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Simple Summary: Intergenerational justice entitles future generations to the maximum retention of
Earth’s biodiversity. The 2022 United Nations COP 15, “Ecological Civilisation: Building a Shared
Future for All Life on Earth”, aims to safeguard 30% of Earth’s terrestrial environment by 2030, and
COP 28 addressed the climate catastrophe. Reproduction biotechnologies, biobanks, and conservation
breeding programs (RBCs) are also needed to perpetuate amphibian diversity and prevent extinctions.
We focused this review on three core themes: the need and potential of RBCs to satisfy sustainability
goals, the technical state and current application of RBCs, and how to achieve the future potentials of
RBCs in a rapidly evolving environmental and cultural landscape. The full potential of amphibian
RBCs requires a democratic, globally inclusive organisation that focuses on developing facilities in
the regions with the highest amphibian diversity.

Abstract: Intergenerational justice entitles the maximum retention of Earth’s biodiversity. The
2022 United Nations COP 15, “Ecological Civilisation: Building a Shared Future for All Life on
Earth”, is committed to protecting 30% of Earth’s terrestrial environments and, through COP 28, to

Animals 2024, 14, 1455. https://doi.org/10.3390/ani14101455 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani14101455
https://doi.org/10.3390/ani14101455
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0002-6361-7679
https://orcid.org/0000-0002-2298-1597
https://orcid.org/0000-0003-4873-7418
https://orcid.org/0000-0003-3389-1877
https://orcid.org/0000-0003-2757-9596
https://orcid.org/0000-0001-6673-2085
https://orcid.org/0000-0003-0724-2849
https://doi.org/10.3390/ani14101455
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani14101455?type=check_update&version=1


Animals 2024, 14, 1455 2 of 26

mitigate the effects of the climate catastrophe on the biosphere. We focused this review on three core
themes: the need and potential of reproduction biotechnologies, biobanks, and conservation breeding
programs (RBCs) to satisfy sustainability goals; the technical state and current application of RBCs;
and how to achieve the future potentials of RBCs in a rapidly evolving environmental and cultural
landscape. RBCs include the hormonal stimulation of reproduction, the collection and storage of
sperm and oocytes, and artificial fertilisation. Emerging technologies promise the perpetuation of
species solely from biobanked biomaterials stored for perpetuity. Despite significant global declines
and extinctions of amphibians, and predictions of a disastrous future for most biodiversity, practical
support for amphibian RBCs remains limited mainly to a few limited projects in wealthy Western
countries. We discuss the potential of amphibian RBCs to perpetuate amphibian diversity and
prevent extinctions within multipolar geopolitical, cultural, and economic frameworks. We argue
that a democratic, globally inclusive organisation is needed to focus RBCs on regions with the
highest amphibian diversity. Prioritisation should include regional and international collaborations,
community engagement, and support for RBC facilities ranging from zoos and other institutions to
those of private carers. We tabulate a standard terminology for field programs associated with RBCs
for publication and media consistency.

Keywords: COP 15; COP 28; biobanking; amphibian; bioregionalism; intergenerational justice; ART;
multilateralism; de-extinction; effective altruism

1. Introduction

Intergenerational justice entitles the maximum retention of Earth’s biodiversity [1].
This review focuses on three core themes: the need and potential of reproduction biotech-
nologies, biobanks, and conservation breeding programs (RBCs) to satisfy sustainability
goals; the technical state and current application of RBCs; and how to achieve the future
potentials of RBCs in a rapidly evolving environmental and cultural landscape. There
are increasing rates of decline and extinction in amphibian species due to widespread
anthropogenic damage to global ecosystems [2–4]. This crisis demands proactive and
innovative strategies to perpetuate amphibian diversity. The 2022 United Nations COP
15, “Ecological Civilisation: Building a Shared Future for All Life on Earth”, through the
protection of 30% of Earth’s terrestrial area [5], and COP 28, in mitigating the effects of the
climate crisis [6], focus on sustainably managing the biosphere. Unfortunately, the climate
crisis alone [3] will inevitably result in profoundly modifying ecosystems over the coming
decades, leading to a disastrous cascade of species population declines and extinctions [3,4].
Consequently, a rapid increase in the number of amphibian species reaching extinction in
the wild can be expected [2–4].

The development and application of RBCs can achieve the biodiversity conservation
goals of COP 15 and COP 28. RBCs can safely, securely, and economically maintain
endangered and critically endangered species and proliferate genetically varied individuals
for release in field conservation programs [7–15]. However, the full potential of RBCs lies
in perpetuating species through the restoration of individuals solely from biobanked cells
or tissues [16–21]. RBCs’ economical and efficient use [13,14] is particularly valuable for
species whose natural habitats will be lost and otherwise neglected [22–24].

The global establishment of amphibian RBCs requires developing networks to support
facilities, particularly in the Global South and other countries with the highest amphib-
ian diversity [25–31]. Two fundamental principles form the foundation of non-partisan
multi-stakeholder engagement: firstly, the increasing assertion of the Global South and
other developing countries in a multipolar geopolitical landscape [5,28], and secondly, the
growing significance of non-governmental organisations (NGOs) and the public in species
conservation [25]. We use the term developing countries with the caveat that our use of
the term refers to modern eco-friendly development to provide human well-being and
environmental sustainability rather than GDP growth as the critical indicator of devel-



Animals 2024, 14, 1455 3 of 26

opment [5,28]. Following these principles can build RBCs through collaborations with
regional, national, and international programs, an approach that enhances the global effort
to protect amphibian diversity and contributes to the stewardship of local communities in
RBC conservation initiatives [6,26–34].

Amphibians provide an optimal vertebrate class to implement and exemplify species
management through RBCs. Cultural and political advantages of amphibian RBCs include
amphibians’ popularity as conservation ambassadors and amenability to regional commu-
nity programs, including ecosystem protection [26–34]. Biological, technical, and economic
factors include amphibians’ small size, relative ease of care compared to megafauna, high
fecundity, and proven amenability for RBCs [7–15]. This amenability fits well with the
One Plan Approach to Conservation [35], which integrates the management of a species’
metapopulation [36] through in situ with ex situ approaches, including RBCs, to maintain
or restore genetic variation [17–21,26–34].

Since the turn of the millennium, RBCs have perpetuated amphibian species’ genetic
diversity and allelic variation [7–15]. This ability has led to well-financed programs in
Australia [37] and the USA [38], with nascent programs in Global South countries with
very high amphibian diversity, including Ecuador [39], Mexico [40], Panama [12], and
Papua New Guinea [pers comm] lacking sufficient financial support. Consequently, the
demonstrated capability of amphibian RBCs to reduce costs and increase the reliability of
global ex-situ and in-situ species management still needs to be fulfilled [2,7–15,22,41,42].

We explore these potentials through the sections (1) Regional targeting of amphibian
RBCs, (2) Species prioritisation for amphibian RBCs, (3) Maintaining genetic diversity,
(4) Contextualising amphibian RBCs, (5) Amphibian conservation breeding programs
(CBPs), (6) Biobanking facilities, (7) Financial support, (8) Cultural engagement, and (9) The
road ahead, where we argue that the full potential of amphibian RBCs requires a democratic,
globally inclusive organisation that focuses on developing facilities in the regions with the
highest amphibian diversity.

