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a b s t r a c t

A bipartite graph G = (A, B, E) is said to be a biconvex bipartite graph if there exist
orderings <A in A and <B in B such that the neighbors of every vertex in A are
consecutive with respect to <B and the neighbors of every vertex in B are consecutive
with respect to <A. A caterpillar is a tree that will result in a path upon deletion of all
the leaves. In this paper, we prove that there exists a spanning caterpillar in any connected
biconvex bipartite graph. Besides being interesting on its own, this structural result has
other consequences. For instance, this directly resolves the burning number conjecture
for biconvex bipartite graphs.

© 2024 Elsevier B.V. All rights are reserved, including those for text and datamining, AI
training, and similar technologies.

1. Introduction

We consider finite, simple, and undirected graphs throughout the paper. Let G = (V , E) be a graph with the set of
vertices V and the set of edges E. For basic graph theoretic notations and definitions, we refer to [7].

A graph is connected if, for any pair of vertices, there exists a path between them. A graph is acyclic if it does not contain
cycle. A tree is a connected acyclic graph. A star on n vertices, denoted as K1,n−1, is a tree with exactly n − 1 leaves. A
aterpillar is a tree that will result in a path upon deletion of all the leaves. Henceforth, we refer to this path as residual
ath. In other words, a caterpillar is a tree having a residual path P such that every vertex that is not in P is adjacent to a

vertex in P . A graph is said to be a permutation graph if its vertices correspond to the elements of a permutation σ such
hat there exists an edge between two vertices i and j if and only if either i < j and σ (j) < σ (i) or j < i and σ (i) < σ (j).
subgraph H of a graph G is said to be a spanning subgraph if V (H) = V (G). The following lemma on trees was given
y Driscoll et al. [4].

emma 1.1 ([4]). Every tree on at most six vertices is a caterpillar.
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Fig. 1. A convex bipartite graph having no spanning caterpillar.

A graph G = (V , E) is said to be bipartite if the vertex set V can be partitioned into two partite sets A and B such
that every edge in E has its one end-point in A and the other end-point in B. Let <A be an ordering of A and let <B be
n ordering of B. For any two distinct vertices ai, aj ∈ A, by ai <A aj, we mean ai appears before aj in the ordering <A.
imilarly, for any two distinct vertices bi, bj ∈ B, by bi <B bj, we mean bi appears before bj in the ordering <B. The set of
ll neighbors of a vertex v in G is denoted as NG(v) or simply N(v) if G is clear from the context.
A bipartite graph G = (A, B, E) is said to be a chain graph if there exist orderings <A of A and <B of B such that

(u) ⊆ N(v) whenever u <A v and N(a) ⊇ N(b) whenever a <B b. A bipartite graph G = (A, B, E) is said to be a
onvex bipartite graph if there exists an ordering of vertices, say, <B of B such that the neighbors of every vertex in A
re consecutive with respect to <B. A bipartite graph G = (A, B, E) is said to be a biconvex bipartite graph if there exist
rderings <A of A and <B of B such that the neighbors of every vertex in A are consecutive with respect to <B and the
eighbors of every vertex in B are consecutive with respect to <A.
By a result of Spinrad et al. [6], the class of bipartite permutation graphs is a subclass of the class of biconvex bipartite

raphs. Further, it is easy to see that the class of chain graphs is a subclass of the class of biconvex bipartite graphs. The
ollowing observation follows from the definition of a biconvex bipartite graph.

bservation 1.2. Let G = (A, B, E) be a biconvex bipartite graph, x, y ∈ A (respectively, x, y ∈ B), and z ∈ N(x) ∩ N(y). If
∈ A (respectively, w ∈ B) such that x <A w <A y (respectively, x <B w <B y), then by consecutive property of the neighbors

f z, we have that z is adjacent to w, i.e., z ∈ N(w).

Let G = (A, B, E) be a biconvex bipartite graph. Two edges aibs and ajbr in G are said to be cross edges if either ai <A aj
nd br <B bs, or aj <A ai and bs <B br . A biconvex ordering of G (pair <A and <B) is said to be a straight ordering (in short,
n S-ordering) if, whenever a pair of cross edges aibs and ajbr exists in G, then at least one of the edges aibr and ajbs also

exists. A biconvex ordering of G that is also an S-ordering is said to be a biconvex S-ordering of G. Abbas and Stewart [1]
studied the structure of biconvex bipartite graphs and gave the following theorem.

Theorem 1.3 ([1]). Every connected biconvex bipartite graph has a biconvex S-ordering.

A path between a pair of vertices u and v in G is said to be a straight path (in short, an S-path) if it does not contain
any cross edges. Abbas and Stewart [1] also proved the following theorem on the existence of S-paths.

