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Abstract

This paper introduces a two-stage framework designed
to enhance long-tail class incremental learning, enabling
the model to progressively learn new classes, while mitigat-
ing catastrophic forgetting in the context of long-tailed data
distributions. Addressing the challenge posed by the under-
representation of tail classes in long-tail class incremen-
tal learning, our approach achieves classifier alignment by
leveraging global variance as an informative measure and
class prototypes in the second stage. This process effec-
tively captures class properties and eliminates the need for
data balancing or additional layer tuning. Alongside tra-
ditional class incremental learning losses in the first stage,
the proposed approach incorporates mixup classes to learn
robust feature representations, ensuring smoother bound-
aries. The proposed framework can seamlessly integrate
as a module with any class incremental learning method to
effectively handle long-tail class incremental learning sce-
narios. Extensive experimentation on the CIFAR-100 and
ImageNet-Subset datasets validates the approach’s efficacy,
showcasing its superiority over state-of-the-art techniques
across various long-tail CIL settings. Code is available at
https://github.com/JAYATEJAK/GVAlign.

1. Introduction

In the realm of computer vision, the rapid progress of

convolutional neural networks (CNNs) trained on balanced

datasets has led to remarkable advancements [22, 30, 31].

However, real-world scenarios frequently involve large-

scale datasets characterized by imbalanced and long-tailed

distributions [24, 26, 37, 44]. In long-tail distributions, the

categories with a majority of samples are termed as long
classes, while those with fewer samples are termed tail
classes. This inherent data distribution imbalance poses a

significant challenge when training models for computer

vision tasks. Within this context, tail classes encounter

substantial under-representation during the training process,
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Figure 1. The performance of long, tail, and all classes is illus-

trated for two long-tail distributions as proposed in [25]. It is evi-

dent that training the Learnable Weight Scaling (LWS) layer with

cross-entropy (CE) loss leads to a reduction in performance for the

long classes, while simultaneously improving the performance of

the tail classes. In contrast, our proposed approach, which lever-

ages robust features and classifier alignment, exhibits an enhance-

ment in the performance of both long and tail classes, thereby im-

proving the overall all classes performance.

negatively impacting its recognition performance for these

minority categories [44]. Furthermore, the model tends to

exhibit bias towards long classes, due to extensive training

data available for these majority categories.

Moreover, in real-time applications, not all class cate-
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a). Stage 1: Output Feature Representations c). Stage 2: Output Feature Representations
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Figure 2. The leftmost figure ‘a’ illustrates the robust feature representations obtained in stage 1. Once robust representations are acquired,

the global variance is assigned across all prototypes figure ‘b’. Sample feature representations drawn using prototypes and these global

variance are then utilized to align the classifiers in stage 2. The rightmost figure ‘c’ depicts the aligned classifiers achieved after stage 2.

The global variance signifies the data covariance of the base class with the highest number of samples.

gories are concurrently accessible; data becomes available

in a continuous manner, and previous classes data might not

be accessible due to privacy or storage limitations [23]. Ex-

panding our model’s knowledge to encompass this continu-

ously evolving data is of paramount importance. In the ex-

isting literature, the process of incrementally adding these

classes to deep neural networks is referred to as class incre-

mental learning (CIL) [33]. In this context, the addition of

a set of new class information into the model is termed a

task. At the end of each task in CIL, the model is evaluated

on all the classes encountered so far. Typically, the initial

task is trained using the cross-entropy (CE) loss and is often

referred to as the base task, and gradually new classes are

added at each incremental task.

Recently, Liu et al. [25] introduced long-tail distribu-

tions into the domain of class incremental learning (CIL)

and coined the term “long-tail class incremental learning”.

This approach involves the model’s endeavour to progres-

sively learn new classes without succumbing to catastrophic

forgetting of previously learned classes from the long-tailed

data distributions at every task. Liu et al. [25] introduced

a two-stage approach to address the challenges in long-

tail CIL, where at each incremental task, the model learns

through two stages. In the initial stage, they employed con-

ventional incremental learning methods like UCIR [16] or

PODNET [11]. Subsequently, in the second stage, they

fixed the model parameters and trained an additional layer,

the learnable weight scaling (LWS) layer, using a balanced

dataset to address the issues in long-tail CIL.