2. Regional Targeting of Amphibian RBCs

Regional targeting of amphibian RBCs depends on biogeographical species richness
and threats, including habitat loss and global heating, prey loss and increased predation,
illegal trade, and pathogens and parasites.

The highest amphibian diversities are found in regions with long geological periods,
amenable climates, and varied geomorphology, including the isolating mechanisms of
islands, mountains, and watersheds to promote speciation [43,44]. In 2023, the Amphib-
iaWeb database catalogued 8713 amphibian species. Of these, 7677 are frogs and toads,
815 are newts and salamanders, and 221 are caecilians. The ten top countries in declining
order of amphibian species richness were Brazil (1176 sp.) Colombia (832 sp.), Ecuador
(688 sp.), Peru (672 sp.), China (607 sp.), India (454 sp.), Papua New Guinea (426 sp.),
Mexico (424 sp.), Madagascar (412 sp.), Indonesia (394 sp.), and Venezuela (365 sp.) [45].

The ranges of the three orders of amphibians, anurans (frogs and toads), salamanders
(Caudata), and caecilians (Gymnophiona) are not sympatric. Major biogeographical areas
with high anuran diversity include Southeast Asia, Africa, Southeast North America, and
Central and South America [43–45], with most new species discoveries in the tropical
regions of South America, India/Asia, Indo-Pacific, and Africa [44]. Salamanders and
caecilians are more restricted in distribution than anurans. Among the ten salamander
families, nine are predominately temperate, with a centre of diversity in Southeast North
America. However, species of the tenth family, the highly threatened Plethodontidae, are
mainly tropical and include 228 of the 555 currently described salamander species [46–49].
Half of these species are in the Mesoamerican Highlands of Mexico or South and Central
America, with many new species being discovered in Brazil [49]. The distribution of the
basal salamander family Cryptobranchoidea extends from Northeast Asia to Eastern North
America [50]. Caecilians inhabit Central and South America, the South Asian tropics, and
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Eastern and Western Africa, with an intriguing absence in Central Africa. The conservation
status of many caecilian species is unknown due to their fossorial habitats [47,48,51].

Habitat loss is the primary driver of amphibian declines, affecting ~65% of all amphib-
ian species and reaching alarming levels of ~90% for threatened species [52,53]. Targeting
only 2% of the global terrestrial area would protect over 80% of salamander and 65% of cae-
cilian and anuran phylogenetic diversity [54]. Much amphibian species diversity also exists
in a small percentage of bioregions. For example, the small country of Ecuador is home to
8% of amphibian species, half of which are endemic [55]. Island regions with high anuran
endemicity include Melanesia, with 15% of species in 0.7% of the global terrestrial area [56],
and Madagascar, with 5% of species in 0.4% of the global terrestrial area [57]. Many am-
phibian species also depend on mountain habitats with a high altitudinal range [58,59],
and many of these species will become extinct in the wild due to unachievable needs for
altitudinal migration due to global heating to a likely 2.5 ◦C or more [3,4,60–62].

A significant threat to amphibians is reduced prey availability, where insect popula-
tions and their diversity are rapidly declining [63,64]. Modifications to aquatic ecosystems
in flow and water quality can produce changes in the density and composition of biota that
could affect tadpole growth and survival [65]. Exotic species are an increasing driver of
species declines and extinctions [66], where complicated interactions can occur between
species within ecosystems [67]. For instance, the invasive Cane toad Rhinella marina sig-
nificantly affects some Australian native frog populations via rarefication through direct
predation and competition, with counteracting of these effects by R. marina toxicity to frog
populations in general [68].

Commercialising natural biological resources can yield conservation benefits through
increased cultural engagement and habitat management or harm through over-exploitation.
The commercial amphibian trade for food or companion animals includes thousands of
individuals and hundreds of species [69,70]. To our knowledge, no amphibian species have
become extinct through overcollection for trade. However, assessing the sustainability
of this trade is challenging due to difficulties in tracking [70], exacerbated by insufficient
taxonomic and threatened species data [71]. Unfortunately, CITES regulations are not
sympathetic toward the extraordinary need of private carers for the international trade of
listed species to support their CBPs. Meanwhile, criminal and irresponsible individuals
and organisations profit through illegal trade [69].

Significant threats to amphibian survival are pathogens, including Batrachochytrium
dendrobatidis (Bd), which spread globally in the early to mid-20th century, causing the
extinction of ~2% of amphibian species and infecting ~7% of species, as was found in
~70% of surveyed countries [72,73]. Inter-regional transmission of B. dendrobatidis can occur
through keratinous skin on crayfish, nematode worms [73], fish [74,75], and migratory
birds’ feet [76]. Emerging threats from pathogens include B. salamandrivorans, confined to
Eurasia but threatening the high salamander diversity of the Americas [77], and through
global heating, which increases the ranges of amphibian parasites [50,78,79]. Safeguarding
amphibians from emerging pathogens relies on factoring in pathogens, sound management,
and control rather than elimination [80–82].

3. Species Prioritisation for Amphibian RBCs

Significant sources for species prioritisation for amphibian RBCs through endanger-
ment status are the Amphibia Web [45], IUCN Red List [2], and the Amphibian Ark [42]. A
different perspective is through The Royal Zoological Society of London, Evolutionarily
Distinct and Globally Endangered (EDGE), which prioritises species based on phylogenetic
significance [83,84]. RBCs can also be prioritised for amphibians displayed in zoos [85], in
the general community as companion animals that exhibit attractive colours or patterns [25],
or for species of cultural significance to traditional communities [25,86].

The term “Threatened Species” is often used generically concerning RBCs [87]. How-
ever, the Threatened Species category includes Vulnerable (VU), Endangered (EN), and
Critically Endangered (CE) species [2]. Vulnerable species are not thematic targets of RBCs,
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as their management focus should be field conservation programs, including habitat protec-
tion or replacement, repopulation, translocation, and augmentation (Table 1, [33,35,88,89]).

Table 1. IUCN Red List recommendations for 793 species in total for the “Ex-situ Conservation”
sub-category “Captive breeding/artificial propagation” (8th August 2023 [2]). In brackets = IUCN
Red List number of species in IUCN Red List Category. Left = the number recommended for
“Captive breeding/artificial propagation”. Right = the % of species recommended for ‘Captive
breeding/artificial propagation’. IUCN Red List Categories: NT = Near Threatened, LC = Least
Concern VU = Vulnerable, EN = Endangered, CE = Critically Endangered, DD = Data Deficient can
have no recommendations.

