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Abstract

Organismal responses to temperature fluctuations include an evolutionarily conserved cyto-

solic chaperone machinery as well as adaptive alterations in lipid constituents of cellular

membranes. Using C. elegans as a model system, we asked whether adaptable lipid

homeostasis is required for survival during physiologically relevant heat stress. By system-

atic analyses of lipid composition in worms during and before heat stress, we found that

unsaturated fatty acids are reduced in heat-stressed animals. This is accompanied by the

transcriptional downregulation of fatty acid desaturase enzymes encoded by fat-1, fat-3, fat-

4, fat-5, fat-6, and fat-7 genes. Conversely, overexpression of the Δ9 desaturase FAT-7,

responsible for the synthesis of PUFA precursor oleic acid, and supplementation of oleic

acid causes accelerated death of worms during heat stress. Interestingly, heat stress

causes permeability defects in the worm’s cuticle. We show that fat-7 expression is reduced

in the permeability defective collagen (PDC) mutant, dpy-10, known to have enhanced heat

stress resistance (HSR). Further, we show that the HSR of dpy-10 animals is dependent on

the upregulation of PTR-23, a patched-like receptor in the epidermis, and that PTR-23

downregulates the expression of fat-7. Consequently, abrogation of ptr-23 in wild type ani-

mals affects its survival during heat stress. This study provides evidence for the negative

regulation of fatty acid desaturase expression in the soma of C. elegans via the non-canoni-

cal role of a patched receptor signaling component. Taken together, this constitutes a skin-

gut axis for the regulation of lipid desaturation to promote the survival of worms during heat

stress.
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Author summary

Temperature fluctuation is a major environmental stressor for all living organisms. Here,

we describe a mechanism that allows multicellular organisms to coordinate heat stress

response between different tissues to ensure better survival. We find that a receptor in the

skin of the worm controls stress response in adults. The receptor regulates lipid metabo-

lism to enhance cellular health and organismal survival during chronic heat stress.

Introduction

All living cells experience and respond to temperature fluctuations by upregulating chaperones

and fine-tuning their metabolism. Activation of the HSP70 family of cytosolic chaperones is a

conserved mechanism operating both in prokaryotes and eukaryotes [1–3]. Although dissocia-

tion of chaperone HSP90 from heat shock transcription factor HSF1 was long believed to be

the trigger for chaperone synthesis, several recent reports suggest that fluidity changes in the

lipid bilayer and microdomains may be the first sensor of heat stress in the cells [4–6]. Control

of membrane fluidity, believed to be essential for signaling via membrane-associated receptors,

has been observed in both prokaryotes and eukaryotes [7]. Decreased levels of unsaturated

fatty acids in the lipid bilayer have been observed during temperature upshift, consistent with

their role in cell survival during prolonged heat stress [8]. However, molecular sensors and

regulators of membrane fluidity during heat stress are poorly understood.

At physiological temperature, saturated fatty acids are densely packed, while unsaturated

fatty acids are disorganized and loosely packed in the lipid bilayer. The degree of unsaturation

is highest at lower temperatures and lowest at higher temperatures (both in the permissive

range) for various organisms. High-temperature tolerant bacterial species show decreased

unsaturated to saturated fatty acid ratio [8–10]. A similar effect is seen in bacteria, plants, ver-

tebrates, and invertebrates upon heat stress [11–17]. Consistent with this, stabilization of

membrane lipids by drugs such as hydroxylamine derivative bimoclomol or small heat-shock

protein HSP17 can protect cells against heat stress [18]. In mice, heat acclimatization achieved

by modulation of membrane lipid composition protects them from heat shock and ischemic

insults to the heart [19]. These studies suggest that the molecular packing of lipids is intricately

controlled to maintain membrane fluidity and retain function under physiological and stress

conditions.

C. elegans, a poikilotherm, adapts to temperature alteration by modifying its physiology

and behavior. Worms respond to temperature changes by triggering a flight or fight

response. Flight response or thermotaxis has been shown to be primarily dependent on the

function of three pairs of amphid sensory neurons- AFD, AWC, and ASI [20]. These neu-

rons also regulate the survival of worms under chronic heat stress. C. elegans exhibits both

cell-autonomous and non-cell-autonomous regulation of heat stress response. In a previous

study, we have shown that AWC and ASI neurons regulate the survival of worms at higher

temperatures via STR-2, a G protein-coupled receptor, by regulating lipid metabolism non-

cell autonomously [21]. Modulation of heat shock factor HSF-1 in the nervous system sys-

tematically coordinates lipid metabolism in non-neuronal tissues via cGMP/TGF-beta sig-

naling [22]. These studies indicate that lipid homeostasis can be regulated non-cell

autonomously. Cell-autonomous control of lipid metabolism is orchestrated via transcrip-

tion regulators such as SBP-1, NHR-49, HLH-30, MDT-15, etc. [23–30]. Activation of ace-

tyl-CoA dehydrogenase ACDH-11 at higher temperatures is required to suppress fatty acid

desaturase activity to maintain membrane fluidity [31]. Mutations in fatty acid desaturases
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fat-6, fat-7, and elongase elo-2 increase heat stress tolerance, whereas diets supplemented

with unsaturated fats reduce heat stress tolerance in worms [12]. These examples suggest

that appropriate regulation of lipid metabolism and fatty acid desaturation might be central

to heat stress response and adaptation in C. elegans.

Lipid metabolism can be regulated in animals by many conserved signaling pathways.

Some evidence suggests that hedgehog (Hh) signaling, required for developmental and physio-

logical programming, is an important regulator of lipid metabolism [32–37]. Subsequently,

lipid metabolism also modulates Hh signaling [32, 38, 39]. Although C. elegans has 3 patched

receptors (PTCs) and 24 patched-like receptors (PTRs), it lacks Smoothened (SMO), a compo-

nent of the canonical hedgehog signaling pathway [40]. Loss of PTC-3, a cholesterol trans-

porter, reduces fatty acid desaturation [41], while the inhibition of PTR-24 leads to lipid

accumulation in worms [42]. However, the roles of the majority of the patched receptors in

heat stress response remain to be studied.

