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ETAPS Foreword

Welcome to the 27th ETAPS! ETAPS 2024 took place in Luxembourg City, the
beautiful capital of Luxembourg.

ETAPS 2024 is the 27th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference established in 1998,
and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each con-
ference has its own Program Committee (PC) and its own Steering Committee (SC).
The conferences cover various aspects of software systems, ranging from theoretical
computer science to foundations of programming languages, analysis tools, and formal
approaches to software engineering. Organising these conferences in a coherent, highly
synchronized conference programme enables researchers to participate in an exciting
event, having the possibility to meet many colleagues working in different directions in
the field, and to easily attend talks of different conferences. On the weekend before the
main conference, numerous satellite workshops took place that attracted many
researchers from all over the globe.

ETAPS 2024 received 352 submissions in total, 117 of which were accepted,
yielding an overall acceptance rate of 33%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2024 featured the unifying invited speakers Sandrine Blazy (University of
Rennes, France) and Lars Birkedal (Aarhus University, Denmark), and the invited
speakers Ruzica Piskac (Yale University, USA) for TACAS and Jérôme Leroux
(Laboratoire Bordelais de Recherche en Informatique, France) for FoSSaCS. Invited
tutorials were provided by Tamar Sharon (Radboud University, the Netherlands) on
computer ethics and David Monniaux (Verimag, France) on abstract interpretation.

As part of the programme we had the first ETAPS industry day. The goal of this day
was to bring industrial practitioners into the heart of the research community and to
catalyze the interaction between industry and academia. The day was organized by
Nikolai Kosmatov (Thales Research and Technology, France) and Andrzej Wa  sowski
(IT University of Copenhagen, Denmark).

ETAPS 2024 was organized by the SnT - Interdisciplinary Centre for Security,
Reliability and Trust, University of Luxembourg. The University of Luxembourg was
founded in 2003. The university is one of the best and most international young
universities with 6,000 students from 130 countries and 1,500 academics from all over
the globe. The local organisation team consisted of Peter Y.A. Ryan (general chair),
Peter B. Roenne (organisation chair), Maxime Cordy and Renzo Gaston Degiovanni
(workshop chairs), Magali Martin and Isana Nascimento (event manager), Marjan
Skrobot (publicity chair), and Afonso Arriaga (local proceedings chair). This team also



organised the online edition of ETAPS 2021, and now we are happy that they agreed to
also organise a physical edition of ETAPS.

ETAPS 2024 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Marieke Huisman (Twente,
chair), Andrzej Wa  sowski (Copenhagen), Thomas Noll (Aachen), Jan Kofroň (Prague),
Barbara König (Duisburg), Arnd Hartmanns (Twente), Caterina Urban (Inria), Jan
Křetínský (Munich), Elizabeth Polgreen (Edinburgh), and Lenore Zuck (Chicago).

Other members of the steering committee are: Maurice ter Beek (Pisa), Dirk Beyer
(Munich), Artur Boronat (Leicester), Luı  s Caires (Lisboa), Ana Cavalcanti (York),
Ferruccio Damiani (Torino), Bernd Finkbeiner (Saarland), Gordon Fraser (Passau),
Arie Gurfinkel (Waterloo), Reiner Hähnle (Darmstadt), Reiko Heckel (Leicester),
Marijn Heule (Pittsburgh), Joost-Pieter Katoen (Aachen and Twente), Delia Kesner
(Paris), Naoki Kobayashi (Tokyo), Fabrice Kordon (Paris), Laura Kovács (Vienna),
Mark Lawford (Hamilton), Tiziana Margaria (Limerick), Claudio Menghi (Hamilton
and Bergamo), Andrzej Murawski (Oxford), Laure Petrucci (Paris), Peter Y.A. Ryan
(Luxembourg), Don Sannella (Edinburgh), Viktor Vafeiadis (Kaiserslautern), Stepha-
nie Weirich (Pennsylvania), Anton Wijs (Eindhoven), and James Worrell (Oxford).

I would like to take this opportunity to thank all authors, keynote speakers, atten-
dees, organizers of the satellite workshops, and Springer Nature for their support.
ETAPS 2024 was also generously supported by a RESCOM grant from the Luxem-
bourg National Research Foundation (project 18015543). I hope you all enjoyed
ETAPS 2024.

Finally, a big thanks to both Peters, Magali and Isana and their local organization
team for all their enormous efforts to make ETAPS a fantastic event.

April 2024 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President
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Preface

This three-volume proceedings contains the papers presented at the 30th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2024). TACAS 2024 was part of the 27th European Joint Conferences on
Theory and Practice of Software (ETAPS 2024), which was held between April 6–11,
2024, in Luxembourg City, Luxembourg.

TACAS is a forum for researchers, developers and users interested in rigorous tools
and algorithms for the construction and analysis of systems. The conference aims to
bridge the gaps between different communities with this common interest and to
support them in their quest to improve the utility, reliability, flexibility, and efficiency
of tools and algorithms for building systems. TACAS 2024 interleaves and integrates
various disciplines, including formal verification of software and hardware systems,
static analysis, probabilistic programming, program synthesis, concurrency, testing,
simulations, verification of machine learning/autonomous systems, Cyber-Physical
Systems, SAT/SMT solving, automated and interactive theorem proving, and proof
checking.

There were four submission categories for TACAS 2024:

1. Regular research papers identifying and justifying a principled advance to the
theoretical foundations for the construction and analysis of systems.

2. Case study papers describing the application of techniques developed by the
community to a single problem or a set of problems of practical importance,
preferably in a real-world setting.

3. Regular tool papers presenting a novel tool or a new version of an existing tool
built using novel algorithmic and engineering techniques.

4. Tool demonstration papers demonstrating a new tool or application of an existing
tool on a significant case-study.

Regular research, case study, and regular tool paper submissions were restricted to
16 pages, whereas tool demonstration papers to 6 pages, excluding the bibliography
and appendices.

TACAS 2024 received 159 submissions, consisting of 114 regular research papers,
10 case study papers, 28 regular tool papers, and 7 tool demonstration papers. Each
submission was assigned for review to at least three Program Committee (PC) mem-
bers, who made use of subreviewers. Regular research papers were reviewed in double-
blind mode, whereas case study, regular tool, and tool-demonstration papers were
reviewed using a single-blind reviewing process.

Similarly to previous years, it was possible to submit an artifact alongside a paper.
Artifact submission was mandatory for regular tool and tool demo papers, and vol-
untary for regular research and case study papers at TACAS 2024. An artifact might
consist of a tool, models, proofs, or other data required for validation of the results
of the paper. The Artifact Evaluation Committee (AEC) was tasked with reviewing the



artifacts, based on their documentation, ease of use, and, most importantly, whether the
results presented in the corresponding paper could be accurately reproduced. Most
of the evaluation was carried out using a standardized virtual machine to ensure
consistency of the results, except for those artifacts that had special hardware or
software requirements. Artifact evaluation at TACAS 2024 consisted of two rounds.
The first round implemented the mandatory artifact evaluation of regular tool and tool
demonstration papers; this round was carried out in parallel with the work of the PC.
The judgment of the AEC was communicated to the PC and weighed in their dis-
cussion. The second round of artifact evaluation carried out the voluntary artifact
evaluation of regular research and case study papers, and took place after paper
acceptance notifications were sent out; authors of accepted regular research and case
study papers were able to update and revise their respective artifacts before artifact
evaluation started. In both rounds, the AEC provided 3 reviews per artifact and
anonymously communicated with the authors to resolve apparent technical issues. In
total, 104 artifacts were submitted and the AEC evaluated a total of 62 artifacts
regarding their availability, functionality, and/or reusability. Papers with an artifact that
were successfully evaluated include one or more badges on the first page, certifying the
respective properties.

Selected papers were requested to provide a rebuttal in case a PC review gave rise to
questions. Using the review reports and rebuttals, the PC had a thorough discussion on
each paper. For regular tool and tool demonstration papers, the PC also discussed the
corresponding artifact, using the AEC recommendations. As a result, the PC decided to
accept 53 papers, out of which there were 35 regular research papers, 11 regular tool
papers, 3 case study papers, and 4 tool demonstration papers. This corresponds to an
overall acceptance rate of 33%. Each accepted paper at TACAS 2024 had either all
positive reviews and/or a “championing” PC member who argued in favor of accepting
the paper. All accepted papers at TACAS 2024 had a positive average review score.

TACAS 2024 also hosted SV-COMP 2024, the 13th International Competition on
Software Verification. This event to compare tools evaluated 59 software systems for
automatic verification of C and Java programs and 17 software systems for witness
validation. The TACAS 2024 proceedings contains a competition report by the SV-
Comp chair and organizer. From the 46 actively participating teams, the SV-Comp jury
selected 16 short papers that describe the participating verification and validation
systems. These 16 short papers are also published in the proceedings and were
reviewed by a separate program committee (jury); each of these short papers was
assessed by at least four jury members. Two sessions in the TACAS 2024 program
were reserved for the presentation of the results: (1) a presentation session with a report
by the competition chair and summaries by the developer teams of participating tools,
and (2) an open community meeting in the second session.

We would like to thank everyone who helped to make TACAS 2024 successful. We
thank the authors for submitting their papers to TACAS 2024. The PC members and
additional reviewers did an excellent job in reviewing papers: they provided detailed
reports and engaged in the PC discussions. We thank the TACAS steering committee,
and especially its chair, Joost-Pieter Katoen, for his valuable advice. We are grateful to
the ETAPS steering committee, and in particular its chair, Marieke Huisman, for
supporting our changes and suggestions on the TACAS 2024 review process and final
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program. We also acknowledge the invaluable support provided by the EasyChair
developers. Lastly, we would like to thank the overall organization team of ETAPS
2024.

April 2024 Bernd Finkbeiner
Laura Kovács

PC Chairs

Hadar Frenkel
Michael Rawson

AEC Chairs

Dirk Beyer
SV-Comp Chair
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Abstract. We give an account of JPF’s current architecture as it has
evolved over the last 20 years. Key changes include a modular, extensible
design, and Java 11 support.

Java 11 brought with it fundamental changes in the language and its
runtime, in particular, a new modular library system, different compi-
lation of string expressions to bootstrap methods, and changes in many
internal interfaces that allow access to the loaded code and the virtual
machine state. These changes required numerous adaptations in JPF to
ensure a successful compilation and correct behavior under Java 11.

Keywords: JPF · Java · Software model checking · Program analysis.

1 Introduction

JPF is a framework for Java bytecode analysis [1,2] that can be used to verify
and search for bugs in programs written in Java-like languages. At the core of
the system is an explicit-state model checker [3], which can be extended to allow
many other analyses, such as symbolic execution [4].

Earlier papers covered the original architecture of JPF as a virtual machine
for Java bytecode [1] or gave an abridged account of the current architecture [2].
This paper gives a detailed description of the current architecture, which is much
more modular and extensible than 20 years ago and supports native methods
through a well-designed interface.

As part of the developments of the last two decades, Java 11 was the first long-
term release that brought major changes to Java and gave up on full backward
compatibility.6 Key changes at the bytecode level include a new modular library
system, a different compilation of string expressions to bootstrap methods, and
the removal of or changes in many internal interfaces [5].

⋆ Supported by Google Summer of Code.
6 While most of these changes were introduced with Java 9 as a development release,
we will group any changes between Java 8 and Java 11 under the latter.
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For its program analysis, JPF has to support the full functionality of Java
bytecode and integrate closely with the underlying Java Virtual Machine (JVM).
Thus, it is impacted by internal changes of the Java platform that do not affect
most other applications. This was evidenced by JPF first not even compiling
under Java 11. After one year, we had adapted the code base so it compiled, but
about 75% of all regression tests failed initially. Four years of additional work
addressed the major changes that were needed to support Java 11. During this
time, we added over 140 new regression tests (and removed a few obsolete ones)
and implemented new functionality with about 10,000 lines of additional code.

This paper is the first detailed publication presenting JPF’s architecture
and capabilities as they have evolved over the last 20 years since the early ver-
sion of JPF, which was designed differently [1]. It also gives an overview of the
challenges involved in adapting a bytecode-level program analysis tool to ma-
jor architectural and implementation-level changes of the underlying platform.
The remainder of this paper is organized as follows: Section 2 covers the back-
ground and related work, while Section 3 describes JPF’s architecture. Section 4
describes the key changes from Java 8 to Java 11 and the adaptations in JPF
to support them. Section 5 covers other major enhancements from the last five
years, and Section 6 shows the evolution of JPF over that time. Finally, Section 7
summarizes our work and concludes.

JPF is freely available on GitHub, in the repository https://github.com/

javapathfinder/jpf-core/. Extensive user and developer documentation, in-
cluding an installation and how-to-run guide, is provided in the form of wiki
pages at https://github.com/javapathfinder/jpf-core/wiki.

2 Background and Related Work

JPF is an extensible framework for Java bytecode analysis [1,2] and built as an
explicit-state model checker [3].

In order to explore all possible and relevant outcomes of a program exe-
cution, JPF explores all possible outcomes of non-deterministic choices. Such
choices can be induced by a non-deterministic thread schedule or unspecified
variables/inputs. JPF has the ability to backtrack an execution to a previous
point to analyze alternative outcomes. Therefore, it implements a fully-fledged
JVM by itself but uses the underlying JVM (the “host JVM”; also see Sec-
tion 3) to access the underlying platform’s functionality. This access happens by
delegating native methods at the JPF level to the host JVM.

By default, JPF reports a failure if an uncaught exception occurs or an
assertion is violated. Another type of failure can occur due to a deadlock (defined
as no remaining runnable thread being able to make progress, either due to
waiting on a lock that is being held by another thread or waiting for a notification
that never occurs). The set of built-in properties that JPF is able to check
includes also the absence of data races. JPF reports a data race when multiple
threads access the same memory location without synchronization and at least
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one of the accesses is write. To implement their own properties, users can add
listeners to support, e. g., temporal-logic properties [6].

2.1 History of JPF

JPF started in 1999; it and its community evolved significantly in the time since,
due to JPF being reimplemented and rewritten and eventually published under
the Apache 2 License. We outline the key milestones here:

1999: First version of JPF, developed at the NASA Ames Research Center in
the form of a translation from Java to Promela [7]. This first version was
limited because regular model checkers like SPIN [3], which analyzes Promela
models, cannot handle the dynamic creation of objects and threads (unless
an upper bound is known at compile time).

2000: Reimplementation as a concrete virtual machine for Java bytecode that
can backtrack execution [1]. JPF has used this approach since then.

2003: Introduction of extension interfaces and the architecture that modern
JPF has until today.

2005: JPF was released as open-source software on Sourceforge, being the first
NASA software project to be released in this way.

2008: First participation in Google Summer of Code, which supports students
working on open-source software with stipends.

2009: JPF moved to its own server, hosting extension projects and the docu-
mentation (wiki).

2017: Moved to GitHub. This allowed JPF to implement continuous integra-
tion [8] and accept outside contributions more easily.

2.2 Related Work

JPF is an explicit-state model checker for Java bytecode at its core. It inspired
similar works such as JNuke [9] and Moonwalker [10], which implement model
checking for Java bytecode or .NET code without native methods, respectively.

Other tools that analyze programs by using their own execution engine in-
clude Valgrind [11], which looks for incorrect memory usage (corruption, leaks)
in binary programs using dynamic analysis, and KLEE [12], which implements
a symbolic execution engine on top of the LLVM [13] infrastructure.

Other software model-checking approaches are closer to the first version of
JPF [7] and analyze code after transforming it into a representation that can
express that entire state space at compile time. Examples include SLAM [14],
which converts C code to a Boolean program for model checking, and CBMC [15],
which uses a SAT solver on propositions derived from C code. This approach is
more popular for analyzing C code because the inability to handle dynamic mem-
ory allocation and thread creation is less relevant for C programs where memory
and thread usage are often bounded, especially for safety-critical systems [16].

Also, there exist several dynamic analysis frameworks that can be used to de-
tect runtime errors by monitoring the execution of a program within a particular
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virtual machine. Notable examples include RoadRunner [17] and DiSL [18] for
Java programs running on JVM, and SharpDetect [19] for C#/.NET programs.
All these frameworks work on the same principle, recording specific events and
the program runtime state on a dynamic execution trace, and forwarding this
information to a custom analysis plugin that detects the actual errors. They are
useful especially for multi-threaded programs and discovering possible concur-
rency errors (e. g., deadlocks and race conditions).