NT LC VU EN CE DD

Anura 34 (341) 10.0% 294 (3027) 9.7% 42 (625) 6.7% 64 (964) 6.6% 217 (591) 36.7% 209
Salamanders 0 (65) 0% 2 (189) 1.1% 5 (111) 4.5% 7 (169) 4.1% 11 (129) 8.5% 48

Caecilians Not listed 0 (75) 0.0% 0 (4) 0.0% 0 (11) 0.0% 0 (3) 0.0% 97
Total 34 (406) 8.4% 296 (3291) 9.0% 47 (740) 6.4% 71 (1144) 6.2% 228 (723) 31.5% na

Database integration between all components of RBCs is essential to provide contem-
porary and accurate information about targeted species [90–92]. Over half of the amphibian
species on the IUCN Red List have outdated assessments [2], with this deficiency partic-
ularly applying to regions with high amphibian diversity [2,47,49] and caecilians [48,51].
Besides this deficiency, the IUCN Red List does not offer a functional list of species recom-
mended for CBPs, termed “Ex-situ Conservation” [Table 1]. Instead, species recommended
for CBPs are mostly Least Concern (LC) species.

A framework for evaluating the relevance and impact of the IUCN Red List of Threat-
ened Species was published in 2020 [93] but has yet to be implemented. Unfortunately,
the annual funding of the IUCN Red List and other significant databases for amphibian
sustainability is inadequate and only represents a minuscule amount of global biospheric
sustainability funding. Adequate financial support for these databases and associated
taxonomy would support amphibian sustainability and help save species in other taxa.

Palacio et al. [94] also showed that inaccuracies in the Aves Red List hampered rather
than supported their conservation. Furthermore, they found that Red List specialist groups
did not respond to feedback and needed more transparency, and the Red List rules and
guidelines were either not followed or misused.

The Amphibian Ark was established through collaboration between the World Associ-
ation of Zoos and Aquariums (WAZA), the IUCN SSC Conservation Planning Specialist
Group (CPSG), and the IUCN SSC Amphibian Specialist Group (ASG [88]). The AArk
provides contemporary information, a newsletter, seed grants for CBPs, and regional assess-
ments for CBPs listing over 400 EN and CE species, with almost 100% recommended for
RBCs [42]. However, the AArk and the IUCN prioritisation for RBCs need improvement to
ensure the long-term sustainability of amphibian biodiversity. For instance, besides their
endangerment status [2], Amphibian Ark prioritisation of species suitability for CBPs also
includes other criteria [22]:

1. Biodiversity loss is acceptable in principle. However, many consider that it is ethically
unacceptable for amphibian species to be pre-emptively doomed to extinction due to
neglect through policy [95]. Furthermore, in line with global environmental standards,
the USA and Australian governments have adopted a no-species-lost policy [96].

2. Candidate species for CBPs need an evidenced potential for eventual repopulation in
the wild [97,98]. However, this mandate could result in the neglect of many species
as ecosystems are predictably modified or destroyed. Furthermore, it is challenging
to predict the future potential survival of species in the wild due to adaptation to
pathogens [99], through amelioration [80,82], or via release programs for Bd-prone
species [100,101].
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3. The number of species in CBPs is limited by the need for large populations of each
species [97,102]. However, reproduction technologies and biobanks can dramatically
reduce the required populations for a species in a CBPs to a few females [7–15]. RBCs
through biobanked sperm can restore genetic variation even in highly domesticated
varieties of amphibians [7–15]. Furthermore, the capacities of CBPs are increasing
through international and regional initiatives [103,104] and potentially through the
vast potential of private caregivers [25].

4. A species’ captive care requirement should be known before establishing a CBP.
However, most amphibians are amenable to captive care in simulacrums of their
natural habitats or even entirely artificial habitats, as evidenced by many detailed
captive care protocols and the successful reproduction of an increasing number of
species [25,105,106]. If reproduction proves challenging, hormonal stimulation can
assist in the reproduction of any species [8,9,11].

5. A CBP for a species must ensure sufficient funding for its anticipated length. However,
the time frame of CBPs for the species most in need cannot be predicted and could
extend for years, decades, or indefinitely [107]. Many of the most significant CBPs
still need to satisfy this funding requirement and have initially relied on donations
and volunteers without any assurance of long-term funding [108,109].

Furthermore, the IUCN Red List [2] species recommendations as “Genome Resource
Banking” [Table 2] is also not supportive of amphibian RBCs with a bias toward species of
Least Concern (LC) that do not need any proactive management and with only 4.3% of EN
or CE species listed as being in need of RBCs.

Table 2. The IUCN Red List recommendations for species biobanking (as Genome Resource
Banking, [2]). Left = the number of species recommended for Genome Resource Banking. Cen-
tre (in brackets) = the total number of species in each IUCN Red List Category. Right = the % of
species recommended for Genome Resource Banking. IUCN Red List Categories: LC = Least Concern,
VU = Vulnerable, EN = Endangered, CE = Critically Endangered., DD = Data Deficient can have no
recommendations.

LC VU EN CE DD

Anura 326 (3027) 10.5% 42 (625) 6.7% 32 (964) 3.3% 23 (591) 3.9% 1000
Salamanders 13 (189) 6.9% 17 (111) 15.3% 17 (169) 10.1% 8 (129) 6.2% 48

Caecilians 0 (75) 0% 0 (4) 0% 0 (11) 0% 0 (3) 0% 97
Total 339 (3291) 10.3% 59 (740) 8.0% 49 (1144) 4.3% 31 (723) 4.3% 1145

We provide a triage to direct resources toward species based on their endangerment
status:

Triage 1. Vulnerable species. These are species with declining populations whose
survival in the wild could be ensured through habitat protection or in rehabilitated, restored,
or newly created habitats. If required, head-starting is the best option to produce numerous
progenies for release (Table 1).

Triage 2. Endangered or Critically Endangered species with remaining habitat with
a reasonable possibility of population maintenance in the wild. RBC priorities are main-
taining adequate broodstock numbers to produce numerous genetically diverse progeny if
needed for release (Table 1). These are the costliest RBCs because of the high broodstock
numbers needed to produce progeny for release [107], especially when providing assisted
gene flow [110].

Triage 3. Critically endangered species with predicted irrecoverable habitat loss. RBCs
are critical, with species’ genetic diversity perpetuated through biobanked sperm. The cost
of RBCs is moderate with these CBPs in institutions [13,14], and very low when conducted
by private caregiver CBPs [25].
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4. Maintaining Genetic Diversity

Maintaining a species’ genetic diversity or allelic variation in RBCs or small wild
populations is expensive and inefficient without utilising biobank sperm. A minimum
of 20 CBP founders captures 97.5% of heterozygosity [107]. Then, depending on the
species’ generation time and lifespan, maintaining most heterozygosity for periods of only
10–25 years, without support from biobanked sperm, requires populations of 80–1500 indi-
viduals [107,111]; see Amphibian Ark calculator [112].