To better understand the effectiveness of this two-stage

LWS framework, we conducted experiments on two long-

tail distributions as proposed by Liu et al. [25] on the CI-

FAR100 [21] dataset. Here, we take 50 classes from the

CIFAR100 dataset and partitioned it into two categories:

long classes (25 classes) and tail classes (25 classes), based

on the number of samples available. Upon fine-tuning the

model with the LWS layer using CE loss, we observed a re-

duction in performance on the long classes and a concurrent

improvement in performance on the tail classes across both

long-tail scenarios from Figure 1.

Inherent under-representation of tail classes within long-

tail representations often results in misaligned or inad-

equately defined classifier boundaries. Adjusting these

boundaries with balanced data samples can adversely af-

fect the performance of long classes. To tackle this chal-

lenge in the context of class incremental learning (CIL),

we propose a novel two-stage framework, termed GVAlign
(Global Variance-Driven Classifier Alignment). In this

framework, during the second stage, we propose aligning

all classifiers based on global variance and class prototypes,

thus eliminating the need for balanced data (which com-

pels the model to repeatedly encounter the same data for

tail classes) or additional layers. This global variance, as an

informative measure, effectively captures class properties

and it is intuitive to align the classifiers based on this infor-

mation. Importantly, incorporating this approach not only

preserves performance on long classes but also enhances

performance on tail classes. Figure 2 illustrates the clas-

sifier alignment of our proposed approach. Achieving such

alignment of the classifier through global variance requires

the presence of robust features and distinct class separations

marked by smoother boundaries. To meet this prerequisite,

we introduce the incorporation of mixup classes during the

initial stage. This strategic addition contributes to the culti-
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vation of robust feature representations, ultimately enhanc-

ing the approach’s effectiveness.

Figure 1 demonstrates that the proposed classifier align-

ment strategy, coupled with robust feature learning, en-

hances the performance of tail classes without reducing the

performance of long classes. This implies an improvement

in the overall performance across all classes. The paper

makes the following contributions:

• We introduce a novel two-stage approach, termed

GVAlign (Global Variance-Driven Classifier

Alignment) encompassing robust feature learning

in the first stage and classifier alignment in the second

stage using global variance as a informative measure

to address the issues in long-tail class incremental

learning.

• Extensive experiments conducted on datasets CIFAR-

100 and ImageNet-Subset demonstrate the effective-

ness of our proposed approach over state-of-the-art

methods across various long-tail CIL settings.

2. Related works
This section summarises the works related to incremen-

tal and long-tail learning.

2.1. Class Incremental Learning

Class Incremental Learning (CIL) aims to progressively

acquire knowledge about new classes without relying on

task-specific information. However, learning from newly

annotated class data with abundant samples presents the

challenge of catastrophic forgetting, where the model for-

gets the representations of old class data. The CIL ap-

proaches in the literature can be categorized into three

groups based on their strategies to mitigate the problem

of catastrophic forgetting: 1) Regularization-based meth-

ods [2, 20, 32, 41] incorporate penalty-based loss terms at

each incremental step on the learnable model weights ac-

cording to their importance. 2) Distillation-based Recent

CIL approaches adopt distillation-based methods, using

teacher-student distillation loss [14] to mitigate catastrophic

forgetting. In Learning without Forgetting (LwF) [23], dis-

tillation loss is used alongside cross-entropy. Similarly,

iCaRL [33] combines distillation loss with older-task ex-

emplars selected through herding. Methods like BiC [38]

introduce new-class bias correction layers, and LwM [10]

introduce information-preserving penalties or attention loss

to counter model bias towards new classes. UCIR [16]

combines distillation loss with cosine normalization and

inter-class separation constraint, while PODNET [11] pro-

poses polled distillation loss to address catastrophic for-

getting. Some recent works [40, 46, 47] focus on non-

exemplar-based methods without access to old class exem-

plars. 3) Architecture-based methods [1, 18, 28, 29, 34, 39]

These methods modify the network’s width and depth at

each incremental step. Network expansion is often pro-

posed to learn new tasks, but this can be computationally

intensive. An alternative approach is to select sub-networks

from the entire architecture using masks [1, 28, 29], storing

the learned masks in memory. However, these methods re-

quire task-specific labels at inference time, which may not

always be available in practical scenarios.

