
GuardRails: Automated Suggestions for Clarifying Ambiguous
Purpose Statements

Mrigank Pawagi
Indian Institute of Science
Bengaluru, Karnataka, India

mrigankp@iisc.ac.in

Viraj Kumar
Indian Institute of Science
Bengaluru, Karnataka, India

viraj@iisc.ac.in

ABSTRACT
Before implementing a function, programmers are encouraged to
write a purpose statement i.e., a short, natural-language explana-
tion of what the function computes. A purpose statement may be
ambiguous i.e., it may fail to specify the intended behaviour when
two or more inequivalent computations are plausible on certain in-
puts. Our paper makes four contributions. First, we propose a novel
heuristic that suggests such inputs using Large Language Models
(LLMs). Using these suggestions, the programmer may choose to
clarify the purpose statement (e.g., by providing a functional exam-
ple that specifies the intended behaviour on such an input). Second,
to assess the quality of inputs suggested by our heuristic, and to
facilitate future research, we create an open dataset of purpose
statements with known ambiguities. Third, we compare our heuris-
tic against GitHub Copilot’s Chat feature, which can suggest similar
inputs when prompted to generate unit tests. Fourth, we provide
an open-source implementation of our heuristic as an extension to
Visual Studio Code for the Python programming language, where
purpose statements and functional examples are specified as doc-
strings and doctests respectively. We believe that this tool will be
particularly helpful to novice programmers and instructors.

CCS CONCEPTS
• Applied computing→ Computer-assisted instruction; • Social
and professional topics→ Student assessment.

KEYWORDS
function design, purpose statement, CS1
ACM Reference Format:
Mrigank Pawagi and Viraj Kumar. 2023. GuardRails: Automated Suggestions
for Clarifying Ambiguous Purpose Statements. In 16th Annual ACM India
Compute Conference (COMPUTE ’23), December 09–11, 2023, Hyderabad,
India. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3627217.
3627234

1 INTRODUCTION
Large Language Models (LLMs) can generate code from natural
language prompts [5]. Although this code is not always accurate, an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
COMPUTE ’23, December 09–11, 2023, Hyderabad, India
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0840-4/23/12. . . $15.00
https://doi.org/10.1145/3627217.3627234

early study showed that LLM-generated code outperforms novice
programmers on simple code-writing tasks [10]. More recent work
shows continued improvement, including on more complex pro-
gramming tasks [13, 17]. As a result, there have been calls to ur-
gently review “our educational practices in the light of these new
technologies” [4]. One such review of code-writing tasks has been
put forward by Raman and Kumar [21], based on the 6-step recipe
proposed by Felleisen et al. [8] to help novice programmers design
functions. We focus on two of these steps:

Step 2 (Signature, Purpose Statement, Header) Statewhat
kind of data the desired function consumes and produces.
Formulate a concise answer to the question what the func-
tion computes. Define a stub that lives up to the signature.

Step 3 (Functional Examples) Work through examples that
illustrate the function’s purpose.

1.1 Motivating Example
In the following Python code, the signature (Line 1) includes a
meaningful function name and type-hints1 for its argument and
return type. Further, the purpose statement (Line 2) is expressed as
a docstring, with one functional example as a doctest2 (Lines 4-5):

1 def first_nonzero(nums: list[float]) -> float:

2 """ Return the first non -zero value in nums.

3

4 >>> first_nonzero ([0.0, 3.7, 0.0])

5 3.7

6 """

This purpose statement is ambiguous. For the class of inputs
containing no non-zero values (e.g., nums = []), it is unclear what
the function should do. When we used GitHub Copilot to generate
multiple solutions with the above prompt, it resolved this ambiguity
in three ways3 (see Figure 2). The first implementation raises an
error when nums contains no non-zero values4:

7 for num in nums:

8 if num != 0.0:

9 return num

10 raise ValueError("No non -zero numbers in the

↩→ list")

The second implementation resolves the ambiguity differently,
by replacing Line 10 of the above solution with return 0.0. Our
tool, GuardRails, cannot determine which of these (if any) is the

1https://docs.python.org/3/library/typing.html
2https://docs.python.org/3/library/doctest.html
3LLMs are usually not deterministic [5] and can generate different solutions for the
same prompt when executed multiple times.
4The third implementation raises a different type of error on such inputs.

