Yellow River Basin has experienced continuous and severe TWS depletion (TrendG: −6.5 ± 0.7 mm/yr) from 
2003 to 2016 due to climate change and anthropogenic activities. The region experiencing significant water loss 
is primarily located in the middle and lower reaches of the Yellow River Basin, adjacent to the research hotspot 
for water storage depletion in the North China Plain (Long et al., 2020). The APC0316 for this period is 21.3 mm, 
and the precipitation trend from 2003 to 2016 is 5.6 mm/yr (Table S5 in Supporting Information S1), resulting in 
a positive TrendPI of 3.6 ± 0.2 mm/yr. Consequently, the TrendNPI (−10.1 ± 0.7 mm/yr) is significantly lower than 

Figure 5.  Scatter plots depicting the relationships between TrendG, TrendPI, TrendNPI, TrendUB, and TrendLB. The red dots represent large basins, the yellow dots 
represent medium basins, and the blue dots represent small basins. Regions A-D are defined by the coordinate axis and diagonal line (Line 1). Region A represents 
basins where TrendG is positive and exceeds the TrendUB, Region B represents basins where TrendG is positive but below the TrendUB, Region C represents basins where 
TrendG is negative but above the TrendLB, and Region D represents basins where TrendG is negative and below the TrendLB. Basins in Regions A and D are analyzed in 
this study. If the points lie above Line 2 or below Line 3, there may be significant changes in the terrestrial water storage of the corresponding basins. It should be noted 
that the dot for the Copper River Basin is not shown in panels (a, c) because of the extreme trends (TrendG: −156.5 mm/yr and TrendNPI: −159.2 mm/yr). The dot for the 
Stikine River Basin does not appear in panel (c) to improve clarity as it has a significant trend (TrendNPI: −79.7 mm/yr).
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the TrendLB. The negative TrendNPI is attributed to increased irrigation water withdrawals (Figures S3a and S4 in 
Supporting Information S1) and reservoir operation (Xie et al., 2019). Additionally, the AETC0316 is 20.4 mm, 
and the trend of annual ET from 2003 to 2016 is 2.0 mm/yr (Table S5 in Supporting Information S1), which partly 
contributes to the NPI water storage depletion.

In the Yangtze River Basin, the TrendG (4.9 ± 0.9 mm/yr) slightly exceeds the TrendUB (4.7 ± 0.4 mm/yr), with 
the TrendPI (2.7 ± 0.3 mm/yr) accounting for 55.1% of the TrendG. The PA and PA-ETA both show significant 
positive values in the latter 2 years (Figure S5b in Supporting Information S1). The primary increase in TWS is 
observed in the middle reaches of the Yangtze River Basin, as depicted in Figure 3a. Additionally, the upward  trend 
in precipitation-induced TWS is observed in the southern and eastern regions of the basin. On the other hand, the 
TrendNPI exhibits an increase in the middle part of the Yangtze River Basin (Figure 3c), particularly in proximity 
to the Three Gorges Dam (TGD). It is noteworthy that the construction of the TGD occurred during the study 
period. According to the Department of Water Resources of Hubei Province, the maximum reservoir capacity 
of TGD was 39.3 km 3 in 2016, which, considering the total basin area, can contribute to an increase in water 

storage of approximately 22.5 mm, resulting in a mean trend of 1.6 mm/yr for 
2003–2016. Therefore, the construction of TGD can explain most of the NPI 
trends (i.e., 2.2 ± 0.9 mm/yr). Moreover, groundwater seepage from dams, 
glaciers melting in the source area of the Yangtze River, and measures for 
protecting the Yangtze River would also affect NPI TWS (Chao et al., 2021).

The Brahmaputra River Basin is experiencing continuous glacier melting 
upstream and severe groundwater loss downstream (TrendG: −16.5 ± 1.1 mm/
yr; TrendNPI: −15.8 ± 1.1 mm/yr). The precipitation-induced TWS anomaly 
fluctuates around zero and shows a small trend. TrendNPI accounts for the 
majority of TrendG (95.8%), and both are approximately twice the TrendLB 
(−8.7  mm/yr). The glacier mass loss rate accounts for 63.0% of TrendG 
(Table S6 in Supporting Information S1). The irrecoverable nature of TWS 
loss is evident in this basin. The combined factors of snow and glacier 
shrinkage, concentrated population, agricultural irrigation, and possible 
signal leakage of groundwater deficit from the Ganges River Basin due to the 