In this work, both UCIR [16] and PODNET [11] serve as

stage 1 baselines in the context of Long-Tail CIL. However,

the proposed approach can also function as a module within

other CIL methods.

2.2. Long-Tail Learning

The long-tailed learning problem has garnered exten-

sive attention due to the prevalence of data imbalance is-

sues in real-world scenarios. To tackle this challenge, vari-

ous approaches have been explored to mitigate the disparity

between the distribution of majority and minority classes.

Some of the prominent techniques are: 1) Data Process-
ing Methods [4, 6, 7, 12, 13] such as over-sampling to am-

plify tail data, under-sampling to reduce head data, and

data Augmentation to extend tail data. 2) Class-level Re-
weighting [8,15,17,35] involves assigning different weights

to classes to prioritize learning from the tail classes. An-

other approach, 3) Decoupling [19, 43, 45], also referred to

as a two-stage approach, involves separating representation

learning and classifier learning into distinct stages to en-

hance performance on tail classes.

2.3. Long-Tail Incremental Learning

Recently, Liu et al. [25] introduced long-tail distribu-

tions into class incremental learning. They drew inspira-

tion from the decoupling strategy’s learnable weight scaling

(LWS) approach [19], wherein an additional two-stage pro-

cess involves training added layers using a balanced data-

loader. This strategy necessitates careful design of learning

approaches to effectively learn these supplementary weights

[19].

In our proposed GVAlign approach, we also employ a

two-stage strategy. However, distinct from the aforemen-

tioned method, we align the classifiers using prototypes and

covariance without the need for a balanced dataloader or ad-

ditional layers. Our strategy is more generalised due to the

exploration of the feature space through sampled data points

using global variance as informative measure, resulting in

improved alignment of the classifiers without compromis-

ing on long classes’ performance. Next, we will discuss the

proposed methodology.

3. Problem Definition and Motivation
In this section, we begin by providing a clear expla-

nation of the notations used in this paper. Subsequently,
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Figure 3. In stage 1, the model is trained using incremental learning approaches’ loss Linc, supplemented by the mixup loss Lmix, to

obtain robust features. In stage 2, the feature extractor remains fixed, and only the classifiers are fine-tuned using the global variance and

prototypes of the classes using classifier alignment loss Lca.

we delve into our two-stage training approach. In class

incremental learning, the model is sequentially trained

on a total of T tasks, with its data stream denoted as

{D(0),D(1), ...,D(T )}, and the corresponding classes set

represented by {C(0), C(1), ..., C(T )}. One assumption in

CIL is there are no common classes across different tasks

i.e. C(k) ∩ C(l) = ∅ when k �= l. At each task t, the

model has access to data D(t) = {xi, yi}n
(t)

i=1 , where n(t)

represents the number of samples in D(t), and yi ∈ C(t).

In CIL, the number of samples for each class is the same

and equal to n(t)

|C(t)| ; however, in the case of long-tail CIL,

the data distribution of D(t) adheres to a long-tail distribu-

tion. In both CIL and long-tail CIL, during training task t,
alongside D(t), the model has access to an exemplar bank E
comprising a limited number of samples from earlier classes

C(0:t−1) and the end goal after task t is to classify all the

classes seen so far i.e. C(0:t). The addition of exemplar

bank E creates more imbalance in training data and makes

long-tail CIL more challenging.

The model that learns sequentially is denoted as Θ =
{Fθ, ψ}, where Fθ represents the feature extractor with pa-

rameters θ, and classifiers are represented by ψ. While

the number of parameters in the feature extractor remains

constant, the classifier layer parameters are incrementally

added for each new task to accommodate novel classes.

During the training task t, new classifiers ψ(t) are intro-

duced alongside existing classifiers ψ(0:t−1) to classify all

the classes seen so far. By using the training with data

{D(t) ∪ E}, at the end of task t, the trained model Θ(t) =
{Fθ, ψ

(0:t)} is able to classify all classes from C(0:t).

