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Abstract. We study and derive identities for the multi-variate independence
polynomials from the perspective of heaps theory. Using the inversion formula and the
combinatorics of partially commutative algebras we show how the multi-variate version
of Godsil type identity as well as the fundamental identity can be obtained from weight
preserving bijections. Finally, we obtain a multi-variate identity involving connected
bipartite subgraphs similar to the Christoffel–Darboux type identities obtained by Bencs.
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1. Introduction

Let G be a finite simple connected graph with vertex set V (G). A subset of V (G) is said to
be independent if it does not include two adjacent vertices and by convention, we allow
the empty subset to be independent. The multi-variate independence polynomial of G is
defined as

I (G, x) :=
∑

S

(−1)|S| ∏

v∈S

xv,

where the sum runs over all independent subsets S of V (G). The aim of this article is to
approach certain identities for multi-variate independence polynomials using the inversion
formula from heaps theory.

To explain our motivations and results, we need some terminologies. One can associate a
monoid called the Cartier–Foata monoid to the graphG (see [5]). This monoid is generated
by the vertices of G and the defining relations are given by uv = vu if u, v ∈ V (G) and
there is no edge between them. One can prove that the Cartier–Foata monoid of G is
equivalent to the monoid of heaps with pieces in V (G) and the concurrency relation is
determined by G (see [13]). The fundamental result of Viennot’s general theory of heaps
is the inversion lemma (see, for example, [13] and [4, Theorem 2.1]) which gives a closed
formula for the generating function of heaps with all maximal pieces in some fixed subset.
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Even though heaps give a geometric interpretation of the elements of the Cartier–Foata
monoid, we prefer to work with the Cartier–Foata monoid itself in this paper. Fix a subset
K of V (G), and consider the set P∅

K (G) that consists of all elements in the monoid that
can only end with one of the v’s from K (see Section 2 for more details). We can assign
a weight to each element of P∅

K (G) as follows: given w = u1 · · · ur ∈ P∅
K (G), define

wt(w) = ∏r
i=1 xui ∈ C[xv : v ∈ V (G)]. Then the generating function of P∅

K (G) is simply
given by

∑

w∈P∅
K (G)

wt(w) = I (G − K , x)
I (G, x)

,

where G − K is the graph obtained from G by removing the vertices in K . The motivation
of this work comes from a Godsil’s type identity that has been proved in [3] for one-
variable independence polynomials; recall that the one-variable independence polynomial
is obtained by evaluating xv = −x for all v ∈ V (G) in the multi-variate independence
polynomial. Given a vertex u ∈ G, Bencs constructed a rooted (stable path) tree (T , u′)
such that

I (G − u, x)

I (G, x)
= I (T − u′, x)

I (T , x)
. (1.1)

Godsil’s original identity was stated for matching polynomials [7] and was one of the
key ingredients in proving that the matching polynomial is real rooted. Furthermore, the
importance of this identity is also highlighted in [12] where the authors prove the existence
of infinite families of regular bipartite Ramanujan graphs of every degree greater than 2.
It is not hard to prove the multi-variate version of equation (1.1) (the proof goes along
the same lines as the proof of [3, Theorem 2.3]). However, both sides of the multi-variate
version of equation (1.1) are the generating functions of certain words from the Cartier–
Foata monoid of G. More precisely, the left-hand side of equation (1.1) corresponds to
the generating function of P∅

u (G) and the right-hand side corresponds to the generating
function of P∅

u′(T ). So, we have the following natural questions:

• Is there any natural weight preserving bijective map from P∅
u (G) onto P∅

u′(T ) that
gives the multi-variate version of equation (1.1)?

• Using the method of finding weight preserving bijections, is one able to give new
proofs of existing identities, generalize them to the multi-variate case and obtain new
identities?

We answer the first question affirmatively in this paper. We will also use our approach to get
more identities and prove existing identities for multi-variate independence polynomial of
G. In particular, we prove a new multi-variate identity equation (4.4) involving connected
bipartite subgraphs similar to the Christoffel–Darboux type identities obtained by Bencs
[2]. This identity seems to be new in the literature.