Theorem 1.4 ([1]). Let G be a connected biconvex bipartite graph with a biconvex S-ordering and let u and v be any two
vertices in G. Then there exists a shortest (u, v)-path in G that is an S-path.

An asteroidal triple in a graph G is an independent set (a set of vertices with no edge between any pair) of three vertices
in G if every two of them have a path between them avoiding the neighborhood of the third one. If there is no asteroidal
triple in a graph, then the graph is said to be asteroidal triple-free (AT-free, for short). By a result of Corneil et al. [3], we
have that there exists a spanning caterpillar in every AT-free graph. One can see that biconvex bipartite graphs can have
an asteroidal triple, i.e., biconvex bipartite graphs need not be AT-free. Here, we present a similar structural existential
result on connected biconvex bipartite graphs. In particular, we prove the following theorem.

Theorem 1.5. If G is a connected biconvex bipartite graph, then there exists a spanning caterpillar in G.

Note that a similar statement of Theorem 1.5 does not hold for convex bipartite graphs that are not biconvex. For
instance, Fig. 1 illustrates an example of a connected convex bipartite graph that does not have a spanning caterpillar.
One can verify that the graph in Fig. 1 is not a biconvex bipartite graph.

2. Proof of Theorem 1.5
This section is all about proving our main result, i.e., Theorem 1.5.
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roof. Let G be the given biconvex bipartite graph of order n, with A and B as the partite sets of cardinalities n1 and n2.
et <A= (a1, a2, . . . , an1 ) and <B= (b1, b2, . . . , bn2 ) be the biconvex S-ordering of G (existence of such a pair <A and <B
ollows from Theorem 1.3). Suppose n ≤ 6. Since graph G is connected, it has a spanning tree T . By Lemma 1.1, we have
hat T is a caterpillar, as desired. Thus we can assume that n ≥ 7. Depending on the cardinalities of n1 and n2, we have
he following cases.

ase 1. n1 = 1 or n2 = 1.

Without loss of generality, say n1 = 1, i.e., A = {a1}. Then since n ≥ 7, we have n2 ≥ 6. Since G is connected, a1 is
djacent to every vertex in B. Since G is bipartite, there is no edge between two vertices in B, implying that G is a star,
.e., G = K1,n2 . Hence, if we delete all the leaves in G (which itself is a tree), we get P1, i.e., a path on one vertex, which
mplies that G is a caterpillar, as desired.

ase 2. n1 ≥ 2 and n2 ≥ 2

Let af be the first neighbor of b1 and let al be the last neighbor of bn2 with respect to <A. Note that as n1 ≥ 2 and
2 ≥ 2, we have a1 ̸= an1 and b1 ̸= bn2 . Depending on N(a1) ∩ N(an1 ) and N(b1) ∩ N(bn2 ), we have the following cases.

ase 2.1. N(a1) ∩ N(an1 ) ̸= ∅ or N(b1) ∩ N(bn2 ) ̸= ∅.

Without loss of generality, let N(a1)∩N(an1 ) ̸= ∅. Let bc be a common neighbor of a1 and an1 . Then by Observation 1.2,
we have that every vertex in A is adjacent to bc . Now, depending on N(b1) ∩ N(bn2 ), we have the following cases.

Case 2.1.1. N(b1) ∩ N(bn2 ) ̸= ∅.

Let ac be a common neighbor of b1 and bn2 . Then by Observation 1.2, we have that every vertex in B is adjacent to ac .
Now, we consider P = acbc . Then every vertex of G that is not in P is adjacent to either ac or bc implying that G has a
spanning caterpillar with P being the residual path.

Case 2.1.2. N(b1) ∩ N(bn2 ) = ∅.

Since bc is adjacent to every vertex in A, the fact that N(b1)∩N(bn2 ) = ∅ will imply that b1, bc and bn2 are three distinct
vertices in B and af ̸= al. Now, we consider P = b1af bcalbn2 . Let v be a vertex of G that is not in P . If v ∈ A, then v is
adjacent to bc . Otherwise, v ∈ B and by Observation 1.2, v is adjacent to af or al implying that G has a spanning caterpillar
with P being the residual path.

Case 2.2. N(a1) ∩ N(an1 ) = ∅ and N(b1) ∩ N(bn2 ) = ∅.