Figure 6.  Scatter plots of the bound values of trends for every 14 years starting from 1979 with a 1-year interval during 1979–2014 based on Gravity Recovery and 
Climate Experiment-REC/JPL-MSWEP and JPL-GSWP3, respectively. Blue dots represent the differences between TrendUB(M79-14) and TrendUB(G79-14), corresponding to 
266 basins. Red dots represent the differences between TrendLB(M79-14) and TrendLB(G79-14), corresponding to 266 basins. Dots between the two green lines indicate basins 
where the trend differences between TrendUB(M79-14) and TrendUB(G79-14) or between TrendLB(M79-14) and TrendLB(G79-14) are less than 2 mm/yr. Panel (b) presents the same 
information as panel (a), but panel (b) corresponds to 54 large/medium basins beyond the bound values. Note: The Stikine River Basin is not shown in panel (a) because 
of the significant differences between TrendUB(M79-14) (69.9 mm/yr) and TrendUB(G79-14) (17.3 mm/yr), which indicates that there may exist a large uncertainty in the 
estimate of TrendUB and TrendLB for this basin.

Absolute differences

Number of basins

>5 mm/yr >3 mm/yr >2 mm/yr

TrendUB(M79-14) versus TrendUB(G79-14) 2 6 10

TrendLB(M79-14) versus TrendLB(G79-14) 2 4 13

Note. Between TrendUB(M79-14) and TrendUB(G79-14), basins with absolute 
difference values of more than 2 mm/yr are listed in Table S2 in Supporting 
Information  S1. Between TrendLB(M79-14) and TrendLB(G79-14), basins with 
absolute difference values of more than 2 mm/yr are shown in Table S3 in 
Supporting Information S1.

Table 2 
Statists of Absolute Difference Values Between TrendUB(M79-14) and 
TrendLB(M79-14); and Between TrendUB(G79-14) and TrendLB(G79-14) for the 54 
Basins
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mismatch between basin boundary and mascon grids (X. Chen et al., 2017; Scanlon et al., 2018; Vishwakarma 
et al., 2016, 2021) can explain this.

The depletion of TWS in the Ganges River Basin in northern India has been a prominent research topic (Rodell 
et al., 2018; Vishwakarma et al., 2021). The trends (TrendG: −16.9 ± 2.2 mm/yr, TrendNPI: −26.4 ± 2.3 mm/yr) 
are significantly lower than the TrendLB (−7.3 mm/yr), and the glacier mass loss rate only accounts for a small 
part (18.2%) of TrendG. The interannual fluctuation of TWSA can be well explained by precipitation, thus the 
NPI TWSA shows a continuous decline (Figure 7d). Non-precipitation factors have a more significant effect 
on the TWS in the Ganges River Basin, despite the annual precipitation trend showing a rate of 4.7  mm/yr 
(2003–2016).  The TWS loss in the Ganges River Basin is likely to be irrecoverable, with anthropogenic ground-
water extraction for agricultural irrigation (Figure S4b in Supporting Information S1) being the main reason for 
the decline.

In the Indus River Basin, the TrendNPI: −9.5 ± 1.2 mm/yr is below the TrendLB (−5.2 ± 0.4 mm/yr). The major 
increase in PI TWS and decrease in NPI TWS are both located in the upstream region in this basin (Figure 3). 
The glacier mass loss rate is larger than TrendG (Table S6 in Supporting Information S1), and it accounts for 
about half of the TrendNPI, and the water storage depletion also resulted from groundwater withdrawals to support 
irrigated agriculture and rapid population growth (Zhu et al., 2021). Interestingly, the TrendPI (5.8 ± 0.4 mm/yr) 
also exceeds the TrendUB (3.5 ± 0.3 mm/yr) and TrendUB(M79-14) (4.1 ± 0.3 mm/yr), indicating that the actual water 
depletion caused by non-precipitation-induced factors is significantly greater than the GRACE observations, 
with a significantly increased contribution from precipitation (24.3 mm/yr, 2003–2016 and APC0316 is 61.4 mm) 
(Table S5 in Supporting Information S1) in this basin.

In the Aral Sea Basin, the TrendG (−5.1 ± 1.0 mm/yr) is slightly below the TrendLB (−5.0 ± 0.2 mm/yr). The 
significant decline occurs in the glacial regions (Figures S6a and S6c in Supporting Information S1), which serve 

Continent ID Basin TrendLB TrendUB TrendG TrendPI TrendNPI TVR Area

Eurasia 1 Yellow River −7.4 ± 0.4 6.8 ± 0.4 −6.5 ± 0.7 3.6 ± 0.2 −10.1 ± 0.7 −6.1 ± 0.7 96.3