However, a minimum population of 40 or more founders is preferable to capture
99.5%+ of genetic diversity and increase the probability of capturing allelic variation to
enable adaptability in the wild [110]. Founders can be represented by cryopreserved
sperm [7–15,113]; however, dependent on the species fecundity, the number of females
needed depends on the provision of progeny for releases (Figure 1, [114]).
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An extraordinary long-term potential for amphibian RBCs is perpetuating species
that would otherwise become extinct in the wild. However, RBCs can also help maintain
the genetic diversity and allelic variation of species with very low populations in the wild
through assisted gene flow (AGF) [87,115]. The advantages of AGF for wild populations
depend on large numbers of introduced individuals providing highly advantageous alleles.
However, AGF can be ineffective or even detrimental, and dependent on a wide range of
factors, including natural selection, genetic drift, and outbreeding depression [116–123]. To
avoid outbreeding depression with fragmented populations by AGF, the pooled genetic
diversity from the core metapopulation should be provided. Isolated subpopulations
should only be subject to AGF using their unique genetic diversity [107,110].

More research is needed on amphibians and other taxa to evidence the risks of AGF and
the contribution of low genetic diversity or allelic variation to population declines. How-
ever, most species appear to reach extinction before genetic factors influence them [121,122],
while many species have thrived with low genetic variation [21]. Furthermore, threats
by major environmental stressors such as global heating have no known genetic basis to
address them. Nevertheless, considering these uncertainties, ASG conducted with due
diligence could benefit small fragmented or relict amphibian populations.

In conclusion, once the potential advantages of AGF to a population are evidenced,
the number of released individuals at each life stage must be highly proportional to the
demographic target population at that life stage. The release of large numbers of individuals
in early life stages enables natural selection to maximise the potential for success. The
release of individuals from CBPs to bolster population levels of small relict populations
will automatically correspond to AGF [100,101,123].
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5. Contextualising Amphibian RBCs

Current amphibian reproduction biotechnologies include stimulating reproduction
and the collection of sperm or oocytes, the storage of sperm for indefinite periods, and
using oocytes and sperm for artificial fertilisation. These highly advanced techniques
significantly reduce the number of live individuals required for CBPs, perpetuate genetic
diversity and allelic variation, and can provide numerous progenies for release [7–15].
Ongoing generations of anurans and salamanders have been produced from cryopreserved
sperm [124–126]. However, the conservation crisis continues to deepen and demands the
perpetuation of otherwise neglected species solely in biobanks. The satisfaction of this need
should now be the focus of RBC biotechnical research [7,18,19].

Amphibian reproduction biotechnologies for conservation began through hormonal
stimulation of reproductive behaviour and spawning in Russia between 1986–1989 [127,128].
Cryopreserved anuran testicular sperm was then used to fertilise oocytes at the turn of
the 21st century in Russia [129,130] and Australia [131] with hormonal sperm was used
in Russia in 2011 [132]. The potential of various RBCs, including cloning, to maintain
amphibian genetic diversity was presented in 1999 [7]. Nonetheless, sperm-based RBCs
remain the primary method for maintaining genetic diversity [133]. However, the full
potential of RBCs needs to focus on developing heterocytoplasmic cloning and other
somatic cell techniques [18,19]. Assisted gene flow has recently been explored through
programs in the USA and Australia [87,134]. Figure 2 shows a timeline of some significant
achievements of RBCs with corresponding references and other milestones in the research,
and the application of RBCs, as listed in Appendix A.
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6. Amphibian Conservation Breeding Programs [CBPs]

Amphibian conservation breeding programs (CBPs) are a significant component of
RBCs that can be in range or out of range, in well-financed institutional programs such
as university research groups and zoos [31,33], or be self-supporting through NGOs and
their members, volunteers, ecotourism, and trade [25,30]. CBPs supported by cryopre-
served sperm can guarantee species survival through a range of field species programs
(Table 3, [7–15,135]), along with fostering conservation research, education, and community
engagement [26–33].
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Table 3. Suggested conventional terms for field conservation programs.

Preferred Term Description Misnomers/Refs.

Species Programs

Head Starting The raising of individuals from eggs or embryos harvested from the wild for
later release. [136]

Repopulation Repopulating a species in a previously populated habitat. Reintroduction

Augmentation The addition of captive-bred individuals to support wild populations. Supplementation

Translocation The movement of species, populations, or genotypes to places inside their
historical range. [136]

Relocation/Assisted
Migration

The movement of species, populations, or genotypes to places outside their
historical range. [62,137]

Habitat Programs

Mitigation Minimising damage and maximising the eco-sustainability of environments. [138]

Rehabilitation The reparation of the capacity of ecosystems for biota and eco-services. [138]

Restoration The aspirational target of restoring ecosystems to their natural state. [139]

The literature concerning CBPs uses a confusing variety of terminology. We encourage
using the IUCN conventional term Conservation Breeding Programs [CBPs; Wren pers
comm.]. We use the terms “in range” and “out of range” for CBPs, rather than in situ and
ex situ. We provide a tabulation of a standard terminology for field programs associated
with RBCs (Table 3).

Citizen conservation through private caregivers and their NGOs provides significant
potential for CBPs. Private caregivers already maintain many threatened species and could
support many more through community engagement, habitat protection, rehabilitation,
or restoration. Increasing support for private caregivers and their NGOs and institutional
RBCs focused on species in urgent need of care could help conserve all recommended
species [25].

Citizen conservation turns citizens into practising conservationists: raising awareness,
motivating people to get directly involved, and bringing together different areas of expertise
to significantly contribute to biodiversity conservation. Citizen conservation unites private
amphibian caregivers and professional conservationists in an inclusive and robust societal
approach to support proactive amphibian sustainability. Zoo-based and other institutional
CBPs for amphibians [8] are limited by breeding space and staff and tend to focus on charis-
matic or iconic species [31]. However, private caregivers (CBPs) offer almost unlimited
opportunities to expand CBP capacities [25] while gaining and sharing knowledge, which
is a win–win situation for the sustainable management of amphibians [140].

Greater incorporation of the vast global potential of private caregivers could lead to
CBPs for threatened species at significantly reduced costs, along with building public and
political support, both within and outside the species’ native range, for instance, the Respon-
sible Herpetological Project [141]. Private caregivers have the facilities, time, passion, and
knowledge to care for and reproduce threatened species (Table 4, Figure 2, [117,140–142]).
A vast opportunity for species perpetuation exists where private caregivers’ collections
as domestic varieties can later re-establish a species’ genetic diversity through biobanked
sperm [7–15]. The success demonstrated by private caregivers in reproducing numerous
species of anurans and salamanders underscores their excellent standards of care and po-
tential to make significant contributions to CBPs if provided with the opportunity (Table 4,
Figure 3, [140–142]).
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Table 4. Anurans or salamanders were surveyed in a limited canvassing of private caregiver collec-
tions in 2018 [25], providing their IUCN Red List status, number cared for/number reproduced, and
percentage reproduced. CE = Critically Endangered, EN = Endangered, VU = Vulnerable, NT = Near
Threatened, LC = Least Concern (from [15], Appendix A).

Endangerment CE EN VU NT LC

Anurans 9/8, 89% 16/16, 100% 11/11, 100% 15/11, 73% 21/11, 52%
Salamanders 6/6, 100% 7/6, 86% 11/10, 91% 13/12, 92% 44/42, 95%

Animals 2024, 14, x FOR PEER REVIEW 10 of 26 
 

pathogen threat of Batrachochytrium sp. has been treatable since 2012 [62]. The key to safe-
guarding amphibians amidst emerging infectious diseases lies in factoring in pathogens 
rather than attempting elimination [59,62]. 