4. Proposed GVAlign Framework

In traditional long-tail learning, two-stage methods have

shown promising results [19, 43, 45]. These approaches

decouple the feature extraction in the first stage and clas-

sifier tuning in the second stage using balanced sampling

techniques [19]. However, the direct application of such

methodologies to the context of long-tail CIL encounters

challenges posed by catastrophic forgetting [25]. To tackle

the issues in long-tail CIL, we introduce a novel approach

that entails learning robust feature representations in the

first stage and refining classifier alignment in the second

stage to mitigate the class imbalance problem. In the fol-

lowing sections, we elaborate on our stage 1 and stage 2

training procedures. Figure 3 shows the overall idea of our

proposed two-stage approach.

4.1. Stage 1: Robust Feature Learning

Inspired by [25], we have incorporated conventional CIL

techniques, such as UCIR [16] and PODNET [11], into

stage 1 to address class incremental learning. However, it’s

essential to note that our approach is not limited to these

specific methods; we are adaptable to any CIL technique for

stage 1. In each incremental task, the loss computed by CIL

methods is denoted as Linc. As mentioned earlier, robust

feature space representations are crucial for effectively tack-

ling long-tail CIL challenges. To bolster the robustness of

features at this stage, in conjunction with Linc, we propose

the utilization of mixup loss [42]. This implicitly accounts

for the incremental stages and complements the classifier

tuning stage.

Suppose we have (xm, ym) and (xn, yn) from D(t),

where xm and xn represent images and ym and yn are one-
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hot labels. We formulate the mixup samples and labels as

follows:

x̃ = λxm + (1− λ)xn (1)

ỹ = λym + (1− λ)yn (2)

Here, λ is drawn from a Beta distribution, i.e., λ ∼
Beta(1, 1). The mixup loss is then calculated as Lmix =

LCE(x̃, ỹ), where LCE(x, y) = −∑K
k=1 yk log (px)k is

the cross-entropy loss calculated for for K classes. px =
Θ(t)(x) represents softmax outputs of the model. The total

loss for stage 1 is

Lstage1 = Linc + Lmix (3)

4.2. Stage 2: Global Variance-Driven Classifier
Alignment

In the second stage, we use the class prototypes and the

estimated global variance to perform the classifier align-

ment as described below.

Construction of Proto Bank: Following the completion of

stage 1 training, we proceed to compute a comprehensive

class prototype bank denoted as P . The objective of this

prototype bank is to facilitate the alignment of classifiers

in stage 2 and constructed using prototypes of all classes

seen so far. Specifically, for each class k, the corresponding

class prototype Pk is calculated using the following equa-

tion:

Pk =
1

Nk

∑
{x,y}∈(D(t)∪E)

I(y=k) Fθ(x) (4)

where Nk represents the number of samples in kth class,

and the indicator variable I(y=k) equals 1 if the sample

belongs to the kth class (i.e. y = k).

Estimation of Global Variance: In scenarios with

long-tail data distributions, relying on tail classes for

variance calculation can result in an inaccurate variance

estimate that does not accurately capture the central ten-

dencies of the class. To address this, the proposed approach

uses the class with the largest number of samples during

the base task (t = 0) for global variance estimation. By

aligning all classifiers based on this reliable estimate, we

significantly enhance the model’s capacity to generalize

and discriminate across diverse class distributions. The

global variance ΣG is computed as follows

ΣG =
1

NG − 1

NG∑
i=1

(Xi − X̄)(Xi − X̄)T (5)

where X is the matrix that contains data points from the

class with the highest number of samples and X̄ is the mean

Algorithm 1: Proposed GVAlign Framework for

Long-Tail Class Incremental Learning

Input: Θ = {Fθ, ψ} ← Model;

{D(0),D(1), ..,D(T )} ←Data stream;

e1← No.of epochs in stage 1;

e2← No.of epochs in stage 2;

E = {} ← Empty exemplar buffer;

for t ← 0 to T do
D(t) = {xi, yi}Nt

i=1;

for e ← 1 to e1 do
B = SampleMiniBatch(D(t) ∪ E);
O(0:t) = ψ(0:t)(Fθ(B));
Linc = IncrementalLoss(B,O(0:t));
Lmix = MixUpLoss(B);
Θ ← UpdateParameters(Linc + Lmix);

P ← CalculatePrototypes(D(t) ∪ E);
if t=0 then

ΣG = GlobalVaraince(D(0));

for e ← 1 to e2 do
P ′ ← SampleProtoFromGlobalVar(P,ΣG);

O(0:t) = ψ(0:t)(P ′);
Lca = ClassifierAlignLoss(O(0:t));

ψ(0:t) ← UpdateParameters(Lca);

E ← UpdateExemplars(D(t));

return Θ;

vector of those samples. NG is the number of samples in

that class.