2 Yangtze −5.3 ± 0.4 4.7 ± 0.4 4.9 ± 0.9 2.7 ± 0.3 2.2 ± 0.9 4.5 ± 0.8 174.8

3 Brahmaputra −8.7 ± 0.7 8.1 ± 0.8 −16.5 ± 1.1 −0.7 ± 0.3 −15.8 ± 1.1 −14.0 ± 1.0 54.1

4 Ganges −7.3 ± 0.7 7.3 ± 0.7 −16.9 ± 2.2 9.5 ± 0.7 −26.4 ± 2.3 −5.6 ± 0.7 100.7

5 Indus −5.2 ± 0.4 3.5 ± 0.3 −3.7 ± 1.1 5.8 ± 0.4 −9.5 ± 1.2 −2.0 ± 0.6 86.5

6 Aral Sea −5.0 ± 0.2 5.0 ± 0.4 −5.1 ± 1.0 −2.8 ± 0.4 −2.3 ± 1.1 −3.1 ± 0.6 137.3

7 Shatt Al Arab −7.9 ± 0.5 6.3 ± 0.5 −12.6 ± 1.4 0.5 ± 0.6 −13.1 ± 1.5 −4.8 ± 0.6 93.6

8 Dnieper −9.7 ± 0.8 11.1 ± 0.7 −10.4 ± 1.5 −5.3 ± 0.5 −5.1 ± 1.6 −4.5 ± 0.7 51.0

9 Kolyma −3.7 ± 0.3 4.0 ± 0.4 −1.7 ± 1.0 2.0 ± 0.4 −3.7 ± 1.1 −1.1 ± 0.7 65.3

10 Lena −2.4 ± 0.3 2.6 ± 0.2 −3.0 ± 1.0 −0.1 ± 0.3 −2.9 ± 1.0 −2.6 ± 0.9 245.4

North America 11 Yukon −6.9 ± 0.3 6.9 ± 0.4 −15.4 ± 1.1 1.2 ± 0.4 −16.6 ± 1.2 −9.2 ± 0.7 83.3

12 Mackenzie −2.7 ± 0.2 3.9 ± 0.2 −6.8 ± 0.7 0.1 ± 0.1 −6.9 ± 0.7 −8.1 ± 0.9 179.6

13 Nelson −4.5 ± 0.3 5.7 ± 0.5 6.4 ± 1.4 6.0 ± 0.5 0.4 ± 1.5 3.2 ± 0.7 110.7

14 Rio Grande −6.0 ± 0.2 2.9 ± 0.2 −6.1 ± 1.1 −0.6 ± 0.4 −5.5 ± 1.2 −3.8 ± 0.7 67.4

Africa 15 Niger −1.4 ± 0.1 1.6 ± 0.1 5.4 ± 0.6 0.7 ± 0.1 4.7 ± 0.6 8.2 ± 1.0 212.3

16 Chad −1.5 ± 0.1 0.6 ± 0.1 0.9 ± 0.5 0.0 ± 0.1 0.9 ± 0.5 1.3 ± 0.8 247.1

17 Nile −1.7 ± 0.2 2.7 ± 0.2 4.4 ± 0.8 0.1 ± 0.2 4.3 ± 0.8 5.6 ± 1.0 335.3

18 Jubba −1.8 ± 0.2 1.6 ± 0.2 1.9 ± 0.7 −0.1 ± 0.2 2.0 ± 0.7 1.8 ± 0.7 79.8

19 Congo −3.0 ± 0.1 2.9 ± 0.2 2.3 ± 1.2 −0.9 ± 0.3 3.2 ± 1.2 2.4 ± 1.2 370.5

20 Okavango −10.1 ± 0.4 9.5 ± 0.5 10.0 ± 2.0 2.1 ± 0.8 7.9 ± 2.2 4.2 ± 0.9 69.2

Note. Bold values indicate cases where a positive PI trend results in a negative GRACE trend, indicating severe water loss basins. Underlined values indicate cases where 
a negative PI trend is accompanied by a positive GRACE trend, indicating significant water gain basins. The unit of trend is mm/yr, and the unit of area is 10 4 km 2.

Table 3 
Statistics for the 20 Large Basins Exceeding the Trend Bounds, Including Different Trend Estimates (TrendG, TrendPI, TrendNPI) and Trend to Variability Ratio, Along 
With Their Respective Uncertainties
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as the source of the Syr Darya River. The TrendPI (−2.8 ± 0.4 mm/yr) and TrendNPI (−2.3 ± 1.1 mm/yr) account 
for 54.9% and 45.1% of the TrendG, respectively. Both the PI and NPI factors contribute to a significant decrease 
in TWS. Specifically, from 2003 to 2011, the decline in precipitation contributes to the decrease in TWS, with 
the two time series showing a similar trend. However, after 2011, non-precipitation factors lead to the decrease 
(Figure  7f). The Aral Sea has been shrinking since the 1960s due to irrigation projects in the Soviet Union 
that diverted water away from the sea (Shi et al., 2014; Yao et al., 2023). The Aral Sea Basin has experienced 
reduced surface runoff and increased ET (Table S5 in Supporting Information S1) due to excessive irrigation and 