In this study, we examined the contribution of lipid desaturation in the heat stress response

of C. elegans. We specifically asked whether unsaturated fatty acids such as oleic acid are dele-

terious for survival during chronic stress. Using a combination of fatty acid analyses and

genetic approaches, we show that heat stress and cuticle permeability defect (PD) have a direct

impact on the expression of the Δ9 fatty acid (stearoyl) desaturase FAT-7. This desaturase is

necessary for the synthesis of the mono-unsaturated fatty acid (MUFAs), oleic acid. We find

that desaturase expression is dependent on patched-like receptor PTR-23 in the epidermis of

C. elegans. The receptor itself is upregulated during heat stress and in PD collagen mutants

and suppresses FAT-7 to provide protection. Our study uncovers a PTR-23-fatty acid desatur-

ase axis for the survival of worms during heat stress.

Results

Lipid composition in C. elegans is skewed in favor of saturated fatty acids

during heat stress

Temperature fluctuation is a frequent environmental stressor for animals. To understand if

chronic heat stress causes alteration in lipid composition in C. elegans, we studied the alter-

ations in the levels of transcripts for various fatty acid desaturase enzymes in wild-type N2

worms (WT). For PUFAs, we examined fat-1, -2, -3, -4, and for MUFAs, fat-5, -6, -7 desa-

turases (Fig 1A) [43–47], using qRT-PCR in control and heat-stressed worms (Fig 1B). We

found that all desaturases, except fat-2, were significantly downregulated in heat-stressed

worms (Fig 1C).

We confirmed the downregulation of palmitoyl desaturase fat-5 and stearoyl desaturase fat-
7 using translational GFP reporters FAT-5::GFP (S1 Fig) and FAT-7::GFP (Figs 1D and 1E),

respectively. Downregulation was observed in heat-stressed worms at both 4h and 8h for both

FAT-7 and FAT-5 reporters (Figs 1D and 1E and S1 Fig). We also performed a temporal analy-

sis on the expression of various enzymes involved in fatty acid metabolism in heat-stressed

WT worms (S2A–S2I Fig). Notably, the transcript for diacylglycerol acyl transferase (dgat-2),

the rate-limiting enzyme for neutral lipid synthesis, was downregulated in heat-stressed

worms (S2H Fig). Similarly, the transcript for acyl CoA synthetase encoded by acs-2, necessary

for fatty acid breakdown, was also downregulated in heat-stressed worms (S2I Fig). Our results

suggest that while neutral lipid synthesis and fatty acid oxidation are suppressed during heat

stress, desaturases are controlled intricately (S2A–S2I Figs). We also analyzed the expression

of the cytosolic chaperone hsp-16.2 and found that its transcripts were upregulated during heat

shock, as expected (S2J Fig).
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Fig 1. Heat stress induces rapid adaptation in lipid composition in C. elegans. (A) A schematic representation of

fatty acid synthesis and fatty acid desaturation in C. elegans. Fatty acid desaturases significantly upregulated in heat-

stressed (HS, 32˚C) worms are labeled green, and those significantly downregulated in HS worms are labeled red. Fatty

acids significantly increased in HS worms over ctrl are presented within green boxes and those significantly reduced in

HS worms are presented within peach boxes. (B) A schematic representation of our two test conditions. (C) qPCR
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To validate if the changes in the desaturase genes translate to changes in lipid composition,

we performed fatty acid analyses in WT worms maintained at 20˚C and under heat stress

(shifted to 32˚C for 8 hours) by gas chromatography-mass spectrometry (GC-MS). We found

that there were dramatic changes in the relative amounts of several fatty acids following heat

stress, while a few remained unaltered (Fig 1F and S1 Table). There was a marked and signifi-

cant increase (shaded in green in Fig 1A) in the levels of saturated fatty acids, myristic acid

(C14:0), and palmitic acid (C16:0), while there was a decline (shaded in peach) in 6 out of 7

polyunsaturated fatty acids (PUFAs) (Fig 1F). Amongst mono-unsaturated fatty acids

(MUFAs), there was no change in the levels of palmitoleic acid (C16:1) or oleic acid (C18:1n-

9), and some decline in vaccenic acid (C18:1n-7). Overall, our experiments indicated that low-

ering of PUFAs by the downregulation of desaturase enzymes is an important component of

worms’ response to heat stress, most likely to retain membrane function and to ensure survival

at higher temperatures.

Excess oleic acid reduces the survival of worms during heat stress

A decline in the levels of PUFAs was observed in heat-stressed WT worms. To test whether

the accumulation of PUFAs is deleterious during heat stress, we subjected worms supple-

mented with linoleic acid (LA) to survival at 32˚C. We observed that LA-supplemented

worms did not show disparate survival from unsupplemented worms (Fig 2A). The decline

in PUFAs was accompanied by a reduction in transcripts for the Δ9 desaturase FAT-7. This

stearoyl desaturase is required for the synthesis of oleic acid (OA), the precursor for all

PUFAs. We predicted that an increased level of oleic acid will be deleterious for the survival

of worms during chronic heat stress. To test this, we studied the survival of WT worms sup-

plemented with OA. As shown in Fig 2B, supplementation with OA enhanced the suscepti-

bility of worms to heat stress. Additionally, we also checked the survival of a FAT-7

overexpression (OE) strain, DMS303, and the Δ12 desaturase fat-2 mutants that show an

accumulation in OA [47] during heat stress. As shown in Fig 2C–2D, FAT-7 OE and fat-2
mutation enhanced the susceptibility of worms to heat stress, suggesting that too much

oleic acid was indeed deleterious for survival during chronic heat stress. As a control for

heat stress, we also analyzed the survival of worms during hyperosmotic stress and found no

difference in the survival phenotype of WT, FAT-7 OE, and OA-supplemented WT worms