2. Independence polynomials and word decompositions

2.1. By the given sets A1, . . . , Ak , we denote A1∪̇ · · · ∪̇Ak by the disjoint union of
A1, . . . , Ak . All our graphs in this paper are assumed to be finite simple connected graphs,
i.e., they are connected and contain only finitely many vertices and edges and have no
loops and multiple edges. We use G, T ,H, . . . to denote the graphs and S, V, H, . . . to
denote the set of vertices.
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2.2. Let G be a finite simple connected graph. The vertex set and edge set of G are denoted
as V (G) and E(G) respectively. We denote by e(u, v) the edge between the vertices u and v

of G. For u ∈ V (G), we denote by NG(u) the neighbourhood of u in G, dG(u) := |NG(u)|
the degree of u in G and set NG[u] = NG(u) ∪ {u}. For a subset S ⊆ V (G), we denote by
NG(S) := ∪v∈S NG(v) and by G[S] the subgraph of G spanned by the vertices in S. Let
P∅(G) denote the partially commutative monoid of G which is generated by the elements
of V (G) modulo the relations

uv = vu ⇐⇒ e(u, v) /∈ E(G).

If C∅(G) denotes the commutative monoid generated by V (G), we have a canonical monoid
morphism πG : P∅(G) → C∅(G). We setP(G) := P∅(G)\{pt} where we think of the extra
point in P∅(G) as the empty word and introduce further

Pv1,...,vr (G) = {w ∈ P(G) : IA(w) ⊆ {v1, . . . , vr }},
Pc

v1,...,vr
(G) = {w ∈ P(G) : IA(w) = {v1, . . . , vr }},

P∅
v1,...,vr

(G) = Pv1,...,vr (G) ∪ {pt},
i.e., Pv1,...,vr (G) consists of all words that can only end with one of the vi ’s. For a word
w = v1 · · · vr ∈ P(G), we write |w| = r for the length of w and set v(w) = |{1 ≤ j ≤
r : v j = v}| for a vertex v ∈ V (G). The initial alphabet of w is the multiset denoted by
IAm(w) and defined by v ∈ IAm(w) (counted with multiplicities) if and only if w = uv

for some u ∈ P(G). We denote the underlying set by IA(w).

Example. Let us take G to be the path graph P4 (and we keep this as our running example
to explain all our terminologies and results):

1 2 3 4

Take w = 342111 ∈ P(G), then

|w| = 6, 1(w) = 3, 2(w) = 3(w) = 4(w) = 1, IAm(w) = {1, 1, 1, 4}
and IA(w) = {1, 4}.

2.3. Given w ∈ Pu(G), it has been shown in [1, Proposition 4.3] that there exists unique
words w1, . . . ,wu(w) ∈ P(G) such that

w = w1 · · ·wu(w), IAm(wi ) = {u} for all 1 ≤ i ≤ u(w). (2.1)

If u(w) > 1, we refer to the decomposition above as the initial-alphabet-decomposition
or simply ia-decomposition of w.

Example. Consider G = P4 and w = 32111 ∈ P1(G). It is easy to see that 1(w) = 3 and
the ia-decomposition of w is 32111 = (321)(1)(1).

2.4. We shall define now the so-called neighborhood decomposition. We write

NG(u,w) = {v ∈ NG(u) : v(w) > 0}, dG(u,w) = |NG(u,w)|.
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PROPOSITION. Let w ∈ Pu(G) with u(w) = 1 and write NG(u,w) = {u1 < · · · < ud},
where d = dG(u,w). Then there exists an unique w1, . . . ,wd ∈ P∅(G) such that

(i) w = w1 · · ·wdu.
(ii) If wi ∈ P(G), then IA(wi ) = {ui } for all 1 ≤ i ≤ d.

(iii) ui /∈ w j for all i < j .

Proof. We proceed by induction on d where the d = 1 case is obviously true. So we can
assume that d > 1. We choose u1,u2 such that w = u1u2 and |u2| is maximal with the
property that u1 /∈ u2. This forces IA(u1) = {u1}. Since dG(u,u2) < dG(u,w), we can
use induction to get the required decomposition for u2. This gives the decomposition for
w with the properties (i)–(iii) once we set w1 = u1. The rest of the proof is concerned
with the uniqueness. Assume that w = w′

1 · · ·w′
du is another decomposition satisfying

the conditions (i)–(iii) of the lemma. Write w = w′
1u

′, then we have u1 /∈ u′. However,
the choice of w1 implies |w1| ≤ |w′

1| and u′ is a subword of u2. This forces |w1| = |w′
1|,

since IA(w′
1) = {u1}. Hence u′ = u2 and w1 = w′

1. Now a simple induction argument
completes the proof. �

For w ∈ Pu(G) with u(w) = 1, we refer to the decomposition of Proposition 2.4 as the
neighbourhood-decomposition or simply nbd-decomposition of w.