Figure 7.  Time series of Gravity Recovery and Climate Experiment (GRACE) TWSA from JPLM, PI TWSA from 
GRACE-REC/JPL-MSWEP, and NPI TWSA in global 20 large basins from 2003 to 2016. The NPI TWSAs are estimated 
from GRACE minus PI TWSAs.
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industrial water use (Figure S3 in Supporting Information S1), as well as rising temperatures, all of which have 
played a major role in TWS loss.

Both the grid-scale TWS trend map (Figure 3a) and the catchment-scale TWS trend map (Figure 4f) show a 
severe trend of water loss in the arid Shatt Al Arab River Basin. Both TrendG and TrendNPI are much lower than 
the TrendLB (−7.9 ± 0.5 mm/yr), indicating that the depletion of water resources in the Shatt Al Arab River Basin 
is irrecoverable. The TrendG is −12.6 ± 1.4 mm/yr, and TrendNPI (−13.1 ± 1.5 mm/yr) primarily contributes to 
the depletion of TWS, while the precipitation only contributes slightly to an increase in TWS. The interannual 
fluctuations in TWS can mostly be explained by the PI TWS, while the NPI TWS shows a continuous decline 
(Figure 7g). The construction of dams in the upstream and transboundary water politics have resulted in reduced 
downstream water availability (Rodell et al., 2018; Voss et al., 2013). Additionally, agricultural irrigation and 
domestic water demand (Figures S3a and S4 in Supporting Information S1) exert severe pressure on groundwater 
resources (Chao et al., 2018; Joodaki et al., 2014). The APC0316 value of −14.7 mm (accounting for 4.2% of total 
precipitation from 1980 to 2016) (Table S5 in Supporting Information S1) may also contribute to the decline 
in  TWS.

Ukraine is often referred to as the breadbasket of Europe, with 80.0% of its water resources coming from the Dnie-
per River Basin (Davybida & Kuzmenko, 2018). Pumping groundwater for agricultural irrigation and industrial 
water use may be the primary reason for groundwater loss (Figure S3 in Supporting Information S1). The TrendPI 
(−5.3 ± 0.5 mm/yr), which is close to the TrendLB(M79-14) (−5.5 ± 0.6 mm/yr), and the TrendNPI (−5.1 ± 1.6 mm/
yr) jointly contribute to severe TWS loss (TrendG: −10.4 ± 1.5 mm/yr) in the Dnieper River Basin (Figure 7h). 
Approximately half of Ukraine's population lives near the Dnieper River Basin, and two-thirds of the popula-
tion depends on the Dnieper River for drinking water (Pichura et al., 2020). The high population density exerts 
tremendous pressure on the TWS of the Dnieper River Basin. Additionally, the AETC0316 value is 20.3 mm (Table 
S5 in Supporting Information S1), and increased ET may be a result of water storage depletion.

Located at high latitudes, the Kolyma River Basin is entirely covered by continuous permafrost, the mass anoma-
lies in this basin are mainly controlled by snow-mass variations (Suzuki et al., 2021). The TrendPI is 2.0 ± 0.4 mm/
yr, and this basin shows a positive trend of precipitation (6.5 mm/yr), with a significant APC0316 value of 34.4 mm 
(accounting for 7.0% of the mean annual precipitation for 1980–2016) (Table S5 in Supporting Information S1). 
However, under global warming conditions, snow mass loss and extensive permafrost melting contribute to the 
negative TWS trend (−1.7 ± 1.0 mm/yr) in this basin, and this is why the TrendNPI (−3.7 ± 1.1 mm/yr) is close 
to the TrendLB (−3.7 ± 0.3 mm/yr).

The Lena River Basin with a large area (245.4  ×  10 4  km 2), is experiencing an overall decreasing trend 
(−3.0 ± 1.0 mm/yr) that exceeds the TrendLB (−2.4 ± 0.3 mm/yr). The PI TWSA increased from 2003 to 2007 
and then fluctuated around the mean value. The APC0316 value is 25.0 mm (Table S5 in Supporting Informa-
tion S1), indicating more precipitation from 2003 to 2016, although there is a slight declining trend in precipitation 
(−0.5 mm/yr). This results in a negative TrendPI (−0.1 ± 0.3 mm/yr). The AETC0316 value is 12.5 mm, and  there 
is a rising trend in annual ET for 2003–2016 (0.5 mm/yr) (Table S5 in Supporting Information S1). Therefore, 
the negative TrendNPI might be the result of increasing ET associated with warming summer air temperatures 
(Suzuki et al., 2016). The increasing trend of winter discharge and baseflow due to warming temperatures and 
warming-enhanced permafrost thawing (Hiyama et al., 2023) also contribute to water storage depletion in this 
basin.