Table 1 gives an overview summary of the aforementioned tools by looking
at their overall approach (state space exploration vs. runtime monitoring) and
supported platforms. In this table, “state space exploration” can refer to model
checking or symbolic execution. The table shows that related tools are too dif-
ferent (in terms of the principal approach or platform) for a straightforward
quantitative comparison. In particular, we are not aware of any tool for Java
bytecode with similar types of capabilities that JPF now has.

Table 1: Comparison of JPF with related tools by approach and target platform
Platform

Java bytecode x86 code CIL bytecode C source code

A
p
p
ro
a
ch State space JNuke (Java 5)

KLEE Moonwalker
SLAM

exploration JPF (Java 11) CBMC
Runtime RoadRunner

Valgrind SharpDetect
monitoring DiSL

3 JPF’s Architecture

JPF’s architecture separates bytecode execution from the functionality of library
classes, access to the underlying host JVM, and various ways of adapting and
extending the built-in functionality.

3.1 Functionality

At its core, JPF implements a virtual machine for bytecode instructions. The
entire state of a program (with the state of all its threads and the shared heap)
is managed by that virtual machine. Unlike a regular virtual machine, JPF
is capable of keeping copies of past program states and comparing them to
other states. Past states can be restored from these copies, which allows JPF to
implement a state space search of a program.

The state space search algorithm is configurable (depth-first search being
the default setting) and by default explores all outcomes of all non-deterministic
choices. This includes thread scheduling in case multiple threads are enabled
at a given state and the outcomes of all possible values of a non-deterministic
data choice. Such choices are either implemented through the Verify application
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programming interface (API) or extensions such as SPF [4] and typically model
unspecified user inputs.

Sequences of instructions that do not exhibit any choices are executed inside
a transition in JPF. A transition ends whenever a choice is hit during execu-
tion. Therefore, JPF computes the state space of a program on the fly, as the
extent of a transition depends on the instructions therein and their side effects.
Partial-order reductions optimize the state space and avoid unnecessary thread
scheduling choices. JPF is close to being a sound verification tool in the sense
that there are very few cases of property violations that it misses, but a few
implementation choices in the state hashing and partial-order reductions are not
sound in all cases, which makes JPF a bug-finding rather than a verification tool
in the strict sense [2], unless the default behavior is changed so a fully exhaustive
search is used, at the cost of being significantly slower in certain cases. Several
extensions aiming to make JPF a sound verification tool have been already pro-
posed, including the support for sound dynamic partial-order reduction [20] and
coverage of all behaviors permitted by the Java memory model [21,22].

3.2 Design

JPF itself is written in Java and runs on the so-called host JVM, which provides
internal functionality such as loading classes or interacting with the system via
native methods [1,2]. The system under test is executed by JPF’s virtual ma-
chine, which keeps track of any effects (such as changes to memory) of an exe-
cuted instruction (see Figure 1).

The main functionality of JPF is implemented in jpf-core, while optional
extensions can extend that functionality.

System under test and libraries

Model classes

Extensions
JPF Model Java interface (MJI)

(jpf-core) JPF VM

Native peer classes

Host JVM

Fig. 1: Architecture of JPF

The functionality of JPF (jpf-core) itself is divided into modules (see Ta-
ble 2). Module main implements the core analysis capability, while other modules
(explained below) implement models of library classes (classes), a bridge to the
underlying host JVM (peers), or auxiliary functionality.

JPF: From 2003 to 2023             7



Table 2: Main JPF modules and their purpose

Module Purpose

annotations Run-time annotations in programs analyzed by JPF
classes Model library classes
examples Small example programs
main Core functionality (VM, state search, etc.)
peers Native peers for accessing JPF from model classes
tests Unit tests

Main. JPF has a very extensible design that allows developers to customize
almost any functionality. The base implementation of the VM in main and its
instruction set are generic, and while Java bytecode is the default concrete im-
plementation, other instruction sets can be supported.

The extensibility of JPF is achieved by all key functionality being customiz-
able through interfaces. We present the key interfaces below:

– A SearchListener can track events arising from the state space search (e. g.,
when program analysis starts or ends, when a new state is created, or when
an existing already visited state is backtracked to).

– A VMListener gets notifications from program execution (e. g., when a method
call begins or a certain type of instruction is executed).

– A ChoiceGenerator can override the way how non-deterministic events are
explored or implement new types of choices.

– Instruction-related interfaces allow changing how sets of instructions or in-
dividual instructions are analyzed.

– A Scheduler has the capability of changing how the state space is analyzed,
e. g., to analyze the state space of multiple processes [23]

– A PublisherExtension creates reports on program analysis results.

Classes. Any Java program has to access functions of the Java library; this
starts by using the common super class Object as the first application-specific
class is loaded. Many Java library classes have functionality that is not suitable
for JPF’s analysis, as they include functionality that incurs globally visible side
effects (such as writing to a file) and use native methods. Native methods are not
available as Java bytecode but instead implemented by a system-specific run-time
library, usually written in C or C++. As JPF only interprets the application-level
bytecode, it is not able to track the effects of native methods.

Therefore, classes using native methods have to be replaced by model classes
(in classes), which represent a Java implementation of code that makes invisible
side effects (through native method calls) in the regular library implementation
visible to JPF at the model class level. In this way, model classes solve the
problem of not being able to track the outcome of native code execution. Other
approaches have been attempted, such as using process-level virtualization to
track the state of an entire operation-system-level process. This approach is less
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efficient because it can only analyze the state of a process at a “black-box” level,
preventing state compaction or partial-order reduction [24].

A model classes can completely replace the functionality of a library class, if
it can implement this entirely in Java, making all (side-) effects visible to JPF.
However, access to native methods requires the peers module (see below).

Annotations. This module implements annotations that are visible to JPF at
run time. The most important annotations are @MJI, which marks a method as
a bridge to a native peer, and attributes that affect the state space exploration
by ignoring fields during program analysis (@FilterField) or marking them as
not shared by multiple threads (@NonShared).

Peers. Model classes by themselves are limited to functionality that can be
implemented directly through bytecode. Much functionality, such as printing to
the console, requires access to the underlying run-time environment. Native peers
bridge this gap between bytecode and native code (see Figure 2). At the model
class level, native methods are declared normally (see Fig. 2b, line 12).

To delegate a native method call, JPF uses a so-called Model Java Interface
(MJI) layer to specify the native peer, a JPF-level class implementing native
methods. MJI methods handle parameters from bytecode at the JPF level and
pass them in the appropriate form to an actual native function on the host JVM.
A native peer usually accesses the host JVM and maps the state of the host JVM
object to the JPF-level object and also manages potential side effects of the host
JVM method (see Figure 1).

MJI classes and methods follow a name-mangling scheme to encode the pack-
age name as part of the class name, and the return type, method name, and
parameter list of the underlying native method as part of the method name (see
Fig. 2b, line 15). This way, JPF can identify the right method at run time.

Figure 2 shows how the different layers of JPF interact when executing
code that prints “Hello, World!”. The bytecode first loads a reference to the
PrintStream instance and the string “Hello, World!”, in order to call println.7

This method (available entirely in bytecode through the Java library) constructs
the correct final string with the newline character at the end and internally calls
OutputStreamWriter.write. That method uses OutputStreamWriter.encode
to convert the string to a byte array. Because the encoding of a string uses a
native method, encode is declared as such in the model class. The JPF na-
tive peer counterpart is an MJI method, which internally accesses the native
character-to-byte conversion functionality of the host JVM.

Generally, a native peer can delegate its functionality to the underlying native
method for calls that have no side effects on the Java-level object [25], or it can
implement its own logic and manage side effects in a complex way, such as when

7 To save space, we elide Java package names (java/lang for System and java/util for
PrintStream), instruction and constant pool offsets, and the “L” denoting a fully
qualified class name.
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getstatic // F ie ld System . out : PrintStream ;
ldc // St r ing Hel lo , World !
invokevirtual // Method PrintStream . p r i n t l n : ( S t r ing ; )V

(a) Bytecode to be executed

/∗∗ Java l i b r a r y : java . io . PrintStream ( provided by the JVM) ∗/
public void PrintStream . p r i n t l n ( St r ing s ) {

. . .
OutputStreamWriter . wr i t e ( . . . ) ;

5 }

/∗∗ JPF model c l a s s : java . io . OutputStreamWriter ( in ” c l a s s e s ”) ∗/
public void wr i t e ( S t r ing s , int o f f , int l en ) throws IOException {

. . . = encode ( . . . ) ;
10 }

// nat ive method dec lara t ion in the model c l a s s
private native int encode ( St r ing s , int o f f , int len , byte [ ] buf ) ;

/∗∗ JPF nat ive peer : JPF java io OutputStreamWriter ( in ”peers ”) ∗/
15 @MJI public int e n c od e L j a v a l a n g S t r i n g 2 I I 3B I (MJIEnv env ,

int ob j r e f , int s r e f , int o f f , int len , int br e f ) {
. . . // access to the host JVM

}

(b) Model class interfacing with the native peer via MJI

Fig. 2: Interaction between code of the Java library (line 2), a model class with a
native method (line 12), and its native peer (line 15).

synchronizing program states between an application that is analyzed by JPF
and external applications that are connected through the network [26].

Tests. Tests contain over 1000 unit tests that check the internal functionality
of JPF, ensuring that key Java language or library features work correctly. Some
tests verify the verdict of a full program analysis on a small example.

Examples. A couple of small examples are also provided, along with their
configuration files, to exemplify the usage of JPF.

3.3 JPF extensions

JPF extensions are modular implementations of enhancements to JPF. They are
separate projects that are independent of the main part of JPF and implement
additional functionality, e. g., by overriding how unspecified values of variables
are interpreted or how an application interacts with its environment.

Notable extensions include symbolic execution [4], automated support of
stateless native methods [25], and automated support of certain types of net-
worked applications using either a centralization or a caching approach [23,26].

3.4 Program execution using JPF

When JPF is used, it typically is run with a configuration file that specifies the
application under test. JPF then proceeds as follows:
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1. The configuration file is parsed and extensions are loaded as specified.

2. The application main class and the necessary library classes are loaded.
Program execution begins at main.8 Execution covers the bytecode of the
program under test, Java libraries (without native methods), and model
classes.

3. Any instruction that creates a new thread, affects the state of another thread,
or produces a non-deterministic choice for other reasons is handled by a
ChoiceGenerator, which causes the current transition to end. New transi-
tions are scheduled and added to the state space search.

4. Any time a model class declares a Model Java Interface method, execution is
handled by the corresponding native peer method inside JPF. These methods
are able to access (possibly native) methods of the underlying host JVM.

5. The analysis stops when JPF has explored the entire state space of a pro-
gram, runs out of memory, or finds a property violation to report.9

3.5 Challenges in modeling Java library classes

The main challenges in writing a model class (and if needed, its native peer) are
the following:

– A model class has to reflect the functionality of the original Java class faith-
fully; differences may result in an overapproximation of the behavior under
JPF, or an unsound underapproximation.

– While a model class can hide side effects of native methods, these side effects
are often an essential part of the program behavior, such as for networked
applications [23,26]. When native methods interact with the environment,
major changes in JPF are necessary to handle the side-effects of both the
host JVM and its environment (the underlying operating system) [26,24].

– Because a native peer interacts with the host JVM, it often has additional
state information compared to the model class. Care has to be taken that
this additional state (which is used by native methods) remains consistent
with the state of the model class (which is visible and used by non-native
methods).

– It is not possible to create a model for only selected methods, so a model
class has to support the entire public API that the program under test
requires. Furthermore, it is often not possible to replace a single class in
isolation, as multiple classes in the same package or even related packages
(such as java.io and java.net) often interact and have to be replaced as
an ensemble.

– The Java base classes (in module java.base) in Java 11 alone contain 190
native methods, so the effort of supporting all of them is prohibitive. JPF
therefore focuses on the most commonly used native methods.

8 More classes are loaded at run time as needed [27].
9 One can specify that JPF continue the state space search after a property violation.
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4 Adaptations in JPF for Java 11

Several changes in compiled Java code (bytecode) from Java 8 to Java 11 heavily
affect runtime environments, including JPF, and even the build system. Here,
we describe these challenges and our solutions to them.

4.1 Module system

Java 11 introduces a module system that provides an additional unit of encapsu-
lation on top of Java packages [28]. Modules have to declare their dependencies
explicitly and can also declare the services they provide. In Java 11, built-in
modules are bundled in a new archive format (JMOD). Thus, JPF no longer
reads the classes directly but delegates reading class files from these archives
to the host JVM. To support the module layer, we extended JPF’s class loader
with new functionality to support the module API. In particular, the Proxy API
(which is used for reflection) has to support module information in Java 11.

4.2 Bootstrap methods

Java 8 introduces support for dynamic languages and lambda expressions, which
are functions that are not bound to an identifier. These functions cannot be fully
resolved at compile time. Internally, they are compiled into so-called bootstrap
methods that instantiate a valid anonymous function at class load time in order
to accommodate concrete uses.

This change allows for optimized string handling: In Java 8 and prior, string
output is handled by creating a StringBuilder instance and appending strings
to its buffer. This requires expensive creations of intermediate objects and sub-
sequent conversions of these objects to String instances for tasks as simple as
adding a number to an output string. In Java 11, specialized bootstrap methods
handle string output with non-string parameters much more efficiently.

Figure 3 illustrates this with a simple example. As can be seen, a simple
string expression (Fig. 3a) compiles into complex bytecode (Fig. 3b) under Java
8. The resulting code produced by the Java 11 compiler is much more com-
pact (Fig. 3c); however, most of the functionality is delegated to the bootstrap
method makeConcatWithConstants, which takes an integer parameter and re-
turns a string. While we cannot show the details here, one can see that parameter
i is part of the bootstrap method, but the string constant “Number” is not a run-
time parameter. The bootstrap method is expanded into a callable anonymous
function (a call site [29]) at runtime by the class loader, which adds the string
constant, before it can be called by the bytecode instruction invokedynamic.

When a class is loaded, the target of an invokevirtual instruction (a call to
a dynamically generated method) has to resolve to a valid call site [29]. The
call site is generated from the bootstrap method. The bootstrap method, e. g.,
makeConcatWithConstants in Fig. 3c, instantiates a complete call site by cre-
ating an anonymous function using a concrete value (“Number” in Fig. 3d) for
the string constant.
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public stat ic void pr in t ( int i ) {
System . out . p r i n t l n ( ”Number ” + i ) ;

}

(a) Source code

getstatic // F ie ld System . out : PrintStream ;
new // c l a s s S t r i ngBu i ld e r
dup
invokespecial // Method St r ingBu i ld e r .”< i n i t >”:()V
ldc // St r ing Number
invokevirtual // Method St r ingBu i ld e r . append : ( S t r ing ; ) S t r i ngBu i ld e r ;
i load 0
invokevirtual // Method St r ingBu i ld e r . append : ( I ) S t r i ngBu i ld e r ;
invokevirtual // Method St r ingBu i ld e r . t oS t r i ng : ( ) S t r ing ;
invokevirtual // Method PrintStream . p r i n t l n : ( S t r ing ; )V
return

(b) Compilation with Java 8

getstatic // F ie ld System . out : PrintStream ;
i load 0
invokedynamic // makeConcatWithConstants : ( I ) S t r ing ;
invokevirtual // Method PrintStream . p r i n t l n : ( S t r ing ; )V
return

(c) Compilation with Java 11

BootstrapMethods :
0 : #19 REF invokeStatic Str ingConcatFactory . makeConcatWithConstants :
(MethodHandles$Lookup ; S t r ing ; MethodType ; S t r ing ; [ Object ; ) Ca l l S i t e ;

Method arguments :
#20 Number \u0001

(d) Bootstrap method structure

Fig. 3: String handling and output under Java 8 and Java 11

Lambda expressions are also handled internally via bootstrap methods. Some
lambda expressions are serializable, in particular in java.util.Comparator,
which is often used for sorting.

4.3 Bootstrap methods in JPF

JPF for Java 8 had limited support for bootstrap methods, handling a few com-
mon cases. Due to the more widespread use of lambda expressions in Java 11
(especially for string concatenation and output), shortcomings in the earlier im-
plementations had to be addressed. The internal implementation of OpenJDK
for bootstrap method resolution generates the bytecode of the call site at load
time. This is complex and involves internal APIs and native calls that JPF does
not support. JPF instead models the behavior of the bootstrap method and
implements its own support of invokedynamic for string concatenation.