55

https://orcid.org/0009-0002-6169-4766
https://orcid.org/0000-0002-2252-0141
https://doi.org/10.1145/3627217.3627234
https://doi.org/10.1145/3627217.3627234
https://doi.org/10.1145/3627217.3627234
https://docs.python.org/3/library/typing.html
https://docs.python.org/3/library/doctest.html
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627217.3627234&domain=pdf&date_stamp=2023-12-19

COMPUTE ’23, December 09–11, 2023, Hyderabad, India Pawagi and Kumar

intended behaviour, but it can at least alert the programmer about
this ambiguity by suggesting the input []5. Such an input can also
be suggested by Copilot’s Chat feature, by prompting it to generate
tests6 for this function (Figure 1). Notice that these tests are based
on an assumption that the expected return value is None. Copilot
Chat does not explicitly draw attention to potential ambiguities by
highlighting these assumptions, so it is up to the programmer to
recognize the presence of assumptions.

If this was the only input suggested to the programmer, they
might attempt to clarify the purpose statement by including an
assumption: numswill contain at least one non-zero value. However,
our tool (but not Copilot Chat) identifies an example from a second
class of inputs that exposes a subtler ambiguity: [nan]. This list
contains “not a number”, an easy-to-overlook non-zero value whose
special properties ensure that the two implementations are once
again inequivalent on this input (since nan != nan [1]). Using
GuardRails’ suggestions, the programmer might clarify ambiguities
in the original purpose statement as shown below (Lines 2-4). Lines
9-12 show GitHub Copilot’s first suggested implementation.

1 def first_nonzero(nums: list[float]) -> float:

2 """ Return the first non -zero value ,

3 excluding NaN , in nums. If no such

4 value exists , return 0.0.

5

6 >>> first_nonzero ([0.0, 3.7, 0.0])

7 3.7

8 """

9 for num in nums:

10 if num != 0.0 and not math.isnan(num):

11 return num

12 return 0.0

Our implementation of GuardRails is based on a heuristic, which
we detail in Section 3.

1.2 Research Questions
To evaluate our heuristic, we have created a dataset of 15 functions,
each with between 1 and 3 ambiguous input classes (AICs). The
original version of the first_nonzero() function belongs to this
dataset, and it has two AICs: “Non non-zero numbers” and “NaN as
the only non-zero number”. Unlike our heuristic, Copilot Chat does
not explicitly highlight certain inputs as potentially ambiguous.
Nevertheless, since GitHub Copilot uses a state-of-the-art LLM and
is increasingly being adopted by the professional software develop-
ment community7, we believe that it provides a good benchmark for
comparison with our tool. We first compare the abilities of Copilot
Chat and GuardRails across multiple problems:

RQ1 In relative terms, how do the abilities of both tools to
suggest inputs from known AICs vary across the functions
in our dataset?

Further, since LLMs are sensitive to the level of detail provided,
we expect both these LLM-based techniques to leverage additional
5Our tool attempts to report the simplest such input.
6https://docs.github.com/en/copilot/github-copilot-chat/about-github-copilot-
chat#generating-unit-test-cases
7https://github.blog/2023-06-27-the-economic-impact-of-the-ai-powered-
developer-lifecycle-and-lessons-from-github-copilot/

Figure 1: When GitHub Copilot Chat is prompted to generate
unit tests, it suggests examples from only one of the two
Ambiguous Input Classes (AICs) for this function. For each
of these examples (highlighted), Copilot Chat assumes that
the return value is None.

details to identify ambiguities in purpose statement. We consider
four variants of each function, with progressively increasing amounts
of detail:

S Only the function’s Signature.
SP In addition to S, the (ambiguous) Purpose statement.
SP1 In addition to SP, one functional example that does not

correspond to any AIC.
SPx In addition to SP1, one or more functional examples that

further explore the input space, but again do not correspond
to any AIC.