(S3A and S3C Fig). We also subjected WT, FAT-7 OE, and OA-supplemented WT strains

to oxidative stress using 10 mM H2O2 and found no difference in their survival (S3B and

S3D Fig). We also studied the effect of increased OA levels on desaturase expression. In

both OA supplementation and FAT-7 OE animals, fat-2 desaturase expression was

enhanced, while fat-7 expression was downregulated in OA supplemented worms (Fig 2E

and 2F). These indicated that oleic acid does not have a broad impact on stress responses;

rather, it selectively affects survival during heat stress, where optimization of membrane flu-

idity is known to be crucial.

analysis of fatty acid desaturase genes in HS (32˚C) over ctrl (20˚C) WT animals. Statistical significance was calculated

using unpaired Student’s ‘t’ test with Welch’s correction. (C) qPCR analyses of the fatty acid desaturase genes in HS

worms over ctrl worms. Statistical significance was calculated using Student’s ‘t’ test with Welch’s correction. (D) FAT-

7::GFP expression in ctrl and HS animals at indicated times and temperatures (scale bar, 250 μm) and their (E)

quantification. Statistical significance for (E) was calculated using a post-hoc Dunnett test. ns (not significant),

P> 0.05; * P� 0.05; ** P� 0.01; *** P� 0.001; **** P� 0.0001. (F) GC-MS analysis of fatty acids in wild-type N2

animals (WT) at 32˚C (heat-stressed, HS) or maintained at 20˚C (control, ctrl). Fatty acids significantly increased in

HS worms over ctrl are shaded in green and those significantly reduced in HS worms are shaded in peach. Error bars

represent SEM. Statistical significance was calculated using t-test. Also refer to S1 Table.

https://doi.org/10.1371/journal.pgen.1011067.g001
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Fig 2. Excess oleic acid is deleterious for survival during chronic heat stress. (A) Kaplan-Meier survival curves of WT and 0.8 mM linoleic acid

supplemented WT during heat stress at 32˚C (P = 0.5921; N = 25–30; n = 3). (B) Kaplan-Meier survival curves of WT and 0.8 mM oleic acid

supplemented WT during heat stress at 32˚C (P<0.0001; N = 25–30; n = 3). (C) Kaplan-Meier survival curves of N2 and FAT-7 OE animals during heat

stress at 32˚C (P = 0.0002; N = 25–30; n = 3). (D) Kaplan-Meier survival curves of N2 and fat-2 animals during heat stress at 32˚C (P<0.0001; N = 25–

30; n = 3). (E) qPCR analysis of fatty acid desaturase genes in FAT-7 OE animals at 20˚C. (F) qPCR analysis of fatty acid desaturase genes in oleic acid

supplemented WT animals at 20˚C. ns (not significant), P> 0.05, * P� 0.05, ** P� 0.01, *** P� 0.001, **** P� 0.0001 as determined by unpaired

Students ‘t’ test with Welch’s correction. Error bars represent SEM.

https://doi.org/10.1371/journal.pgen.1011067.g002
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Permeability-determining collagens regulate heat stress response and FAT-

7 desaturase expression

We have previously reported that the permeability-determining (PD) collagen, DPY-10, neces-

sary for maintaining the permeability barrier function of C. elegans cuticle, is linked to heat

stress response (HSR) [48]. Notably, we observed nuclear staining by Hoechst stain in the head

of 24 h heat-stressed worms but not the control worms (S4A–S4C Fig). This suggested cuticle

permeability defects in heat-stressed worms. Consistent with our previous report, we found

that mutations in dpy-10 led to enhanced survival of animals during heat stress (Fig 3A). Based

on the roles implicated for FAT-7 in heat stress resistance (Fig 2), we hypothesized that the

heat stress resistance of PD collagen mutants is due to the reduced expression of FAT-7. To

test this hypothesis, we analyzed the expression of transcripts of various desaturases in dpy-10
(ves2003) animals. Although there was a slight increase in the transcript levels for fat-1 and fat-
4, there was a dramatic downregulation of fat-7 transcript (12-fold or more) (Fig 3B). FAT-7::

GFP expression was also reduced in dpy-10 mutants (Fig 3C and 3D), suggesting lower levels

of OA.

To confirm the effect of dpy-10 mutation on the synthesis of fatty acids, we performed

GC-MS analyses of fatty acids in these animals. As shown in Fig 3E, two PUFAs and the

MUFA OA (18:1n9) were reduced (shaded in peach), while saturated fatty acids palmitoleic

acid and stearic acid (16:0 and 18:0) were increased in dpy-10(ves2003) compared to WT ani-

mals. An increase in saturated and a decrease in unsaturated fatty acids in dpy-10 mutant is

consistent with the enhanced HSR compared to wild-type animals.

Patched-like receptor PTR-23 mediates heat stress resistance of PD

collagen mutants

Animals carrying a mutation in the PD collagen dpy-10 were not only heat stress resistant but

also had significantly lower levels of transcript for FAT-7 desaturase, expressed predominantly

in the intestine of worms. We sought to determine the link between cuticle collagen defect and

lipid homeostasis in the soma. In a previous study on gene expression analyses in dpy-9 and

dpy-10 mutant animals [49], several patched-like receptor (ptr) genes were found to be altered.

To test the involvement of one or more of these receptors, we performed RNAi for 22 ptr
encoding genes individually and scored for survival during heat stress at 32˚C for 24 hours in

dpy-10(ves2003) animals (Fig 4A). RNAi inhibition of ptr-23 caused significant suppression of

the enhanced HSR phenotype of the dpy-10(ves2003) mutant.