Classifier Alignment: This stage 2 training involves lever-

aging the computed global variance ΣG as an informative

measure to explore the feature space around the prototypes

P of all classes. This exploration aids in aligning the

classifiers effectively, facilitating improved classification

performance. At this stage only classifiers are tuned using

pseudo-augmented samples P ′ ∼ N (P,ΣG) generated

from normal distribution by employing prototypes as

means and the global variance as covariance information.

The classifier alignment loss calculated during this stage as

follows

Lca = −
∑

q ∈ P′

K∑
k=1

ŷk log(ψ
(0:t)(q))k (6)

where ŷ represents the prototype one-hot label and K rep-

resents the all classes seen so far. The exemplar set E is up-

dated using herding [33] technique. which is a commonly

employed technique in CIL approaches to store exemplars.

The complete training procedure is summarized in Algo-

rithm 1.
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Long-tail distribution type → Ordered long-tail Shuffled long-tail

Method ↓ CIFAR-100 ImageNet-Subset∗ CIFAR-100 ImageNet-Subset∗

5 tasks 10 tasks 5 tasks 10 tasks 5 tasks 10 tasks 5 tasks 10 tasks

UCIR 42.69 42.15 56.45 55.44 35.09 34.59 46.45 45.31

UCIR + LWS (ECCV 2022) 45.88 45.73 57.22 55.41 39.40 39.00 49.42 47.96
UCIR + GVAlign (Ours) 47.13 46.82 58.08 56.68 42.80 41.64 50.69 47.58

PODNET 44.07 43.96 59.16 57.74 36.64 34.84 47.61 47.85

PODNET + LWS (ECCV 2022) 44.38 44.35 60.12 59.09 36.37 37.03 49.75 49.51

PODNET + GVAlign (Ours) 48.41 47.71 61.06 60.08 42.72 41.61 52.01 50.81

Table 1. Experimental results on long-tail class incremental learning (∗ signifies that we have rerun all experiments on the Imagnet-Subset

100 dataset. Comprehensive dataset details and data can be found in the GitHub repository for reproducibility).

5. Experiments
In this section, we discuss the datasets used, implemen-

tation details, and the results obtained in both long-tail and

conventional CIL settings.

5.1. Datasets and Evaluation Protocol

To evaluate the efficacy of our proposed framework,

we conducted experiments using two benchmark datasets

specifically designed for long-tail CIL [25]: CIFAR100 and

the ImageNet Subset. For a comprehensive and fair compar-

ison, we adopted the data task splits recommended in [25],

utilizing 50 classes for the base task. Then in the 5-task

configuration (T=5), we progressively introduced 10 new

classes during each incremental task i.e. (50−10−···−10).
Similarly, in the 10-task setup (T=10), we incorporated 5

new classes in each incremental task i.e. (50− 5−· · ·− 5).
Our approach followed the same long-tail distributions as

proposed in [25].

CIFAR-100: This dataset comprises 50,000 training im-

ages and 10,000 test images, each image consisting of

32x32 pixels. These images are distributed across 100

classes.

ImageNet Subset: The ImageNet Subset consists of 100

classes, sampled from the larger ImageNet dataset [22]. All

images were resized to 256x256 pixels and subsequently

randomly cropped to 224x224 pixels during the training

phase. We evaluated all methods on this dataset to ensure

reliable and accurate evaluation.

We employ the widely recognized CIL evaluation metric,

average incremental accuracy [27, 33]. Here, let t represent

the task ID, where t ∈ 0, 1, ..., T . We define Acct0:n as the

model’s accuracy on the test data of all tasks from 0 to n af-

ter learning task t, where n ≤ t. Consequently, upon com-

pletion of task T , the average incremental accuracy is com-

puted as 1
T

∑T
t=0 Acct0:t. We utilized the same model archi-

tectures as in [25] to ensure a fair comparison. Specifically,

ResNet-32 was employed for CIFAR-100, while ResNet-18

was chosen for the ImageNet Subset dataset.

