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ABSTRACT: Lithium-based disordered rocksalts (LDRs), which
are an important class of positive electrode materials that can
increase the energy density of current Li-ion batteries, represent a
significantly complex chemical and configurational space for
conventional density functional theory (DFT)-based high-
throughput screening approaches. Notably, atom-centered ma-
chine-learned interatomic potentials (MLIPs) are a promising
pathway to accurately model the potential energy surface of highly
disordered chemical spaces, such as LDRs, where the performance
of such MLIPs has not been rigorously explored yet. Here, we
represent a comprehensive evaluation of the accuracy, trans-
ferability, and ease of training of five atom-centered MLIPs, including the artificial neural network potentials developed by the
atomic energy network (AENET), the Gaussian approximation potential (GAP), the spectral neighbor analysis potential (SNAP)
and its quadratic extension (qSNAP), and the moment tensor potential (MTP), in modeling a 11-component LDR chemical space.
Specifically, we generate a DFT-calculated data set of 10,842 configurations of disordered LiTMO2 and TMO2 compositions, where
TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and/or Cu. To provide a point-of-comparison on the performance of atom-centered MLIPs, we
also trained the neural equivariant interatomic potential (NequIP) on a subset of our data. Importantly, we find AENET to be the
best potential in terms of accuracy and transferability for energy predictions, while MTP is the best for atomic forces. While AENET
is the fastest to train among the MLIPs considered at low number of epochs (300), the training time increases significantly as epochs
increase (3300), with a corresponding reduction in training errors (∼60%). Note that AENET and GAP tend to overfit in small data
sets, with the extent of overfitting reducing with larger data sets. Finally, we observe AENET to provide reasonable predictions of
average Li-intercalation voltages in layered, single-TM LiTMO2 frameworks, compared to DFT (∼10% error on average). Our study
should pave the way both for discovering novel disordered rocksalt electrodes and for modeling other configurationally complex
systems, such as high-entropy ceramics and alloys.

■ INTRODUCTION
Lithium-ion batteries (LIBs) are the workhorse energy storage
technology that is powering modern portable electronics and
electric vehicles, and remains a crucial ingredient in our
transition to a carbon-free society.1−3 Among the various
components that constitute LIBs, the cathode or the positive
electrode, which is usually made of lithium, combinations of
few transition metals (TMs), and oxygen resulting in a
LiTMO2 composition,4,5 is most critical in determining the
energy density and cost of the overall electrochemical cell.1,6,7

Thus, increasing the performance of cathode materials is an
ongoing and active area of research. One pathway to increase
the energy density of LIB cathodes is to utilize anionic redox
(i.e., oxygen redox), which can be reversibly accessed in
cathode materials with a Li-excess composition, i.e.,
Li1+xTM1−yO2, where x and y are positive numbers less than

1.8,9 Importantly, cathode frameworks that adopt a Li-excess
composition along with a fluorinated disordered rocksalt
structure (i.e., DRX cathodes) have displayed significant
promise, with reversible and facile anionic redox, high voltages
with minimal volume changes during charge/discharge, and
macroscopic Li-ion transport via percolating networks.10−21

Thus, designing and optimizing DRX cathodes can signifi-
cantly improve the energy density and (potentially) cost of
LIBs.22
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The structure of a conventional LiTMO2 cathode, such as
LiCoO2, is a layered framework, with Li-ions (green
polyhedra) and TM-ions (blue polyhedra) occupying distinct
layers along the c-axis, as shown in Figure 1a. Such layered

frameworks consist of a face centered close-packed anionic
lattice (red spheres indicate anions in Figure 1), with Li and
TM cations occupying octahedral voids of adjacent close-
packed {111} planes, which results in distinct Li and TM
layers.5 Thus, the layered LiTMO2 cathode is a specific
ordering of the rocksalt structure, created by the anionic (O)
and cationic (Li + TM) sublattices. Note that the Li and TM
ordering within a layered cathode can undergo disordering, i.e.,
large fractions of Li sites can be occupied by TM and vice
versa, resulting in the breaking of long-range order, as
displayed in Figure 1b.8 Note that disordering can occur in
cathodes with multiple TMs also (see Figure 1c), and
subsequent topotactic Li deintercalation can result in a
disordered TMO2 configuration as well (Figure 1d). However,
disordered cathodes with a stoichiometric Li content (i.e.,
LiTMO2) do not show appreciable electrochemical activ-
ity,23−25 since there are not enough connected Li-conducting
pathways available within the structure for macroscopic Li
transport,26 prompting the use of Li-excess compositions.10

Nevertheless, LiTMO2 remains the base or stoichiometric
composition around which the Li, TM, and anionic content
(e.g., fluorination) is changed for designing energy-dense DRX.
Off late, materials screening approaches using high-

throughput density functional theory (DFT27,28) calculations
with/without machine learning (ML), have resulted in a
significant number of theory-predicted candidates in a variety
of applications, including batteries.10,29−42 Indeed, some of the
theoretical predictions have also been validated by subsequent
experiments.43−49 However, modeling disordered rocksalt
compositions, and subsequently performing a computational
screening across various compositions is nontrivial, owing to
the configurational complexity and length-scale of the system.
Specifically, disordered rocksalts do not have significant long-

range order, necessitating large supercells, which in turn results
in multiple symmetrically distinct Li-TM arrangements to
consider. The computational complexity becomes particularly
severe in case of disordered structures containing multiple
TMs, which is usually the case for several of the Li-excess
cathodes that show good performance.8 Thus, a conventional
high-throughput screening approach is not practical for new
DRX discovery, and this also applies for the general field of
high entropy ceramics.50,51