When used to concatenate strings, instruction invokedynamic calls a func-
tion that takes arguments to be concatenated and returns the resulting String

instance. JPF can easily implement this at VM level if all the arguments are
String instances or primitive types, since their string representation could be
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easily constructed from their meta-data stored at VM runtime. However, for
other reference type arguments, their toString() methods have to be called.
This method call no longer happens in the form of a method call in the bytecode
but is done automatically by the JVM. JPF mimics this behavior to support
Java 11 string expressions by analyzing all arguments on the operand stack to
convert them to a string if needed. Our approach therefore avoids the complex
dynamic bytecode generation of OpenJDK 11.

To support serializable lambda expressions, OpenJDK uses a special boot-
strap method called altMetafactory. As JPF cannot use that mechanism, we
need another approach to handle serializable lambda expressions: JPF creates
an object that implements the target interface of a lambda expression, which
happens to make serialization easier — we only need to add Serializable to
this object’s implemented interface list, and the object serialization mechanism
can then serialize the lambda expression automatically.

4.4 Reflection

One of the primary goals of adding modules in Java 11 was strong encapsulation,
which attempts to limit reflection and promote the modular approach to improve
security. As a consequence of this, the reflection API no longer permits access
to private fields without issuing a warning (as of Java 11); in later releases, such
access is denied by default [30] or removed entirely [31]. Under Java 11, various
tests raised warnings due to illegal reflective access taking place. The problem
was caused by the executing code using reflection, trying to access non-public
fields/methods residing in different modules.

To fix the problem, it needs to be ensured that the accessing code present in
the module has access rights to the module it is trying to access the field/method
from. Specifying the --add-opens option to jvmArgs within build.gradle for
the necessary packages fixes the problem, ensuring that JPF will not break due
to illegal-reflective access errors when using newer versions of Java.

4.5 Internal APIs

Many implementations of the Java API (java.* packages) use internal APIs,
such as com.sun.* and jdk.internal.*, in their implementation. Such internal
APIs are often highly dependent on the native methods and the underlying JVM.

After Java 8, many such internal packages have been replaced with new
packages under jdk.internal. Replacement for existing functionality is usually
available under a redesigned API, such as java.lang.StackWalker, which pro-
vides more flexible and efficient stack traversal functionalities, like lazy traversal,
frame filtering, and criteria for stopping.

The most straightforward strategy to minimize dependency on internal APIs
is to use a model class, which replaces the problematic class entirely. However,
providing an accurate model class is a challenge of its own. For example, JPF for
Java 8 uses a model class for DateFormat, providing a simplified implementation
of key date methods. The changes in Java 11 also affected date handling and
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caused four regression tests to fail. The increased complexity of the Java 11
implementation made it difficult to maintain a model class for such functionality.

To enforce strong encapsulation of JDK internals, any JPF constructs us-
ing internal data have been rewritten by leveraging model classes and Model
Java Interface (MJI) components to intercept method invocations and delegate
them to dedicated classes. Notable updates include the StackFrameInfo model
class that provides support for the StackWalker API and the ServiceLoader

model class that ensures support for the DateFormat API. Additionally, the
MethodHandles mechanism is used to support CountDownLatch, ExecutorSer-
vice, and Semaphore, which are utility classes to support concurrent program-
ming. We also added support for the PlatformClassLoader class and improved
SecureClassLoader to help with service provider loading.

Many of these changes (such as the ServiceLoader model class and the
MethodHandles mechanism) lift the layer at which a model class is used to a
higher level by supporting general delegation mechanisms in the Java library
better. This reduces the number of model classes needed and makes it easier to
fully support internal functionality, especially when it has few dependencies on
native methods.

4.6 Build system

Since 2018, JPF has been using Gradle as the build automation tool of choice.
For a user, Gradle has the advantage of automatically downloading any depen-
dencies, as long as the available JVM used to run Gradle supports them.

This results in multiple dependencies: The version of Java used has to be able
to both run Gradle and compile and execute the software being built and tested.
Therefore, targeting a different Java version often requires updating Gradle as
well. This ensures the ability to support newer versions of Java and benefit from
other improvements in Gradle.

However, these Gradle updates often include major changes that deprecate
an old build mechanism or even change Gradle’s domain-specific language that
is used to declare build tasks. Therefore, major Gradle updates may require a
redesign of some build tasks. Deprecations of certain features also usually have
an effect with the next major version.

The JPF project has made two major updates in using Gradle: from version
4.7 to version 5.4.1 in 2019, and again to version 8.2.1 in 2023. We eliminated
any use of deprecated features to allow at least one more major version upgrade
without changes in the future. By redefining tasks using the task configuration
avoidance API, which deters creation of unnecessary tasks, the build process
became more efficient. We also now use plugins to support publishing to a local
Maven repository and measure statement coverage (using JaCoCo).

4.7 Other adaptations

Various other internal changes or defects that were discovered during develop-
ment for Java 11 support required corresponding adaptations in JPF:
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– Support for new internal string representation (JEP 254 [32]), which allows
strings in memory to be encoded as either LATIN1 or UTF16. The content of
a string is now stored as an array of bytes rather than an array of characters.

– Removal of unnecessary explicit manual boxing of primitive values in objects;
adaptations to changes in the unboxing API of primitive classes (valueOf).

– Removal of string buffer-related model classes (StringBuilder, StringBuffer)
that are no longer needed, because their functionality can be safely delegated
to the library of the host JVM.

– Support for the stream API.
– Better support for loading classes from JAR files and URLs.
– Better support for correct type handling.
– Various other fixes (file I/O, internals of threads and concurrency packages).
– Updates in the documentation and renaming of the git branches to make

Java 11 the default Java version for JPF.

5 Other Enhancements

Other enhancements that have been included with the Java 11 support include
test pollution detection and bit-flip simulation, which are both compact enough
to be included in jpf-core rather than as an extension of their own.

5.1 Test pollution detection

Flaky tests are software tests that non-deterministically pass or fail. They under-
mine developers’ trust in the test infrastructure, and waste many man-hours to
investigate non-existing bugs. Order-dependent flaky tests are a prominent type
of flaky tests [33], where polluter tests, the kind of software tests that modify
the program state shared among other tests, cause other tests to fail. It is there-
fore worthwhile to proactively detect test pollution and prevent order-dependent
flakiness. A technique dubbed PolDet was developed to detect polluter tests [34].

Because JPF provides infrastructure support for detecting other potential
issues in software tests, such as race conditions and deadlock, PolDet is re-
implemented in JPF (PolDet@JPF) [35] to combine the capability of PolDet and
JPF. PolDet@JPF captures and compares the states before and after the test
execution with JPF’s state serialization mechanism. Its implementation is only
about 200 lines of code on top of JPF but can detect 26 polluter tests existing
in 13 Java projects. This demonstrates JPF’s versatility for rapid prototyping
of various software tools in research.

5.2 Systematic Bit-Flip Fault Injection and Exploration

Computer hardware is susceptible to errors. Hardware defects or radiation can in-
duce errors to the hardware, which can result in a memory bit being flipped. With
the increasing complexity of computer hardware according to Moore’s law [36],
bit flips become more likely [37], making it important to improve the resiliency
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public stat ic void f oo ( @BitFlip int n) {
System . out . p r i n t l n (n ) ;

}

Fig. 4: An annotation triggering a bit-flip analysis for the method parameter

of software against hardware errors. However, these hardware errors are non-
deterministic and hard to reproduce. To evaluate software’s resiliency against
bit flips, fault injection [38] can simulate the outcome of such events at the
software level.

To support such fault injection, we use JPF to systematically inject and
explore bit-flip faults in the user specified variables in Java programs. Specifically,
the users can specify a list of variables and for each variable vi specify ki, the
number of bits to flip in it. Considering that any ki bits of vi are possible
to be flipped in real hardware faults, we let JPF execute the program in all
possible ways to systematically evaluate programs’ resiliency to bit-flip faults.
For a simple example, consider the code in Figure 4. We want to know what
happens if some error causes a bit to be flipped in the argument to method foo.
Since n is of type int, our implementation explores all the 32 cases in which bit
is flipped, so the expected output of calling foo(0) is 1 2 4...-2147483648.

Our implementation provides a BitFlipListener, a JPF listener that moni-
tors the list of user-specified variables and performs bit-wise fault injection before
the relevant instructions execute. Specifically, we support injecting bit-flip faults
to three kinds of variables, (1) static and instance fields, (2) method arguments,
and (3) local variables, whose type can be any primitive data types. For the
fields and local variables, the bit flips are injected when they are written by
the programs. For the method arguments, the bit flips are injected when the
method is invoked and the arguments are assigned. BitFlipListener registers
a Choice Generator to inject all possible bit flips to the corresponding operand
in the operand stack before the store/write instruction or the invoke instruction,
depending on the variable type.

A user can specify the variables to flip in three ways: (1) calling getBitFlip

API in the application code, (2) adding @BitFlip annotation to the variables,
and (3) specifying in the command line arguments without changing the appli-
cation code. For example, in Figure 4, we can (1) add n=getBitFlip(n,1) at
the beginning of the method foo, (2) annotate n with @BitFlip(1) (where (1)
can be omitted because k = 1 by default), or (3) specify bit-flip fault injection
in method foo, parameter n, and k = 1 in the command line arguments.

Our implementation is based on JPF’s Verify.getInt, which generates all
possible integer values in a given range. The BitFlipListener parses the anno-
tations and the command line arguments and adds the specified variables to a
watch list.

A key challenge in the implementation is that JPF cannot register several
choice generators at the same point of the application code. We resolve this issue
by registering only one choice generator even when the number of bits to flip, k,
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in a variable is k > 1. Specifically, we register only one IntIntervalGenerator

that produces an integer m in range [0,
(
n
k

)
) where n is the number of bits of the

variable, and then decode the integer using binomial coefficients to get the set
of k in n bits to flip. The decoding process is as follows: Because

(
n−1
k

)
out of(

n
k

)
combinations do not select the nth bit, if m >

(
n−1
k

)
, we select the nth bit,

let m′ = m−
(
n−1
k

)
and k′ = k − 1; otherwise, we do not select the nth bit and

let m′ = m, k′ = k. If we then let n′ = n−1, with the same process on n′,m′, k′,
we can decode out the set of k′ in the remaining n′ bits, and then recursively
get all the k bits to flip.

We implemented a JPF regression test class that checks our injection engine
in various scenarios and documents the basic usage. It verifies all bits are flipped
exactly once in a variable using a global counter at JPF level. Besides, we used
our tool to check the resiliency of Cyclic Redundancy Check (CRC) and Inter-
national Standard Book Number (ISBN) algorithms against bit-flip faults. We
confirmed that both algorithms can detect all one-bit flips, but cannot detect all
two-bit flips, as expected. Our implementation has been included in JPF.10

6 Project Evolution and Evaluation

The evaluation of the validity of JPF is based on automated unit tests, which
execute key features of JPF. JPF-level unit tests internally run small applications
using JPF’s analysis engine, thus effectively implementing system tests [39]. Our
experimental evaluation is therefore based on these unit tests, which grew from
864 tests, for the code base supporting Java 8, to 1002 tests at the time of
writing.

Figure 5 shows how the code base grew in the last five years, to accommodate
for Java 11 functionality.11 We sometimes observe sudden code size increases and
drops in failing tests, which is usually because larger amounts of work had been
merged into the Java 11 development branch at that time.

The first large decrease in failing tests was thanks to preliminary support
for Java 11 string handling; the final large code growth was from incorporating
patches and tests from the mainline development (for Java 8) into Java 11.

The graph shows that while we also had contributions at other times of the
year, virtual summer internships supported by Google Summer of Code were a
major factor in the contributions, as it was possible to carry out development
that was not directly tied to a short-term research goal.

7 Conclusions

This paper has provided a detailed account of JPF’s current architecture. JPF’s
modular design separates bytecode execution from code that models key library

10 https://github.com/javapathfinder/jpf-core/pull/295
11 JPF used to be handled as a Mercurial repository, and older versions of Mercurial

were too slow to handle a large project history, so the project history was purged in
2018 by importing the entire code base as an initial commit in a new git repository.
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Fig. 5: Evolution of Java 11 development from 2018–2023.

functions and code that interfaces with the underlying run-time environment.
Thanks to a very extensible design, JPF’s functionality can be modified from
concrete to symbolic execution or from a single application to multiple processes,
which can even be networked.

Most of the development effort of the last five years was focused on supporting
Java 11. Its major changes required corresponding adaptations in JPF: The
new modular library system required extensions in the class loader; a different
compilation of string expressions to bootstrap methods required support for
them; and internal API changes brought both simplifications in the code base
(because some model classes could be dropped) as well as complications, because
new types of interfaces to internal VM data structures had to be supported.

Future work includes ensuring seamless Java 11 support for JPF’s extensions
and support for the next stable Java release (Java 17).
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4. Corina S. Pǎsǎreanu and Neha Rungta. Symbolic PathFinder: Symbolic execution
of Java bytecode. In Proceedings of the 25th IEEE/ACM International Conference
on Automated Software Engineering, pages 179–180, 2010.

5. James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, and Daniel Smith.
The Java Language Specification, Java SE 11 Edition. Oracle, 2018.

6. Matt Walker, Parssa Khazra, Anto Nanah Ji, Hongru Wang, and Franck van
Breugel. jpf-logic: a framework for checking temporal logic properties of Java
code. ACM SIGSOFT Software Engineering Notes, 48(1):32–36, 2023.

7. Klaus Havelund. Java PathFinder, a translator from Java to Promela. In Theo-
retical and Practical Aspects of SPIN Model Checking: 5th and 6th International
SPIN Workshops Trento, Italy, July 5, 1999 Toulouse, France, September 21 and
24, 1999 Proceedings 5, pages 152–152. Springer, 1999.

8. Martin Fowler and Matthew Foemmel. Continuous integration. http://www.

martinfowler.com/articles/continuousIntegration.html, 2006.

9. Cyrille Artho, Viktor Schuppan, Armin Biere, Pascal Eugster, Marcel Baur, and
Boris Zweimüller. JNuke: Efficient dynamic analysis for Java. In Rajeev Alur
and Doron A. Peled, editors, Computer Aided Verification, pages 462–465, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

10. Niels HM Aan de Brugh, Viet Yen Nguyen, and Theo C Ruys. Moonwalker:
Verification of .NET programs. In Tools and Algorithms for the Construction and
Analysis of Systems: 15th International Conference, TACAS 2009, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2009,
York, UK, March 22-29, 2009. Proceedings 15, pages 170–173. Springer, 2009.

11. Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. ACM Sigplan notices, 42(6):89–100, 2007.

12. Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
OSDI, volume 8, pages 209–224, 2008.

13. Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In International symposium on code generation
and optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.

14. Thomas Ball and Sriram K Rajamani. The SLAM toolkit. In Proceedings of
CAV 2001 (13th Conference on Computer Aided Verification), volume 2102, pages
260–264, 2000.

15. Daniel Kroening and Michael Tautschnig. CBMC–C bounded model checker: (com-
petition contribution). In Tools and Algorithms for the Construction and Analysis
of Systems: 20th International Conference, TACAS 2014, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2014, Greno-
ble, France, April 5-13, 2014. Proceedings 20, pages 389–391. Springer, 2014.

20             C. Artho et al.

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html


16. Les Hatton. Safer language subsets: an overview and a case history, MISRA C.
Information and Software Technology, 46(7):465–472, 2004.

17. Cormac Flanagan and Stephen N. Freund. The RoadRunner dynamic analysis
framework for concurrent programs. In Sorin Lerner and Atanas Rountev, editors,
Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, PASTE’10, Toronto, Ontario, Canada, June
5-6, 2010, pages 1–8. ACM, 2010.

18. Lukas Marek, Yudi Zheng, Danilo Ansaloni, Aibek Sarimbekov, Walter Binder,
Petr Tuma, and Zhengwei Qi. Java bytecode instrumentation made easy: The DiSL
framework for dynamic program analysis. In Ranjit Jhala and Atsushi Igarashi,
editors, Programming Languages and Systems - 10th Asian Symposium, APLAS
2012, Kyoto, Japan, December 11-13, 2012. Proceedings, volume 7705 of Lecture
Notes in Computer Science, pages 256–263. Springer, 2012.
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Abstract. The need for massively parallel algorithms, suitable to ex-
ploit the computational power of hardware such as graphics processing
units, is ever increasing. In this paper, we propose a new algorithm for
the on-the-fly verification of Linear-Time Temporal Logic (LTL) formu-
lae [45] that is aimed at running on such devices. We prove its correctness
and termination guarantee, and experimentally compare a GPU imple-
mentation with state-of-the-art LTL model checkers. Our new GPU LTL-
checking algorithm is up to 150× faster on proving the correctness of a
system than LTSmin running on a 32-core high-end CPU, and is more
economic in using the available memory.