Our training protocol involved initiating the learning rate

at 0.1 and subsequently reducing it by a factor of 10 after

the 250th, 350th, and 450th epochs, resulting in a total 500
epochs for CIFAR-100 training. As for the ImageNet Sub-

set, the learning rate was set to 0.1 at the start and reduced

by a factor of 10 after the 30th and 60th epochs, resulting

in a total of 90 epochs for training. Throughout all experi-

ments, a fixed batch size of 128 was used. During 2-stage

classifier alignment training, we tuned only classifier layers

with a learning rate of 0.1 for 100 epochs. We considered a

standard of maximum 20 exemplars for each class to ensure

a fair comparison with other methods. We used NVIDIA

RTX A5000 24GB card to run all our experiments.

5.2. Results on Long-Tail CIL

First, we report the results on the long-tailed CIL task,

which is the main focus of this work. We integrate the

proposed GVAlign framework with UCIR and PODNET as

in [25] and compare with the state-of-the-art approach [25],

which is the only work which addresses the challenging

long-tailed CIL to the best of our knowledge. We observe

from Table 1 that across both the datasets (CIFAR100 and

ImageNet Subset) and different task setups (T=5 and T=10),

our approach consistently achieves higher average incre-

mental accuracy over the state-of-art long tail CIL method.

This improvement is consistent for both ordered and shuf-

fled long-tail distributions. Specifically, when combined

with the UCIR approach on shuffled long-tail distributions,

our method boosts CIFAR100 accuracy by 3.4% and Ima-

geNet Subset accuracy by 1.2% in the 5-task scenario. On

ordered long-tail distributions, we see a 1.25% increase for

CIFAR100 and a 0.86% increase for ImageNet Subset in the

same 5-task scenario. Notably, these gains are even more

significant when PODNET serves as the baseline for CIL.

With shuffled long-tail distributions, our approach achieves

a remarkable 6.35% improvement on CIFAR100 and a sub-

stantial 2.26% increase on ImageNet Subset in the 5-task

context. Similar improvements are seen in ordered long-tail

scenarios, with gains of 4.03% on CIFAR100 and 0.94% on

ImageNet Subset.
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Method
CIFAR 100 ImageNet-Subset∗

5 tasks 10 tasks 5 tasks 10 tasks

UCIR 61.15 58.74 69.11 65.15

UCIR + LWS (ECCV 2022) 63.48 60.57 68.83 66.47

UCIR + GVAlign (Ours) 64.11 61.23 70.05 66.60
PODNET 63.15 61.16 67.92 62.39

PODNET + LWS (ECCV 2022) 64.58 62.63 69.43 62.12

PODNET + GVAlign (Ours) 65.73 63.72 68.85 62.42

Table 2. Experimental results on traditional class incremental

learning (∗ signifies that we have rerun all experiments on the

Imagnet-Subset 100 dataset).

5.3. Results on Conventional CIL

Conventional CIL is also inherently imbalanced, since

during the incremental stages, there might be very few ex-

emplars from the earlier classes available along with large

number of examples of the new classes. Thus, it is impor-

tant to also evaluate the effectiveness of the approaches de-

veloped for long-tailed CIL setting for the conventional CIL

scenario. Table 2 reports the average incremental accuracy

achieved by the proposed GVAlign framework in conven-

tional CIL setups. We observe that the proposed approach

doesn’t just excel in long-tail distributions; it also improves

conventional CIL.

6. Analysis & Ablation Studies
In this section, we delve into the analysis of our proposed

approach. Firstly, we analyze the alignment of classifiers

using Voronoi plots [3]. Next, we examine the impact of the

number of exemplars in the context of long-tail CIL. No-

tably, our approach consistently outperforms state-of-the-

art techniques in various long-tail CIL scenarios, irrespec-

tive of the number of exemplars utilized. Subsequently, we

explore the benefits of our approach in a conventional set-

ting where all new classes contain equal samples. We ob-

serve that due to robust learning and feature space explo-

ration, our method enhances the separation between seman-

tically similar classes. This improvement alleviates poten-

tial confusion between these classes, ultimately leading to

enhanced performance.