4.2.  North America

The Yukon River Basin, located in northwest Canada, experiences severe mass depletion, with TrendG 
(−15.4 ± 1.1 mm/yr) significantly lower than TrendLB (−6.9 ± 0.3 mm/yr). The major depletion area is near the 
Alaska glacial region (Figures S6b and S6d in Supporting Information S1), which may be a result of using 3 × 3° 
equal-area caps (Wiese et al., 2016). The TrendPI and TrendNPI are 1.2 ± 0.4 and −16.6 ± 1.2 mm/yr, respectively. 
The NPI mass loss can be attributed to glacier melting, permafrost thaw, and reduced snow cover due to rising 
temperatures (Long et al., 2017; Rodell et al., 2018; Wang et al., 2015). The glacier mass change rate accounts for 
32.6% of the TrendG (Table S6 in Supporting Information S1). The ongoing decline of glacier mass may continue 
for a considerable period due to global warming, indicating that the TWS loss appears to be irrecoverable in the 
Yukon River Basin.
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Significant decreasing trends (TrendG: −6.8 ± 0.7 mm/yr; TrendNPI: −6.9 ± 0.7 mm/yr) are observed over the 
middle and eastern regions of the Mackenzie River Basin during 2003–2016 (Figure 3). The mass anomalies 
in the Mackenzie River Basin show a continuous drop (Figure 7l), similar to the situation in the Yukon River 
Basin. There may be some irreversibility in the TWS loss in this basin. The shrinking of snow and glaciers has 
been observed in the Mackenzie River Basin (Zhang et al., 2019). However, glacier melting only contributes a 
small part to the mass loss (i.e., 8.6%, Table S6 in Supporting Information S1). Additionally, there has been an 
increasing trend in maximum and minimum temperatures in this basin from 1990 to 2016. The rising temperature 
trend will lead to increased glacial melting and potentially contribute to increased ET. It should be noted that the 
estimate of TrendG in the Mackenzie River Basin has large uncertainty due to possible GIA uncertainty (Figure 
S7 in Supporting Information S1), which further affects our inferences (Rodell et al., 2018; Scanlon et al., 2018).

Noticeable water gains (TrendG: 6.4 ± 1.4 mm/yr; TrendPI: 6.0 ± 0.5 mm/yr) are observed in the Nelson River 
Basin, exceeding the TrendUB (5.7 ± 0.5 mm/yr). The PI trend can explain 93.8% of the total GRACE trend. The 
Canadian prairies, located in the hinterland of this basin, contribute to the rise in TWS, which can be attributed 
to increased precipitation starting in 2004 after a drought period from 2002 to 2004 (Lambert et al., 2013). Two 
remarkable increases in TWS during 2005–2006 and 2011–2012 can be attributed to abundant precipitation 
(Figure S5 in Supporting Information S1). The annual precipitation trend is 5.3 mm/yr (2003–2016). Moreover, 
the annual mean precipitation during 2003–2016 is 502.8 mm/yr, which is 24.5 mm/yr more than the annual 
average precipitation from 1980 to 2016. Although the PI TWSA can explain the TrendG, the possible uncertainty 
related to GIA should not be neglected (Figure S7 in Supporting Information S1).

The southwest region of the Continental United States experienced the highest water over-consumption from 
2003–2015 (Solander et al., 2017). Combined with drought conditions (Scanlon et al., 2016), extensive ground-
water pumping for agricultural irrigation and municipal, industrial, and domestic demands put considerable 
stress on the Rio Grande Basin (Figure S3 in Supporting Information  S1), resulting in a noticeable TrendG 
(−6.1 ± 1.1 mm/yr). The TrendNPI accounts for 90.2% of the TrendG, indicating that NPI factors play a dominant 
role in the TWS depletion of the Rio Grande Basin.

4.3.  Africa

In the six large basins of Africa, the TrendPI values are generally small (Table 3), and both TrendG and TrendNPI 
are positive, indicating that non-precipitation factors significantly influence the growth of TWS in these basins. 
However, caution should be exercised due to relatively poor-quality precipitation data and the challenges in 
reconstructing climate-driven TWS in Africa (Humphrey & Gudmundsson, 2019; Rodell et al., 2018).