Table 4. Anurans or salamanders were surveyed in a limited canvassing of private caregiver collec-
tions in 2018 [25], providing their IUCN Red List status, number cared for/number reproduced, and 
percentage reproduced. CE = Critically Endangered, EN = Endangered, VU = Vulnerable, NT = Near 
Threatened, LC = Least Concern (from [15], Appendix A). 

Endangerment CE EN VU NT LC 
Anurans 9/8, 89% 16/16, 100% 11/11, 100% 15/11, 73% 21/11, 52% 

Salamanders 6/6, 100% 7/6, 86% 11/10, 91% 13/12, 92% 44/42, 95% 

Examples of the contribution of private caregiver CBPs to amphibian conservation 
include direct zoo collaborations, NGOs, and individual initiatives [141,142]. The amphib-
ian conservation program at Cologne Zoo, German Republic, is a global focus and model 
for developing CBPs for amphibians [143]. This CBP project uses the One Plan Approach 
to amphibian sustainability [35], where Cologne Zoo and private caregivers work with 
research and habitat protection in a holistic and inclusive international program [35,140–
143]. A highly respected private keeper in Germany, Karl-Heinz Jungfer, shows the ability 
of individuals alone to contribute. Karl-Heinz found the CE San Martin Fringe-Limbed 
Treefrog, Ecnomiohyla valancifer at a fair (Figure 3, left), a species previously known only 
from a handful of museum specimens, and his CBP has bred many specimens and is likely 
a last hope for this species. Karl-Heinz also champions a CBP for the CE demonic poison 
frog, Minyobates steyermarki (Figure 3, right). 

 
Figure 3. Left = Critically Endangered San Martin Fringe-Limbed Treefrog, Ecnomiohyla valancifer. 
Right = Critically Endangered demonic poison frog, Minyobates steyermarki. Images courtesy Peter 
Janzen. 

Several amphibian genera particularly appeal to private caregiver CBPs, including 
the very popular Atelopus sp. [144], with an IUCN Red Listing of 62 CE and 14 EN species 
[2,144], and an AArk listing for CBPs of 30 CE and 14 EN [42], with 37 species not evalu-
ated and several species possibly extinct in the wild. Atelopus sp. have established captive 
care protocols and offer unique opportunities for developing and applying RBCs [144]. 
Neurergus is a small but very popular salamander clade with private carers regularly 
breeding three VU species, but the CE N. microspilotus still needs to be included in private 
collections [25]. Of other salamanders, the popular warty Asian newts include thirty Ty-
lototriton sp. including two CE and five EN, and eight Paramesotriton sp., including one CE 
and three EN. Fully aquatic amphibians include the Axolotl and three other CE Ambystoma 
sp., and of anurans, many highly endangered Telmatobius sp. [2]. 

7. Biobanking Facilities 
Biobanking includes three categories: (1) “Research Biobanks”, (2) “Active Manage-

ment Biobanks” for maintaining genetic diversity in CBPs or wild populations, and (3) 
“Perpetuity Biobanks” for species restoration [21,111,135,145]. Biobanks need ongoing fi-
nancial support [38,135], with samples collected, processed, stored, and distributed within 

Figure 3. Left = Critically Endangered San Martin Fringe-Limbed Treefrog, Ecnomiohyla valancifer.
Right = Critically Endangered demonic poison frog, Minyobates steyermarki. Images courtesy Peter
Janzen.

A common misconception is the exclusion of private caregiver CBPs because of quar-
antine issues. Criteria for institutional CBPs are strict quarantine facilities and protocols
to prevent pathogens from spreading by multiple staff working in the facility or from the
external environment and biota. However, these protocols are inherent in private caregiver
CBPs as they are under devoted care in an isolated domestic urban environment. Further-
more, all releases are subject to quarantine and pathogen screening, and the main pathogen
threat of Batrachochytrium sp. has been treatable since 2012 [62]. The key to safeguarding
amphibians amidst emerging infectious diseases lies in factoring in pathogens rather than
attempting elimination [59,62].

Examples of the contribution of private caregiver CBPs to amphibian conservation
include direct zoo collaborations, NGOs, and individual initiatives [141,142]. The am-
phibian conservation program at Cologne Zoo, German Republic, is a global focus and
model for developing CBPs for amphibians [143]. This CBP project uses the One Plan
Approach to amphibian sustainability [35], where Cologne Zoo and private caregivers
work with research and habitat protection in a holistic and inclusive international pro-
gram [35,140–143]. A highly respected private keeper in Germany, Karl-Heinz Jungfer,
shows the ability of individuals alone to contribute. Karl-Heinz found the CE San Martin
Fringe-Limbed Treefrog, Ecnomiohyla valancifer at a fair (Figure 3, left), a species previously
known only from a handful of museum specimens, and his CBP has bred many specimens
and is likely a last hope for this species. Karl-Heinz also champions a CBP for the CE
demonic poison frog, Minyobates steyermarki (Figure 3, right).

Several amphibian genera particularly appeal to private caregiver CBPs, including
the very popular Atelopus sp. [144], with an IUCN Red Listing of 62 CE and 14 EN
species [2,144], and an AArk listing for CBPs of 30 CE and 14 EN [42], with 37 species
not evaluated and several species possibly extinct in the wild. Atelopus sp. have estab-
lished captive care protocols and offer unique opportunities for developing and applying
RBCs [144]. Neurergus is a small but very popular salamander clade with private carers
regularly breeding three VU species, but the CE N. microspilotus still needs to be included
in private collections [25]. Of other salamanders, the popular warty Asian newts include
thirty Tylototriton sp. including two CE and five EN, and eight Paramesotriton sp., including
one CE and three EN. Fully aquatic amphibians include the Axolotl and three other CE
Ambystoma sp., and of anurans, many highly endangered Telmatobius sp. [2].
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7. Biobanking Facilities

Biobanking includes three categories: (1) “Research Biobanks”, (2) “Active Man-
agement Biobanks” for maintaining genetic diversity in CBPs or wild populations, and
(3) “Perpetuity Biobanks” for species restoration [21,111,135,145]. Biobanks need ongoing
financial support [38,135], with samples collected, processed, stored, and distributed within
conventional guidelines and standards [135,146–148], and the International Society for
Biological and Environmental Repositories [ISBER] promoting effective management [148].

Examples of Perpetuity Biobanks include and the Chinese Academy of Science Kun-
ming Cell Bank [149] and Nature’s SAFE recently established in 2020 the UK [150]. Nature’s
SAFE was the first cryo-network partner of the European Association of Zoos and Aquaria
[EAZA] Biobank, one of Europe’s largest biobanks, collecting samples from 400 zoo and
aquarium members in 48 countries. Four dedicated institutions provide qualified staff
and funds for four hub biobanks that provide sample processing and facilitate sample
transfer and backup [151]. The Biodiversity Biobanks South Africa project provides coordi-
nation across existing South African biodiversity biobanks. It has biobanked South Africa’s
exceptionally high species diversity and endemism for over 20 years [152].