Example. Consider G = P4 and take the word w = 311432, then 2(w) = 1 and
NG(2,w) = {1, 3}. The nbd-decomposition of w is w = 311432 = (11)(343)2.

2.5. A subset S of V (G) is said to be independent if there is no edge between the elements
of S in the graph G. We denote by IG the set of independent subsets of G and note that we
have ∅, {v} ∈ IG for each v ∈ V (G). The multi-variate independence polynomial of G is
defined as

I (G, x) :=
∑

S∈IG
(−1)|S| ∏

v∈S

xv

and we view it as an element inC[xv : v ∈ V (G)], the polynomial algebra overC generated
by the commuting variables {xv : v ∈ V (G)}. The aim of this article is to approach certain
identities for multi-variate independence polynomials using the inversion formula from
heap theory. We need the following trivial identifications.

Lemma. Let S ⊆ V (G) and {K1, . . . , Ks} be the set of non-empty independent subsets of
the graph G[S].
(1) We have a bijection

Pc
K1

(G) ∪̇ · · · ∪̇ Pc
Ks

(G) → PS(G). (2.2)

(2) For any independent subset K �= ∅ of S, we have a bijection

ϕK : Pc
K (G) → P∅

NG [K ](G), w → w∏
y∈K y

.



Proc. Indian Acad. Sci. (Math. Sci.)          (2024) 134:16 Page 5 of 11    16 

Proof. We first show that the left-hand side of (2.2) is a disjoint union. Let w ∈ Pc
K1

(G) ∩
Pc

K2
(G) and u ∈ K1\K2. Then we have w = w′u and thus u ∈ IA(w) = K2 which is a

contradiction. So the left-hand side is disjoint. The identity map

IdKi : Pc
Ki

(G) → PS(G)

for all i ∈ {1, . . . , s} induces the desired map (2.2) which is clearly bijective. In order to
show the second part, we first note that the map is well defined. If z ∈ IA(ϕK (w)) but
z /∈ NG(K ), then we would also have z ∈ IA(w) = K . Hence z ∈ NG[K ]. The map is
bijective because the inverse map is simply given by multiplication with

∏
y∈K y. �

2.6. The inversion lemma from heap theory [13, Proposition 5.3] states that

I (G − S, x)
I (G, x)

=
∑

w=v1···vr ∈P∅
S (G)

xv1 · · · xvr , S ⊆ V (G).

Using the inversion lemma, one can derive certain well-known identities of independence
polynomials and extend them to the multi-variate version. For example, Lemma 2.5 simply
implies that (keeping the same notation)

I (G − S, x) − I (G, x) =
s∑

i=1

(
∏

v∈Ki

xv) I (G − NG[Ki ], x) (2.3)

which is known as the fundamental identity if S is singleton. The importance of the identity
can be seen, for example, in [6] where the authors proved that independence polynomials
of claw free graphs are real-rooted by using (2.3) when S is a clique. The single variable
version of the above identity is the main result of [10].

3. Weight preserving bijection and Godsil’s identity

3.1. Here we recall the construction of a rooted tree associated with (G, u), where u ∈
V (G), which is important in Godsil type identity (originally it is stated for the matching
polynomial; see [8] and also [3]) which relates the independence polynomial of G to that of
the tree. The constructed tree is called a stable-path tree of G. For more details, we refer the
reader to [3] and for an example, see Fig. 1. Let V (G) = {1, . . . , n} be an enumeration of
the vertices of G and let NG(u) = {u1 < · · · < ud}, where u ∈ V (G) and d := dG(u). For
each vertex u ∈ V (G), we will recursively associate a rooted tree (TG, u′) and a surjective
graph homomorphism

�G : V (TG) → V (G), u′ → u

as follows: If d = 0, then G is a single vertex and we set TG = {u′} as the tree with one
vertex u′. If d ≥ 1, we letGi be the connected component ofG[V (G)\{u, u1, u2, . . . , ui−1}]
containing ui and we take the induced total ordering on V (Gi ) that comes from V (G). Now
we have by induction the family of rooted trees (TGi , u′

i ) and the graph homomorphisms

�Gi : V (TGi ) → V (Gi ), u′
i → ui .