PTR-23 is a patched-like receptor expressed in the epidermis (skin) of C. elegans [50], the

tissue expressing most collagens, including DPY-10 [51]. We found that the levels of ptr-23
transcripts were upregulated in dpy-10(ves2003) over WT animals (Fig 4B). Importantly, ptr-
23(ok3663) mutation disrupted the HSR phenotype of dpy-10 mutant and RNAi animals (Figs

4C and S5A). Additionally, we also observed an HS-dependent upregulation in the ptr-23 tran-

script levels in the WT animals (Fig 4D). As shown in Fig 4E, ptr-23(ok3663) animals were

more susceptible to heat stress than WT animals but had wild-type susceptibility to osmotic

stress and oxidative stress (S5B and S5C Fig). Since PTR-23 is known to be expressed in the

epidermis, we examined the effect of targeted ptr-23 RNAi in the epidermis (in NR222 strain)

or in the intestine (VP303 strain) on heat stress survival and found that epidermal expression

of PTR-23 was needed for survival upon heat stress and fat-7 downregulation in WT animals

(Figs 4F and 4G and S5D). Further, PTR-23 also had some influence on other desaturases (S5E

Fig). Taken together, our experiments showed that HSR in wild-type and PD collagen mutants

is dependent on patched-like receptor PTR-23 expressed in the epidermis of C. elegans. Given

that heat stress affects cuticular integrity (S4A–S4C Fig), our results suggest a role for the
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Fig 3. Permeability-determining collagens regulate HSR and desaturase levels. (A) Kaplan-Meier survival curves of WT, dpy-10(e128) and

dpy-10(ves2003) animals during heat stress at 32˚C (P<0.0001; N = 25–30; n = 3). (B) qPCR analysis of fatty acid desaturase genes in dpy-10
(ves2003) over WT animals at 20˚C. (C) FAT-7::GFP expression in dpy-10(ves2003) and control animals at 20˚C and its (D) quantification. (E)

GC-MS analysis of fatty acids in dpy-10(ves2003) and WT animals maintained at 20˚C. Fatty acids significantly increased in dpy-10 animals are

shaded in green and fatty acids significantly reduced are shaded in peach. The WT ctrl data in 3E is the same as WT ctrl data in Fig 1F. ns (not

significant) P> 0.05, * P� 0.05, ** P� 0.01, *** P� 0.001, **** P� 0.0001 as determined by Students ‘t’ test with Welch’s correction. Error bars

represent SEM.

https://doi.org/10.1371/journal.pgen.1011067.g003
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Fig 4. PTR-23 regulates the heat stress resistance of dpy-10 mutants. (A) Percent survival of dpy-10(ves2003)
animals with empty vector (EV) or ptr RNAi during heat stress at 32˚C for 24 hours. (B) Basal levels of ptr-23
transcript in WT and dpy-10(ves2003) animals at 20˚C. (C) Kaplan-Meier survival curves of dpy-10(ves2003) and dpy-
10(ves2003); ptr-23(ok3663) animals during heat stress at 32˚C (P<0.0001; N = 25–30; n = 3). (D) ptr-23 transcript

levels of WT worms heat-stressed at 32˚C for 4, 8, and 12 h. (E) Kaplan-Meier survival curves of WT and ptr-23
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cuticle in regulating FAT-7 expression and, consequently, heat stress survival via the patched

receptor PTR-23.

PTR-23 is required for the repression of FAT-7 expression in PD collagen

mutant

After identifying a PTR-23-mediated downregulation of fat-7 and modulation of heat stress

response in WT animals, we wanted to test if the HSR of dpy-10 animals was due to the downre-

gulation of the MUFA OA via PTR-23. We subjected OA-supplemented dpy-10 worms to heat

stress. OA-supplemented dpy-10 animals were significantly susceptible to heat stress (Fig 5A).

(ok3663) animals during heat stress at 32˚C (P<0.0001; N = 25–30; n = 3). (F) Kaplan-Meier survival curves of the

epidermal RNAi NR222 (kzIs9 [(pKK1260) lin-26p::NLS::GFP + (pKK1253) lin-26p::rde-1 + rol-6(su1006)]) animals

with EV and ptr-23 RNAi during heat stress at 32˚C (P<0.0001; N = 25–30; n = 3). (G) Basal levels of fat-7 transcript in

NR222 animals with EV and ptr-23 RNAi. ns (not significant), P> 0.05, * P� 0.05, ** P� 0.01, *** P� 0.001, ****
P� 0.0001 as determined by unpaired Students ‘t’ test with Welch’s correction. Error bars represent SEM.

https://doi.org/10.1371/journal.pgen.1011067.g004

Fig 5. Oleic acid supplementation or FAT-7 over-expression diminishes heat stress resistance of dpy-10 animals. (A) Kaplan-Meier survival curves

of dpy-10(ves2003) and dpy-10(ves2003) animals supplemented with 0.8 mM oleic acid during heat stress at 32˚C (P<0.0001; N = 25–30; n = 3). (B)

Kaplan-Meier survival curves of dpy-10(ves2003) and dpy-10(ves2003); FAT-7 OE animals during heat stress at 32˚C (P = 0.0017; N = 25–30; n = 3). (C)

Kaplan-Meier survival curves of dpy-10(ves2003); FAT-7 OE and dpy-10(ves2003); ptr-23; FAT-7 OE animals during heat stress at 32˚C (P<0.0001;

N = 25–30; n = 3). (D) Levels of oleic acid (C18:1n9), in WT, dpy-10(ves2003), ptr-23 (ok3663) and dpy-10; ptr-23(ok3663) animals at 20˚C. ns (not

significant), P> 0.05, * P� 0.05, ** P� 0.01, *** P� 0.001, **** P� 0.0001 as by post-hoc Tukey’s test. Error bars represent SEM.

https://doi.org/10.1371/journal.pgen.1011067.g005
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Consistent with this, dpy-10 animals with FAT-7 OE were also susceptible to heat stress

(Fig 5B). Furthermore, mutation in ptr-23 exacerbated the susceptibility to heat stress in dpy-10;

FAT-7 OE animals (Fig 5C). This suggested that PTR-23 might suppress the expression or the

activity of FAT-7 desaturase. We also analyzed the levels of various fatty acids in dpy-10
(ves2003) and dpy-10(ves2003); ptr-23(ok3663) animals by GC-MS (S1 Table). Saturated fatty

acid palmitic acid (C16:0) was higher in dpy-10 than in WT animals, whereas levels of oleic acid

and linoleic acid were reduced in dpy-10 animals (S1 Table), consistent with its HSR phenotype.