Keywords: Temporal logic, LTL model checking, automata-based ver-
ification, finite-state machines, GPU.

1 Introduction

With hardware developments increasingly focussing on parallel computing capa-
bilities, the need for massively parallel algorithms, in which thousands of threads
contribute to a computation, continues to grow [34]. In the last decade, we suc-
cessfully deployed Graphics Processing Units (GPUs) to accelerate various com-
putations relevant for computer-aided verification [36–40,42,43,50–52,54,56,57,
60, 61]. Being computationally heavy, this applies in particular to model check-
ing [1]. Verifying whether a system model satisfies a given Linear-Time Temporal
Logic [45] (LTL) formula is usually done with algorithms employing Depth-First
Search (DFS) [8, 15, 22, 27, 33], as it involves the detection of cycles in the state
space of the model, and DFS is very suitable for this. Unfortunately, DFS is not
suitable as a basis for massive parallelism; for single and multi-core platforms,
using in the order of tens of threads to run the same number of DFSs in parallel
still works, but maintaining thousands of call stacks is not practical.

Algorithms based on Breadth-First Search (BFS) are more promising for
massive parallelism [3, 11, 13, 25]. However, so far, these have only been applied
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after the state space has been explored [2, 28], while a strong point of some
LTL algorithms is their ability to detect counter-examples on-the-fly, i.e., while
the state space, implicitly described by the system model, is being explored.
This allows for early termination once a counter-example has been detected.
The recent emergence of GPU-based state space exploration engines [16, 49, 51,
52, 54, 57, 59] has provided an important step for massively parallel on-the-fly
LTL model checking, but high-performant BFS-based on-the-fly cycle detection
is highly non-trivial. So far, only [53] has addressed this, but it relies on the
piggyback algorithm [23], which only guarantees finding cycles up to a predefined
length.

In this paper, we propose the Hitchhiking algorithm for massively parallel
on-the-fly LTL model checking. It is based on theMap algorithm [11]. We present
the algorithm, prove its correctness and that it is guaranteed to terminate, and
discuss our experimental results, obtained by comparing the performance of an
implementation of this algorithm for GPUs with state-of-the-art CPU-based
algorithms.

Section 2 contains the necessary background. In Section 3, Map is discussed,
followed by Hitchhiking. The implementation of Hitchhiking together with
the experimental results are presented in Section 4. Related work is discussed in
Section 5, and finally, conclusions are drawn in Section 6.

2 Preliminaries

The semantics of a (concurrent) system is represented by a Kripke structure.

Definition 1 (Kripke structure). A Kripke structure over a set of atomic
propositions AP is a 4-tuple K = (S,S0,→, λ), where
– S is a finite set of states;
– S0 ⊆ S is the set of initial states;
– →⊆ S×S is a transition relation, such that → is left-total, i.e., ∀s ∈ S.∃s′ ∈

S.(s, s′) ∈→;
– λ : S → 2AP is an interpretation (or labelling) function that maps each state

to its set of valid atomic propositions.

With s → s′, we denote that (s, s′) ∈→.

Definition 2 (Path). Given a Kripke structure K = (S,S0,→, λ), a path in
K is an infinite sequence of states πK = s0s1s2 . . ., such that s0 ∈ S0 and
∀i ≥ 0.si → si+1.

Sometimes, we interpret a path πK = s0s1 . . . as a set {s0, s1, . . .}, for in-
stance to reason about membership, e.g., s ∈ πK .

Functional properties of the paths of a Kripke structure can be formalised
by means of a temporal logic such as Linear-Time Temporal Logic (LTL) [45].
We refrain from defining the syntax and semantics of LTL. What is relevant for
this paper is that verifying whether a given Kripke structure K satisfies a given
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LTL formula φ can be done via the automata-based method [47] that uses a
Non-deterministic Büchi Automaton [12] (NBA) B¬φ derived from the negation
of φ. To explain this, we first introduce the relevant notions of an NBA and
NBA path.

Definition 3 (Non-deterministic Büchi Automaton). A Non-deterministic
Büchi Automaton (NBA) is a 5-tuple B = (Q, Σ, ↪→,Q0,QF ), where

– Q is a finite set of states;
– Σ is an alphabet;
– ↪→⊆ Q×Σ ×Q is a transition relation;
– Q0 ⊆ Q is the set of initial states;
– QF ⊆ Q is the set of accepting states.

Definition 4 (NBA path). Given an NBA B = (Q, Σ, ↪→,Q0,QF ), a path
in B is an infinite sequence of states πB = q0q1q2 . . ., such that q0 ∈ Q0, ∀i ≥
0.qi↪→qi+1, ∃qi ∈ πB .qi ∈ QF , and ∀qi ∈ πB ∩QF .∃j > i.qj ∈ QF .

In Def. 2, the latter two constraints refer to a path being accepting : an infinite
number of states in the path are accepting states.

The labels of NBA transitions are usually written as propositional logic for-
mulae. For a Kripke structure K = (S,S0,→, λ) and a state s ∈ S, we denote
with K, s |= ϕ that s satisfies the propositional logic formula ϕ. The semantics
of K, s |= ϕ is defined as follows, with ϕ1, ϕ2 propositional logic formulae:

K, s |= true K, s |= ¬ϕ ⇔ K, s ̸|= ϕ
K, s |= p ⇔ p ∈ λ(s) K, s |= ϕ1 ∨ ϕ2 ⇔ K, s |= ϕ1 or K, s |= ϕ2

(a) Not eventually p. (b) Not globally eventually p.

Fig. 1: Example NBAs.

For every LTL formula φ, it is possible to construct an NBA B¬φ that accepts
exactly all paths of K that do not satisfy φ. Fig. 1 presents some example NBAs,
with the accepting state having a double border, and the initial states having
an incoming transition without a source state. Fig. 1a shows an NBA with a
single path in which ¬p holds globally, i.e., p is never eventually satisfied, and
Fig. 1b contains an NBA for the negation of “globally eventually p”: its paths
eventually lead to ¬p globally holding.

With B¬φ, LTL model checking can be performed by solving the emptiness
problem: a Kripke structure K satisfies LTL formula φ iff the product of K and
B¬φ is empty, i.e. has no (accepting) paths. This product is defined as follows:
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Definition 5 (Product of Kripke structure and NBA). Given a Kripke
structure K = (S,S0,→, λ) and an NBA B = (Q, Σ, ↪→,Q0,QF ). The product
of K and B is an NBA K ⊗B = (Q⊗, Σ⊗, ↪→⊗,Q0,⊗,QF,⊗), with
– Q⊗ = {⟨s, q⟩ | s ∈ S ∧ q ∈ Q};
– Σ⊗ = Σ;
– ↪→⊗ is the smallest relation satisfying the rule

s → s′ q
ϕ
↪−→ q′ K, s′ |= ϕ

⟨s, q⟩
ϕ
↪−→⊗ ⟨s′, q′⟩

– Q0,⊗ = {⟨s, q⟩ ∈ Q⊗ | s ∈ S0 ∧ ∃q0 ∈ Q0.q0
ϕ
↪−→ q ∧K, s |= ϕ};

– QF,⊗ = {⟨s, q⟩ ∈ Q⊗ | q ∈ QF }.

With succ⊗(⟨s, q⟩), we refer to the set of successors of ⟨s, q⟩ ∈ Q⊗ according
to the transition relation, i.e., succ⊗(⟨s, q⟩) = {⟨s′, q′⟩ | (⟨s, q⟩, ⟨s′, q′⟩) ∈↪→⊗}.

When it is not needed to reason about s and q of a state ⟨s, q⟩ ∈ Q⊗ indi-
vidually, we refer to states in Q⊗ with q̄, q̄′, etc. The transitive closure of ↪→⊗
is denoted by ↪→+

⊗, i.e., q̄ ↪→+
⊗ q̄′ denotes that there exists a finite sequence of

states q̄0q̄1 . . . q̄n with n > 0, q̄0 = q̄, q̄n = q̄′, and for all 0 ≤ i < n .
On the one hand, paths in K ⊗B¬φ are by definition infinite, but K ⊗B¬φ

has a finite number of states. Therefore, a path in K ⊗B¬φ actually consists of
a finite sequence of states from an initial state q̄0 ∈ Q0,⊗ to a state q̄ ∈ Q⊗ and
an accepting cycle including q̄, i.e., a finite sequence of states σ = q0q1 . . . qn,
with q̄ ∈ σ, q0 = qn, and for at least one i, with 0 ≤ i ≤ n, it holds that qi ∈ QF .
This means that a path in K ⊗B¬φ traverses a lasso in the graph structure.

3 The Hitchhiking Algorithm

3.1 Map: the Basis of Hitchhiking

The algorithm we propose is based on the Map algorithm, introduced in [11]
and adapted for use on many-core systems such as GPUs in [2]. The main idea
behind this algorithm is as follows: we use a strictly total order > for the states
in QF,⊗, and define the maximal accepting predecessor of a state q̄ ∈ Q⊗ as
map(q̄) = max({q̄′ ∈ QF,⊗ | q̄′ ↪→+

⊗ q̄}), with max returning the maximal state
according to the order defined by >. Now, if there exists a state q̄ ∈ QF,⊗ with
map(q̄) = q̄, then it is in an accepting cycle. The reverse, however, is not true: if
map(q̄) ̸= q̄, it does not mean that q̄ is not in an accepting cycle. To overcome
this, Map computes a function p that defines for every state in Q⊗ its maximal
accepting predecessor w.r.t. an evolving subset of QF,⊗.

Alg. 1 presents the many-core Map algorithm of [2]. As there were no state
space exploration engines running on GPUs at the time, the Map algorithm
was applied after the state space had been generated, i.e., post-exploration. In
Alg. 1, the grey area highlights the many-core part, for instance to be executed
on a GPU, with the loops indicating the parallelism, while the explore function
(l.1, i.e., line 1) identifies all the states reachable from Q0,⊗ via ↪→⊗. Initially,
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Algorithm 1: The parallel post-exploration Map algorithm [2].

1 function explore(Q0,⊗, succ⊗()):
2 O ← Q0,⊗; Q⊗ ← O
3 forall q̄ ∈ O do
4 O ← O \ {q̄}
5 forall q̄′ ∈ succ⊗(q̄) do
6 if q̄′ ̸∈ Q⊗ then Q⊗ ← Q⊗ ∪ {q̄′}; O ← O ∪ {q̄′}
7 Map(Q⊗, ↪→⊗, Q0,⊗)

8 function Map(Q⊗, ↪→⊗, Q0,⊗):
9 A ← QF,⊗ = {⟨s, q⟩ ∈ Q⊗ | q ∈ QF }

10 while A ̸= ∅ do
11 p← update-p(Q0,⊗, ↪→⊗, A)
12 forall q̄ ∈ Q⊗ do in parallel
13 if q̄ = p(q̄) then report counter-example found
14 else A ← A \ {p(q̄)}
15 report no counter-example found

16 function update-p(Q⊗, ↪→⊗, A):
17 forall q̄ ∈ Q⊗ do in parallel p(q̄)← ϵ;
18 repeat in parallel
19 p′ ← p

20 forall (q̄, q̄′) ∈↪→⊗ do in parallel
21 p(q̄′)← max(p(q̄), p(q̄′)); if q̄ ∈ A then p(q̄′)← max(p(q̄′), q̄)

22 until p = p′

23 return p

the initial states are inserted in an open set O and added to Q⊗ (l.2). Then,
each state in O is explored (l.3), meaning that it is removed from O (l.4) and
its successors are visited. This happens in the loop of l.5. Each successor not
yet seen before is added to Q⊗ and O (l.6). Once all reachable states have been
processed, the Map function is called (l.7).

In Map, initially, all accepting states are added to a set of active states A
(l.9). While A is not empty (l.10), the function update-p is called to update the
p-function (l.11). Once p has been updated, for every q̄ ∈ Q⊗, we have that
p(q̄) = max({q̄′ ∈ A | q̄′ ↪→+

⊗ q̄}). If any state is now its own maximal accepting
predecessor w.r.t. A, an accepting cycle, and therefore a counter-example, has
been found (l.13). All other accepting states referred to by p are removed from A
(l.14), as these cannot be in an accepting cycle. This is proven in [11]. A similar
property is proven for our Hitchhiking algorithm in Section 3.2. If, at some
point, A is empty, a counter-example cannot be present (l.15).

In the update-p function, first, p is reset, i.e., for all q̄ ∈ Q⊗, p(q̄) is set to
the special value ϵ, which is smaller than all the states in QF,⊗. Next, in the
loop of l.18, p is updated until a fix-point has been reached, which is detected
by comparing in each iteration the updated p to its definition p′ at the start of
the iteration. The update is performed by processing all transitions in parallel.
For each transition q̄ ↪→⊗ q̄′, p(q̄′) is updated to be the maximum of p(q̄), the
current value of p(q̄′), and, if q̄ ∈ A, q̄ (l.21). Note that the updating of p(q̄′)
needs to be done atomically, as it can be updated simultaneously by multiple
threads processing different transitions to q̄′.

While adapting Alg. 1 to an on-the-fly algorithm is certainly possible, two
observations led to the development of a new algorithm based on Map. Firstly,
in each iteration of the loop of l.20, all transitions are inspected, but actually, in
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(a) At start of update-p. (b) After one iteration. (c) End of update-p.

Fig. 2: Applying update-p once on an example NBA.

the first iteration, only transitions q̄ ↪→⊗ q̄′ for which q̄ ∈ A lead to an update
of p, and in subsequent iterations, these updates are propagated along the paths
in K ⊗B¬φ. The use of an open set would avoid unnecessary processing of
transitions, but initially, at the start of update-p, only adding the initial states
to such a set would likely restrict parallel computation too much; since the states
in A lead to an update of p, and typically |A| > |Q0,⊗|, adding all states in A
to the open set directly leads to more parallelism and faster updating of p.

Secondly, and most importantly, Map is very conservative in keeping states
in A from one iteration of the loop of l.10 to the next. Fig. 2 illustrates this.
The accepting states are ordered as follows: q̄i > q̄j iff i > j. Fig. 2a shows
the situation at the beginning of the first update-p call, with the grey labels
representing the p-values (the r̄i states keep the p-value ϵ throughout execution
of the algorithm). After one iteration of the loop of l.18, the situation is as
shown in Fig. 2b: the states q̄n−1 to q̄0 and r̄′ all point to their left neighbour
with their p-value. In subsequent iterations, these p-values are propagated to
the right, with in the end, all the previously mentioned states pointing to q̄n
(Fig. 2c). In Alg. 1, this results in only removing q̄n from A at l.14. However,
referring with the q̄i-search to the propagation of q̄i through K ⊗B¬φ, note
that the q̄0-search was actually never interrupted: q̄0 was propagated to r̄′, and
after considering the self-loop of r̄′ this search ended. Actually, none of the q̄i-
searches were interrupted, and restarting them in the next execution of update-p
will obviously not lead to finding an accepting cycle.

We observe that Map fails to distinguish situations in which a q̄i-search is
interrupted from situations in which it is not, and that being able to distinguish
them will likely positively impact the practical runtime.

3.2 Hitchhiking

In this section, we present our Hitchhiking algorithm, which addresses the
observations made in the previous section. Compared to Map, Hitchhiking is
not only on-the-fly, but also keeps track of which accepting state propagations
are interrupted, by means of a set of states F : an accepting state is added to
F when its propagation is interrupted. Once a fix-point has been reached, F
provides the accepting states that have to be reopened. All the accepting states
that require reopening are added to O, so they can be processed in parallel.