Finally we take the disjoint union of rooted trees (TGi , u′
i ) and a new vertex u′, and join the

vertex u′ with the vertices u′
i , 1 ≤ i ≤ d. Clearly the graph (TG, u′) obtained in this way
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Figure 1. A graph with its stable-path tree. (a) A graph G with labeled vertices and
(b) the graph TG,1.

is a rooted tree. Define the map �G : V (TG) → V (G) by �G(u′) = u and �G(v) = �Gi (v)

if v ∈ V (TGi ). This is clearly a surjective graph homomorphism and the map �G induces
a partial ordering on V (TG) as follows: for v1, v2 ∈ V (TG), we have

v1 ≥ v2 ⇐⇒ �G(v1) ≥ �G(v2).

We extend this partial order to a total ordering on V (TG). The extension of �G to C(TG) is
again denoted as �G .

3.2. We freely use the notations that were developed in the earlier sections. We now state
and prove the following result.

Theorem 1. Let G be a finite, simple and connected graph. Then there exists a bijection
ϕG : P∅

u (G) → P∅
u′(TG) such that |ϕG(w)| = |w| and

P∅
u (G) P∅

u′(TG)

C∅(G) C∅(TG)

ϕG

πG πTG

�G

is a commutative diagram.

Proof. We recursively construct the map ϕG and its inverse ψG . If |V (G)| = 1, then
we set ϕG(u) = u′ and ψG(u′) = u. So assume that |V (G)| > 1 and let ϕH be the
required map for all finite, connected graphs with |V (H)| < |V (G)|. We first consider
the case w ∈ Pu(G) with u(w) = 1 and recall that we have the nbd-decomposition
w = w1 · · ·wdu, by Proposition 2.4 where we abbreviate d = d(u,w) in the rest of the
proof. From the conditions (ii) and (iii) of Proposition 2.4, it is clear that wi ∈ P∅

ui
(Gi ) for

all 1 ≤ i ≤ d. Now since |V (Gi )| < |V (G)|, we obtain by induction a family of bijective
maps ϕGi : P∅

ui
(Gi ) → P∅

u′
i
(TGi ) satisfying the required properties for all 1 ≤ i ≤ d. We

define

ϕG(w) = ϕG1(w1)ϕG2(w2) · · · ϕGd (wd)u′ (3.1)
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Since the decompositionw = w1 · · ·wdu is unique, the above map is well-defined. Clearly
the map ϕG preserves the nbd-decomposition, i.e., the decomposition in (3.1) is the nbd-
decomposition of ϕG(w).

Now we extend this map using the ia-decomposition of w ∈ Pu(G) with u(w) > 1. We
have w = w1 · · ·wu(w) satisfying wi ∈ Pu(G) and u(wi ) = 1 for all 1 ≤ i ≤ u(w). We
extend ϕG as follows:

ϕG(w) = ϕG(w1)ϕG(w2) · · · ϕG(wu(w)).

Again ϕG is well-defined by the uniqueness of the decomposition and ϕG preserves the ia-
decomposition. The fact that |ϕG(w)| = |w| holds and that the above diagram commutes
follows from the fact that �G, πG, πTG are all homomorphisms and the maps ϕGi also
satisfy these properties. So it remains to construct the inverse map.

In a similar way, we now define the inverse map ψG using the maps ψGi = ϕ−1
Gi

. Let
w′ ∈ Pu′(TG) be such that u′(w′) = 1. Again we have the nbd-decomposition w′ =
w′

1 · · ·w′
d(u′,w′)u

′. We define

ψG(w′) = ψG1(w
′
1)ψG2(w

′
2) · · · ψGd(u′,w′) (w

′
d(u′,w′))u.