Let Q be a shortest path from b1 to bn2 in G which is also an S-path (recall that an S-path is a path without cross edges).
Since G is connected, the existence of Q follows from Theorem 1.4. Let Q = b′

1a
′

1b
′

2 . . . b′

k−1a
′

k−1b
′

k for some positive integer
k. Here we have b′

1 = b1 and b′

k = bn2 . Moreover, every vertex of the form a′

i is in A and every vertex of the form b′

i is in
B. Further, since N(b1) ∩ N(bn2 ) = ∅, we have a′

1 ̸= a′

k−1, implying that k ≥ 3. Since Q is an S-path, we have:

a′

1 <A a′

2 <A · · · <A a′

k and b1 = b′

1 <B b′

2 <B · · · <B b′

k = bn2
Recall that af is the first neighbor of b1 and al is the last neighbor of bn2 . If af <A a′

1, then add the edge af b1 (same as
af b′

1) to the path Q and label a′

0 = af . Note that otherwise, we have af = a′

1. If a
′

k−1 <A al, then add the edge albn2 (same
as alb′

k) to the path Q and label a′

k = al. Note that otherwise, we have al = a′

k−1. Let this modified path be P . In other
words, the path P is defined as follows:

P =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a′

0b
′

1a
′

1b
′

2 . . . b′

k−1a
′

k−1b
′

ka
′

k, if a′

0 = af <A a′

1 and a′

k−1 <A al = a′

k

a′

0b
′

1a
′

1b
′

2 . . . b′

k−1a
′

k−1b
′

k, if a′

0 = af <A a′

1 and a′

k−1 = al
b′

1a
′

1b
′

2 . . . b′

k−1a
′

k−1b
′

ka
′

k, if af = a′

1 and a′

k−1 <A al = a′

k

b′

1a
′

1b
′

2 . . . b′

k−1a
′

k−1b
′

k, otherwise

Let br be a vertex in B but not in P . Then br is sandwiched between two vertices b′

i and b′

i+1 for some i with 1 ≤ i ≤ k−1
(i.e., b′

i <B br <B b′

i+1) such that b′

i, b
′

i+1 ∈ V (P). Since the vertex a′

i in P is adjacent to both b′

i and b′

i+1, by Observation 1.2,
a′

i is also adjacent to br . Since br was chosen arbitrarily, we can infer that every vertex of B that is not in P is adjacent
to a vertex in P . Let as be a vertex in A but not in P such that af <A as <A al. Then analogously one can show that by
Observation 1.2, b′

i+1 is also adjacent to as. Since as was chosen arbitrarily, we can infer that every vertex of A that is not
in P , appearing in between af and al is adjacent to a vertex of P .

Let A0 be the set of all vertices in A that appear before af in the ordering <A. Let A1 be the set of all vertices in A that
appear after al in the ordering <A. Note that every vertex in G that is not in A0 ∪A1 is either in P or is adjacent to a vertex
in P . Hence, if A0 = A1 = ∅, then P itself is the residual path leading to the caterpillar. Therefore, we can assume that
A ̸= ∅ or A ̸= ∅. Further, we have the following cases.
0 1
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ase 2.2.1. Exactly one among A0 and A1 is non-empty.

Without loss of generality, assume that A1 ̸= ∅. Thus we have A0 = ∅. Then clearly, an1 ∈ A1 and is the last vertex
in A1. Suppose an1 is adjacent to some vertex b′

i in P . Since b′

i is adjacent to both a′

i−1 and an1 , by Observation 1.2, b′

i is
also adjacent to every vertex in between a′

i−1 and an1 . In particular, b′

i is adjacent to every vertex in A1. Therefore, since
A0 = ∅, we are sure that P is the residual path which yields the required caterpillar. Hence, we can assume that an1 is
not adjacent to any vertex in P .

Let b̃ be the last neighbor of an1 (for the case A0 ̸= ∅ and A1 = ∅, we consider b̃ to be the first neighbor of a1). Since
an1 is not adjacent to any vertex of P , we have b̃ /∈ V (P). In particular, b̃ ̸= b1 and b̃ ̸= bn2 . Therefore, b̃ is sandwiched
between two vertices b′

i and b′

i+1 for some i with 1 ≤ i ≤ k − 1 (i.e., b′

i <B b̃ <B b′

i+1) such that b′

i, b
′

i+1 ∈ V (P). Since the
vertex a′

i in P is adjacent to both b′

i and b′

i+1, by Observation 1.2, a′

i is also adjacent to b̃.
Now, obtain a path P1 from P by replacing the vertex b′

i+1 by b̃. We call this a vertex replacement operation and denote
it as R(b′

i+1, b̃). Observe that any vertex in G − V (P) which has b′

i+1 as the only neighbor in P is either in between a′

i and
a′

i+1, or in A1. Since the vertex b̃ in P1 is adjacent to both a′

i and a′
n1 , by Observation 1.2, b̃ is also adjacent to every vertex

in between a′

i and a′
n1 . This also includes all the vertices in A1 and all the vertices in between a′

i and a′

i+1. Further, every
vertex in B is either in P1 or is adjacent to some vertex in P1, since V (P1) ∩ A = V (P) ∩ A. Therefore, we have that every
vertex of G which is not in P1 is adjacent to a vertex of P1, implying that G has a spanning caterpillar with P1 being the
residual path.