The establishment of amphibian collections in all categories of biobanks is gaining
momentum [Table 5]. These include active management through the National Genome Re-
source Bank program at Mississippi State University, supporting RCBs toward threatened
species in the USA and its territories [38]. Australia also has an active management biobank
supported by universities and zoos, including sperm banking for species undergoing rapid
decline [134]. Smaller projects are underway in the Global South and other developing
countries [Table 5]. All these programs are supporting basic research to advance repro-
duction technologies. A direct link between the climate catastrophe and RBCs followed
Australia’s unprecedented 2019/20 megafires [134].

Table 5. Biobanks linked to amphibian RBCs with the number of species in total, and the number of
Endangered (EN) or Critically Endangered (CE) species.

Institution Country No. sp./IUCN List Type References

Taronga Conservation Society Australia 12 sp. sperm [134]

University of Newcastle Australia 26 sp. sperm [153]

Smithsonian Tropical Research
Institute Panama Panama 6 sp. sperm [153]

Centro Jambatu de
Investigación y Conservación

de Antibias
Ecuador 5 sp., 4 CE sperm

Centro Jambatu de
Investigación y

Conservación de Anfibios

Nature’s SAFE UK 11 sp., 4 EN or CE sperm/repro
tissue/somatic tissue [150] R. Bolton, pers comm.

National Amphibian Genome
Bank USA 13 sp., 4 EN or CE sperm [38]

San Diego Wildlife Alliance
and Froze Zoo USA 26 sp., 8 EN or CE sperm/cell lines [154]

However, amphibians are poorly represented in Perpetuity Biobanks. For instance, the
San Diego Zoo Wildlife Alliance’s Frozen Zoo® is one of the world’s largest biobanks and
contains 10,000 samples [154]. The biobank houses 12.0% of EN and 14.6% of CE Mammalia,
and 2.3% of EN and 4.8% of CE Reptilia/Aves. Amphibia are represented by 0.3% of EN and
0.4% of CE species, with 24 species in total, most of which are LC (not tabulated) (Table 6).
The Chinese Academy of Science, Kunming Cell Bank, was established in 1986 and has
now preserved 1455 cell lines from 298 animal species, including 17 amphibians [149].



Animals 2024, 14, 1455 12 of 26

Table 6. The value to the left of the brackets is the number of species biobanked in the San Diego
Zoo Wildlife Alliance Frozen Zoo® living cell collection (as of April 2019 [154]). The central value in
brackets is the IUCN Red List species number recommendation for the Red List Category [2]. The right
value is the % of species biobanked. IUCN Red List Categories: VU = Vulnerable, EN = Endangered,
CE = Critically Endangered, EW = Extinct in Wild, EX = Extinct.

Class VU EN CE EW EX

Amphibia 2 (740) 0.3% 4 (1144) 0.3% 3 (723) 0.4% 1 (2) 50% 0 (36) 0%
Reptilia/Aves 58 (1379) 4.2% 27 (1197) 2.3% 32 (666) 4.8% 3 (7) 4% 0 (191) 0%

Mammalia 80 (557) 14.4% 66 (550) 12.0% 34 (233) 14.6% 2 (2) 100% 1 (85) 1.2%
% species/% Biobanked 27.6%/1.4% 40.7%/4.1% 44.5%/4.3% 9.0%/10% 3.4%/0.3%

8. Financial Considerations
8.1. Background

Financing for CBPs has mainly been limited to programs in wealthy Western countries,
leaving a need for an independent and comprehensive provision of finance toward the
biodiverse Global South and other developing countries. This need received partial recog-
nition, with 10% of recommended finances toward CBPs in the 2007 IUCN Amphibian
Conservation Action Plan. However, only 1% of finance was directed toward the critical
components of RBCs, with this funding directed toward institutions in Western countries,
although including their support of programs in the Global South and other developing
countries (Appendix B, [155]).

The 2007 ACAP plan failed to achieve financing, but institutional initiatives have
now achieved all the suggested RBC research goals ([7–15], Appendix A). National and
international research programs have also addressed most of the listed environmental
threats and their amelioration [156–159].

The revised ACAP, 2023, recognised the looming collapse of the Earth’s ecosystems
and the urgent actions needed to address these challenges, and a chapter was devoted to
genetic techniques, including assisted evolution. However, the chapter on CBPs did not
mention private caregivers and an added chapter on amphibian RBCs mainly referred to
institutions applying well-established techniques in a few projects. To prevent a predicted
extinction cascade of wild species, the ACAP 2023 recommended preserving somatic cells
in biobanks. However, it did emphasise the urgent need to develop restoration techniques
such as cloning [153]. A similar lack of recognition of the urgent need for RBCs was
shown when attendees of the 2023 Ninth World Congress of Herpetology, along with an
internet survey, produced a list of research priorities that almost matched that of the ACAP
2007 [155] but with even less mention of RBCs [160].

8.2. Databases

Conventional databases and sample collection, processing, storage, and distribution
standards are required for specimen allocation to RBCs or research and for general resource
management within conservation frameworks [21,145,147,148,151,161]. Groups, including
CryoArks [162] and the International Society for Biological and Environmental Repositories
(ISBER, [148], promote effective management. Global agreements provide responsible and
sustainable biobanking practices that balance conservation interests, equitable access, bene-
fit sharing, research, and innovation. The United Nations Convention of Biodiversity [156],
COP 15 [1], and the Nagoya Protocol for Access and Benefit-sharing [29] are international
agreements for the equitable sharing of benefits from the utilisation of genetic resources
and safeguarding Indigenous people’s traditional rights and stewardship of nature.

8.3. Costs

The costs of amphibian CBPs are highly dependent on population size, facility type,
and the regional economy [12]. The largest amphibian CBPs in Western countries are well
financed through collaborations between university-based research, zoos, and governmen-
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tal wildlife agencies [12–14]. Costs in the Global South and other developing countries are
considerably lower, with private caregiver CBPs being the most economical; their costs
are estimated to be less than USD 5000 per species per year, to be covered by private
caregivers or their organisations [25]. The use of biobanked sperm lowers costs [7–15,133]
by a ~20-fold reduction for institutional long-term CBPs [13,14].

RBC programs in the Global South and other developing countries will rely on in-
house biobanking facilities until a fully functional global network of Perpetuity Biobanks is
established (Table 5). Compared to other potentials for species conservation, the costs of an
in-house biobanking facility are minimal at ~US$ 15k [8,13,14]. Liquid nitrogen costs are
insignificant, and cryo-vessels in Perpetuity Biobanks typically hold hundreds to thousands
of samples. The estimated cost to establish amphibian cell lines in the UK is US $15,000
(Matt Guille, pers. comm), and biobanking costs per sample in the UK are USD 120 [150].
Processing fresh tissue for ten vials, including technical time, washing steps, and reagents,
costs ~USD 90 per sample [150].