The global grid-scale NPI trend map (Figure 3c) shows that the trend of TWS growth in West Africa is more 
influenced by non-precipitation factors. Significant TWS rise has been recorded in the Niger River Basin during 
the GRACE period (Scanlon et al., 2016; Werth et al., 2017). TrendNPI (4.7 ± 0.6 mm/yr) accounts for 87.0% of 
TrendG (5.4 ± 0.6 mm/yr) in this basin. The PI TWSA can only explain part of the fluctuations of the GRACE 
TWSA (Figure  7o), which may be a result of uncertainty in the reconstruction. The TrendG, which exceeds 
the  TrendUB (1.6 ± 0.1 mm/yr), can be attributed to the increasing groundwater and land cover changes (Werth 
et al., 2017).

The Lake Chad Basin (TrendG: 0.9 ± 0.5 mm/yr) experienced a wetting trend during the GRACE period, with 
increased precipitation reported (Ahmed et al., 2014), particularly during the wettest period from 2012 to 2014 
(Ndehedehe et al., 2016). However, due to uncertainties in different precipitation estimates, our study does not 
show positive precipitation anomalies in 2013 and 2014 (Figure S5p in Supporting Information S1), resulting in 
no obvious trend in PI TWSA from 2003 to 2016. With the supply of groundwater and tropical water sources, 
the water level and area of Lake Chad, as observed by altimetry and satellite images, have gradually recovered 
over the past two decades (Pham-Duc et al., 2020). Furthermore, some areas located in the south of the Lake 
Chad Basin are highly protected natural resource areas (Mahmood et al., 2019), and agricultural activities are less 
prevalent in this basin (Buma et al., 2018), contributing to the increase in TWS to a certain extent. However, when 
compared with TrendUB(M79-14) (2.9 ± 0.2 mm/yr), the increased TrendG is no longer significant.

A pronounced TWS increase (TrendG: 4.4 ± 0.8 mm/yr) is observed in the Nile River Basin. However, this trend 
cannot be explained by precipitation variability (TrendPI: 0.1 ± 0.2 mm/yr), and TrendNPI accounts for 97.7% of 
TrendG. The significant TWS increase is concentrated around Lake Victoria and the upstream area of the Blue 
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Nile (Figure 3). The possible cause for the observed TrendG may be the rising regional lake levels, such as Lake 
Victoria (Hasan et al., 2021; Rodell et al., 2018; Yao et al., 2023). The construction of dams, such as the Grand 
Ethiopian Renaissance Dam on the Blue Nile River, can also contribute to the rise in the regional water table 
(Rodell et al., 2018). Due to the scarcity of rain gauges, the TrendPI may be underestimated in the Nile River Basin 
(Rodell et al., 2018).

In the Jubba River Basin, TrendG and TrendNPI are calculated as 1.9 ± 0.7 and 2.0 ± 0.7 mm/yr, respectively. The 
major increase signal is located in the west of this basin (Figure 3), which is likely a result of the rising water levels 
of nearby lakes, such as Lake Turkana and Abaya (Yao et al., 2023)). Similar to the Lake Chad Basin, the Jubba 
River Basin also experienced an extreme precipitation event in 2013 (Figure S5r in Supporting Information S1). 
However, the precipitation factor does not contribute to the long-term increasing trend observed in this basin.

In the Congo River Basin, the decline in precipitation may explain the negative TrendPI (−0.9 ± 0.3 mm/yr). 
However, despite this, positive trends are observed in TrendG (2.3 ± 1.2 mm/yr) and TrendNPI (3.2 ± 1.2 mm/
yr). The increase in TWS is mainly observed around the upstream area of the Congo River, as well as near Lake 
Tanganyika and Lake Victoria (Figure 3a). Little is known about the TWSA and the driving factors in the Congo 
River Basin, despite it being one of the largest basins in the world (Burnett et al., 2020). Previous research has 
suggested that the Congo River Basin experienced a long-term drying trend from the 1970s to the first 10 years 
of the 21st century, along with deforestation in the late 20th century, which may have led to rising temperatures 
and reduced precipitation (Zhou et al., 2014).