The original version of the first_nonzero() function presented
in this paper is the SP1 variant with one functional example for the
list [0.0, 3.7, 0.0]. The SPx variant adds a functional example
for the list [-3.14], which explores parts of the input space that
include negative numbers and are “closer” to the empty list. We
included SPx variants in our study after realising that LLMs can
be prompted to generate a richer variety of solutions when such
inputs are included. Our second research question is:

RQ2 In absolute terms, does the percentage of inputs from
known AICs increase as we move from S to SPx variants?

2 RELATEDWORK
Real-world problems are often poorly specified, and the failure
of programmers to clarify crucial details before writing code is a
known root cause of software project failure [6]. Although instruc-
tors in CS1 courses often assist novice programmers by providing
unrealistically detailed problem specifications, prior work has es-
tablished that some students fail to comprehend these details and
are less likely to produce correct code [20, 24]. In contrast, we echo
Schneider’s view [23] that CS1 students need greater exposure to
problem specifications that are realistic in the sense of containing
ambiguities or lacking key details. We believe that such exposure

56

https://docs.github.com/en/copilot/github-copilot-chat/about-github-copilot-chat#generating-unit-test-cases
https://docs.github.com/en/copilot/github-copilot-chat/about-github-copilot-chat#generating-unit-test-cases
https://github.blog/2023-06-27-the-economic-impact-of-the-ai-powered-developer-lifecycle-and-lessons-from-github-copilot/
https://github.blog/2023-06-27-the-economic-impact-of-the-ai-powered-developer-lifecycle-and-lessons-from-github-copilot/

GuardRails: Automated Suggestions for Clarifying Ambiguous Purpose Statements COMPUTE ’23, December 09–11, 2023, Hyderabad, India

is particularly relevant at a time when LLMs such as Codex [5] can
outperform a majority of students [10] on CS1 tasks [7, 26].

While several approaches have been proposed to help students
comprehend well-specified problems [14, 20, 27, 28], including ap-
proaches suitable for linguistically diverse countries such as In-
dia [2], we are unaware of prior work that explicitly points out
ambiguities in a given problem. As noted previously, Copilot Chat
can implicitly indicate the presence of ambiguities by generating
unit tests based on unacknowledged assumptions. An aspect of our
approach is similar to the Test-Driven User-Intent Formalization
workflow proposed by Lahiri et al. [11]. Here, the programmer seeks
to clarify their intent by providing functional examples, and the
LLM is constrained to generate code that satisfies these examples.
GuardRails similarly uses functional examples to filter out certain
implementations (see Section 3).

LLMs have been used to support CS education in a variety
of ways, including explaining code [16], creating code-writing
tasks [16, 22], providing students with hints on such tasks [18],
including how to fix syntactic and logical errors [3, 12] . It is im-
portant to note that the output of LLMs is not always correct. For
example, LLMs can generate incorrect code [7] and incorrect expla-
nations [3, 22].

To the best of our knowledge, the approach used by Copilot Chat
to generate unit tests uses only an appropriately trained LLM. In
contrast, our approach uses LLMs to generate multiple implemen-
tations and analyses these using two ideas from software testing:
property-based testing [9] and mutation testing (see [19] for a re-
cent survey). For property-based testing, our implementation uses
Python’s Hypothesis [15] library.

3 HEURISTIC AND IMPLEMENTATION
Our heuristic is based on two key ideas:

• If an LLM is given an ambiguous purpose statement for a
function and then prompted to generate multiple implemen-
tations, it may generate two or more functionally inequiva-
lent implementations.

• Inputs which demonstrate that two implementations are
functionally inequivalent may reveal ambiguities in the pur-
pose statement.

Our use of the wordmay reflects our uncertainty that the heuris-
tic we have developed on the basis of these ideas will be effective in
practice. We defer this concern to Section 4. For now, we describe
our heuristic and its implementation in GuardRails in detail. The
input to our heuristic is a function’s signature which specifies the
type of each argument, an optional purpose statement that may be
ambiguous, and zero or more functional examples. We illustrate
our heuristic for the example presented in Section 1.1, as shown in
Figure 2.