An alternative method to model disordered multicomponent
systems such as disordered rocksalt cathodes is to employ the
so-called machine-learned interatomic potentials (MLIPs),
which can provide “quick” and “accurate” estimates of energies
and atomic forces within a given disordered configuration.52−54

Specifically, MLIPs are usually trained on a (smaller) DFT-
based training set and act as a mathematical approximation of
the underlying potential energy surface (PES)54 of the
chemical system under consideration. Conventionally, MLIPs
have been constructed on an atom-centered basis, i.e., the
MLIP fingerprints the local environment around an atom-of-
interest, and are designed to ensure invariance with rotation,
reflection, translation, and permutations of the underlying
atoms. Once constructed and validated, an MLIP can be used
for larger-size and longer-time-scale simulations.
Examples of atom-centered MLIPs include the artificial

neural network (ANN) potential55,56 developed as part of the
atomic energy network (AENET) package,33,57,58 the Gaussian
approximation potential (GAP),54,59,60 the moment tensor
potential (MTP),61−63 the spectral neighbor analysis potential
(SNAP), and its quadratic version (qSNAP).64,65 Training
such potentials typically involves the generation of a
sufficiently diverse data set (usually with DFT), minimizing
the root mean squared errors (RMSEs) and/or the mean
absolute errors (MAEs) against target metrics (such as total
energies and atomic forces), and optimization of relevant
hyperparameters. These MLIPs are a significant improvement
over classical force fields, in terms of displaying near-DFT
accuracy and being sufficiently quick in predicting energies,
forces, and stresses.33,66−69 While the performance of these
potentials has been compared for single-component systems,52

a rigorous benchmarking and testing of these potentials on a
disordered system with a large number of components is
missing so far.
Here, we perform a comprehensive analysis of the accuracy,

transferability, and ease of training of five MLIPs, including
MTP, SNAP, qSNAP, GAP, and AENET, on a highly diverse,
11-component data set involving disordered LiTMO2
compositions (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and/or
Cu). Thus, the primary objective of this work is to benchmark
the performance of the aforementioned MLIPs on a 11-
component configurationally complex data set. To train and
test the potentials, we generate a DFT-calculated data set of
10,842 configurations involving different compositions of
LiTMO2, which was divided into training and testing data
subsets of varied sizes. Subsequently, we quantify the accuracy
via errors on energies and forces within training data sets,
transferability via the similarity of errors across the training and
corresponding testing sets, and ease of training through the
computational training time required for each potential. We
also train a neural equivariant interatomic potential (NequIP)
on a subset of our total data set to compare the performance of
a graph-network-based potential versus the atom-centered
MLIPs considered. Importantly, we find that AENET provides

Figure 1. Structural schematic of (a) layered LiTMO2, (b)
disordered, single-TM LiTMO2, (c) disordered multi-TM LiTMO2,
and (d) disordered, delithiated, multi-TM TMO2. Green spheres/
polyhedra indicate Li, red spheres indicate O, and TMs are indicated
by other colors of spheres/polyhedra.
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the best accuracy and transferability for total energies and is
the easiest to train for a low number of epochs, while MTP is
the best for atomic forces, exhibits robust transferability for
total energies, and is difficult to train, highlighting that different
MLIPs may be suited for different target metrics/applications.
To further probe the accuracy of AENET on derived
properties, we benchmark the potential-calculated average Li
intercalation voltages versus DFT-estimates in ordered,
layered, single-TM LiTMO2 compositions (TM = Ti, V, Cr,
Mn, Fe, Co, Ni, or Cu), with AENET showing a reasonable
MAE ∼ 0.34 V (∼10%), across all systems. We hope that our
study and the potentials we have constructed provide new
avenues for discovering novel DRX cathodes for LIBs, and a
framework for screening through computationally complex,
disordered, multicomponent systems.

■ METHODS
Workflow. An overview of the data generation, calculations

employed, training of MLIPs, and quantifying predictive errors
is shown in Figure 2. DFT total energies and atomic forces of
six categories of training structures, i.e., structures involving
single or multiple TMs, with or without Li, and ordered or
disordered configurations, were calculated to create the
training (and test) data sets (see Data Set Generation
subsection for additional details). A 90:10 random split of

the data set was used as training and test data sets, respectively,
for the construction of all MLIPs. Note that the same random
split(s) of structures was used for training/testing of all MLIPs.
Subsequently, atomic descriptors (see Table 1 and Construct-
ing MLIPs subsection) were generated for the structures in the
training set, which were used to train the MLIPs with the DFT
total energies and/or atomic forces being the target properties.
The hyperparameters for each MLIP framework were
optimized during the training process to provide the minimum
RMSE and MAE with respect to DFT-calculated energies and/
or forces and are provided in Table S1 of the Supporting
Information. Among the trained MLIPs, we chose the best
MLIP (i.e., the AENET potential), which gave the lowest
RMSE in energies and performed a comparison of the model-
predicted Li-intercalation voltages versus DFT calculations in
ordered, layered, single-TM LiTMO2-TMO2 compositions.