As before this is a well-defined map and preserves the nbd-decomposition. Using this, it
is easy to see that ϕG ◦ ψG(w) = w and ψG ◦ ϕG(w′) = w′ for w ∈ Pu(G),w′ ∈ Pu′(TG)

with u(w) = u′(w′) = 1.
If w′ ∈ Pu′(TG) with u′(w′) > 1, we extend the map using the ia-decomposition of

w′ = w′
1 · · ·w′

u′(w′), namely, we set

ψG(w′) = ψG(w′
1) · · · ψG(w′

u′(w′)). (3.2)

As before, this is a well-defined map and preserves the ia-decomposition. Again we have
ϕG ◦ ψG = IdPu′ (TG) and ψG ◦ ϕG = IdPu(G), proving that ϕG is a bijection. �

3.3. The observation in Section 2.6 together with Theorem 1 immediately imply the multi-
variate Godsil identity

I (G − u, x)
I (G, x)

= �G(I (TG − u′, x))
�G(I (TG, x))

.

We refer also to [11] for different generalizations of this identity.

4. Bipartite graphs and positive sum identities

4.1. Motivated by the Christoffel–Darboux type identities for the independence polynomial
obtained in [2], we would like to achieve a similar type identity or a refined version of it
without the alternating sign and in a multi-variate version. Our approach will be the same
by observing the underlying indexing sets.

Let u, v be two distinct vertices of G. Given a pair (wu,w′v) ∈ Pu(G) × Pv(G) and a
shortest path p = v1v2 · · · vk connecting u = v1 with v = vk , we define a bipartite graph
H whose vertices are given by H = H1 ∪ H2, where

H1 = IA(w · v2 · v4 · · · ), H2 = IA(w′ · v1 · v3 · · · ).
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Note that v ∈ H1 and u ∈ H2 if k is even and u, v ∈ H2 otherwise. We consider the
map

Pu(G) × Pv(G) →
⊔̇

H
P∅

Z1(H)
(G) × P∅

Z2(H)
(G) (4.1)

(wu,w′v) →
(
w · v2 · v4 · · ·∏

y∈H1
y

,
w′ · v1 · v3 · · ·∏

y∈H2
y

)
,

where the disjoint union runs over all connected bipartite subgraphs H of G containing the
path p and satisfying

H1\{v2, v4, . . . } ⊆ NG[u], H2\{v1, v3, . . . } ⊆ NG[v],
Z1(H) = NG[H1\{v2, v4, . . . }] ∪ (NG[H1] ∩ NG[u]),
Z2(H) = NG[H2\{v1, v3, . . . }] ∪ (NG[H2] ∩ NG[v]).

(4.2)

PROPOSITION

The map defined in (4.1) is a bijection.

Proof. We first show that the map is well-defined. Set w′ = w·v2·v4···∏
z∈H1

z , then we have

w · v2 · v4 · · · = w′ ∏

z∈H1

z and w = w′ ∏

z∈H1\{v2,v4,··· }
z.

Assume that a letter y is in the initial alphabet of the word w′ which we assume to be
non-empty. Suppose y ∈ NG[H1\{v2, v4, · · · }], then we have y ∈ Z1(H). Otherwise y /∈
NG[H1\{v2, v4, · · · }] which implies y ∈ IA(w), hence y ∈ NG[u]. Suppose y ∈ NG(H1),
then we have y ∈ Z1(H). Otherwise y /∈ NG(H1), then y ∈ IA(w · v2 · v4 · · · ) = H1.
Again in this case we have y ∈ Z1(H). Similar calculation shows that the initial alphabet
of the second component lies in Z2(H). This shows that the map is well-defined. For
bijectivity, we construct the inverse map.

Given a bipartite connected graph H containing p (say v1, v3, · · · ∈ H2) and satisfying
(4.2), we define

P∅
Z1(H)

(G) × P∅
Z2(H)

(G) → Pu(G) × Pv(G)

(w̃, w̃′) →
⎛

⎝w̃
∏

y∈H1\{v2,v4,... }
y u, w̃′ ∏

y∈H2\{v1,v3,... }
y v

⎞

⎠ . (4.3)

From (4.2) and the definition of Zi (H), i = 1, 2, we know that the above map is well
defined. This map induces the inverse of (4.1) since

IA(w̃
∏

y∈H1

y) = H1, IA(w̃′ ∏

y∈H2

y) = H2.

�
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Figure 2. Path graph P4.