(1) Based on the inputs given, we use an LLM to suggest an
initial set of syntactically valid implementations for the func-
tion. GuardRails works on suggestions provided by GitHub
Copilot, which is available as an extension in Visual Studio
Code, a popular IDE. Besides inline suggestions, Copilot also
provides an option to view the top 108 suggestions in a panel.

8This number can be changed in the configurations.

GuardRails picks up the suggestions from this panel and then
uses them in its functionality. When it is invoked, GuardRails
retains only syntactically valid implementations in a sugges-
tion space. In Figure 2, this suggestion space initially contains
five implementations, three of which are shown.

(2) We augment this suggestion space by mutating each im-
plementation. In GuardRails, we use a modified fork of the
mutation testing tool MutPy9 to mutate all the initial imple-
mentations. In Figure 2, we add 10 mutants, resulting in a
suggestion space of 15 implementations.

(3) We attempt to fuzz [25] each implementation in the sug-
gestion space by executing it on multiple inputs, as per the
function’s signature. Fuzzing can cause some implementa-
tions to fail on certain inputs (e.g., a division or modulus
operation may fail when the second operand is 0, or a list
max() operation may fail on an empty list). In Figure 2, we
discover the input [] during this fuzzing step. In GuardRails,
we use Hypothesis’ Ghostwriter module to automatically
generate a strategy for passing inputs to fuzz each imple-
mentation10. To ensure that Hypothesis generates inputs
of the appropriate type, we require the function’s signa-
ture to contain type hints (also known as type annotations).
We record any inputs that cause such an implement to fail.
Some implementations fail because they exceed GuardRails’s
upper-limit on the execution time (currently, 0.3 seconds per
test). This occurs because syntactically valid suggestions
may contain infinite loops or may implement an algorithm
that is inefficient for some inputs generated by Hypothesis.

(4) If some functional examples have been provided, we dis-
card all LLM-generated implementations that fail on any of
these examples. For GuardRails, we assume that functional
examples have been specified as doctests. We use Python’s
doctest module to discard implementations that fail one or
more doctests, thereby trimming the suggestion space. In
Figure 2, this trims the suggestion space from 15 implemen-
tations to just 5 implementations.

(5) For each pair of implementations in the resulting suggestion
space, we attempt to find an input on which these imple-
mentations are functionally inequivalent. In GuardRails, we
create pair-wise equivalence tests and use the input strategy
created in Step (3) to run these tests using Hypothesis, for
finding such an input. Hypothesis uses heuristics to shrink
failing inputs11, often resulting in simple, easy-to-read tests.
In Figure 2, we discover the input [nan] during this step.

(6) Finally, we collate all recorded inputs and present these to
the programmer. In GuardRails, we report these as partial
doctests i.e., we specify the input and explicitly prompt the
programmer to provide the expected output (Figure 2). This
is in contrast to Copilot Chat, which assumes an expected
output without revealing the potential ambiguity (Figure 1).

GuardRails is open-sourced and is available as a GitHub reposi-
tory12. It is implemented as a VSCode Extension, a link to which can

9https://github.com/mrigankpawagi/mutpy
10https://hypothesis.readthedocs.io/en/latest/ghostwriter.html
11https://hypothesis.readthedocs.io/en/latest/data.html#shrinking
12https://github.com/mrigankpawagi/GuardRails

57

https://github.com/mrigankpawagi/mutpy
https://hypothesis.readthedocs.io/en/latest/ghostwriter.html
https://hypothesis.readthedocs.io/en/latest/data.html#shrinking
https://github.com/mrigankpawagi/GuardRails

COMPUTE ’23, December 09–11, 2023, Hyderabad, India Pawagi and Kumar

Figure 2: An illustration of our heuristic and implementation for the first_nonzero() function.

be found in the repository along with a link to the performance com-
parison dataset discussed in Section 4. Once installed in VSCode,

GuardRails can be invoked by first triggering Copilot’s suggestions
panel, and then pressing an appropriate key combination13.