8.4. Financial Support and Management

The funding requirements of COP 15 [6], the Kunming-Montreal Global Biodiversity
Framework fund [157], and the Nagoya Protocol [29] with the Global Environment Facil-
ity [26] are satisfied by amphibian RBCs. Amphibians are the most threatened terrestrial
vertebrate taxon, and their eco-sociological potentials include research and education,
media presence, and project development [30,31,148,160,161]. Furthermore, at a micro-
economic level, local engagement includes wealth creation through native entitlement,
ecotourism, and responsible trade [144,163–167]. RBC funding potential is also found in
the Global South and other developing countries, via the trading of international debt for
environmental sustainability projects [29], and in private philanthropic sources [168,169].

Nevertheless, despite these funding opportunities, securing the sustainability of
biobanks takes time and effort. Most biobanks rely on public funding, while many need
formal plans for long-term stewardship of their collections [170], and the recovery of costs
through distribution fees often only provides partial cost recovery [171]. Financial models
can address these challenges, including asymmetric pricing and advertising [172]. How-
ever, the need for sustained funding remains a critical issue, requiring the involvement
of funders who understand the full funding requirements of biobanks [171–174] and em-
phasise the importance of considering the cost and likelihood of success in conservation
projects. At the same time, Gerber [174] introduced a resource allocation framework to fa-
cilitate transparent and efficient decision-making. However, setting priorities based on the
assessment of threats can be subjective and often needs more adequate data [91–94]. These
and other perspectives collectively present the need for a comprehensive and transparent
decision-making process toward resource allocation for amphibian RBCs [161].

9. Cultural Engagement
9.1. Biocultural Approaches and Marketing

Amphibian sustainability depends on garnering social, cultural, and political
support that blends traditional, conventional, and emerging themes toward
sustainability [160,165,169,175]. These extend to engagement between internationalised
RBCs and traditional eco-sociological systems [176]. These partnerships include species
discovery and ecological research with traditional stakeholders in highly biodiverse but
under-researched regions [177] and environmental management and ecotourism with
species of cultural significance [176,177]. The influence of legacy media is declining, while
the internet provides a popular, accessible, and open public forum to support amphibian
RBCs through engaging, welcoming, and empowering contributions [178].

Branding of amphibian RBCs requires a marketing approach with a standardised
terminology and lexicon that avoids jargon [179]. Effective marketing must recognise
target audience demographics and the development and fostering of brand fidelity. Simple
images and emotions with social and cultural context are more effective than statistics
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and abstract concepts in engaging support. Solution-oriented messaging that offers direct
opportunities for engagement is most rewarding [180], emphasising the role of RBCs in
providing intergenerational justice for biodiversity sustainability [181,182].

9.2. Terraforming and Species Restoration

There are opportunities for broad social and professional engagement in amphibian
RBCs through terraforming and advanced biotechnologies, including species restoration.
Terraforming includes the more traditional concept of planned ecosystems in space. How-
ever, terraforming also includes the anthropogenic creation of novel ecosystems on Earth,
whether planned or incidental, ongoing or historical [183]. Exciting terraforming opportu-
nities for amphibian RBCs also include assisted evolution to provide novel genotypes with
increased survivability through introducing genes, modifying existing genes, or selecting
for mutations [184–186]. Species restoration, repopulation, or translocations can also be
considered as terraforming by providing species into modified or novel ecosystems.

Amphibian RBCs could contribute to extraterrestrial terraforming through assisted evo-
lution and the storage, transportation, and restoration of viable biomaterials [181,182,187,188].
Current space research includes amphibian fertilisation and larval development in low grav-
ity [189,190] and a projected 200 years of sperm viability under space radiation [191]. The
development of RBCs in extraterrestrial environments will reciprocally provide knowledge
that contributes to Earth’s biospheric sustainability.

Biotechnical parallels between de-extinction projects and amphibian RBCs include
species restoration from cryopreserved biomaterials [192]. However, unlike amphibian
RBCs, de-extinction projects are challenged by low-grade donor biomaterial and surrogacy
in distantly related species [192]. By surmounting these challenges, de-extinction projects
will also benefit amphibian restoration through biobanked somatic cells and tissues [21].
Besides biotechnical development, de-extinction projects also engage science and futurism
enthusiasts, where the vision of Colossal Biosciences has inspired institutional and private
investors globally [169]. The most significant predicted contribution of de-extinction to ter-
raforming on Earth will be to global heating amelioration through ecosystem modification
of the tundra to retain methane and CO2 by long-extinct mammoth species [193]. Colossal
Biosciences is also exemplary for seeking broad engagement with local conservation com-
munities and agencies, and other sustainability projects, and through their internet-based
publicity and outreach for biodiversity conservation [186].

9.3. Potentials and Pitfalls

As recently as 2022, the integration between RBCs and traditional conservation
paradigms was presented as challenging [194]. This challenge has been framed as a
competitive zero-sum financial game between fieldwork and RBCs, and governance using
species perpetuation through RBC has been used as a reason for not supporting field
programs [174]. However, regional field biologists overwhelmingly recommended RBCs
during the Amphibian Arks species-needs assessments [88]. Furthermore, governments
increasingly mandate “no species lost” policies that support the application of RBCs [102]
and RBCs support some of the most highly financed field programs for amphibian conser-
vation [100,101]. In any case, adopting RBCs will be expedited through improved publicity
and public relations to better inform the conservation community and the public of the
benefits of RBCs toward biodiversity sustainability [12,153].

The ability of amphibian RBCs alone to save many amphibian species reliably and
efficiently utilising cryopreserved sperm has been possible since the turn of the millen-
nium [194–196]. Subsequent research has focussed almost solely on the challenge of sperm
sampling using hormonal induction rather than simply using testicular macerates, sperm
storage, and producing offspring through in vitro fertilisation [133]. However, no effective
initiative has established an amphibian RBC globally or developed techniques for the
perpetuation of species solely in biobanks using somatic cell technologies. This lack is
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despite the number of amphibian species on the verge of extinction or predicted to become
extinct in the wild over the next few decades [3–5,60].

An exemplary and cautionary narrative toward the slow development of the complete
suite of amphibian RBCs necessary for biodiversity sustainability is found with corals.
The development of coral RBCs was a response to mass coral diebacks. The restoration
of corals from cryopreserved biomaterials was pioneered in 2006 and followed by a rapid
development to application with somatic cells, tissues, and sperm by the early 2020s to
support a global program for biobanking and species repopulation [197–202].

However, the field aspect of this USD 100M program failed in 2023 due to global
heating killing the planted corals, leaving RBCs the best option for perpetuating these
species. This example and the amphibian conservation crisis demonstrate that biobanking
is needed to address the consequences of ecosystem or human societal collapses [60,189].
This realisation has encouraged conservationists to propose cosmic biobanks for coral in
the frigid polar environments on the moon, at temperatures of −250 ◦C [203,204]. These
cosmic biobanks would provide intergenerational justice toward biodiversity sustainability
for the foreseeable future.