Data Set Generation. The LiTMO2 disordered rocksalt
data set was generated by enumerating Li and TM arrange-
ments within the cation sublattice of the rocksalt structure.
Specifically, we used the structures enumerated by Artrith et
al.33 with various cation arrangements up to a total of 18 cation
sites per cell using the enumeration approach of Hart et
al.70−72 Thus, Artrith et al.33 generated a total of 10,046
structures based on nine TMs (i.e., TM = Sc, Ti, V, Cr, Mn,
Fe, Co, Ni, and Cu). Subsequently, we generated specific

Figure 2.Workflow of structure enumeration, DFT calculations, MLIP training, and voltage predictions employed in this work. For all MLIPs, the
inputs are the DFT-calculated structures, energies, and forces, and the outputs are energies and forces.

Table 1. Summary of Different MLIP Frameworks Considered in This Worka

MLIP MTP SNAP GAP AENET

idea many-body interactions within a cutoff radius
represented via moment tensors

local atomic density (weighted delta
functions) projected on a 4D
hypersphere

local atomic density modeled via a
SOAP kernel

feed forward neural network
with local bonding environ-
ment as the input layer

descriptor moment tensors consisting of radial distribution
function and outer products of position
vectors of neighboring atoms

hyperspherical projection of atomic
density expanded in terms of
bispectrum components

atomic density as weighted sum of
Gaussians

radial and angular distribution
functions

training al-
gorithm

BFGS linear regression Gaussian process regression limited memory BFGS

basis func-
tions

Chebyshev polynomials (for radial basis) and
contracted moment tensors

hyperspherical harmonics equispaced Gaussians (for radial
basis) and spherical harmonics
(for angular basis)

Chebyshev polynomials

aSOAP and BFGS represent smooth overlap of atomic positions59,77 and Broyden−Fletcher−Goldfarb−Shanno,78 respectively.
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combinations of TMs that were missing from the data set of
Artrith33 et al.26 [e.g., Li9(Sc,Mn,V,Cr,Fe,Co,Cu,Ni)9O18 and
structures with all nine TMs] using pymatgen’s advanced
transformations module,73 resulting in an additional ∼400
structures. Also, we generated the structures without Li-ion to
include Li-deficient conditions encountered at the top of
charge. Specifically, we randomly selected a total of 500

structures from each of the n-TM combinations (n = 1 to 9)
and removed all Li atoms from such structures, bringing our
final data set to a total of 10,842 structures. A pie-chart
visualizing the various splits in the total data set generated is
given in Figure 3.

Constructing MLIPs. All MLIPs investigated in this work
are atom centered, i.e., the MLIPs express the PES as a sum of

Figure 3. Pie charts indicating the various splits within the data set used. (a) Split across various layered, and disordered LiTMO2 and TMO2, (b)
the percentage of multi-TM combinations among disordered-LiTMO2, and (c) the percentage of each TM present in disordered LiTMO2
structures. The notation “1TM” in panel (b) indicates a single TM (out of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, or Cu) being present in a given structure.
“2TM” (3TM and so on) indicate possible combinations of two TMs (three TMs and so on) being present in a given structure, such as Ti + V, Co
+ Ni, etc.

Figure 4. RMSE in energies (top panel) and forces (bottom panel) for the MLIPs considered in this work, as a function of increasing total data set
size. Lower left and upper right triangles within each square represent training and test errors, respectively.
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atomic energies (ϵi), where each atomic energy is a function of
the local environment of each atom that obeys the underlying
symmetry of the environment, such as rotational and
translational invariance. The range of the local environment
is determined by the cutoff radius (Rc or Rcut) hyperparameter,
with a corresponding switching function ( fc, a cosine function
for example) that ensures that the contribution of neighboring
atoms to the atomic energy decay smoothly to zero as the
distance from the atom-of-interest approaches Rc. However,
the MLIPs differ in the way the local environments are
described mathematically and the functional basis/expression
used to map the descriptors to the PES. The key concepts and
model parameters used in all MLIPs considered are described
in the Supporting Information and tabulated in Table 1. We
also refer the readers to the subset of the literature here.64,74−76

DFT Calculations. We performed Hubbard U corrected79

DFT calculations using the Perdew−Burke−Ernzerhof func-
tionalization of the generalized gradient approximation,80 with
projector-augmented wave potentials,81,82 as implemented in
the Vienna ab initio simulation package (VASP, version
6.1.2).83,84 The calculations were performed, without preserv-
ing any symmetry, for all the 10,842 structures until total
energies converged to within 0.01 meV. Note that we
performed a single self-consistent field calculation for the
converged structures obtained from Artrith et al.,33 while we
performed a full structure relaxation (i.e., relax ionic positions,
cell volume, and cell shape) for all the structures we
enumerated and for Li-intercalation voltage calculations. For
all structures that were fully relaxed, we converged both the
total energies and atomic forces to within 0.01 meV and ±30
meV/Å, respectively.