13Ctrl+Shift+; runs the full heuristic as described here. Ctrl+Shift+/ skips step (2)
i.e., it does not generate anymutants. For some problems, MutPy generates an excessive
number of mutants, resulting in degraded performance.

58

GuardRails: Automated Suggestions for Clarifying Ambiguous Purpose Statements COMPUTE ’23, December 09–11, 2023, Hyderabad, India

Figure 3: Differences in percentages of AIC (for each variant
of all 15-questions) caught byGuardRails andGitHubCopilot
Chat (top@5).

4 COMPARISONWITH COPILOT CHAT
To the best of our knowledge, Copilot’s Chat feature relies only
on a suitably trained LLM when prompted to generate unit tests
(Figure 1). In contrast, GuardRails prompts the underlying LLM
to generate code, and this code is evaluated using additional tools
(the doctest and Hypothesis modules, and MutPy). We expect this
additional computation to result in an improved ability to identify
inputs from AICs. Both tools rely on LLMs, whose results are not
deterministic [5]. Hence, for each (function, variant) combination,
we executed both tools 5 times andwe report the best result (top@5).

4.1 RQ1: Relative Performance
A comparison of the abilities of Copilot Chat relative to GuardRails
is shown in Figure 3, for the 15 functions and their 4 variants. The
numbers within each row are similar, indicating that differences
in relative performance are due to the specifics of each function.
Figure 3 shows that Copilot Chat identifies inputs from more AICs
than GuardRails for 2/15 functions (red), the performance of the two
tools is similar for 7/15 functions (largely white), and GuardRails is
better for 6/15 functions (largely green).

4.2 RQ2: Absolute Performance by Variant
When we average the performance across all functions, we find
that both tools are able to leverage increasing levels of detail to a
similar extent (Figure 4). However, while Copilot Chat is able to
raise the average percentage of AICs found from 49% (variant S)
to 68% (variant SPx), GuardRails starts from a higher base of 69%
(variant S) and improves to 93% (variant SPx).

Figure 4: The percentage of AICs (averaged over all 15 ques-
tions) found by GitHub Copilot Chat vs. GuardRails (top@5).

5 LIMITATIONS
Although the results of our heuristic are promising, we acknowl-
edge that GuardRails is a research prototype with several limita-
tions. We believe that these limitations can be addressed so that our
heuristic can be incorporated into professionally developed tools
such as Copilot Chat. Our key limitations are:

(1) We have focused on making GuardRails usable for only one
programming language (Python 3) in the specific context of
individual functions. This prevents our tool from being used
for whole programs, or even for functions that call helper
functions (e.g., functions imported from other modules). Fur-
ther, to ensure that Hypothesis can ghostwrite accurate tests,
functions must have type hinting.

(2) Since GuardRails relies on the underlying LLM to generate
complete implementations, it is presently suitable for simple
problems (e.g., CS1 level problems). As LLMs continue to
improve, our heuristic could be applicable for more complex
problems [13, 17].

(3) Since key components of GuardRails are not deterministic
(LLMs [5] and Hypothesis [15]) our tool occasionally pro-
duces poor results. A similar limitation applies to Copilot
Chat, which is why we report top@5 results in Section 4.

6 DISCUSSION AND FUTUREWORK
6.1 Usage by Instructors
We believe that instructors will find GuardRails useful in two ways.
First, while creating code-writing tasks (e.g., for high-stakes exami-
nations), instructors can use our tool to check problem statements
for ambiguities. We believe that it would be particularly interesting
to investigate the utility of GuardRails for this purpose in a linguis-
tically diverse country such as India. Second, instructors may wish
to deliberately write ambiguous problem statements [23]. In this
case, GuardRails can be used to confirm that the ambiguities in the
specification are the ones expected.

59

COMPUTE ’23, December 09–11, 2023, Hyderabad, India Pawagi and Kumar

6.2 Usage by Novice Programmers
We have demonstrated principled ways in which even novice pro-
grammers can increase the level of detail presented to LLMs (from
variant S to variant SPx) in order to improve their ability to detect
ambiguities. As we have acknowledged in Section 5, GuardRails
can be used in limited contexts. We hypothesize that exposure to
ambiguities highlighted by our tool can help novices develop the
ability to identify ambiguities in broader contexts as well. This line
of research seems particularly promising for students with limited
fluency in the language in which problems are specified.