9.4. Global Support

Global support for amphibian RBCs includes an internet presence, provision of finance,
representation at international seminars and meetings, and expert and consensual project
recommendations. These activities require expertise in business management, market-
ing, and public relations, as well as a strong background in RBC technical and scientific
expertise. The most parsimonious model to achieve these objectives is a network-based
non-governmental organisation with chapters representing different technical or regional
aspects of the overall project [205–207], including:

(1) Recognition of global multi-polarity and regional, cultural, theological, and ethical
traditions, i.e., support globally, act locally.

(2) Democratic governance and leadership and transparent decision-making.
(3) Funding through diverse funding sources to ensure long-term financial stability.
(4) Focus on program spending and brand promotion to support fundraising.
(5) Professional development and active social learning methods.
(6) Inclusivity to ensure representation from various stakeholders, especially those in the

Global South, other developing countries, and Indigenous communities.
(7) Building solid collaborations and partnerships with existing conservation organisa-

tions and research institutions.
(8) Deliberative processes for inclusive and informed decision-making.

10. The Road Ahead

Intergenerational justice and laws based on protecting the Earth and its biodiversity as
legal entities provide profound cultural foundations toward biospheric sustainability. These
cultural initiatives toward ecological civilisation are supported by COP 15, COP 28, and
other protocols to support and finance biospheric sustainability. However, until the plateau
of anthropogenic destruction of Earth’s ecosystems is reached and potentially reversed, a
significant amount of biodiversity will be lost in the wild. We have demonstrated the ability
of RBCs to prevent cost-effectively and reliably some of the alarming loss of amphibian
diversity not protected by COPs 15 and 28.

We live in a multipolar world with increasing assertion and technical prowess in
the biodiversity-rich Global South and other developing countries. However, the past
has been defined by colonialism and exploitation, resulting in massive environmental
destruction and cultural subjugation. Amphibian RBCs present exciting opportunities
for community engagement through broad international programs, extending from local
custodianship to a global presence. Including institutional and private caregivers in am-
phibian RBCs complements these potentials for biospheric sustainability. However, the
potential for empowerment across all geopolitical and biopolitical regions still needs to
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be realised. Similarly, to reach their full potential, amphibian RBCs must extend beyond
the research emphases on gamete collection, storage, and in vitro fertilisation, to include
species perpetuation solely in biobanks through further research and the establishment of
RBC facilities globally.

We provided a triage for allocation of resources to RBCs over a range of species
doomed to extinction in the wild, for those species where field projects potentially ensure
their survival. These approaches should be in tandem to provide the most effective use
of resources from increasingly funded biospheric sustainability initiatives. Then, as corals
exemplify, a dynamic multidisciplinary approach will synergise support and resource
availability for amphibian sustainability in the face of the inevitable modification and loss
of habitats and ecosystems.

In this era of major geopolitical realignments and environmental and social challenges,
we see an opportunity for innovative strategies involving amphibian RBCs to ensure
biospheric sustainability. Our vision involves establishing a globally representative organ-
isation dedicated to championing the establishment of amphibian RBCs in the neediest
regions. By promoting inclusive and democratic management through representation from
the regions in need, we aim to create a robust, globally representative organisation capable
of effectively advocating for RBC project development and fundraising.

These organisational requirements include expertise and the ability to form non-
partisan and extensive networks with global biopolitical and geopolitical entities. Bringing
together diverse voices to support a shared vision would result in a synergised global
initiative that attracts expert, dynamic, and motivated contributors, especially early-career
professionals, ensuring the proactive sustainability of amphibians well into the 21st century.
If extended to other taxa, this model could result in further significant contributions to
biospheric sustainability and intergenerational justice.
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Appendix A

Year Milestone Reference

1986 Release of hormonally stimulated reproduction of EN salamander [127]
1989 Hormonal stimulation of reproduction of many anurans and salamanders [128]
1996 Cryopreservation of anuran sperm in pieces of testes with fertilisation [129,130]
1998 Cryopreservation of totipotent cells and their use in reconstruction of enucleated eggs [16]

Cryopreservation of anuran sperm suspensions with fertilisation [131]
2001 Refrigerated storage of anuran sperm and oocytes [208]
2002 Saccharides and anuran sperm cryopreservation [209]
2003 Cryopreservation of Cryptobranchidae (Caudata) sperm [210]
2006 Novel use of high concentrations of LHRH-A for gamete collection in anurans [211]

Novel use of dopamine antagonists for gamete collection in anurans [212]
2010 Hormonal stimulation and in vitro fertilisation in Cryptobranchoidae [213]
2011 Cryopreservation of hormonally induced anuran sperm with fertilisation [132]

Cryopreservation of hormonally induced anuran sperm with dimethyl formamide [132]
Hormonal stimulation and in vitro fertilisation in Salamandridae [214]

2013 Refrigerated storage of in situ (in carcasses) anuran sperm for 7 days [215]
Crypreservation of Salamandridae sperm [216]
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Year Milestone Reference

2016 Reproductively mature Salamandridae from cryopreserved hormonal sperm [217]
2018 Refrigerated storage of anuran oocytes in the oviducts of live females [218]

Reproductively mature anurans from cryopreserved testicular sperm [124,125]
Ultrasound optimisation of anuran hormonal stimulation [219]

2019 Cryopreservation of anuran sperm from nature and in vitro fertilisation [220]
2020 Seasonality in hormonally stimulated sperm [221]
2021 Reproductively mature threatened anurans from cryopreserved testicular sperm [125]

Generation of a mature adult from cryopreserved Cryptobranchoidea sperm [213]
Cryopreservation of refrigerated sperm from carcasses [215]
Assisted gene flow between in situ and ex-situ anurans [123]

2022 Gentamicin increases refrigerated sperm storage [222]
2022/23 Low saccharide concentrations of 1–5% optimal for sperm cryopreservation [223,224]
2023 Ultrasound optimisation of Salamandriodea hormonal stimulation [217]

High pressure of carbon monoxide and oxygen for anuran oocyte refrigerated storage [225]
Comparison of storage resilience of testicular and urinal sperm [226]
Artificial insemination of Salamandridae [227]

Appendix B

Table A1. Proposed funding distribution in the 2007 Amphibian Conservation Action Plan [155].
Budget costs in inflation-adjusted USD millions to mid-2023. % GT = percentage of grand total.

Activity Budget % GT Notes. Costs in USD Millions (% of GT)

Distribution/Systematics 407.2 67.7 Biogeography USD 185.2 (26.8%), Biodiversity hotspots USD
176.4 (29.0%), Systematics USD 47.3 (7.9%).

Generic Threats 118.0 19.6 Pollution USD 63.8 (10.6%), Pathogens USD 37.3 (6.2%), Climate
catastrophe USD 10.7 (1.8%), and Over-harvest USD 6.3 (1.0%).

Conservation status 2.7 4.5

Total 527.9 87.7

RBCs

Reproduction Technologies
and Biobanking 6.3 1.1 Bioresource Banking USD 5.1 (0.9%), Genome Resource Banking

USD 1.0 (0.2%).

Conservation Breeding
Programs 60.2 10.0 100 facilities/species over 5 years

Repopulation/augmentation 5.1 0.9

Total 71.6 12.0

Grand Total (GT) 599.5 100
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