The Okavango River Basin is experiencing an apparent wetting trend (TrendG: 10.0 ± 2.0 mm/yr), which exceeds 
the TrendUB (9.5 ± 0.5 mm/yr) and is also close to TrendUB(M79-14) (10.1 ± 0.6 mm/yr). A significant increase in 
TWS is observed in the upstream area of the Okavango River, while no apparent trend is observed in the Okavango 
Delta (Figure 3a). A significant increase in TrendPI is evident in the middle of this basin, but with a surrounding 
decline in TrendNPI (Figure  3c), which may result from precipitation uncertainty. The PI TWSA captures the 
interannual fluctuations of GRACE TWSA (Figure 7t). The precipitation change (70.2 mm/yr) for 2003–2016 
relative to 1980–2016 is quite apparent, with the average annual precipitation increasing by 13.8%. An annual 
precipitation peak in 2006 was also observed in the Okavango River Basin (Figure S5l in Supporting Informa-
tion S1). Consistent with previous studies, a rapid increase in precipitation from 2006 to 2011 was observed in the 
Okavango Delta (Rodell et al., 2018). However, the TrendPI (2.1 ± 0.8 mm/yr) appears to underestimate the actual 
PI trend due to the uncertainty of precipitation estimate, leading to an overestimation of the NPI trend in this basin.

5.  Discussion
5.1.  The Uncertainties of TrendUB and TrendLB Estimates

Typically, a basin should exhibit equal TrendUB and TrendLB (absolute values) over a long period. However, 
some basins in our study deviate from this pattern. Among the global 266 basins, there are two large basins, five 
medium basins, and 12 small basins with an absolute deviation between TrendUB and TrendLB greater than 5 mm/
yr. Therefore, the method proposed in this study may perform better in large basins, considering the number of 
the three basin types.

The quality of input precipitation data is the primary factor influencing the performance of the reconstruction 
models (Humphrey & Gudmundsson, 2019), which, in turn, affects the estimates of TrendUB/LB in our study. 
The accuracy of the GRACE-REC/JPL-GSWP3 data set appears to be lower in regions where rainfall gauges 
and precipitation data are scarce, such as tropical Africa, Central Asia, northern Russia, and South America (M. 
Chen et al., 2008; Humphrey & Gudmundsson, 2019). As a result, the TrendUB/LB estimates may be underesti-
mated in African basins, and the TrendUB(G79-14) is significantly smaller than TrendUB(M79-14) in the Niger River 
and Lake Chad Basin (Data Set S1). Table 3 presents the small values of TrendUB/LB for African basins, which 
show considerable discrepancies with the TrendUB/LB estimates from GRACE-REC/JPL-MSWEP. Therefore, 
caution should be exercised when interpreting the analysis in these regions. Additionally, the reconstructed 
GSWP3-based GRACE-REC data may be less accurate compared to MSWEP- and ERA5-based data (Humphrey 
& Gudmundsson, 2019), which can affect our estimates of the upper and lower bounds.

Estimating TrendUB, TrendLB, and TrendPI in glacial regions (e.g., the Brahmaputra, Indus, and Yukon River 
Basin) may introduce more uncertainties due to the limitations of the reconstruction method (Deng et al., 2023; 
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Humphrey & Gudmundsson, 2019). While the reconstruction model formu-
lation is primarily inspired by the basic principles of hydrological modeling 
(Humphrey & Gudmundsson, 2019), the reconstructed time series in glacial 
regions may face additional challenges. This is because glacial regions involve 
glacier and snow processes, distinct from typical hydrological processes (B. 
Liu et al., 2022; Yi et al., 2020). Moreover, these regions are often mountain-
ous, and precipitation in these areas tends to be highly variable and of lower 
quality. Therefore, applying our method to glacial regions requires special-
ized reconstruction results in the future.

In this study, TrendUB and TrendLB are estimated using one-century 
GRACE-REC/JPL-GSWP3 data. However, these estimates may be influ-
enced by extreme events. We examined the century-long TWSA time series 
of 40 large basins worldwide and found that only six basins had TrendUB 
or TrendLB related to extremes (Figure S8 in Supporting Information  S1). 
It is important to note that these extremes typically occur at the beginning 
or end of a trend period. While extreme events are only a part of long-term 
climate-driven TWSA, they demonstrate that basins can experience maxi-
mum water loss or gain under natural conditions, which is reasonable to some 
extent. Furthermore, the impact of short-term extreme events on the 14-year 
trend estimate is relatively small.

5.2.  Impact of Using Different Windows to Evaluate the TWS Trends

The choice of different windows to estimate the trend in TWS is further 
examined to demonstrate the sensitivity and reliability of this method. We 

utilized window lengths ranging from 12 to 19 years (Table 4), where the values in parentheses represent the 
number of the same basins identified using the corresponding window length in this study (i.e., 14-year). Due 
to a lack of sufficient long GRACE-REC data, TrendPI was not estimated in this comparison. Most basins iden-
tified using a 14-year window were also identified using other window lengths. The only basin not identified 
by  the 14-year window, but identified by the 12- and 13-year windows is the Congo River Basin, which exhibits 
significant interannual variability. Furthermore, the TrendNPI for the period 2003–2016 exceeds the TrendUB in 
this basin. The 13-year window (i.e., 2003–2015, the third row) is most consistent with the 14-year window, 
with only four medium-sized basins identified by the 13-year window not included in the 14-year window. We 
examined these four basins and found that two of them were also identified by TrendNPI (i.e., below the TrendLB). 
Additionally, the 15-year window shows consistency with the 14-year window, followed by the 16-year window.