We refer with C ⊆ Q⊗ to the set consisting of all states in Q⊗ that are part
of at least one accepting cycle, and with Θ to the set of all accepting cycles in
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Algorithm 2: The parallel on-the-fly Hitchhiking algorithm.
1 function void Hitchhiking(Q0,⊗, succ⊗()):
2 O ← ∅ // The open set, containing states to be explored
3 F ← ∅ // Set to keep track of cycle detection restarts
4 A ← ∅ // Set of accepting states for which cycle detection is ongoing
5 forall q̄ ∈ Q0,⊗ do
6 O ← O ∪ {q̄}
7 if q̄ ∈ QF,⊗ then A ← A∪ {q̄}; p(q̄)← q̄ // q̄ is cycle active
8 else p(q̄)← ϵ

9 while O ̸= ∅ do // Beginning of a round
10 forall q̄ ∈ O do in parallel
11 O ← O \ {q̄}; α← p(q̄)

12 forall q̄′ ∈ succ⊗(q̄) do in parallel
13 if α = q̄′ then return counter-example found

14 if p(q̄′) = ⊥ and q̄′ ∈ QF,⊗ then
15 A ← A∪ {q̄′}
16 if q̄′ > α then α← q̄′ // Interrupted by q̄′ ∈ A (Fig. 3c)

17 else F ← F ∪ {q̄′} // Fig. 3a with q̄′ = r̄

18 [β ← p(q̄′); p(q̄′)← max(α, β)] // Atomic update of p(q̄′)

19 if α > β and β > ϵ and q̄′ ∈ O then F ← F ∪ {β} // Fig.3a

20 if β > α and α > ϵ and q̄′ ̸∈ A then F ← F ∪ {α} // Fig.3b

21 if α > β then O ← O ∪ {q̄′}
22 if F ̸= ∅ then // Post-processing of a round
23 forall q̄ ∈ Q⊗ do in parallel
24 if q̄ ∈ A then
25 if q̄ ∈ F and p(q̄) ̸= q̄ then O ← O ∪ {q̄}
26 else A ← A \ {q̄}
27 if q̄ ∈ F then F ← F \ {q̄}
28 if q̄ ∈ A then p(q̄)← q̄ else p(q̄)← ϵ

29 return no counter-example found

K ⊗B¬φ. Hitchhiking never actually constructs C and Θ, but we reason about
their contents to prove the algorithm’s correctness.

A function p : Q⊗ → QF,⊗ ∪ {⊥, ϵ} maps each state in Q⊗ to either an
accepting state in QF,⊗ or one of the special values ⊥ and ϵ, with ⊥ representing
never having reached that state before, i.e., initially, for all q̄ ∈ Q⊗, p(q̄) = ⊥,
and ϵ representing that the state has been encountered, but has not been assigned
a state reference. A strict total order > on QF,⊗ ∪{⊥, ϵ} defines that ϵ > ⊥ and
for all q̄ ∈ QF,⊗, we have q̄ > ϵ. How the states in QF,⊗ are ordered is not
important, only that there exists a fixed order.

Alg. 2 presentsHitchhiking in pseudo-code. First, we explain the algorithm,
ignoring parallel execution. Later, we reason about correctness of the paralleli-
sation. In the loop of l.5, all initial states are added to O, and any accepting
initial states are added to a set of active states A. For a state q̄ ∈ Q0,⊗, p(q̄)
is set to q̄ if q̄ ∈ QF,⊗, otherwise to ϵ. Note that this is different from how p is
constructed in Map, but this logically follows from the fact that Hitchhiking
detects the interruption of cycle searches. We address this later.

Similar to the loop of l.10 in Alg. 1, Hitchhiking works in rounds. A new
round is started iff O ̸= ∅ (l.9). During a round, in each iteration of the loop of
l.10, a state q̄ is taken from O to be explored. We refer to p(q̄) with α (l.11). In
the loop of l.12, the successors are inspected. If α is encountered as successor,
an accepting cycle has been found (l.13). If successor q̄′ is visited for the first
time, i.e., p(q̄′) = ⊥, and q̄′ ∈ QF,⊗, it is added to A (l.15). If q̄′ > α, then
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add to

?

(a) Interrupted r̄-search.

?

add to

(b) Interrupted r̄-search.

?
?

(c) Interrupted by q̄′ ∈ A.

Fig. 3: Various cycle search interruption situations.

the q̄′-search should be started, and the α-search interrupted in this direction,
otherwise the q̄′-search is interrupted, which is recorded by adding q̄′ to a set
of interrupted states F (l.16–17). Note that in the first case, α is not added to
F . Why that is not needed is illustrated by Fig. 3c: If in an r̄-search, another
accepting state q̄′ is encountered with p(q̄′) > r̄, then any cycle containing both
r̄ and p(q̄′) will be detected by either the p(q̄′)-search or yet another search with
a higher priority. Any other possible cycles that contain r̄ but not p(q̄′) can still
be found by the r̄-search.

Next, p(q̄′) is updated, and we refer to its value before the update with β.
The state reference is updated to the maximum of α and β (l.18). The possible
search interruption situations are handled next, see Figs. 3a and 3b.

If for q̄′, we have p(q̄) > p(q̄′) > ϵ and q̄′ ∈ O, then the p(q̄′)-search is
interrupted by the p(q̄)-search, and p(q̄′) must be added to F (l.19). In Fig. 3a,
this is illustrated, with q̄′ being black indicating that it is in O, and p(q̄) = r̄′,
p(q̄′) = r̄. Note that if q̄′ was not in O, the r̄-search would not be affected by
involving q̄′ in the r̄′-search, as the r̄-search had already moved on.

If for q̄′, we have p(q̄′) > p(q̄) > ϵ and q̄′ ̸∈ A, then the p(q̄)-search is
interrupted by the q̄′-search, and p(q̄) must be added to F (l.20). In Fig. 3b, this
is illustrated. If there is no cycle containing both r̄ and r̄′, the r̄′-search will not
detect any cycles containing r̄, hence r̄ must be added to F . At l.21, q̄′ is added
to O if it needs to be (re-)explored, i.e., if p(q̄′) was updated to a larger value.

At l.22, the post-processing of the round starts. If there are states in F , a next
round is needed. In the loop of l.23, all the states are inspected. Any state q̄ ∈ A
in F with p(q̄) ̸= q̄ is added to O. In particular, a state q̄ ∈ F with p(q̄) = q̄
does not need to be reopened. This is addressed by the proof of Lemma 6. All
the states in A that are not added to O are removed from A (l.26). Next, all
states are removed from F (l.27). Finally, p is updated: if q̄ is in A, it starts
referencing itself, and otherwise p(q̄) is reset to ϵ (l.28).

The fact that search interruptions are detected when inspecting successors,
and that it is relevant whether a successor q̄′ is in A or not (l.20), makes it logical
to check whether q̄′ ∈ QF,⊗ when first visiting q̄′ (l.14). Since at that stage, p(q̄′)
must be updated, it is more elegant to set it to q̄′ when the q̄′-search needs to
be started, as opposed to using ϵ, as is done in Map. When q̄′ is explored, the
former option leads to the successors of q̄′ naturally propagating q̄′ as p-value.

With the following Lemmas and Theorems, we prove that Hitchhiking is
correct and terminates.
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Lemma 1. Every time the loop of l.10 is entered, and Hitchhiking does not
return at l.13, eventually, l.22 is reached with O = ∅.

Proof. When the loop of l.10 is entered, O ≠ ∅. In every iteration of this loop, a
state q̄ ∈ O is selected and removed from O at l.11. Each successor q̄′ ∈ succ⊗(q̄)
is processed in the loop of l.12. Since Hitchhiking does not return at l.13, p(q̄′)
may or may not be updated at l.18, depending on whether p(q̄′) is smaller or
not than α, which was set to p(q̄) at l.11 and possibly updated to q̄′ at l.16 if
q̄′ ∈ QF,⊗ and this is the first time q̄′ is visited. If p(q̄′) is updated, q̄′ is added to
O at l.21. Since QF,⊗ is strictly totally ordered by > and finite, p(q̄′) can only be
updated a finite number of times, and hence q̄′ is only added a finite number of
times to O. Therefore, as there are a finite number of states, eventually O = ∅,
and the loop of l.10 is exited, and l.22 is reached. ⊓⊔

Lemma 2. When l.22 is reached for the first time, ∀q̄ ∈ Q⊗.p(q̄) ̸= ⊥ holds
until Hitchhiking terminates.

Proof. Initially, ∀q̄ ∈ Q⊗.p(q̄) = ⊥. For all q̄ ∈ Q0,⊗, p(q̄) is set to either q̄ at
l.7 or to ϵ at l.8. For any state q̄′ ∈ Q⊗ reached inside the loop of l.10, p(q̄′) is
updated at l.18, and since ⊥ is the bottom element, if p(q̄′) = ⊥ before l.18, this
always results in p(q̄′) > ⊥ after execution of l.18. Since all states in Q⊗ are
reachable from Q0,⊗, once l.22 is reached, ∀q̄ ∈ Q⊗.p(q̄) ̸= ⊥. ⊓⊔

In the following, we refer with q̄max to the maximum element of A ordered
by >, i.e., q̄max ∈ A ∧ ∀q̄ ∈ A.q̄max = q̄ ∨ q̄max > q̄.

Lemma 3. A ̸= ∅ =⇒ ∀q̄ ∈ Q⊗.q̄max ≥ p(q̄) is an invariant of Hitchhiking.

Proof. After initialisation, at the start of the first round at l.9, A = Q0,⊗∩QF,⊗,
and ∀q̄ ∈ A.p(q̄) = q̄, and ∀q̄ ̸∈ A.p(q̄) = ϵ ∨ p(q̄) = ⊥. Hence, if A ̸= ∅, by
definition of q̄max and the fact that ϵ and ⊥ are smaller than all q̄ ∈ QF,⊗, we
have ∀q̄ ∈ Q⊗.q̄max ≥ p(q̄). If this holds at the beginning of a round (l.9), then
during execution of the round, this remains valid, and holds subsequently at l.18
and l.22, as no state is removed from A, and only states in A can be assigned to
the p(q̄) of some state q̄ ∈ Q⊗, and q̄max is by definition the maximum element
of A. If in the loop of l.23, q̄max = q̄′ and q̄max is removed from A at l.26, then
for each q̄ ∈ Q⊗ with p(q̄) = q̄′, p(q̄) is either set to q̄ if q̄ ∈ A, or to ϵ otherwise
at l.28. In fact, for all q̄, p(q̄) will be updated to either q̄ or ϵ. Hence, at the end
of the loop of l.23, if A ̸= ∅, we again have ∀q̄ ∈ Q⊗.q̄max ≥ p(q̄), for possibly
a new q̄max. Since A ̸= ∅ =⇒ ∀q̄ ∈ Q⊗.q̄max ≥ p(q̄) holds after processing the
end of a round for which A ̸= ∅ =⇒ ∀q̄ ∈ Q⊗.q̄max ≥ p(q̄) holds, and since it
holds at the beginning of the first round, it always holds. ⊓⊔

Lemma 4. At l.9: If q̄max ∈ C and ∀q̄ ∈ Q⊗.p(q̄) ̸= ⊥, then Hitchhiking
returns at l.13 before l.22 is reached.

Proof. First, we must have q̄max ∈ O: if q̄max was added to A at l.7, then it
was added to O at l.6. Otherwise, q̄max must have been in A or added to A in
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the previous round, at the end of which, since it was not removed from A at
l.26, it must have been added to O at l.25. Because q̄max ∈ O, each successor
q̄′ ∈ succ⊗(q̄max) is inspected in the loop of l.12. If q̄′ = q̄max, Hitchhiking
returns at l.13, and the lemma holds. If q̄′ ̸= q̄max, then since p(q̄′) ̸= ⊥, l.15–17
are not executed. At l.18, p(q̄′) is set to q̄max, since q̄max ≥ p(q̄′) by Lemma 3.
Hence, l.20 is not executed, i.e., the q̄max-search is not blocked. At l.21, q̄′ is
added to O. By the same reasoning as above, when q̄′ is taken from O at l.11,
for all its successors q̄′′, p(q̄′′) will be set to q̄max, unless for some successor,
q̄′′ = q̄max, in which case Hitchhiking returns at l.13. Since q̄max ∈ C, and the
q̄max-search is never blocked, this eventually happens.

Finally, any other search for a q̄ ∈ A with q̄ ̸= q̄max cannot interrupt the
q̄max-search either: if the q̄-search reaches a state r̄ ∈ O with p(r̄) = q̄max, then
the update at l.18 fails, as q̄max ≥ p(r̄) by Lemma 3, and l.19 is not executed. ⊓⊔

Lemma 5. At l.22: q̄max ̸∈ C ∧ q̄max ̸∈ F .

Proof. This follows from the same reasoning as in the proof of Lemma 4. The
q̄max-search is not interrupted before l.22 is reached, i.e., l.19–20 are never exe-
cuted to add q̄max to F . When l.22 is reached, Hitchhiking did not return at
l.13 in the current round, hence by Lemma 4 and the fact that by Lemma 2,
∀q̄ ∈ QF,⊗.p(q̄) ̸= ⊥, we must have that q̄max ̸∈ C. ⊓⊔

Lemma 6. At l.22: ∀σ ∈ Θ.∃q̄ ∈ A ∩ σ.q̄ ∈ F ∧ p(q̄) ̸= q̄.

Proof. By induction on the number of rounds performed when l.22 is reached.
• 1: When a state q̄ ∈ QF,⊗ is reached for the first time, it is added to A at
either l.7 or l.15 (in the latter case, p(q̄) = ⊥), and during the round, states
are not removed from A. By Lemma 2, at l.22, ∀q̄ ∈ Q⊗.p(q̄) ̸= ⊥, meaning
that A = QF,⊗. Consider an accepting cycle σ ∈ Θ at l.22. Since A = QF,⊗,
we must have A∩ σ ̸= ∅. First we prove ∃q̄ ∈ A ∩ σ.q̄ ∈ F . Consider a state
r̄ ∈ A ∩ σ. Since Hitchhiking did not return at l.13 in the first round, the
r̄-search over σ must have been interrupted by one of the situations in Fig. 3.
Either a state q̄′ ∈ O with p(q̄′) = r̄ was visited by a r̄′-search with r̄′ > r̄
(case a), which led to r̄ being added to F at l.19, or the r̄-search visited a
state q̄′ with p(q̄′) > r̄. In the latter case, either q̄′ ̸∈ A, leading to r̄ being
added to F at l.20 (case b), or q̄′ ∈ A (case c), but then, either q̄′ ̸∈ σ,
and the r̄-search continued along σ, or q̄′ ∈ σ and the p(q̄′)-search continued
along σ, which apparently was in turn interrupted by one of the blocking
situations, since σ was not detected. Since σ is finite, the latter case can only
be applicable a finite number of times, so eventually, a state r̄′′ ∈ A∩σ must
have been added to F (case b).
Next, we prove that for a state q̄ ∈ A∩F∩σ, p(q̄) ̸= q̄ holds. Consider a state
r̄ ∈ A∩F ∩σ. Some r̄′-search caused the r̄-search to be interrupted along σ,
with r̄ added to F . This r̄′-search must have traversed σ (cases a and b). Since
both r̄ ∈ σ and r̄′ ∈ σ, r̄ is reachable from r̄′, i.e., there is some path π from
r̄′ to r̄. Two cases can be distinguished: 1) the r̄′-search continued until r̄ was
reached from some state q̄ ∈ σ, at which point, since r̄′ > r̄, p(r̄) was updated
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to r̄′ at l.18, or 2) the r̄′-search was interrupted along π due to an interruption
situation involving a state q̄′ ∈ σ with p(q̄′) having some value r̄′′ > r̄′. In
the latter case, however, in turn, the same two cases are applicable for the
r̄′′-search. Since π is finite, if case 2 continued to be applicable, eventually
case 1 had to be applicable: some state q̄′′ with r̄ ∈ succ⊗(q̄

′′) must have
been reached, with p(q̄′′) > p(r̄), after which exploration of q̄′′’s successors
(l.12) led to p(r̄) being updated to p(q̄′′) at l.18.

• n+1: By the induction hypothesis, after n rounds, Lemma 6 holds. After n
rounds, each state q̄ ∈ A ∩ F with p(q̄) ̸= q̄ is added to O at l.25 and not
removed from A at l.26. Subsequently, q̄ is removed from F at l.27 and p(q̄)
is set to q̄ at l.28. In the next round, therefore, for every σ ∈ Θ, at least one
search commences of a state q̄ ∈ A ∩ σ. If no cycle is detected, by the same
reasoning as for the base case, it follows that Lemma 6 again holds when
l.22 is reached after round n+ 1. ⊓⊔

Theorem 1. Hitchhiking returns at l.13 iff C ̸= ∅.

Proof. ⇒: If Hitchhiking returns at l.13, a successor q̄′ of a state q̄ was en-
countered with p(q̄) = q̄′. The fact that p(q̄) = q̄′ means that there exists some
path π from q̄′ to q̄. At some point, when q̄′ was visited, p(q̄′) was set to q̄′, either
at l.7 or at l.18 (because of l.16). In both cases, note that q̄′ was added to A at
either l.7 or l.15, respectively, and that this means that q̄′ ∈ QF,⊗. Subsequently,
the successor q̄0 of q̄′ along π was considered at l.12, with p(q̄0) set to q̄′ at l.18.
In turn, the successor q̄1 of q̄0 along π was visited and p(q̄1) updated to q̄′, etc.,
until q̄ was reached. From the existence of π, the fact that q̄′ ∈ succ⊗(q̄), and
q̄′ ∈ QF,⊗, there is an accepting cycle, i.e., C ̸= ∅.