The reduction of oleic acid seen in dpy-10 mutant (compared to WT) was suppressed in dpy-10
(ves2003); ptr-23(ok3663) animals, at the basal level as well as during heat stress (Fig 5D).

To study how PTR-23 impacts oleic acid levels, we studied the levels of fat-7 using FAT-7::

GFP reporter in WT, dpy-10(ves2003), ptr-23(ok3663) and dpy-10(ves2003); ptr-23(ok3663)
animals (Fig 6A–6F) in control and heat-stressed conditions. As expected, FAT-7::GFP expres-

sion was lowered in WT and dpy-10 animals upon heat stress (Fig 6A and 6B). However, heat

stress did not downregulate FAT-7::GFP expression in ptr-23 or dpy-10; ptr-23 animals

(Fig 6C and 6D), suggesting that PTR-23 activity was needed for the downregulation of fat-7.

We also analyzed the expression of fat-7 transcript in WT, dpy-10(ves2003), and dpy-10
(ves2003); ptr-23(ok3663) animals at 20˚C. As shown in Fig 6G, the expression level of fat-7
transcript was 30-fold lower in dpy-10 animals. However, fat-7 level was rescued in dpy-10;
ptr-23 compared to dpy-10 animals. This suggested that PTR-23 is necessary to suppress the

expression of fat-7 transcript. Finally, we tested the expression of fat-7 transcript in heat-

stressed WT, dpy-10(ves2003), and dpy-10(ves2003); ptr-23(ok3663) animals and found a simi-

lar regulation by ptr-23 (Fig 6H). An increase in the transcription of ptr-23 (Fig 4D) correlated

with a decline in transcripts of fat-7 (S2G Fig), providing additional evidence that PTR-23 is a

negative regulator of fat-7 expression in C. elegans.
Taken together, our study shows that lowering the relative levels of unsaturated fatty acids

is an important component of the heat stress response in C. elegans. Mechanistically, it is

accomplished by upregulation of the PTR-23-dependent pathway, which serves to downregu-

late the expression of fatty acid desaturase FAT-7. The patched receptor-desaturase axis opera-

tive in C. elegans soma (skin to gut) is essential for improving worm survival during heat stress

(Fig 7).

Discussion

Temperature fluctuation is a physiologically relevant stress experienced by all organisms, sea-

sonally and diurnally. In this study, we found that an important component of the response to

heat stress is the lowering of unsaturated fatty acid levels in C. elegans. We observed a coordi-

nated decline in the transcription of genes encoding fatty acid desaturases such as FAT-7. Dur-

ing prolonged heat stress, upregulation of fat-7 or exogenous supplementation of oleic acid

(OA) causes a reduction in the survival of worms. We find that the expression of fat-7 is con-

trolled non-cell autonomously by a patched-like receptor, PTR-23, in the epidermis of C. ele-
gans. PTR-23 expression is increased in response to heat stress and by disruption of the

permeability barrier of the cuticle/skin in C. elegans. Overall, we show the presence of an epi-

dermis-intestine axis to regulate fatty acid desaturase expression in response to heat stress.

In our study, we show that supplementation of the MUFA OA and the overexpression of

FAT-7, the Δ9 desaturase that converts stearic acid (C18:0) to OA (C18:1n9), hampers the

worms’ survival during heat stress. Additionally, the fat-2 mutants also showed a reduced sur-

vival, similar to the OA-supplemented and FAT-7 OE animals. FAT-2 is a Δ12 desaturase

involved in the conversion of oleic acid to linoleic acid through desaturation [47]. These

mutants have significantly lowered levels of PUFAs in their total lipid profiles compared to the
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Fig 6. PTR-23 regulates stearoyl desaturase FAT-7 levels in dpy-10 animals. FAT-7::GFP expression in (A) control,

(B) dpy-10(ves2003), (C) ptr-23(ok3663) and (D) dpy-10(ves2003);ptr-23(ok3663) animals at 20˚C or heat stressed at

32˚C for 8 hours (scale bar 250 μM). Quantification of GFP intensity at (E) 20˚C and (F) 32˚C. Levels of fat-7 transcripts

in WT, dpy-10(ves2003), and dpy-10(ves2003); ptr-23(ok3663) animals at (G) 20˚C and 32˚C. ns (not significant),

P> 0.05, * P� 0.05, ** P� 0.01, *** P� 0.001, **** P� 0.0001 as determined by unpaired Students ‘t’ test. Error bars

represent SEM.

https://doi.org/10.1371/journal.pgen.1011067.g006
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WT and show a dramatic increase in OA [47]. Therefore, the reduced survival of fat-2 is attrib-

utable to the accumulation of OA in these mutants, consistent with the survival of FAT-7 OE

and OA-supplemented animals. Notably, upon OA supplementation or FAT-7 OE, fat-2 is

upregulated (Fig 2E–2F), suggesting a feedback regulatory role for FAT-2 in regulating the lev-

els of OA. During heat stress, we see a downregulation in the levels of fat-7 transcripts, while

the fat-2 transcripts are upregulated. Overall, our results suggest that excess OA is problematic

for survival during heat stress, and the WT animals actively try to balance OA levels by down-

regulating fat-7 and upregulating fat-2.