Figure 3. Connected bipartite subgraphs of P4 containing 2 and 3 for (a) H1, (b) H2,
(c) H3 and (d) H4.

4.2. As an immediate consequence of Proposition 4.1, we obtain the following identity:

(
I (G − u, x)

I (G, x)
− 1

) (
I (G − v, y)

I (G, y)
− 1

)

=
∑

H

∏

w∈H1\{v2,v4,... }
w′∈H2\{v1,v3,... }

xw yw′ xu yv

(
I (G − Z1(H), x)

I (G, x)

) (
I (G − Z2(H), y)

I (G, y)

)
,

(4.4)

where the sum runs over all connected bipartite subgraphs H of G containing the path
p and satisfying (4.2) (by convention, we denote always by H2 the part which contains
v1, v3, . . . ).

Remark. If there is an edge between u and v, then the left-hand side of the above identity
becomes (after evaluating x = y)

I (G − u, x)
I (G, x)

I (G − v, x)
I (G, x)

− I (G − {u, v}, x)
I (G, x)

.

This part also appeared, for example, in Gutman’s identity for trees (see [9]) and for general
graphs in [2].

4.3. We will now see some examples that illustrate our results.

Example. Let us consider the path graph P4 (see Fig. 2) and take u = 2 and v = 3. The
connected bipartite subgraphs of P4 containing u, v are given in Fig. 3.

In this case, we can rewrite equation (4.4) as follows:

(I (G − u, x) − I (G, x)) (I (G − v, y) − I (G, y))

=
∑

H

∏

w∈H1
w′∈H2

xw yw′ I (G − Z1(H), x)I (G − Z2(H), y). (4.5)

It is easy to see that

I (G, x) = 1 − x1 − x2 − x3 − x4 + x1x3 + x1x4 + x2x4

I (G − u, x) = 1 − x1 − x3 − x4 + x1x3 + x1x4 and

I (G − v, x) = 1 − y1 − y2 − y4 + y1 y4 + y2 y4.
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This gives

(I (G − u, x) − I (G, x))(I (G − v, y) − I (G, y)) = x2 y3(1 − x4)(1 − y1).

On the other hand, we have the parts arising from the bipartite parts which we list now:

(a) In this case, we have

H1
1 = {3}, H1

2 = {2}, Z1(H1) = {2, 3} = Z2(H1)

and

I (G − {2, 3}, x) = 1 − x1 − x4 + x1x4.

(b) In this case, we have

H2
1 = {1, 3}, H2

2 = {2}, Z1(H2) = {1, 2, 3}, Z2(H2) = {2, 3}
and

I (G − {1, 2, 3}, x) = 1 − x4, I (G − {2, 3}, y) = 1 − y1 − y4 + y1 y4.

(c) In this case, we have

H3
1 = {3}, H3

2 = {2, 4}, Z1(H3) = {2, 3}, Z2(H3) = {2, 3, 4}
and

I (G − {2, 3}, x) = 1 − x1 − x4 + x1x4, I (G − {2, 3, 4}, y) = 1 − y1.

(d) In this case, we have

H4
1 = {1, 3}, H4

2 = {2, 4}, Z1(H4) = {1, 2, 3}, Z2(H4) = {2, 3, 4}
and

I (G − {1, 2, 3}, x) = 1 − x4, I (G − {2, 3, 4}, y) = 1 − y1.

If we simplify the RHS of equation (4.5) becomes x2 y3(1 − x4)(1 − y1) which is same as
the LHS of equation (4.5).

Example. Let us consider the path graph P4 (see Fig. 2) and take u = 1 and v = 4. The
only connected bipartite subgraphs of P4 containing u, v is P4 itself. In this case, we have

I (G − u, x) = 1 − x2 − x3 − x4 + x2x4

and

I (G − v, y) = 1 − y1 − y2 − y3 + y1 y3.

The LHS of equation (4.5) is equal to

x1 y4(1 − x3 − x4)(1 − y1 − y2).

On the other hand, we have H1 = {2, 4}, H2 = {1, 3}, Z1(H) = {1, 2} and Z2(H) = {3, 4}.
This implies that the RHS of equation (4.5) is equal to

x1 y4(1 − x3 − x4)(1 − y1 − y2),

which is same as the LHS of equation (4.5).
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