⇐: If C ̸= ∅, then at the start of the first round, if a q̄ ∈ QF,⊗ is reached the
first time, when p(q̄) = ⊥, then either at l.7 or l.15, q̄ is added to A. Next, either
not all searches through C are interrupted, and eventually, Hitchhiking returns
at l.13, or all searches through C are interrupted, and by Lemma 1, Hitchhiking
reaches l.22. From the second round onwards, we can distinguish two cases at
the start of executing a round (l.9):
1. q̄max ∈ C. By Lemma 2 and Lemma 4, Hitchhiking returns at l.13.
2. q̄max ̸∈ C. Then, Hitchhiking may or may not return at l.13. If it does not,

eventually, by Lemma 1, l.22 is reached. At l.22, by Lemma 5, q̄max ̸∈ F ,
and therefore, q̄max is removed from A at l.26. Whenever a state q̄ ∈ QF,⊗ is
visited for the first time, it is added to A at either l.7 or l.15, and can only
be removed from A at l.26. However, by Lemma 6, for each cycle σ ∈ Θ,
there exists a state q̄ ∈ A∩σ with q̄ ∈ F and p(q̄) ̸= q̄. This q̄ is added to O
at l.25, and therefore not removed from A at l.26. Hence, at l.28, C ∩A ̸= ∅,
and some state q̄ ∈ A now acts as q̄max. At l.28, each p(q̄′), with q̄′ ∈ Q⊗, is
either set to a value in A or ϵ.
In the next round, the same two cases can be distinguished for the new q̄max.
Eventually, case 1 must be applicable, since A is finite, and as states in A\C
keep being removed from A, eventually, A ⊆ C, meaning that q̄max ∈ C. ⊓⊔

Theorem 2. Hitchhiking returns at l.29 iff C = ∅.
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Proof. ⇒: Follows from Theorem 1. Since Hitchhiking returns at l.13 iff C ̸= ∅,
at l.29, we must have C = ∅.

⇐: Since C ̸= ∅, by Theorem 1, Hitchhiking does not return at l.13. By
the same reasoning as for the proof of Theorem 1, case ⇐, at the end of each
round, states in A \ C are removed from A, and since A is finite and A∩ C = ∅,
eventually, A = ∅ and no state is added to O at l.25 since that line is not reached.
By Lemma 1, at that point, O = ∅, and therefore subsequently, l.9 is reached
with O = ∅. This leads to Hitchhiking returning at l.29. ⊓⊔

Thread-safety. In the parallel version of Hitchhiking, the parallel for-loops are
performed with each element in the involved set, i.e., O, succ⊗(q̄), or Q⊗, being
processed by a separate thread. Furthermore, we assume that every parallel for-
loop is followed by a global thread-barrier (in GPU code, this means that every
parallel for-loop is implemented as a separate GPU kernel).

A parallel, shared-memory implementation can use a thread-safe shared hash
table to maintain O and p, while using bookkeeping bits for each element to
maintain A and F . These bits can be manipulated in a thread-safe way using
atomic bit operations. This makes the loops of l.10 and l.12 largely thread-safe.
To make the updating of p(q̄) thread-safe, an atomic maximum operation can be
used, which atomically updates the original value iff the new value is larger, and
returns the original value. This may result in some values of p(q̄) never being
considered when processing q̄, i.e., after having updated p(q̄), a thread may reach
l.21 after another thread has again updated p(q̄), but this is not a concern, as p(q̄)
monotonically increases, and for correctness, it is only important that in each
round, the largest possible value for p(q̄) is processed at some point. In the loop
of l.23, threads inspect and manipulate individual states and their bookkeeping
bits without following references to other states, which is thread-safe.

Complexity. Consider Fig. 2. If Hitchhiking explores this NBA strictly in a
BFS order, i.e., O evolves from {r̄0} to {r̄1, q̄0} to {r̄2, q̄1, r̄′}, etc., then every
state q̄i is explored n+1− i times with an increasing p-value. This is the worst-
case in a single round: n accepting states leading to n · n+1

2 explorations. With
BFS, every time a q̄i-search reaches a state q̄j with i > j, q̄j ̸∈ O, meaning
that at l.19 of Alg. 2, q̄j is not added to F , and after one round, Hitchhiking
terminates, whereas Map needs n rounds to terminate. Worst-case, however,
Hitchhiking has the same complexity as Map, i.e., O(n2 · n+1

2 ), if the states can
be explored in an arbitrary, not strictly BFS order. Still, the practical runtime
of Hitchhiking is susceptible to the exploration order, in contrast to Map, and
can therefore be much better (see Section 4.2).

4 Implementation and Experiments

4.1 Parallel Implementation for GPUs

We implemented Hitchhiking in CUDA C++ as part of GPUexplore 3.0 [51,
52]. We describe here the general workflow of GPUexplore (Fig. 4). For more
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Fig. 4: The workflow of GPUexplore with Hitchhiking.

details, see [51, 52]. Given an input model implicitly describing a Kripke struc-
ture K in the Slco language [9,46], which allows the specification of concurrent
systems by means of state machines with shared variables, and an LTL formula
φ, a code generator, implemented in Python using textX [17] and Jinja2,3

produces model-specific CUDA C++ code to explore K ⊗B¬φ. The Büchi au-
tomaton is constructed with the ltl2tgba tool of the Spot library [18]. The gen-
erated code entails next-state computation functions, i.e., functions that given
a state q̄ ∈ Q⊗, produce the successor states succ⊗(q̄). One next-state compu-
tation function is generated for each state machine in the model, which allows
the parallel construction of succ⊗(q̄), with each function executed by a different
thread. In addition, a separate function is generated to update the state of B¬φ.
Together, the threads explore all the states reachable from Q0,⊗.

GPUexplore’s generic code implements the control flow and state storage.
In GPU global memory, a large hash table H is maintained to store the visited
states with their current p-value. States are stored as binary trees [9, 51], which
enables states to share sub-trees, and root compression [14, 30, 51] is applied,
which allows compressed storage of tree roots. As tree roots in practice vastly
outnumber non-roots, this can compress the overall stored data 2–6 times [51].

On an NVIDIA CUDA GPU, threads run in blocks. In GPUexplore, 512
threads form a block, and by default, around 3,000 blocks are launched. The
overall workflow is as follows. First, the initial states Q0,⊗ are identified and
stored in H. Next, an exploration kernel, i.e., GPU function, is launched, in
which the blocks scan H for unexplored states, each block focussing on a specific
region that it was assigned to. This kernel essentially implements the loop of
l.12 of Alg. 2. Encountered unexplored states are added to the work tile of the
block, which resides in fast but small shared memory. The threads in the block
can use this memory together. Once the fixed-size work tile is full, or there are
no more unexplored states in the assigned region, the block assigns threads to
state / state machine combinations to generate the successors in parallel. These
successors are first stored in shared memory, after which they are added to H
if they are not already present. Global memory has a high latency, and using
shared memory for successor storage reduces the number of accesses to H.

In an exploration kernel launch, the blocks fill their tiles and generate and
store successors a pre-determined number of iterations. After this, a CPU thread
determines via a progress flag whether another kernel launch is necessary.

3 https://palletsprojects.com/p/jinja.
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To avoid frequent scanning of H, GPUexplore employs work claiming : as
a block stores a state q̄ in H that requires exploration, it can immediately claim
q̄ for exploration in the next iteration. If it does this, q̄ is added to the work
tile, and marked as explored in H. Work claiming has a significant performance
impact [51]. Due to non-synchronised parallel exploration by many blocks, and
work claiming, GPUexplore does not strictly adhere to a BFS order.

Hitchhiking has been integrated into the exploration kernel, with the O,
A, and F sets implemented with flags associated to the entries in H.

4.2 Experimental Evaluation

We conducted our GPU experiments on a machine running Linux Mint 20
equipped with a Titan RTX GPU from 2018, with 4,608 cores at 1.35 GHz
and 24 GB global memory. The generated code is compiled with CUDA 12.2
targeting compute capability 7.5. The GPU experiments include a comparison
between an implementation of Hitchhiking with a version of the algorithm
in which F is not used and after every round, all states are added to O. The
latter boils down to implementing Map into GPUexplore, as proposed in [2],
apart from the fact that our implementation is integrated into the exploration
phase and can detect cycles on-the-fly. The DiVinE-CUDA tool [28] contained
a GPU implementation of Map, but used the no longer maintained DiVinE
v2.0 [4] tool, and is itself no longer maintained or supported by current GPUs. In
addition, we compare with state-of-the-art multi-core CPU tools: Spin 6.5.1 [24]
and LTSmin 3.0.2 [29, 32] running 2-core Nested DFS (NDFS) [26] and multi-
core (Combined) NDFS (CNDFS) [22] for LTL checking, respectively, using 32
GB memory. Spin’s NDFS can only use up to two cores.

All tools were configured to use state compression, to use the available mem-
ory as efficiently as possible. Spin’s bit-state hashing and hash compaction were
not used, as they make exploration imprecise. That is also the reason to not
compare to Spin’s Piggyback algorithm [23, 25] (see Section 5), as in precise
mode, it requires too much memory. Also, all tools support Partial-Order Re-
duction [10, 31, 35], but we did not use it, as it results in the tools deviating
w.r.t. the number of states they explore, making the comparison not exclusively
about the LTL checking algorithms. The CPU experiments were performed on
an Amazon Web Services machine, running Ubuntu 22.04 with a 32-core 2.65
GHz AMD EPYC 7R13, from 2021.

For benchmarks, we used models from the Beem benchmark suite [44], trans-
lated to Slco and Promela (for Spin). All models with state spaces of at least
100,000 states, and without communication channels (support for which in Slco
is still experimental) were selected. A few models were scaled up to have larger
state spaces. Those are marked in Table 1 with ‘+’. The state spaces of the
benchmarks range in size between 150,000 and 1.2 billion states. The minimum
runtime was recorded after having verified a model w.r.t. a single property five
times. Timeout was set to 2,000 seconds per run. Furthermore, to be in line with
the theory, any deadlocks in a model were removed by adding self-loops to those
states. Models that were altered in this way are highlighted yellow in Table 1.
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Fig. 5: LTL model checking performance of various tools

Regarding LTL properties, we initially used three formulae per model, to
verify safety and liveness properties, as provided by Beem. However, we observed
for almost all formulae that counter-examples were found very quickly. To obtain
better insight into the algorithms’ performance, we changed some properties to
make them satisfied, such that it takes much more time to prove the models
correct. For a description of all properties and models, see [41].

Fig. 5a gives a general insight into the performance achievable by all tools
running on 32 models × 3 LTL formulae, i.e., 96 instances. Timed out cases are
illustrated at the top. For the majority of cases, Hitchhiking spent between
0 and 250 seconds, while the other tools either ran out of memory or took
significantly more time.

Fig. 5b compares the performance of state space exploration without cycle
detection using LTSmin and GPUexplore, i.e., the products are explored but
cycle detection is not performed. The runtimes were accumulated, sorting the
instances by their individual runtime. The gentle curve of GPUexplore demon-
strates that the thousands of GPU cores are being used effectively: as the state
space grows, the runtime increases only mildly. On the other hand, LTSmin
has a steeper curve. The individual cores of the state-of-the-art CPU it uses are
much more advanced than the GPU cores, but there are relatively few of them.

Table 1 compares in-depth the runtimes of Hitchhiking with those of other
algorithms for the 96 instances. As mentioned earlier, not-satisfied formulae
(highlighted in red) were trivially violated within one second for both LTSmin
and Hitchhiking. Among those cases, LTSmin resulted in incorrect results for
the telephony models w.r.t. the formula φ3. We suspect the culprit is a data
overflow during the index evaluation of array accesses in the telephony mod-
els. Some transitions in those models involve complex expressions with array
indices to perform indirect memory accesses. With regard to satisfied formu-
lae (highlighted in green), Hitchhiking drastically outperformed its multi-core
competitors. For example, Hitchhiking took only 1 second to verify φ3 for the
six dining philosophers model (phils.6, with φ3 stating that globally, a partic-
ular fork is either picked up or lying on the table) compared to 375 seconds by
LTSmin running on 32 cores.

Finally, as indicated by the flipped triangles (▼), GPUexplore with Map
experienced a massive slowdown in performance compared to Hitchhiking.
This confirms our expectations previously discussed in Section 3.
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5 Related Work

Prominent DFS-based LTL model checking algorithms are mentioned in Sec-
tion 1. In this section, we discuss BFS-based algorithms, and massively parallel
state space exploration. To begin with the latter, initially, GPUs were used to
accelerate parts of state space exploration, such as duplicate detection [20] and
next-state computation [19]. However, the frequent copying of data between GPU
and CPU formed the main performance bottleneck. In [21], some state spaces for
planning problems were explored on a GPU, assuming a perfect hash function.
GPUexplore 1.0 [54] and 2.0 [57] completely perform GPU state space explo-
ration, for models expressed as networks of Labelled Transition Systems. Later,
support was added for safety property checking [55] and LTL model checking for
cycles up to a given size [53]. Spin was extended with GPU support for reacha-
bility analysis [7], which evolved into an incomplete bug-hunting technique [16].
Another tool for reachability analysis was presented in [59], and in [48], a model
checker for pushdown automata was presented. Whereas the latter tool supports
LTL checking, it is restricted to small models with transitions that can be en-
coded in 64 bits. Finally, constructing shortest counter-examples with a GPU
after LTL checking with the CPU was investigated in [58]. We do not focus on
finding shortest counter-examples. This is planned for future work.

BFS-based algorithms were initially developed for distributed model check-
ing. Back-Level Edges [6] searches for edges that close a cycle, but Map
is shown to be better in [11]. One-Way-Catch-Them-Young (Owcty) can find
counter-examples post-exploration [13]. A heuristic version of Map is added
to Owcty, to make it on-the-fly [3], but only to the extent that it may find
counter-examples early if they exist; it may also overlook them. This heuristic
Map is very similar to Piggyback [25], developed in Spin, which was extended
to always find a counter-example, as long as the involved cycle is not longer than
a given bound [23]. Finally, GPU accelerated post-exploration versions of Map
and Owcty were implemented in [2, 5]. Different from these GPU algorithms,
ours is truly on-the-fly, i.e., it is guaranteed to find a counter-example, if one
exists, before the entire state space has been explored.

6 Conclusions and Future Work

We presented Hitchhiking, a new algorithm for massively parallel LTL model
checking, and proved it correct. With a GPU implementation in the GPU-
explore 3.0 model checker, we experimentally demonstrated its efficiency, in
particular when a model satisfies an LTL formula. Speed-ups up to 150× were
measured, compared to a 32-core version of the LTSmin tool running multi-core
Nested DFS. This is the first time that GPU on-the-fly LTL model checking has
been applied on state spaces in the order of billions of states.

For the future, we plan to work on counter-example construction [58].

Data Availability Statement. The datasets generated and analysed during the
current study are available in the Zenodo repository [41].
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56. Wijs, A., Katoen, J.P., Bošnački, D.: Efficient GPU Algorithms for Parallel Decom-
position of Graphs into Strongly Connected and Maximal End Components. For-
mal Methods Syst. Des. 48(3), 274–300 (2016). https://doi.org/10.1007/s10703-
016-0246-7
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Towards Safe Autonomous Driving: Model
Checking a Behavior Planner during Development

1 Introduction
Automated Driving (AD) is an ever-growing research field with the potential
to make traffic safer and more efficient. Recently, ISO 21448 on Road Vehi-
cles – Safety of the Intended Functionality (SOTIF) specified that the number
of unsafe, both known and unknown, scenarios should be minimized [30] and
the political goal “Vision Zero” aims to practically eliminate traffic fatalities by
2050 [58]. This demonstrates that there is a high interest in and pressure on
research to make automated vehicles (AV) safe. AD in the sense of a (future)
product has to comply with a vast variety of safety requirements originating from
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Abstract. Automated driving functions are among the most critical
software components to develop. Before deployment in series vehicles, it
has to be shown that the functions drive safely and in compliance with
traffic rules. Despite the coverage that can be reached with very large
amounts of test drives, corner cases remain possible. Furthermore, the
development is subject to time-to-delivery constraints due to the highly
competitive market, and potential logical errors must be found as early
as possible. We describe an approach to improve the development of an
actual industrial behavior planner for the Automated Driving Alliance

between Bosch and Cariad. The original process landscape for verifica-
tion and validation is extended with model checking techniques. The idea
is to integrate automated extraction mechanisms that, starting from the
C++ code of the planner, generate a higher-level model of the underlying
logic. This model, composed in closed loop with expressive environment
descriptions, can be exhaustively analyzed with model checking. This
results, in case of violations, in traces that can be re-executed in system
simulators to guide the search for errors. The approach was exemplarily
deployed in series development, and successfully found relevant issues in
intermediate versions of the planner at development time.
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domains as diverse as physics, law and ethics [4, 21, 37, 40,58]. Improving safety
up to human driving level is already a challenging problem [51]. However, it is
assumed that AD needs to vastly exceed the “human” safety benchmark since
even very few fatalities caused by automated vehicles are hardly acceptable to
the public [2, 49, 61]. The de facto standard today is that tremendous amounts
of test drives are supposed to account for the safety of AVs. However, statistical
considerations show that deriving confidence in the safety of an AV solely via
test drives might indeed require ludicrous amounts of driving [34,44,62].