Why do the levels of unsaturated fats need to be altered during heat stress? Heat stress is

known to increase membrane fluidity, possibly leading to altered localization and functioning

of membrane-associated proteins. In this scenario, the fine-tuning of membrane fluidity using

various combinations of saturated and unsaturated fats should improve the functioning of

membrane proteins. Saturated fatty acids are densely packed and hence decrease fluidity in the

membrane. Consistent with the expectation that saturated fats should increase and

Fig 7. Model for heat stress adaptation in C. elegans. Heat stress or cuticle defect leads to transcription of patched-like receptor

ptr-23. PTR-23 upregulation leads to the downregulation in the transcription of the fatty acid desaturase, fat-7. Lower levels of

FAT-7 result in lower oleic acid levels, thus promoting the survival of worms during heat stress.

https://doi.org/10.1371/journal.pgen.1011067.g007
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unsaturated fats should decrease during heat stress, we observe a decline in the expression of

desaturases (fat-1, -3, -4, -5, -6, and -7) in heat-stressed worms. This is concomitant with an

overall increase in various saturated fatty acids and a decrease in unsaturated fatty acids in the

GC-MS data. A previous study showed that the knockdown of fat-6, fat-7, and elongase gene

elo-2 by RNAi increased saturated fatty acid content and thermal stress resistance. Whereas, it

had an inverse effect on the survival of these animals against exogenous toxins like paraquat

[12]. We found that overexpression of fat-7 or oleic acid supplementation reduces C. elegans
survival on heat stress but does not affect survival of C. elegans on NaCl hyperosmotic stress

and hydrogen peroxide-induced oxidative stress. This suggests that lipidomic changes are cru-

cial to modulate membrane fluidity for adaptation to heat stress but might be less important

for other stresses.

Changes in the extracellular matrix due to chemical or shear stress can cause disruption of

the plasma membrane [52], possibly triggering cytosolic stress response. In our previous study,

we observed that PD collagen mutants show enhanced heat stress resistance [48]. Disruption

of the cuticle in worms could lead to mechanical stress, activating stress response in the plasma

membrane. Indeed, we find that disruption of the cuticle in PD collagen mutant, dpy-10, alters

desaturase expression. dpy-10 animals show modest upregulation of desaturases fat-1 and fat-4
and a large decrease in fat-7 transcript levels without heat stress. This suggests that alteration

in the extracellular matrix due to PD collagens defect could trigger epidermal membrane

remodeling. Levels of saturated fatty acids (C14:0 and C16:0) are higher, while levels of unsatu-

rated fatty acids (C18:2, C20:4n-3, and C20:5) are reduced in dpy-10 animals compared to WT.

Concomitant with the downregulation of fat-7 transcript, oleic acid (C18:1) levels were

reduced in dpy-10 animals compared to WT animals. dpy-10 animals showed an increase in

levels of two PUFAs (C20:3 and C20:4), unlike heat-stressed WT worms. This suggests that the

nature of membrane remodeling due to cuticle defects is somewhat different from heat stress-

induced membrane remodeling. Unlike cuticle disruption, heat stress triggers the expression

of small heat shock proteins, which likely assist in proteostasis as well as membrane remodel-

ing as chaperones, contributing to these differences.

Here, we find that patched-like receptor PTR-23 is essential for survival under HS in WT

animals as well as cuticle-defective dpy-10 mutants. PTR-23 appears to be the nodal point

where the response to heat stress and cuticle defects impinge. PTR-23 activity is central for the

downregulation of FAT-7 desaturase expression in WT as well as dpy-10 animals. ptr-23 ani-

mals show altered levels of saturated fatty acids as well as some unsaturated fatty acids com-

pared to WT animals (S1 Table). Consistent with an increase in fat-7 expression in ptr-23
mutants, oleic acid levels are also higher compared to WT animals. The ptr-23; dpy-10 double

mutants have higher oleic levels and increased fat-7 expression compared to dpy-10 worms.

This suggests that defects in the extracellular matrix and heat stress modulate cuticular signal-

ing to regulate lipid metabolism.

PTR-23 (patched-related protein), a transmembrane protein, is a homolog of the Drosoph-
ila Patched (Ptc) protein. Ptc proteins are receptors for the Hh ligands and regulate develop-

mental signaling events via the Hh signaling in Drosophila and vertebrates [53, 54].

Interestingly, C. elegans lacks all Hh signaling components except Ptc, suggesting that the nem-

atode lacks canonical Hh pathway [40]. However, the worm encodes several patched receptors,

some of which are known to perform non-canonical functions. Catillo et al. reported that

PTC-3, a C. elegans patched homolog, regulates lipid homeostasis and controls cellular choles-

terol levels by acting as a cholesterol transporter [41]. Patched receptors share homology with

bacterial RND transporters, and PTR-4, in particular, may act as a transporter of hydrophobic

molecules, suggesting that patched/PTR proteins are transmembrane pumps for hydrophobic

cargos [55]. PTR-23 might also be a lipid transporter. However, we show that PTR-23
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functions in the epidermis to non-cell-autonomously regulate FAT-7 expression, which is not

consistent with the idea of a transporter. Furthermore, the lack of hedgehog signaling compo-

nents in C. elegans suggests the possibility of non-canonical interacting partners for PTR-23,

that facilitate this skin-gut axis of fat regulation. Notably, PTR-23 has been shown to modulate

osmo-sensitivity in C. elegans [50]. This patched receptor, expressed in the cuticle, negatively

regulates the mucin-like protein OSM-8 to regulate osmolarity-related genes and osmo-sensi-

tivity. Here, we show an additional non-canonical role for PTR-23, where the transmembrane

receptor negatively regulates fat-7 to orchestrate adaptation to heat stress. PTR-23 functions in

the epidermis to regulate lipid metabolism via fat-7, which is expressed primarily in the gut

and the skin. Interestingly, FAT-7 is known to be regulated by transcription factors, such as

NHR-49, SBP-1, HLH-30, NHR-64, and NHR-80, and co-activator MDT-15. We believe that

PTR-23 might impinge onto these known regulatory networks of FAT-7 to affect its expression

during heat stress [23, 24, 26, 27, 29, 30, 44, 56, 57]. Our results highlight a non-canonical role

for PTR-23 or at least its repurposing in C. elegans. The presence of a skin-gut axis to regulate

stress response in adult worms suggests that similar mechanisms might also operate in other

multicellular animals.