7 CONCLUSIONS
We have proposed a novel heuristic that uses LLMs to identify po-
tential ambiguities in the purpose statements of Python functions.
Further, we compared our open-source tool, GuardRails, against a
production-level benchmark (Copilot Chat). We have demonstrated
that our tool can explicitly identify potential ambiguities and is
often (but not always) able to outperform Copilot Chat. We hope
that the ideas presented here are incorporated into widely used,
professionally developed tools such as GitHub Copilot. We believe
our heuristic can further enhance the productivity of software de-
velopers and also empower novice programmers. Finally, we believe
that our heuristic can support new approaches to CS pedagogy and
assessment that expose students to deliberately ambiguous problem
specifications.

REFERENCES
[1] 2008. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008 (2008),

1–70. https://doi.org/10.1109/IEEESTD.2008.4610935
[2] GS Adithi, Akshay Adiga, K Pavithra, Prajwal P Vasisht, and Viraj Kumar. 2015.

Secure, Offline Feedback to Convey Instructor Intent. In 2015 IEEE Seventh Inter-
national Conference on Technology for Education (T4E). IEEE, 105–108.

[3] Rishabh Balse, Bharath Valaboju, Shreya Singhal, Jayakrishnan Madathil War-
riem, and Prajish Prasad. 2023. Investigating the Potential of GPT-3 in Providing
Feedback for Programming Assessments. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1 (Turku, Fin-
land) (ITiCSE 2023). Association for Computing Machinery, New York, NY, USA,
292–298. https://doi.org/10.1145/3587102.3588852

[4] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing Machinery,
New York, NY, USA, 500–506. https://doi.org/10.1145/3545945.3569759

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de
Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Eval-
uating Large Language Models Trained on Code. CoRR abs/2107.03374 (2021).
arXiv:2107.03374 https://arxiv.org/abs/2107.03374

[6] Dev Dave, Angelica Celestino, Aparna S. Varde, and Vaibhav Anu. 2022. Man-
agement of Implicit Requirements Data in Large SRS Documents: Taxonomy
and Techniques. SIGMOD Rec. 51, 2 (jul 2022), 18–29. https://doi.org/10.1145/
3552490.3552494

[7] Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with Copilot:
Exploring prompt engineering for solving CS1 problems using natural language.
In Proceedings of the 54th ACM Technical Symposium on Computer Science Educa-
tion V. 1. 1136–1142.

[8] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2018. How to design programs: an introduction to programming and
computing. MIT Press.

[9] George Fink and Matt Bishop. 1997. Property-Based Testing: A New Approach
to Testing for Assurance. SIGSOFT Softw. Eng. Notes 22, 4 (jul 1997), 74–80.
https://doi.org/10.1145/263244.263267

[10] James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of Ope-
nAI Codex on Introductory Programming. In Australasian Computing Education
Conference. 10–19.

[11] Shuvendu K. Lahiri, Aaditya Naik, Georgios Sakkas, Piali Choudhury, Curtis von
Veh, Madanlal Musuvathi, Jeevana Priya Inala, Chenglong Wang, and Jianfeng
Gao. 2022. Interactive CodeGeneration via Test-Driven User-Intent Formalization.
arXiv:2208.05950 [cs.SE]

[12] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A Becker. 2023. Using Large LanguageModels to Enhance Programming
Error Messages. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. 563–569.

[13] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with alphacode. arXiv preprint
arXiv:2203.07814 (2022).

[14] Shu Lin, Na Meng, Dennis Kafura, andWenxin Li. 2021. PDL: Scaffolding Problem
Solving in Programming Courses. In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1 (Virtual Event,
Germany) (ITiCSE ’21). Association for Computing Machinery, New York, NY,
USA, 185–191. https://doi.org/10.1145/3430665.3456360

[15] David R MacIver, Zac Hatfield-Dodds, et al. 2019. Hypothesis: A new approach
to property-based testing. Journal of Open Source Software 4, 43 (2019), 1891.