In this paper, we describe an approach to improve the development of AD
software, adopted within the Automated Driving Alliance (Alliance)1 between
Bosch and Cariad. Specifically, we consider a behavior planner (BP; also, tactical
BP), that controls the high-level actions of an AV (e. g., accelerating, braking,
lane changes) based on the perceived state of the environment (e. g., flow of the
surrounding traffic). It is part of a system called Highway Pilot which realizes
automated driving on highways or highway-like roads. The BP is implemented
in C++, and is under active development, undergoing repeated updates, with the
addition of new features and improvements. Due to time-to-delivery constraints,
the verification and validation (V&V) activities are supposed to proceed in par-
allel to the development, preferably in an “observe only” manner.

We enhance the V&V process by integrating automated formal verification
techniques, in particular model checking (MC) of infinite-state transition sys-
tems [10], within the original development environment. The primary purpose is
not (yet) to provide arguments for absolute correctness, but to increase the cover-
age of known unsafe scenarios, currently provided by test drives and simulation.
By exhaustively analyzing a huge range of scenarios, MC is largely insusceptible
to human bias and can discover corner cases that may be overlooked otherwise.

We face the challenge that MC must become part of the continuous inte-
gration (CI) process, hence it must be directly connected to the consecutive
versions of the BP. This means that manual modeling is to be avoided, in order
to enable a seamless connection between development and V&V. Therefore, we
integrate suitable mechanisms for the extraction of the BP logic directly into the
development environment. Starting from the C++ code of a BP, we automatically
derive a model of the underlying logic including the interface to the surround-
ing software stack. This model is converted into K2, a low-level imperative-style
language of the Kratos2 software model checker [23], which is, in turn, converted
into SMV, the input language of the symbolic model checker nuXmv [8].

The scenarios for validation are obtained by composing the model of the BP
in closed-loop with an environment model (EM). The EM contains rules about
the succession of a highway-like traffic scene in terms of the possible behavior
of a set of free cars which drive in scope of a distinguished BP-controlled car
(ego), cf. Fig. 1 2. EM and BP are integrated such that the BP receives perception

1 The Alliance has set out to “[build] a state-of-the-art ADAS software platform for
use in all Volkswagen Group brand vehicles – and therefore in one of the world’s
biggest vehicle fleets”. More information on BOSCH and CARIAD websites.

2 The graphic was auto-generated by our explainability toolchain, cf. Sec. 3.1.
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Figure 1: Highway scene illustrating the base scenario. We model three
straight lanes unrestricted in longitudinal direction, non-ego positions are calcu-
lated relative to ego. Laterally, cars are either on a single lane or between two
lanes (during a lane change). Blue numbers: car IDs, black numbers: velocities
in m/s. Grey arrows: movement from current to next EM iteration.

inputs from the EM and returns an actuation output, which is translated into the
movement of the ego. The EM is also written in SMV and can be parametrized to
further specify the scenario (e. g., number of non-ego cars, physical features of the
cars, driving behavior). The composed model of EM/BP is exhaustively analyzed
with nuXmv, which results in a counterexample (CEX) in case of the violation
of a property, e. g., a collision. The CEX can be re-executed in simulators to
guide the search for errors. The approach was exemplarily deployed in series
development, resulting in a fully automatic toolchain usable, e. g., in a CI system.
The deployment was very successful in that actually relevant issues could be
found in intermediate versions of the BP at development time.

Since the full BP code is restricted from publication, we use a mock BP in
this publication to illustrate details about the process. Nonetheless, all presented
results have been originally obtained with the actual BP used in the Alliance by
tracking its development with CI techniques. Though being much simpler, the
mock BP is designed to resemble the actual BP in some essential aspects, such
that two major bugs found in the actual BP can be reproduced with it. Runtime
and performance analyses are performed on data from the actual BP. Using the
mock BP, we provide possible fixes to the found bugs in this simpler setup, and
show that the model checker then efficiently supplies proof for the now correct
functioning of the model of the mock BP, within the simulation by the EM.

Our contributions are:
〈
1
〉

a self-consistent toolchain, involving automatic
processing of the C++ code of a BP, integration with plausible physics and sur-
rounding traffic behavior, MC with nuXmv, as well as, extracting traffic scenes
from CEXs for debugging;

〈
2
〉

presentation and discussion of two safety-relevant
issues found in an industrial BP;

〈
3
〉

by means of re-simulation ensuring that
the model soundly captures the real-world system;

〈
4
〉

analysis of the feasibility
of the approach for an actual industrial context, including efficiency.

The remainder of the paper is structured as follows. Sec. 2 provides the
basic AD context, as well as the theoretical background required for MC. Sec. 3
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describes the methodology underlying the experimental setup. Sec. 4 describes
and discusses the experimental results. Sec. 5 lists and assesses literature related
to our approach. Sec. 6 provides a conclusion and an outlook to future work.

Additionally, we provide an appendix which is available in an extended ver-
sion of the paper published as supplementary material. It is intended to facilitate
reproducibility, but is not required to follow the presented results. The supple-
mentary material also contains the mock BP and two versions of the EM, as used
for the experiments. In an artifact associated to this paper, we provide the full
functioning toolchain, i. e., all code and software (except for the Alliance BP) in
a state as used for the experiments.

2 Background

The task of driving automatically can typically be segmented according to the
classic “sense – plan – act” paradigm [7, 38]. The sense part comprises percep-
tion of the environment using sensors like camera, lidar or radar, and fusing
their measurements into a model of the environment (e. g., [41]).This model con-
tains all available information of the AV’s surroundings, e. g., lanes to drive
on, the state of other traffic participants (e. g., position, velocity, acceleration)
and predictions of their motion. This is the basis for planning the motion of
the controlled AV. The plan part can be divided into three steps [3]: First, a
strategic planner decides about the global navigation, i. e., the route to follow.
Then, the tactical BP decides between available maneuvers, e. g., lane following
or lane change. Finally, the trajectory planner calculates a desired trajectory
which eventually results in a sequence of desired accelerations and curvatures.
In the act part, these signals are forwarded to the actuators, thus accomplishing
the actual driving on the road. We focus on the tactical BP which, for MC, is
decoupled from the other software modules in the sense – plan – act pipeline.

Model Checking of Infinite-State Symbolic Transition Systems. The
system under analysis is derived in several steps from the BP and the EM code,
cf. Sec. 3, and finally represented as a symbolic transition system expressed using
quantifier-free formulæ in first-order logic modulo theories (for further reading,
refer to, e. g., [5]). We work in the setting of many-sorted first-order logic, and
we assume the usual first-order notions of interpretation, satisfiability, validity,
logical consequence, and theory, as given, e.g., in [17]. Unless otherwise stated,
when we talk about a logical formula φ(X), we mean that φ is a quantifier-free
first-order formula whose free variables are included in the set X, and using
symbols from the theory of (linear) arithmetic (with their usual interpretation).
For example, φ({x1, x2}) := (3x1 > 0) ∧ (x2 + x1 < −5). A symbolic transition
system S = ⟨X, I, T ⟩ is a tuple, where X is a set of (state) variables, I(X) is a
formula representing the initial states, and T (X,X ′) is a formula representing
the transitions, where X ′ is the set of variables representing the next state of the
system. A state s of a transition system S is an assignment to the state variables
X; a path (trace) π of S is a possibly infinite sequence π := (s0, s1, . . . , si, . . .)
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of states si such that I(X) is true under the assignment s0, and T (X,X ′) is
true under the assignment si−1, s

′
i for all i > 0 in π, where s′ is the assignment

obtained by replacing each x ∈ X with the corresponding x′ ∈ X ′. We say that a
state s is reachable in S if and only if there exists a path π of S such that s ∈ π.
Given a formula P (X) over the variables X, the invariant verification problem
for S and P is the problem of checking if all the reachable states of S satisfy the
formula P . In that case, we say that S satisfies P , written as S |= P .

Tools. For solving the core MC problem we use nuXmv [8], a state-of-the-art
symbolic model checker for both finite- and infinite-state transition systems. It
supports the verification of invariant and LTL properties using a combination
of efficient algorithms based on Boolean satisfiability (SAT) and Satisfiability
Modulo Theories (SMT) [11, 13, 24]. Each verification engine can be used un-
bounded or bounded (in which case only disproving is possible). For details see
the documentation [8]. The transition system for nuXmv is defined using an ex-
tension of the standard SMV language for finite-state systems (simply SMV in
the following). An example of the syntax is reported in Alg. 2 of the appendix.

To automatically derive a nuXmv transition system out of imperative C++

code, Kratos2 can be used as an intermediate step. Kratos2 [23] is a tool for
the automatic verification of imperative programs, using nuXmv as its main
verification engine. The native language of Kratos2 is a verification language
called K2 (similar to Boogie and Why3 [43]) that provides a well-defined and
unambiguous formal semantics suitable for verification. An example program
in K2 is shown in Alg. 3 of the appendix. The resulting K2 program is then
transformed by Kratos2 into SMV and verified with nuXmv.

Parsing C++ code and creating the K2 model out of it is done by a prototyp-
ical software called vfm which was developed within the Alliance (cf. artifact).

3 Methodology

This section describes the proposed workflow and justifies how the respective
components were chosen to establish an industry-ready setup.

3.1 Overview

Our toolchain consists of several components centered around a BP under analy-
sis, cf. Fig. 2. We impose MC on top of a functioning software and in scope of
an established development process. Therefore, the BP’s source code, (1) in the
figure, is considered largely immutable, meaning that we cannot change it to our
likings, but developers can change it at any time outside of our control.

The BP cannot be checked on its own, since its behavior within a traffic sit-
uation is of major interest. The entity responsible for providing an initial traffic
scene, and keeping track of how it evolves according to the BP’s actions, is the
EM (3). It is given in SMV language, i. e., we can directly identify it with a
transition system SE := ⟨XE , IE , TE⟩. In a first processing step, the BP and
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the EM are parsed separately to create an intermediate representation (4) which
contains an internal description of the BP logic including its interface towards
the EM. The respective mapping between EM and BP is provided by the type
abstraction layer (TAL) (2), which is embedded into the C++ code of the BP via
comments (see below). The intermediate representation is translated into a K2
version of the BP logic (6) which, in turn, is translated by Kratos2 into an SMV
representation (7; cf. discussion in Sec. 4.3 about making this detour instead
of directly translating from C++ to SMV); we identify the SMV representation
with the transition system SP := ⟨XP , IP , TP ⟩; additionally, the interface infor-
mation is used to generate the full integrated transition system, called SE⊔P . On
SMV level, it is constructed to include and connect SE and SP as two separate
modules within a main module (5); it is also the place to add specifications to
check. This file is then handed to the nuXmv model checker for the actual MC
task. Depending on the result, we either terminate the process after MC, if the
specifications are fulfilled (“OK”), or otherwise (“FINDING”) trigger the creation
of a CEX (8), which is a witness of the specification being violated. It provides
a trace within the checked transition system SE⊔P in the course of which the
specification does not hold. In our case, the sequence of variable values along
this trace provides information about

〈
1
〉

the traffic situation in which the vio-
lation occurred and

〈
2
〉

the BP actions in this situation.
〈
1
〉

is used to generate
visualizations of the traffic scene in question, and to further process the resulting
scenarios of interest, by using the Open Scenario 2 (OSC2) format [1] as under-
lying representation (9). Figs. 1, 4 and 5 were created using this functionality.〈
2
〉

could, in principle, be used for a deep analysis of the error, such as tracking
back which lines in the original C++ code are involved in the violation. This is
planned to be done in future, but is not possible yet.

The retrieval of the transition system to check needs to be flexible enough
to adapt to future changes of the BP, which are expected to happen frequently
during development. Therefore, the EM should not be customized towards a
specific BP, but rather provide a generic interface which works with a variety of
BP instances. The toolchain then runs fully automatically by attaching flexibly
to different BPs, as long as the EM is “suitable” for them, i. e., all required data
is available in the EM’s generic interface, agnostic of naming. For example, the
BP might require as input its own velocity in a variable called agent.v which
the EM provides as ego.v. The TAL connection can be established by adding an
“aka” tag as comment to the BP variable agent.v (for details cf. the appendix).

Therefore, the remaining manual effort consists of adding or adapting the
TAL information when the BP changes. This is expected to be mostly a one-
time effort, since once the connection to EM variables is established, it only
needs to be changed if new data is added to the interface (not on mere re-usage
or renaming). This happens occasionally, but is not very common in practice.
Only if the EM becomes unsuitable for a developed BP, i. e., when a non-existent
signal is requested, this implicates the fairly high effort of adapting the EM.
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Behavior Planner (1) 
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Figure 2: Overview of the presented toolchain. The BP to check (1) is
the main input. The EM is given as transition system in native SMV language
(3). nuXmv (center) is run on an integration of BP/EM created in several steps
(3/5/7). Visualizations and simulations are derived from CEXs (9).

3.2 Environment Model

Since we cannot model-check the full software stack the BP is part of, with per-
ception on one side and actuation on the other, the BP needs to be directly fed
with mock data from a simulated environment, and its output needs to be prop-
agated back into this environment in a closed-loop manner. This is accomplished
by the EM, which creates an initial state of the environment, and then progresses
by supplying the current state as perception input to the BP and deriving the
next state based on its output. Therefore, the EM maintains physical states of
all agents, and applies laws of physics and possible driving behavior to them.

We assume a perfect environment, i. e., perfect knowledge without any sen-
sor uncertainties and perfect behavior without actuatory imprecision. We use a
highway-like road model with 3 lanes, allowing traffic only in one direction, as
illustrated in Fig. 1. We support an arbitrary number of non-ego vehicles3, each
of which has physical properties such as relative position to ego, velocity and
lane association. A vehicle is associated to either a single lane or, during a lane
change, to both its source and its target lane (cf. veh[1] and veh[2] in Fig. 1).

In each verification step, corresponding to 1s, all non-ego vehicles may choose
a new acceleration a ∈ {−8,−7, . . . , 6} m/s2, which is used to update the veloc-
ity and relative position simultaneously. In addition, each non-ego vehicle may
3 A generator is used to create an EM with an adjustable number of non-ego cars for

each MC run (cf. artifact).
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choose to perform a lane change. A lane change is executed in two stages. In
the first stage, the non-ego vehicle signals the lane change via turn indicators
but is still located on its source lane. The second stage is the transition from
source to target lane, i. e., it starts when the lane marking is initially touched
until the non-ego vehicle is contained entirely in the target lane. During both
stages, the non-ego vehicle may non-deterministically decide to abort the lane
change. If the decision to abort is made while being in the second stage, the
non-ego vehicle moves back to the source lane. The durations of both stages of
the lane change and of the return to the source lane when aborting are chosen
non-deterministically from intervals of possible values (cf. section marked “Begin
of lc parameterization” in the published version of the EM). Thereby, we en-
able to verify a high variety of lane changes in the MC process, including much
tougher ones than expected to usually happen on real roads, with the goal to
over-estimate (rather than under-estimate) violations by the planner in the sense
discussed in Sec. 4.3. On the other hand, we do prohibit excessively malicious
behavior by ensuring that ego is able to prevent a collision by staying in its lane
and reacting instantaneously with a deceleration of up to −8m/s2.

The ego vehicle tracks objects in its proximity via so-called gaps, defined by
a front and a rear vehicle on its own and its neighboring lanes, cf. Fig. 3. This
data needs to be provided by the EM, as well. Depending on lane availability,
there can be up to three gaps, one is always in the ego lane, the other two can be
in the left or right lane next to ego, respectively, if available. For each car in the
gaps, information such as relative distance to ego, velocity and acceleration are
stored which can be used by the BP for decision making. If one of the positions
is not filled, e. g., if the next car is out of perception range, this is indicated
by a special value. The full SMV code of the EM, as well as a more in-depth
description are published as supplementary material.