Methods

Strains and reagents

C. elegans strains used in the study were wild-type N2 (Bristol), CB88 [dpy-7(e88)], CB1281
[dpy-8(e1281)], CB12 [dpy-9(e12)], CB128 [dpy-10(e128)], VSL2003 [dpy-10(ves2003)],
VSL2004 [dpy-10(ves2003); ptr-23(ok3663)], VSL2007 [dpy-10(ves2003); ptr-23(ok3663); fat-7::

gfp (nIs590), VSL2014 [dpy-7(e88); fat-7::gfp (nIs590)], VSL2015 [dpy-8(e1281); fat-7::gfp
(nIs590)], VSL2016 [dpy-9(e12); fat-7::gfp (nIs590)], VSL2017 [dpy-10(e128); fat-7::gfp
(nIs590)], VC3219 [ptr-23(ok3663)], DMS303 (nIs590 [fat-7p::fat-7::GFP + lin15(+)] V),
BX150 (waEX18 [fat-5::GFP + lin15(+)]), NR222 (kzIs9 [(pKK1260) lin-26p::NLS::GFP +

(pKK1253) lin-26p::rde-1 + rol-6(su1006)]) and VP303 (kbIs7 [nhx-2p::rde-1 + rol-6

(su1006)]). All strains were maintained at 20˚C. Reagents used in the study are paraquat

(methyl viologen dichloride hydrate, Sigma, cat#856177), hydrogen peroxide (Sigma, cat#

H1009), sodium oleate (Sigma, cat#O7501), and sodium linoleate (Sigma, cat#L8134). dpy-10
deletion strain VSL2004 was created by CRISPR/Cas9 genome editing as described previously

(Dickinson & Goldstein, 2016). 25 ng/μl of sgRNA (GCTCTACCATAGGCACCACG) against

dpy-10 was microinjected with 25 ng/μl Cas9 plasmid (a gift from Prof. K. Subramaniam, IIT-

Madras) in N2. Dpy phenotype animals were picked and further checked for deletion in dpy-
10 by PCR (FP: gtcgtcgttacctcagcca, RP: CAAGTCACCTTCTGGAGTTG) followed by

sequencing. dpy-10(ves2003); ptr-23(ok3663) double mutant was created by crossing dpy-10
(ves2003) hermaphrodites with ptr-23(ok3663) (FP-ttctgccaaatcaatgaaccag, RP-TCTAG-

CAAAGGAGAATCCAG) males as per standard protocol. DMS303 has an extra copy of fat-7::

GFP and hence has been used for both reporter and OE study [31]. NR222 and VP303 were

used to induce tissue-specific RNAi in the epidermis and intestine, respectively.

RNA interference

For systemic RNA interference by feeding, we grew empty vector control and target gene

dsRNA expressing HT115 (DE3) in LB broth containing 50 g/ml carbenicillin overnight at

37˚C [58, 59]. These cultures were plated on NGM plates containing 5 mM isopropyl-D-thio-

galactoside (IPTG) and 50 μg/ml carbenicillin. After 24 hours at 25˚C, these plates were used

for synchronization of worms of various genotypes.
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Survival assays

To induce chronic heat stress, 25–30 synchronized adult worms per genotype were transferred

to freshly seeded E. coli OP50 plates and maintained in a 32˚C incubator [60]. Animals were

scored for survival every 4–6 hours. For single time point heat stress assay, animals were scored

only once after 24 hours of incubation at 32˚C. For oleate supplementation assays, NGM plates

supplemented with 0.8 mM sodium oleate (Sigma-Aldrich) were prepared as described earlier

[61], and worms were grown on oleate supplemented plates. For hydrogen peroxide assay, 35

mm plates were prepared with 2 ml of 1.5% agarose 30 mins prior to the experiment and dried

at RT. 10 mM hydrogen peroxide solution was prepared in M9 buffer, and a volume of 2 ml

was added to each plate. Age synchronized 25–30 adult worms were transferred to each plate

and scored for survival every 1 hour for 6 hours at RT. For single time point hydrogen perox-

ide experiment, animals were scored after 6 hours of incubation in 10 mM hydrogen peroxide

at RT.

Paralysis assay

For hyperosmotic stress, 10–15 adult animals were placed on NGM plates containing 500 mM

NaCl and no food [62]. Each genotype was tested in duplicates. For the survival curve, paralysis

was scored every minute for 10 minutes. For single time point experiments, paralysis was

scored at 10 minutes.

Statistical analysis

Survival graphs were analyzed using the software GraphPad PRISM 5.01 (Kaplan-Meier

method). Survival curves with p values <0.05 based on Mental-Cox test were considered sig-

nificantly different. Bar graphs were analyzed using Student’s t-test, where p values <0.05 were

considered significant with one-on-one comparisons. In cases with multisample comparisons,

a post-hoc Tukey or a post-hoc Dunnet test was performed, where p< 0.05 was considered

significant. Survival statistics are presented in S2 Table.

Quantitative Real-time PCR

Synchronized adult animals were exposed to 20˚C or 32˚C for 4,8 or 12 hours. Animals were

harvested using M9 buffer in a 15 ml falcon tube. Excess of M9 buffer was removed, and

worms were frozen at -80˚C in 1 ml of TRizol. RNA was extracted using the RNeasy Plus Uni-

versal Mini Kit according to the manufacturer’s instructions (Qiagen). cDNA was prepared

using the iScript cDNA synthesis kit (BIO-RAD). qRT-PCR was conducted using the

BIO-RAD TaqMan One-Step Real-time PCR protocol using SYBR Green fluorescence

(BIO-RAD) on an Applied Biosystems QuantStudio 3 real-time PCR machine in 96-well plate

format. Fifty nanograms of RNA were used for real-time PCR. 10 μl reactions were set up in

two technical replicates and performed as outlined by the manufacturer (Applied Biosystems).