6.1. Analyzing Classifiers

Our approach’s key contribution lies in effectively align-

ing classifiers during incremental learning for long-tail data

distributions. To highlight the significance of this align-

ment, we utilize Voronoi plots to illustrate the learning of

new classes during task 1 in the context of shuffled long-tail

CIL. Voronoi plots visually illustrate feature space regions

assigned to different classes, providing insights into clas-

sifier behavior. We present visualizations for two different

settings: T = 5, where 10 new classes are introduced, and

T = 10, where 5 new classes are added in Figure 4. The

alignment of classifiers results in a tangible enhancement in

(a) Scenario T = 5: Addition of 10 new classes (before alignment

33.91%, after alignment 38.88%).

(b) Scenario T = 10: Addition of 5 new classes (before alignment

43.61%, after alignment 50.01%).

Figure 4. Voronoi class boundaries in the shuffled long-tail CIL

scenario after task 1. The symbols ‘×’ indicate the initial classi-

fiers and ‘�’ represents the aligned classifiers. Class boundaries

before alignment are marked by and after alignment marked

by .

accuracy for the newly introduced classes. Specifically, in

the T=5 scenario, the classification accuracy on task1 im-

proves from 33.91% to 38.88%. Similarly, in the T=10 sce-

nario, the accuracy rises from 43.61% to 50.01%.

6.2. Effect of Number of Exemplars

To understand the effect of the number of exemplars,

we conduct extensive experiments with exemplar counts of

{5, 10, 15, 20}, as depicted in Figure 5. Across both shuf-

fled and ordered long-tail scenarios, our approach consis-

tently outperforms existing long-tail CIL methods. Notably,

it also exhibits strong performance in conventional CIL set-

tings. As the number of exemplars increases, our approach’s

ability is even more pronounced due to the precise position

of prototypes in the representation space.
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Figure 5. Illustrates how our proposed approach consistently improves with an increased number of exemplars, benefiting from precise

prototype positioning as the number of exemplars increases.
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Figure 6. Shows the average accuracy of clear and confusing se-

mantic groups.

6.3. Separating Semantic Similar Classes

The difference in performance among different train-

ing classes depends not only upon the characteristics of

the training data (like number of examples per class), but

also on the classes themselves. For example, few classes

maybe semantically very close [9] and thus inherently con-

fusing, which can often lead to reduced performance [5,36],

even with the same number of training data per class. The

proposed framework, though developed primarily for long-

tailed setting, can also seamlessly account for these other

challenges, since it tries to push the classifiers apart in the

second stage. To verify this, we divide the total 50 base

classes into two groups: (i) clear semantic group, where 25

classes are well-separated from the rest, and (ii) confusing

semantic group, where the performance of these 25 classes

is adversely affected due to confusion with other classes.

This grouping is based on the sorting order of individual

class performances. Figure 6 illustrates the average accu-

racy of these two groups. We observe that our proposed ap-

proach significantly improves performance, particularly for

the confusing semantic group, justifying its effectiveness.

6.4. Ablation on Proposed Losses

Table 3 presents an analysis of the individual compo-

nents of our proposed methodology. Clearly, the incorpora-

tion of losses at different stages contributes to the improve-

ment of feature representations and the alignment of classi-

fiers, leading to an enhancement in overall performance.

Distribution type → Ordered long-tail Shuffled long-tail

UCIR Lmix Lca 5 tasks 10 tasks 5 tasks 10 tasks

� � � 42.69 42.15 35.09 34.59

� � � 45.31 44.84 39.11 38.55

� � � 47.13 46.82 42.80 41.64

Table 3. Presents an ablation study showcasing the impact of in-

troducing different losses in our proposed methodology.

Conclusion

In conclusion, this paper presents a significant ad-

vancement in addressing the challenges of long-tail class

incremental learning through a novel two-stage framework.

Our approach excels in both learning new classes progres-

sively and mitigating catastrophic forgetting in the presence

of imbalanced data distributions. By incorporating robust

feature learning in the first stage and harnessing the power

of global variance as an informative measure in the second

stage, we achieve effective classifier alignment without

resorting to data balancing or additional layer tuning.

Extensive experimental validation on various datasets

corroborates the superiority of our approach compared

to SOTA methods in various long-tail class incremental

learning scenarios.
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