Γ-centered k-point meshes with a density of 1000 divided by
the number of atoms were used, in accordance with the work
of Artrith et al.33 The plane wave kinetic energy cutoff was set
to 520 eV and VASP input parameters were generated using
pymatgen,73 where the parameters were compatible with the
Materials Project.85 The reference atomic energies in the
AENET package were calculated by placing isolated Li, TM,
and O atom, at the origin of a 18 × 19 × 20 Å3 cell (i.e., each
reference energy was calculated for an isolated atom). Table S2
summarizes Hubbard U values and the corresponding
calculated atomic energies. We used the materials ML
(MAML52) python package as an interface to construct the
GAP, SNAP, qSNAP, and MTP potentials. For voltage
calculations, we considered layered, single-TM LiTMO2
structures obtained from the inorganic crystal structure
database (ICSD86) and the corresponding delithiated versions,
except LiTiO2, where we obtained the structure via ionic
substitution of layered-LiVO2. While DFT-calculated voltages
were obtained from a full structure relaxation of layered-
LiTMO2 and layered-TMO2 structures, we obtained AENET
energies (and voltages) using the corresponding initial
structures used for DFT calculations.

■ RESULTS
Training and Test Errors. The RMSE in energies (in units

of meV/atom) and forces (in eV/Å) errors for all the four
MLIPs are summarized in the top and bottom panels of Figure
4, respectively, as a function of increasing total data set size,
with the parity plots between MLIP- and DFT-calculated
values compiled in Figures S2−S11. Specifically, we display the
progression of errors for total data set sizes from 2000 until
9000 in steps of 1000, and for the full data set of 10,842

configurations, where each data set is split into a 90:10
training/test set. Note that each smaller data set is a randomly
chosen subset from the 10,842 structures, thus including the
diversity and complexity of the local atomic environments to
an extent. Each row of Figure 4 represents an MLIP, while the
top and bottom triangles within each box represent the errors
associated with the training and test sets, respectively, for each
total data set size. The errors displayed in Figure 4 correspond
to the best set of hyperparameters that we identified for each
MLIP (see Table S1). We do not include qSNAP error data in
Figure 4 since we observed qSNAP to provide similar metrics
as SNAP when trained on small data sets (i.e., 2000 and 3000,
see Figure S1), indicating marginal improvement over SNAP.
Moreover, we encountered numerical and convergence
difficulties with qSNAP while attempting to train it on larger
data set sizes. Hence, we do not include qSNAP in comparison
to the other MLIPs for the rest of this study.
In general, the MLIPs considered show higher training

errors in energy with an increase in training data set size (lower
triangles in Figure 4), although the increase is not always
monotonous and the extent of increase is different for different
potentials. For example, the training set energy errors increased
from 21.89 to 23.04 meV/atom in MTP, 78.77 to 82.79 meV/
atom in SNAP, 1.49 to 17.11 meV/atom in GAP, and 0.85 to
7.51 meV/atom in AENET. While AENET and GAP display
largely monotonic increase in error with data set size,
indicating that these frameworks become better fitted with
more data, MTP and SNAP are nonmonotonic and show
relatively low increase (∼5%) in error as the total data set size
is increased from 2000 to 10,842. Thus, the choice of the data
set itself may play a role in the accuracy of MTP and SNAP fits
and more data may not necessarily improve the fit.
Importantly, AENET exhibits the lowest error with our full
training data set, indicating high accuracy during training.
Indeed, AENET’s RMSE of ∼7.5 meV/atom is not far away
from the typical error expected within DFT calculations (∼1
meV/atom). In contrast, SNAP shows the highest error across
all data set sizes, which may be due to the high number of
components in our data set.
Different from training errors on energies, test errors (upper

triangles in Figure 4) monotonically decrease with increasing
data set size for all MLIPs, except MTP, which indicates an
improvement in the transferability of all models with increasing
training data set size. Additionally, the MLIPs do display
higher test errors compared to training errors, which is
expected, except for MTP and SNAP, which show lower test
than training errors for larger data sets. Notably, GAP and
AENET display significantly high test errors compared to
training, especially in small data sets (<6000 data points),
which is indicative of a high degree of overfitting. For example,
GAP’s test error is 122 meV/atom compared to a training error
of 1.49 meV/atom for a total data set size of 2000, while
AENET’s test and training errors for the same data set size are
49.9 and 0.85 meV/atom, respectively. Thus, both AENET
and GAP are susceptible to overfit to the available data,
especially when the data set size is of the order of few thousand
points or below. However, both AENET and GAP models
become more transferable with increase in the overall data set
size, as exhibited by similar training and test errors as the data
set size approaches 10,842. The improvement in the accuracy
and transferability of AENET is consistent with prior
observations in literature using ANNPs as well.87,88 Interest-
ingly, both MTP and SNAP show similar training and test
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errors across all data set sizes (<11 meV/atom deviation)
indicating good transferability of MTP and SNAP, though the
accuracy of these MLIPs may not be as good as AENET or
GAP. Thus, for the full data set (10,842 points), AENET gives
both best accuracy and transferability for total energy
evaluations, while MTP provides best transferability for smaller
data sets (<7000 points).
Compared to training and predicting total energies, all