Relative fold changes were calculated using the comparative CT (2 -ΔΔCT) method and normal-

ized to act-1 [63]. Three or more biological replicates were used for qRT-PCR analysis.

Imaging

Synchronized population of adult FAT-5::GFP and FAT-7::GFP [64] animals were exposed

either to 20˚C or 32˚C and imaged after 4 or 8 hours. Animals were placed in 1 mM Sodium

Azide on 2% agarose pads and imaged at 5X or 10X magnification. Imaging was done using a

SIRION ultrahigh-resolution microscope. For each experiment, at least 10 worms were

imaged. Three or more biological replicates were done for the analysis.
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Gas chromatography-mass spectrometry (GC-MS/MS)

GC-MS/MS to analyze fatty acid composition was done as previously described [21]. Briefly,

~400 synchronized adult animals with 0–8 embryos were collected and washed twice with

water on ice. Excess water was removed, and worms were incubated with 2 ml of 2.5% sulfuric

acid in methanol for 1 hour at 70˚C to convert fatty acids to respective methyl esters. After

incubation, 1 ml of water was added to stop the reaction, and 200 μl of hexane was added to

solubilize and extract fatty acids esters. 2 μl of the hexane layer was added onto an Agilent

7,890 GC/5975C MS in scanning ion mode equipped with a 20 × 0.25 mm SP-2380 column

(Supelco) to quantify the relative levels of fatty acid esters.

Hoechst staining

Hoechst staining to detect cuticle permeability was done as previously described [48]. 30–40

adult worms were maintained at 20˚C and transferred to 32˚C (HS) or continued to be main-

tained at 20˚C (Ctrl) for 24 h. The worms were washed thrice and resuspended in M9 contain-

ing Hoechst stain as previously described [48]. After 30 minutes of staining, the worms were

washed thrice with M9 and Imaged with a DAPI filter using an epifluorescence microscope.

Source data is available on dryad [65].

Dryad DOI

https://doi.org/10.5061/dryad.15dv41p3j [65]

Supporting information

S1 Fig. FAT-5 levels are downregulated upon heat stress. (A) FAT-5::GFP expression in ctrl

and HS animals at indicated times and temperatures (scale bar, 250 μm) and their (B) quantifi-

cation. Statistical significance for (B) was calculated using a post-hoc Dunnett test. Ns (not sig-

nificant), * P� 0.05; ** P� 0.01; *** P� 0.001; **** P� 0.0001.

(TIF)

S2 Fig. Heat shock response entails alteration in enzymes of fatty acid metabolism. qPCR

analysis of (A) fat-1, (B) fat-2, (C) fat-3, (D) fat-4, (E) fat-5, (F) fat-6, (G) fat-7, (H) dgat-2, (I)

acs-2, and (J) hsp-16.2 in HS (32˚C) over ctrl (20˚C) WT animals. ns, non-significant;

*P< 0.05; **, P < 0.01; ***, P< 0.001; ****, P < 0.0001 as determined by unpaired ‘t’ test with

Welch’s correction. Error bars represent SEM.

(TIF)

S3 Fig. FAT-7 OE and Oleic acid supplementation does not affect survival during other

abiotic stresses. (A) Survival of WT and FAT-7 OE animals during osmotic stress of 500 mM

NaCl. (B) Survival of WT and FAT-7 OE animals during acute oxidative stress upon 6-hour

exposure to 10 mM H2O2. (C) Kaplan-Meier survival curves of WT and WT supplemented

with oleic acid during osmotic stress upon exposure to 500 mM NaCl (P = 0.7329; N = 25–30;

n = 3). (D) Kaplan-Meier survival curves of WT and WT supplemented with oleic acid during

oxidative stress upon exposure to 10 mM H2O2 (P = 0.6384; N = 25–30; n = 3). ns (not signifi-

cant).as determined by unpaired Student’s ‘t’ test. Error bars represent SEM.

(TIF)

S4 Fig. Heat shock causes permeabilization of C. elegans cuticle. DIC and DAPI filter images

of WT adults grown for 24 h at (A) 20˚C or (B) 32˚C followed by staining with Hoechst stain.

(C) Percentage of worms permeabilized as quantified by Hoechst staining in the region of

interrest (ROI) around the pharynx. ***, P < 0.001 as determined by unpaired ‘t’ test with
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Welch’s correction. Error bars represent SEM.

(TIF)

S5 Fig. PTR-23 regulates heat stress resistance of dpy-10 mutant. (A) Kaplan Meier survival

curves of WT and ptr-23 animal with dpy-10 RNAi at 32˚C (P<0.0001; N = 25-3-; n = 3).

Kaplan-Meier survival curves of N2 and ptr-23(ok3663) animals during (C) oxidative stress

(P = 0.5671; N = 25–30; n = 3) and (D) osmotic stress (P = 0.6442; N = 25–30; n = 3). (D)

Kaplan Meier survival curves of VP303, intestinal RNAI animals with ptr-23 RNAi

(P = 0.5906; N = 25–30; n = 3). (E) Transcript levels of fatty acid desaturase genes in ptr-23
(ok3663) mutants compared to WT animals. *P< 0.05; **, P < 0.01; ***, P< 0.001 as deter-

mined by unpaired ‘t’ test with Welch’s correction. Error bars represent SEM.

(TIF)

S1 Table. Fatty acid analysis by Gas chromatography-mass spectrometry.

(DOCX)

S2 Table. Statistics for Survival assays.

(DOCX)
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