[16] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul
Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from using code
explanations generated by large language models in a web software development
e-book. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1. 931–937.

[17] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[18] Maciej Pankiewicz and Ryan S Baker. 2023. Large Language Models (GPT) for au-

tomating feedback on programming assignments. arXiv preprint arXiv:2307.00150
(2023).

[19] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Mutation testing advances: an analysis and survey. In Advances
in Computers. Vol. 112. Elsevier, 275–378.

[20] James Prather, Raymond Pettit, Brett A. Becker, Paul Denny, Dastyni Loksa, Alani
Peters, Zachary Albrecht, and Krista Masci. 2019. First Things First: Providing
Metacognitive Scaffolding for Interpreting Problem Prompts. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY,
USA, 531–537. https://doi.org/10.1145/3287324.3287374

[21] Arun Raman and Viraj Kumar. 2022. Programming Pedagogy and Assessment in
the Era of AI/ML: A Position Paper. In Proceedings of the 15th Annual ACM India
Compute Conference (Jaipur, India) (COMPUTE ’22). Association for Computing
Machinery, New York, NY, USA, 29–34. https://doi.org/10.1145/3561833.3561843

[22] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
generation of programming exercises and code explanations using large language
models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research-Volume 1. 27–43.

[23] G. Michael Schneider. 1978. The Introductory Programming Course in Computer
Science: Ten Principles. In Papers of the SIGCSE/CSA Technical Symposium on
Computer Science Education (Detroit, Michigan) (SIGCSE ’78). Association for
Computing Machinery, New York, NY, USA, 107–114. https://doi.org/10.1145/
990555.990598

[24] Leonardo Silva, António José Mendes, Anabela Gomes, and Gabriel Fortes. 2023.
Investigating Programming Students Problem Comprehension Ability and its
Association With Learning Performance. IEEE Transactions on Education 66, 2
(2023), 156–162. https://doi.org/10.1109/TE.2022.3204906

[25] Ari Takanen, Jared D Demott, Charles Miller, and Atte Kettunen. 2018. Fuzzing
for software security testing and quality assurance. Artech House.

[26] Michel Wermelinger. 2023. Using GitHub Copilot to Solve Simple Programming
Problems. (2023).

[27] John Wrenn and Shriram Krishnamurthi. 2019. Executable Examples for Pro-
gramming Problem Comprehension. In Proceedings of the 2019 ACM Confer-
ence on International Computing Education Research (ICER ’19). 131–139. https:
//doi.org/10.1145/3291279.3339416

[28] John Wrenn and Shriram Krishnamurthi. 2020. Will Students Write Tests Early
Without Coercion?. In Proceedings of the 20th Koli Calling International Conference
on Computing Education Research (Koli, Finland) (Koli Calling ’20). Association
for Computing Machinery, New York, NY, USA, Article 27, 5 pages. https:
//doi.org/10.1145/3428029.3428060

60

https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1145/3587102.3588852
https://doi.org/10.1145/3545945.3569759
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3552490.3552494
https://doi.org/10.1145/3552490.3552494
https://doi.org/10.1145/263244.263267
https://arxiv.org/abs/2208.05950
https://doi.org/10.1145/3430665.3456360
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3287324.3287374
https://doi.org/10.1145/3561833.3561843
https://doi.org/10.1145/990555.990598
https://doi.org/10.1145/990555.990598
https://doi.org/10.1109/TE.2022.3204906
https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1145/3428029.3428060
https://doi.org/10.1145/3428029.3428060

	Abstract
	1 Introduction
	1.1 Motivating Example
	1.2 Research Questions

	2 Related Work
	3 Heuristic and Implementation
	4 Comparison with Copilot Chat
	4.1 RQ1: Relative Performance
	4.2 RQ2: Absolute Performance by Variant

	5 Limitations
	6 Discussion and Future Work
	6.1 Usage by Instructors
	6.2 Usage by Novice Programmers

	7 Conclusions
	References