MLIPs do display significantly larger errors in training or
predicting atomic forces, as compared to DFT (lower panel of
Figure 4), which is expected given that force data is usually
noisier compared to energy data. Indeed, the lowest force
training error that we encountered is 0.21 eV/Å by MTP for
the 3000 data set, which is at least an order of magnitude
higher than the errors typically encountered in DFT
calculations (∼0.03−0.05 eV/Å). In terms of training the
MLIPs, AENET does not yet have a provision to weight forces

during training, while we did not explicitly include forces
during the training of GAP to lower computational time and
limit memory usage. Using multiple computing cores is one
possible strategy with GAP to include forces during training.
Consequently, AENET and GAP show significantly high
training errors on atomic forces, compared to MTP and SNAP.
For example, AENET’s RMSE on forces in the 10,842 training
set is 1.10 eV/Å, while GAP displays an RMSE of 0.87 eV/Å,
significantly higher than MTP or SNAP (0.25−0.26 eV/Å).
While the force training errors on GAP can be certainly
brought lower by a careful optimization of the “default_sigma”
hyperparameter that controls the relative weights between
forces and energies apart from the regularity of the fit,75

AENET’s training algorithm requires an extension if force
errors need to be brought down systematically for any data set.
All MLIPs, except AENET, display good transferability in

terms of force predictions, given the similarity of training and

Figure 5. Computational time (in minutes) for training vs total data set size for all MLIPs considered in this work.

Figure 6. (a) Computational training time (in hours) vs number of epochs for different total data set sizes using AENET. (b) Training energy
RMSE (left y-axis and blue bars) using AENET for the total 10,842 data set with increasing number of epochs, with the corresponding
computational training time (in hours) also indicated (right y-axis and red bars).
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test force errors, particularly at large data set sizes. For
example, MTP, SNAP, and GAP display <0.03 eV/Å deviation
within training and test errors for the 10,842 data set. Thus,
given both energy and force errors during training and their
transferability to the test data set, we find MTP to be the best
performer, with marginal improvement in accuracy with
increasing data set size, and most suited for any dynamics
simulations among the MLIPs considered. However, in terms
of energy training and transferability, we find AENET to be the
best performer, with a systematic improvement in accuracy and
transferability with increasing data, and the most suited for any
quick evaluation of total energies for a given structure, i.e., for
static calculations. Note that the overall utility of a given MLIP
is also determined by the computational time taken for
training, which is discussed in the following section.

Ease of Training. The computational time taken for
training the MLIPs as a function of increasing total data set
size (from 2000 to 10,842), for the set of optimal
hyperparameters (Table S1), is displayed in Figure 5. We
used a single core of an Intel Xeon Gold 6271 central
processing unit (CPU), with a maximum random access
memory of 128 gigabytes, without any hyperthreading for
training all MLIPs. For AENET, the computational training
time plotted in Figure 5 is for 300 epochs (a hyperparameter
for AENET training), while we have performed an extended
analysis on the dependence of the training time on number of
epochs later this section (see Figure 6). As expected, all MLIPs
require larger training times with increasing data set size.
Importantly, we find AENET (blue diamonds in Figure 5) to
be the swiftest to train for all data set sizes at 300 epochs,
except 2000 data set size, where SNAP (purple squares) is the
fastest. Indeed, AENET is more than twice as fast (∼210 min)
compared to MTP (∼460 min). Also, we find MTP (red
triangles) to be the slowest to train for all data set sizes,
followed by GAP (green circles).
Moreover, MTP and GAP both become progressively harder

to train with increasing data set sizes. For example, MTP and
GAP require an additional ∼37 and ∼28 min per additional
1000 total data points included, respectively, while AENET
and SNAP are significantly easier to train, requiring additional
times of ∼15 and ∼20 min per additional 1000 data points.
Thus, the marginal improvement in accuracy on energies and
forces with increasing data points exhibited by MTP is
counterweighed, to an extent, by the significantly higher
computational times required to train the potential. Note that
we did not explicitly include forces during the training of GAP
and we expect the computational training time of GAP to

significantly increase, if forces were to be included as well.
Therefore, we find that AENET is the easiest to train at 300
epochs, compared to the other MLIPs considered in this work.
Note that one of the key hyperparameters that influences

(training) errors and computational time in AENET is the
number of epochs used during training. The AENET results
displayed in Figure 4 correspond to 3300 epochs of training.
To further probe the role of this hyperparameter, we examine
the variation of the computational training time as a function
of increasing total data set size and number of epochs (Figure
6a) and the change in training RMSE and computational
training time for the full 10,842 data set with increasing epochs
(Figure 6b).
For all data set sizes, we observe an increase in computa-

tional time with increasing epochs (Figure 6a). More
importantly, the rate of increase in computational time is
more rapid with increasing epochs for larger data sets,
indicating that the training time can quickly escalate as the
complexity of the training set increases. For example, the
training time required for 3300 epochs over the full 10,842
data set is ∼38 h (or ∼2280 min, Figure 6a), which is ∼5× the
training time required by MTP for the full data set (Figure 5).
However, we do note that the energy RMSEs for the training
set decreases steadily with increasing epochs (Figure 6b), from
∼18.7 meV/atom at 300 epochs to ∼7.5 meV/atom at 3300
epochs (i.e., a ∼ 60% drop in errors). Nevertheless, the rapid
increase in computational time for the full 10,842 data set may
not be worth the marginal gain in accuracy, especially from
∼27 h, ∼ 8.5 meV/atom at 2300 epochs to ∼38 h, ∼ 7.5 meV/
atom at 3300 epochs, or a ∼ 41% gain in training time for an
increase in accuracy of ∼12% (Figure 6b). Therefore, AENET
can be a quick MLIP to train compared to MTP, GAP, or
SNAP, only if a low number of epochs gives reasonable
accuracy and transferability for total energies.