Case 2.2.2. Both A0 and A1 are non-empty.

Recall that A0 is the set of all vertices in A that appear before af in the ordering <A and A1 is the set of all vertices in
A that appear after al in the ordering <A. Let G0 = G − A1 and let G1 = G − A0. Notice that in graph G0, we have A1 = ∅

and in graph G1, we have A0 = ∅. Observe that in order to obtain G0 and G1 from G, we are deleting some consecutive
vertices with respect to <A. Hence, one can see that the graphs G0 and G1 remain biconvex bipartite. From the choice of
A0 and A1, it is clear that the graphs G0 and G1 are connected. Therefore, by using the arguments in Case 2.2.1 individually,
we obtain paths P0 in G0 and P1 in G1 of the corresponding caterpillars. Let R(x0, y0) be the vertex replacement operation
(refer Case 2.2.1 for the definition) performed to obtain P0 from P and let R(x1, y1) be the vertex replacement operation
performed to obtain P1 from P . By the steps in Case 2.2.1, we clearly have that y0 is the first neighbor of a1, y1 is the last
neighbor of an1 , x0 <B y0, and y1 <B x1.

Now, we obtain a new path P̃ by performing both the replacements R(x0, y0) and let R(x1, y1) in the path P . Observe
that if y0 <B y1, then the replacements R0 and R1 are independent of each other. In that case, one can see that every
vertex in G − V (P̃) is adjacent to a vertex of P̃ . This will in turn imply that G has a spanning caterpillar with P̃ being the
residual path. So, the rest of the proof boils down to proving that y0 <B y1.

Observe that since N(a1) ∩ N(an1 ) = ∅, we have y0 ̸= y1. By way of contradiction, assume that y1 <B y0. Then since
a1 <A an1 and y1 <B y0, we have a pair of cross edges a1y0 and an1y1. Since the ordering considered for G is an S-ordering,
we have a1y1 ∈ E(G) or an1y0 ∈ E(G). In the former case, y1 is a common neighbor of a1 and an1 , and in the latter case, y0
is a common neighbor of a1 and an1 . Therefore, in either case, we have a contradiction to the fact that N(a1)∩N(an1 ) = ∅.
Hence, we have y0 <B y1, as desired.

This completes the proof of Theorem 1.5. ■

3. Impact on graph burning

Apart from the structural significance, Theorem 1.5 would be useful in several aspects. Here, we provide an implication
of the result on a well-known conjecture, called the burning number conjecture.

For a graph G, the burning number, b(G), is the minimum number of iterations required to inflame (or burn) the whole
graph while in each iteration the fire spreads from all burned vertices to their neighbors and one additional vertex can be
burned. A sequence of vertices B = (b1, b2, . . . , bk) is said to be a burning sequence of G if the whole graph can be burned
in k steps by burning the vertices in B sequentially.

The concept of burning number was coined by Bonato et al. [2]. They conjectured as follows:

Conjecture 3.1 ([2]). For any connected graph G of order n, b(G) ≤ ⌈
√
n⌉.

This is called the burning number conjecture in the literature and is widely worked upon from thereon. Hiller et al. [5]
roved the conjecture for caterpillars.

heorem 3.2 ([5]). If G is a caterpillar of order n, then b(G) ≤ ⌈
√
n⌉.

It is clear that burning a spanning tree of a graph is sufficient to burn the entire graph. Therefore, we have the following
orollary of Theorems 1.5 and 3.2.

orollary 3.3. If G is a connected biconvex bipartite graph of order n, then b(G) ≤ ⌈
√
n⌉.
35
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Hence, we can conclude that Conjecture 3.1 is true for the class of biconvex bipartite graphs. Consequently, the
conjecture is true for any subclass of biconvex bipartite graphs. In particular, we can also conclude that Conjecture 3.1 is
true for the bipartite permutation graphs and the chain graphs.

4. Conclusion

In this paper, we proved the existence of a spanning caterpillar in connected biconvex bipartite graphs. This structural
existence is useful in studying several problems on biconvex bipartite graphs. One such instance is provided in the paper
by applying this result in proving the burning number conjecture for biconvex bipartite graphs. It would be interesting
to see whether some other problems can be addressed by using this result.

Data availability

No data was used for the research described in the article.
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