With the lengthening of the window, more basins are identified using our method (Table 4). This is understandable 
as the impact of natural variability on the TWS trend would diminish with an extension of time. Consequently, the 
maximum variation in TWS trends under natural conditions over an extended period would decrease. Similarly, 
the values of TrendPI would decline over time. While GRACE TWS changes are influenced by a combination 
of natural variability, climate change, and anthropogenic factors, TrendG would be more stable than TrendUB/LB.

The method presented in this study serves as a valuable tool in the field of GRACE studies, allowing for the 
assessment of the intensity of GRACE trends on a basin or regional scale over a specific period. It is important 
to note that as the study period is extended, the estimates of TrendUB/LB and TrendPI for a longer duration may 
decrease. In cases where a basin exhibits a consistent TrendG or TrendPI, it becomes easier to identify and high-
light the irreversibility of such trends.

6.  Conclusions
Here we proposed a novel criterion to interpret the trends and drivers (precipitation-induced, and 
non-precipitation-induced) in GRACE by comparing the GRACE water storage trends with the trend bounds 
under natural climate variability determined by century-long GRACE-REC data set. Our results reveal that the 
trends (TrendG, TrendPI, or TrendNPI) in 115 basins (20 large, 34 medium, 61 small) exceed the bound values 
(TrendUB/LB). Furthermore, over 70% of global basins exhibit an absolute deviation between TrendUB(M79-14) and 

Window periods

The number of basins with TrendG is beyond TrendUB/LB

Large 
basins

Medium 
basins

Small 
basins Total basins

12 (2004–2015) 14 (13) 26 (22) 42 (41) 82 (76)

12 (2005–2016) 13 (12) 28 (22) 46 (41) 87 (75)

13 (2003–2015) 13 (13) 26 (22) 45 (45) 84 (80)

13 (2004–2016) 14 (13) 28 (23) 50 (47) 92 (83)

14 (2003–2016) 16 27 52 95

15 (2003–2017) 15 (15) 30 (26) 56 (50) 101 (91)

16 (2003–2018) 16 (15) 31 (24) 59 (48) 106 (87)

17 (2003–2019) 17 (13) 35 (24) 67 (47) 119 (84)

18 (2003–2020) 20 (13) 38 (24) 70 (48) 128 (85)

19 (2003–2021) 22 (13) 37 (22) 77 (49) 136 (84)

Note. The parentheses in the first column show the window lengths and 
corresponding periods for GRACE trend estimates. The parentheses in the 
second to fifth columns show the numbers of the same basin identified for the 
corresponding window length and 14-year window.

Table 4 
The Number of Basins When TrendG Is Beyond TrendUB/LB Using Different 
Windows
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TrendUB(G79-14), as well as between TrendUB(M79-14) and TrendUB(G79-14), of less than 2 mm/yr, indicating the relia-
bility of the TrendUB and TrendLB estimates to some extent.

The method proposed in this study enhances the interpretation and assessment of TWS trends in specific basins 
and facilitates the analysis of potential drivers through the estimates of TrendG, TrendPI, and TrendNPI. In basins 
where only TrendG exceeds the bound values (e.g., the Yangtze River Basin), it is more likely that TWS will 
return to normal levels. In basins where both TrendG and TrendPI surpass TrendUB, precipitation plays a signif-
icant role in TWS variations, as observed in the Nelson River Basin. On the other hand, when both TrendG and 
TrendNPI are lower than TrendLB, TWS deficits are primarily attributable to factors such as glacier melting (e.g., 
the Yukon, Mackenzie, and Chubut River Basin) and groundwater withdrawal (e.g., the Yongding River [North 
China], Ganges, Kura, Shatt Al Arab, Brazos, and Colorado (Texas) Basins).

While GRACE observations provide valuable insights into the natural variability of TWS, TrendG alone may 
not present a comprehensive picture of TWS increases or losses given the relatively short time span of GRACE 
observations. The method proposed in this study serves as a criterion for reassessing the severity of TWS deficits 
during the GRACE period, contributing to the sustainable development and management of water resources.
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GRACE data can be publicly obtained from Wiese et al. (2019). ICE-5G (VM2) data can be publicly obtained 
from Peltier (2004). ICE-6G_D (VM5a) data can be publicly obtained from Purcell et al. (2016). GRACE-REC 
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