Voltage Predictions. The accuracy in predicting material
properties is critical for evaluating the performance and
determining the utility of MLIPs. Hence, we choose the
prediction of average intercalation voltages, in ordered, layered,
single-TM LiTMO2 compounds (TM = Ti, V, Cr, Mn, Fe, Co,
Ni, or Cu) as a test of accuracy, versus DFT calculations.
Specifically, we examine the accuracy of the AENET potential
in determining voltages since it provided the best accuracy and
transferability in prediction energies within disordered systems
(see Figure 4). Note that we refer to AENET being the better
potential, than MTP, strictly for energy predictions. For
voltage calculations, we utilize the AENET potential trained at
2300 epochs (since training errors declined by only ∼1.0

Figure 7. Comparison of AENET and DFT calculated energies of LiTMO2 [panel (a)] and TMO2 [panel (b)] compounds, where TM = Ti, V, Cr,
Mn, Fe, Co, Ni, or Cu. Panel (c) represents a similar AENET-DFT comparison in terms of average Li intercalation voltage, where each voltage is
calculated vs Li metal.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00039
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c00039/suppl_file/ct4c00039_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00039?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00039?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00039?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00039?fig=fig7&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00039?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


meV/atom from 2300 to 3300 epochs, see Figure 6b). Note
that the average Li intercalation voltage, versus Li metal, can be
approximately determined using the following relation

=V
E E E
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k
jjjj
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{
zzzz

(1)

where ELiTMOd2
, ETMOd2

, and ELi are the total energies per formula
unit of the lithiated structure, delithiated compound, and pure
Li, respectively, from DFT or AENET, with the p − V and
entropic contributions ignored. F is the Faraday’s constant.
Note that we used the DFT calculated total energy for Li in
case of AENET predictions also since the energy scales of our
fitted AENET potential were quite different from the energy
scale of a pure Li in its body centered cubic ground state
configuration. We performed either structure relaxation using
DFT or a static calculation using AENET, from the ICSD
starting structures, to obtain the energies listed in eq 1. All
DFT and AENET calculated voltage values are presented in
Table S3 of the Supporting Information.
Figure 7 displays AENET calculated values versus DFT

estimates, in terms of total energies (in eV/atom) of the fully
lithiated compositions (panel a), fully delithiated compositions
(panel b), the average voltages (panel c, in V vs Li metal). The
black lines in each panel of Figure 7 indicate parity lines, with
the degree of agreement between AENET and DFT values
quantified in terms of RMSEs in each panel. Importantly,
AENET estimates the total energies of both the lithiated and
delithiated compositions quite accurately, with RMSEs of
0.048 and 0.154 eV/atom (with corresponding MAEs of 0.035
and 0.117 eV/atom), respectively, where the errors for lithiated
compositions are similar to the test errors observed in Figure 4.
These RMSEs represent percentage errors of 0.55% for
LiTMO2 and 2.12% for TMO2 compositions. The higher
errors within the TMO2 compositions are expected since our
data set has significantly more LiTMO2 configurations than
TMO2.
In terms of voltage calculations, AENET does suffer from a

compounding of error (instead of a cancellation of error)
versus DFT, with the RMSE at ∼0.375 V (and MAE of ∼0.342
V) compared to DFT for all systems. The voltage errors
represent a percentage error of 10.05% against DFT, which is
higher than the percentage errors on the energy estimates.
Notably, AENET’s largest voltage errors are in the LiFeO2 and
LiTiO2 systems (∼17%). For comparison, we have also
included MTP calculated voltage values in Table S6, with
MTP’s overall performance (mean percentage error of 12.18%)
expectedly slightly worse than AENET. Nevertheless, we
expect our AENET potential to be useful for obtaining “quick”
voltage predictions for several disordered lithium TM oxide
compositions, with reasonable accuracy, provided that the
potential is not utilized for a full structure relaxation.

■ DISCUSSION
We have performed a comprehensive evaluation on the
accuracy, transferability, and ease of training of four different
MLIPs, namely, AENET, GAP, SNAP, and MTP, on a 11-
component lithium-containing disordered rocksalt chemical
space (Figure 1), which is quite relevant for designing energy-
dense cathodes in Li-ion batteries. Specifically, we have
quantified the training and test errors (Figure 4) and the
computational training time (Figure 5) of the above-
mentioned MLIPs on a DFT-calculated data set of 10,842

configurations (Figure 3) based on a computational workflow
(Figure 2). While we found MTP to be accurate and
transferable in terms of force predictions, we found AENET
to be significantly more accurate and transferable for energy
predictions. In terms of ease of training, we found AENET to
be fastest to train at 300 epochs, with training time increasing
∼10× at 3300 epochs and training errors decreasing by ∼60%
(Figure 6). While MTP is ∼2× slower than AENET at 300
epochs, it is ∼5× faster than AENET at 3300 epochs (Figures
5 and 6). We also observed AENET’s voltage predictions at
2300 epochs (Figure 7) to be reasonable compared to DFT for
layered LiTMO2. Thus, we hope that our work propels the use
of MLIPs to model highly disordered ceramic and/or metallic
systems.
For the training of any MLIP on any chemical system, the

following factors are important: (i) accuracy in terms of low
errors on energy and force predictions (and any other relevant
properties) on the training data set, (ii) transferability, as
quantified by the similarity of errors between the training and
test data sets, and (iii) quality of the data set, in terms of
sampling a sufficient number of relevant local chemical
environments, and (iv) computational cost, be it for generating
the data set or for training the MLIP itself. While these factors
have a degree of dependence on one another, we found that an
increase in data set size generally lead to higher accuracy and
better transferability, especially for force predictions, although
the rate of reduction in errors begin diminishing at different
rates for different MLIPs. For example, both MTP and SNAP
do not show significant changes in their train/test force errors
beyond a 7000 data set size, while AENET and GAP do not
display a similar behavior. Thus, increasing the data set size is
not always a solution for improving certain property
predictions, while diversity of the local environments sampled
within the data set and the choice of a given MLIP itself may
play a bigger role in improving predictions.
One of the biggest challenges associated with the DRX

system is predicting the right local ordering, which is
influenced by both the TM and the extent of excess-Li,89

where sampling the excess-Li is one of the challenges posed by
the data set we have used in this work. Other limitations of our
DFT-calculated data set include the lack of TM layer stacking
arrangements, slab gliding, lattice parameter variations, Li-
vacancy long-range orderings, and other structural variations
that may be observed in rocksalt-based systems, especially at
intermediate Li concentrations. Our calculated data set also
samples more lithiated configurations than delithiated
compositions, indicating imbalance in sampling the two
compositions. Thus, the MLIPs constructed here will have
limited utility for predicting voltage profiles. However, average
voltages between fully lithiated (LiTMO2) and delithiated
(TMO2) compositions are not dependent on specific voltage
profiles since these are thermodynamically averaged quantities.
Thus, our trained MLIPs, especially AENET, should have
reasonable utility in predicting average voltages across the
entire range of Li content, which can still be used as a
screening criterion. Also, note that the “ground truth” for the
trained MLIPs in this work is the DFT-calculated data set.
Hence, errors made by DFT in predicting average voltages, in
specific chemical systems, will translate to our MLIPs as well.
Such translation of DFT errors into MLIPs is purely
mathematical and is less dependent on underlying chemical
or structural factors. Another component to note while
comparing experimental voltage data to DFT or MLIP
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predictions is the depth of charge observed experimentally,
which can depend on several factors such as the actual
composition of the electrode (including dopants), electrolyte
stability, size of the electrode particles, and any binder or
electronically conducting medium (e.g., carbon coating) that
are added to the electrode.
One of the overarching concerns while constructing MLIPs

is the tendency for the frameworks to be overfitted, which is
generally indicated by a significant difference in errors in the
test versus training data sets. Importantly, we find that both
AENET and GAP tend to overfit at small data set sizes (<3000
data points, see Figure 4), with the tendency to overfit
decreasing significantly at larger data sets. Note that the
definition of a small data set size that results in overfitting of
AENET or GAP will be dependent on the underlying chemical
system, especially on the number of components present.
Indeed, previous studies on fewer component systems have
shown remarkably good fits with AENET and GAP.57,90−92

Nevertheless, we advocate a careful evaluation of the train and
test errors with increasing data set size to be done while using
AENET or GAP to ensure appropriate fits. Surprisingly, we
found MTP and SNAP to be quite resilient to overfitting and
show remarkably similar training and test errors across all data
set sizes. However, the accuracy on energies for both MTP and
SNAP may have been limited by the high number of
components (11) considered in this study.
The significant difference in force predictions between MTP

and AENET can be attributed to the corresponding definitions
of the loss functions used in training the respective models. For
instance, MTP accounts for forces (and stresses) in its training
loss function, which allows MTP to achieve a better balance
between predicting energies and forces. On the other hand, the
version of AENET that we used trained only on energies,
resulting in higher errors on force predictions. Another factor
that enables MTP to train well on both energies and forces is
that MTP efficiently accounts for many-body interactions via
the construction of moment tensors, up to a maximum “level”.
In the case of SNAP and GAP, both employ different
mathematical frameworks to describe the local atomic density
around a reference atom, rendering limited scope for such
models to describe many-body and angular interactions.
Nevertheless, the framework of AENET, given its neural
network architecture and the various weights and biases
involved, provides it greater flexibility compared to MTP,
SNAP, and GAP, allowing it to train the best on large data sets
of total energies.
In terms of ease of training, we found AENET and MTP to

be fastest and slowest potentials to train, across all data set
sizes (except 2000 data points, Figure 5). However, AENET is
fastest only at a low number of epochs (300), which results in
higher errors. Indeed, increasing the number of epochs does
significantly slow AENET down (Figure 6), with marginal
reductions in training/test errors. Thus, if AENET were to be
used for other systems, the number of epochs is an important
hyperparameter to be optimized to get the best trade-off of
computational time and accuracy. Another point to note is that
not all of the MLIP frameworks that are available for users are
optimized to train on multiple CPUs, which can significantly
reduce training time. This is crucial since not all users have
access to cutting-edge graphic processing units (GPUs).
For performing predictions that can be practically utilized

for the design of battery systems, we examined the accuracy of
our AENET potential for average voltage predictions in

layered, single-TM LiTMO2, as compared to DFT. While we
found high accuracy in energy predictions of LiTMO2 and
TMO2 ordered configurations using AENET, the accuracy
does drop for voltage predictions due to compounding of
error, especially in Fe and Ti containing systems. Another
factor that may contribute to larger errors in Fe and Ti systems
are errors associated with DFT in modeling the Fe4+ and Ti3+
oxidation states. To further probe the quality of AENET’s
voltage predictions on disordered lithium containing rocksalt
systems, more DFT calculations are required on chemical
combinations and/or configurations that we have not sampled
so far. While this is an immediate follow-up exercise that we
intend to take, we do expect AENET to provide quick,
qualitative voltage predictions reasonably well for disordered
rocksalt configurations as well. Thus, high-throughput screen-
ing approaches to unearth novel, high-voltage disordered
rocksalt cathode compositions may be feasible with AENET
potentials. Nevertheless, given our preliminary voltage
predictions (Table S3), we do expect Fe-, Co-, and Ni-based
disordered rocksalt compositions to be promising.
Apart from data set generation that was constrained by

computational costs, another limitation of our study is that we
have explored MLIPs that are atom-centered. For example,
AENET and MTP are parametrizations of radial and angular
distributions of atoms around a central atom of interest, while
GAP and SNAP employ descriptors to quantify the local
density around an atom. There are several graph-network-
based (neural net) potentials that have been developed
recently, such as SchNet,93 NequIP,94 MEGNet,95 and
CHGNet96 with the work by Reiser et al.97 providing a well-
compiled summary of available graph-based MLIPs. Most
graph network potentials can be combined with deep learning
to provide high accuracy for multicomponent systems, as
illustrated by MEGNet98 and CHGNet.96 Long range
interactions, such as electrostatics and dispersions, have also
been included with such graph-based potentials.99 Note that
incorporating deep learning often results in better performance
with “large” data sets, such as the Materials Project,85 and, in
turn, requires large computational training time.
To briefly explore the performance of graph-network-based

potentials, we trained NequIP on the data set size of 2000
using the hyperparameters listed in Table S4. The performance
of NequIP on energies and forces, on the training and test data
subsets are listed in Table S5. Importantly, we find the RMSE
on energies to be lower than AENET for the test data set,
indicating that NequIP is more transferable and is less prone to
overfitting than AENET for small data set sizes. In terms of
forces, we observe NequIP to be significantly better than MTP
both on the training and test RMSE values, signifying that
NequIP may outperform MTP on the full data set as well for
force predictions. However, the computational training time on
the 2000-sized data set for NequIP was 279 h on the same
hardware resources that we had used for training the other
MLIPs in this work, highlighting the disparity in the ease of
training between atom-centered and graph-network-based
potentials. Moreover, we were unable to get a converged
NequIP for larger data set sizes, nor access to high-
performance GPUs on which NequIP is designed to run
significantly faster than CPUs. Thus, we believe that graph-
network-based potentials can have significant utility for
modeling PESs of diverse chemical spaces, if the training
routines are better optimized and parallelized. For now,
NequIP (and SchNet) have not been used for high-component

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00039
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c00039/suppl_file/ct4c00039_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c00039/suppl_file/ct4c00039_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c00039/suppl_file/ct4c00039_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00039?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(>5) chemical spaces besides our brief attempt here, as far as
we know; thus, their performance remains unexplored in high-
component systems.
On the other hand, deep learning can be combined with

atom centered basis to generate highly accurate MLIPs for low-
component systems, as characterized by the DeePMD100

framework. Also, symbolic regression can be used to construct
highly transferable potentials with minimal parameters.101

Nevertheless, we believe that the potentials explored in this
study are highly relevant for describing low-to-medium
component systems where data is scarce, and are may be
useful for molecular dynamics simulations given their ease of
training and computational speed during predictions. Going
forward, developing interatomic potential frameworks that can
deal with data scarcity in the broad field of materials science
and are resilient against overfitting102 will be of high utility in
studying disordered and/or large scale systems over long times.

■ CONCLUSIONS
In this work, we have quantified the accuracy, transferability,
and ease of training of five atom-centered MLIPs, namely,
MTP, SNAP, qSNAP, GAP, and AENET, in their ability to
model the PES of disordered, 11-component, LiTMO2
compositions (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and/or
Cu), which form the base of designing energy-dense DRX
cathodes for advanced LIBs. We also trained the graph-
network-based NequIP on our 2000 sized data subset to
provide a point-of-comparison to the performance of the atom-
centered MLIPs. To train these potentials, we generated a
DFT-calculated data set of 10,842 configurations and created a
90:10 random split of the set for training and testing. Using
magnitude of training errors and similarity between training
and test errors as the metrics of accuracy and transferability,
respectively, we found AENET to be the best potential for
predicting total energies, while MTP was the best performer
for atomic forces. While both AENET and GAP tended to
overfit in small data sets, the extent of overfitting and the
transferability of these potentials improve considerably with
increase in data set size. In terms of ease of training, we
observed AENET (MTP) to exhibit the smallest (largest)
computational training time, where the number of epochs is
low (∼300) for AENET. However, note that AENET’s training
time does increase significantly with increasing the number of
epochs during training, which may hamper swift training of
AENET potentials in specific systems. Finally, we found
AENET to also provide reasonable predictions of derived
quantities, such as average Li-intercalation voltages, in layered,
ordered, single-TM LiTMO2 compositions, versus DFT
estimates. We hope that our work inspires more studies on
using atom-centered MLIPs to model configurationally
complex systems, resulting in the discovery of new DRX
cathodes and other high-entropy ceramic/metallic systems.
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