8
gaps[ActionDir::CENTER]

gaps[ActionDir::LEFT]

gaps[ActionDir::RIGHT]

s_dist_front
= rel_pos

s_dist_rear
= -rel_pos

rel_pos < 0 rel_pos = 0 rel_pos > 0

ego

Figure 3: Illustration of gaps tracked for ego. The gap data structure pro-
vides information about the free space which ego drives in on its own lane or
could dive into when performing a lane change, in terms of the two cars limiting
this space to the front and rear. A gap contains the IDs, distances, velocities,
accelerations etc. of the closest cars to the front and rear on the respective lane.
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3.3 The Original and Mock BPs

We consider two BPs,
〈
1
〉

the actual BP currently under development for the
Alliance project, and

〈
2
〉

the mock BP which is a simplified version of
〈
1
〉
. The

code considered for
〈
1
〉

is an excerpt of the project BP containing the logic for a
lane change decision towards the “fast” lane (LCfast) (left assumed; as opposed
to LCslow). It consists of more than 1000 lines of C++ code. The mock planner〈
2
〉

is much smaller (about 100 lines) and can be inspected in its entirety as
supplementary material. It contains a simple version of the logic for LCfast,
logic for LCslow and a simple longitudinal control.

The interface towards the EM is equal for
〈
1
〉

and
〈
2
〉

regarding LCfast. It
uses the gap structure as input and returns as output the decision whether or not
to initiate a lane change towards the fast lane. The mock BP requires additional
data for the longitudinal control, as well as some signals used to fix the found
issues; we mostly disregard these differences in the following, for simplicity. The
exact interfaces are given in the appendix.

4 Experiments

Our goal is to demonstrate that the proposed approach can practically guide
development processes of a BP in industry. Therefore, we need to show that〈
1
〉

our setup derives valuable insights for
〈
a
〉

development and/or
〈
b
〉

release;〈
2
〉

it does this in acceptable runtime,
〈
3
〉

it does not overly disturb every-day
development, and

〈
4
〉

its results are self-explanatory to developers and V&V
experts. In Sec. 4.1 we analyze two major issues found early during development
in the Alliance BP

〈
1a
〉
. We also comment on the implications of proofs of error-

freeness on the model level, which may be of high relevance for possible future
release argumentation

〈
1b

〉
. Efficiency of bounded and unbounded MC

〈
2
〉

is
analyzed in Sec. 4.2. Sec. 4.3 discusses the results and elaborates qualitatively
on the topics

〈
3
〉

and
〈
4
〉
.

4.1 Disproven Specifications with Counterexamples

The two issues we describe were found by checking for the invariant property
!blamable_crash. It is true if ego’s bounding box never overlaps with the bound-
ing box of any car in front of ego. nuXmv showed in both cases that it does not
hold true, which led to the generation of CEXs. They reveal violations of the BP
in typical highway-traffic, which we named Lead Vehicle Occlusion and Double
Merge4. The CEXs have been further processed to show the succession of the
traffic scenes that lead to the violations (Figs. 4 and 5), and to confirm the issues
in simulation by using the full underlying software stack (cf. Sec. 4.3).

4 Note that these issues certainly could have been detected with regular V&V tech-
niques, as well, however, with considerably greater effort.
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Figure 4: Full CEX trace of crash caused by ego overlooking hard
brake ahead due to another car “cutting out”. The highlighted portion of
the second-to-last image shows how the car in the lead position (0) pulls away
(“cuts out”) while another car ahead (6) brakes hard, unnoticeable by ego due to
the way lead vehicles are tracked. Instead of braking, ego even accelerates, since
car 0 also accelerates and departs.

Lead Vehicle Occlusion. Since ego bases all decisions on the gap structure,
it cannot “see” possible cars in front of the one it finds as front car in one of the
gaps. On the other hand, the surrounding traffic is allowed to behave arbitrarily
rudely, as long as ego has, upon immediate action, a chance to avoid a crash (cf.
Sec. 3.2). Considering this, nuXmv reported the situation illustrated in Fig. 4 as
a CEX5 . The seven snapshots correspond to the full path given in the CEX (i. e.,
it takes at least 7 steps from an initial to a violating state). The actual crash
occurs in the last step, but the underlying wrong decision is made already in
the sixth step. Here, car 0 is partially on ego’s lane, and is, therefore, considered
the lead car in the CENTER gap (indicated by a green frame). On the other hand,
car 6 is farther ahead, and, at this point invisible to ego (in a logical, not a
perception sense). The problem arises from car 6 performing a hard brake, while
car 0 budges towards the middle lane (“cuts out”). Considering car 0 as lead car,
which actually departs to the front, ego misinterprets the scene to clearing up,
and accelerates rather than braking, which leads to the crash. The CEX points
to a fundamental problem caused by considering only a single lead vehicle per
gap. (Indeed any constant number n of lead vehicles won’t fix the underlying
problem, assuming unrestricted velocities and/or restricted braking capabilities.
Imagine a row of n+ 1 cars in front of ego, with the furthest one standing still
while the other n cut out. In practice, safety distance needs to be adjusted such
that braking in time is possible even in the worst case scenarios.)

Double Merge. This issue is caused by ego observing only cars on neighboring
lanes, which can lead to conflicts if cars from two lanes apart change towards
5 The CEX can be produced with any number of non-ego cars ≥ 2. We choose to show

non-minimal examples here to give intuitive insight into the functioning of the EM.
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a neighboring lane while ego itself is changing towards this lane. This issue is
related to the gap structure, too, but points to the lateral, rather than longitu-
dinal limit of the structure. Fig. 5 shows how the violation unfolds in the course
of 6 steps. The actual problematic decision already occurs in step 2 where ego
decides to change the lane towards the middle, as displayed by the indicators
turned on6. At this point, ego waits for two steps before actually starting the
lane change. During this whole period, the middle lane appears to be free (al-
though all three non-egos indicate at some point to be starting a lane change,
which is actually performed by cars 1 and 2, but aborted by car 0). When ego
actually does the lane change, car 1 happens to finish its own and ends up col-
liding with ego. While it could be argued that the other car could have avoided
this situation, too, ego is at least partially to blame for the crash.

As opposed to the Lead Vehicle Occlusion issue, which was more fundamental
in nature, this issue is strongly connected to the exact way the BP performs a
lane change. Having a more flexible cancellation mechanism, or including cars
between a neighboring lane and the one next to that into the gaps, could, for
example, easily avoid this type of issues.
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Figure 5: Full CEX trace of crash caused by ego not noticing a car
merging towards the middle lane while itself merges there. The issue
is caused by ego not looking further than one lane to the left when deciding to
change a lane, and delaying the actual lane change after the decision for 2 steps.

Comment on Specifications Proven to Hold. We used unbounded MC
for validating the EM by proving many of its desired properties to hold; for
example, “ego is never ’forced’ into a collision by a non-ego vehicle”, and “the
vehicles in the gaps are always the ones closest to ego on the respective lane”.
Also, when fixing the two issues described above, the mock BP can be shown
to fulfill the !blamable_crash specification, cf. the artifact published with this
paper. However, it is currently unclear what such proofs of absence of errors on
the model level mean for the real system, see discussion in Sec. 4.3.

6 The actual Alliance BP, whose behavior is shown here, supports lane changes upon
driver request, while the mock planner performs lane changes towards the fast lane
only to overtake a slower vehicle. Thus, the issue can, for the Alliance BP, be pro-
duced with at least one, for the mock BP with at least two non-ego vehicles.
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4.2 Runtime Analysis

For the runtime analysis we are particularly interested if the model checker ter-
minates within a time limit “acceptable” for typical aspects of the V&V workflow
utilized in the Alliance (and probably similarly in other AD projects). We agreed
that for the following standard situations the respective approximate runtimes
would be acceptable. For runs performed on each pull request (PR), e. g., as
gatekeepers: ⪅ 2 min. For runs performed during each nightly job (NI): ⪅ 4 h.
For runs performed for a release (RE): 5 d and more, may be acceptable.

Assuming an ever-changing development setting, it seems misguided to com-
pare rigorously clocked runs of specific software versions to find the best EM/BP
setup. To present a broader picture, we rather list the average runtimes of all
runs made during a fairly mature phase of the study with somewhat changing
BP and EM versions. This mature phase is defined as starting at the point from
which no major fixes to the EM occurred anymore. We do not analyze the dif-
ferences in implementations, but deliberately provide by this means a general
impression of practicability, in a setting close to how it is expected to emerge in
real industrial contexts.

We focus on the checked property !blamable_crash, using the Alliance BP
(i. e., the expected result is a CEX for all runs; its creation time is included in the
listed times) and do not restrict the behavior in any way. Tab. 1 summarizes the
runtimes obtained for up to 10 non-ego vehicles with bounded or unbounded MC.
We estimate many of the numbers in the table for the sake of a comprehensive,
rather than overly exact, image, as they reflect our experience very well. Note,
however, that the results only include runs that terminated at all (as opposed to
runs that needed to be aborted, usually due to excessively long runtime). This
particularly distorts the rows with three and four non-ego cars and unbounded
MC, which – especially with earlier versions of the EM – frequently ran for days
and weeks without finishing. Considering future changes to the BP, these rows
need to be taken cautiously, although we also expect further improvements to
the EM, which, in the past, greatly reduced runtime (cf. Sec. 4.3).

The general takeaway is that the overall setup is sufficiently efficient to be
used in an industrial context, largely even at PR level. For future release ar-
gumentation, using unbounded MC seems to be possible with up to 4 non-ego
cars. Note that adding non-ego cars beyond two did not gain any new insight
into issues of the BP in all runs so far. Discussions are ongoing which number
of non-ego cars is sufficient to reflect all relevant situations on a straight 3-lane
highway, in terms of BP logic, with 4–5 being among the highest estimates.

Considering further improvements, the setup seems to be extendable towards
more complex road topologies. However, we experienced the runtimes to be fairly
volatile. It may well happen that marginal changes to the BP and/or the EM
yield a factor of 2 – 3 in runtime (cf., e. g., the high variance for the “2-car
unbounded” case). While this is still acceptable for our context in many regards,
it needs to be considered for each individual case, cf. also discussion in Sec. 4.3.
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Table 1: Runtimes for MC runs clustered along number of non-ego
cars and bounded vs. unbounded MC. The “bounded” rows comprise runs
that were not all tracked and analyzed exactly, but overall yield a fairly clear
picture (runtimes estimated here; as well as for the 2-car unbounded row). The
“Suitable for” row is a best guess based on the given numbers.

# Non-egos MC type # Finished Runs Average runtime Suitable for
1 bounded > 50 ⪅ 1min PR/NI/RE
2 bounded > 30 ⪅ 1min PR/NI/RE
3 bounded ≈ 10 ⪅ 2min PR/NI/RE
4 bounded ≈ 10 ⪅ 2min PR/NI/RE
5 bounded ≈ 10 ⪅ 5min (PR)/NI/RE
10 bounded 2 19.6 min NI/RE
1 unbounded 6 30 s PR/NI/RE
2 unbounded > 50 ≈ 1–7 h (NI)/RE
3 unbounded 2 16.6 h RE
4 unbounded 1 5.7 d (RE)

4.3 Discussion

The presented results indicate that MC can be used in a real industrial context
to guide the iterative development of a BP. The approach is overall suitable to be
used on top of the regular development processes for AD without considerably
interfering with them, and to guide this development by detecting safety-relevant
issues earlier than with plain testing, thus reducing futile testing time. It is im-
portant to recognize the complete lack of human bias in this process. Particularly,
the type of scenario is not provided in any way, but all scenarios producible by
the respective EM/BP combination are inspected. The toolchain works mostly
self-governed by automatically extracting the BP logic from C++, and creating
self-explanatory visualizations and test cases out of CEXs.

Current Limitations. Relevance for the real world: MC provides either〈
1
〉

a proof that the (extracted version of the) BP logic complies with a given
specification (in relation to the EM), or

〈
2
〉

a proof that this is not the case,
which is complemented with a CEX. These proofs relate to statements about
the correctness of the BP behavior, i. e., the BP is supposed to be “correct”

〈
1
〉

or “incorrect”
〈
2
〉

w. r. t. to the checked specification when steering an actual car
on the road. However, full confidence in these statements requires not only to
prove that the EM itself as well as the extraction of the BP logic are correct,
but also that the EM reflects real-world traffic, physics and perception/actuation
“adequately”. Assuming any deviation from the real behavior of the system means
that the EM would need to over-estimate violations for

〈
1
〉

and under-estimate
them for

〈
2
〉
. Therefore, it is not possible to provide an EM which simplifies the

actual system behavior in any way, and evidently entails only true statements
about both correctness and violations of the BP. It may be possible, though,
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to strengthen one direction up to a level where some notion of confidence in
its validity can be derived. Then, it appears reasonable to let the EM over-
estimate, rather than under-estimate violations such that error-freeness

〈
1
〉

is
reflected accurately. This is due to the additional information provided by CEXs
for

〈
2
〉
. While the proof of error-freeness is a somewhat final statement, false

positives of violations can be ruled out by re-simulating the CEXs with the actual
software stack. This additional check was performed for all the CEXs presented
in this paper. The EM is built with the intent to rather over-estimate than
under-estimate violations, cf. Sec. 3.2. However, at present we do not investigate
more profoundly to what extent this is actually accomplished and what exactly,
consequently, a proof of correctness implies on BP level.

Number of non-ego cars: According to the results presented in Sec. 4, a
natural measure of performance of the approach is the maximum number of non-
ego cars that can be processed in a time acceptable for one of the presented use
cases. For unbounded MC, this number is currently limited to about 4 non-ego
cars, if considering the “release” use case. Using bounded MC, up to 10 non-ego
cars can be processed quite efficiently, i. e., easily suitable for a regular “nightly
job”. These limitations are relativized by

〈
1
〉

the potential to further improve
the EM, and

〈
2
〉

by arguing that on a straight highway most critical traffic
situations involve only few directly involved participants.

Runtime volatility: Another limitation is the high sensitivity of nuXmv to
changes in the checked transitions systems, cf. Sec. 4.2. Small differences can
result in a factor of 2 – 3 in runtime. It needs to be considered for each indi-
vidual case if this is acceptable. A related issue, which can be problematic in an
industrial context, is not knowing the remaining time of a run (“will it finish in
a minute or run for another two weeks?”). For bounded MC, this question inten-
sifies to whether the run will finish at all, which it never can if the specification
is fulfilled. In productive use, long-enduring runs probably need to be aborted
after some time. There is currently no general solution for this problem.

Force to fix bugs right away: The characteristic of nuXmv, to always produce
essentially the same CEX as long as an issue is not fixed, is somewhat problematic
for practical application. In theory, a discovered issue is supposed to be fixed
immediately, before going on discovering and fixing others. In practice, however,
it may well happen that an issue is not easily fixable in a solid and process-
abiding way while development still must go on in other directions. An “ignore”
option is desirable which lets users “skip” a CEX and trigger the generation of
“profoundly” new ones. In fact, we were able to present two differing CEXs with
the same version of the Alliance BP in Sec. 4.1 only due to the fact that in one
case lane changes were prohibited for ego. These sort of tricks can help to work
around this issue.

Range of applicable BP types: Technically, we only assume that the BP is
written in an imperative language, i. e., C++ for now. Our approach is not lim-
ited to deterministic BPs; the presented EM is already non-deterministic, e. g.,
in modeling the behavior of other cars. However, the presented toolchain is not
directly applicable to most AI-based approaches. This is not a structural limita-

Towards Safe Autonomous Driving: Model Checking a Behavior Planner 57



tion (a C++ implementation of a deep neural network could, in principle, be fed
into our toolchain), but seems infeasible, at today’s state of research, due to well-
known issues regarding runtime and numerical instability of these approaches in
combination with non-probabilistic MC. An extension to probabilistic MC or
probability-based models like POMDPs is conceivable, but has so far not been
part of our investigations.

Lessons Learned. A hybrid solution is required: As pointed out before and
in Sec. 5, out-of-the-box solutions (e. g., C model checkers, as well as a pure
combination of Kratos2 + nuXmv) can deliver some aspects of the presented
toolchain. However, important features like the closed-loop integration of an EM,
and the CEX explainability functionality need to be customized for the problem
at hand. Particularly, this made it necessary to use a specific C++ parser for the
creation of the interface between EM and BP. In future, such a functionality
could become a native feature of a model checker.

“Detour” over Kratos2 and SMV is beneficial: As shown in Fig. 2 (page 7),
the BP code is first translated from C++ into K2, and from there into SMV,
where it is connected to an EM in SMV. Here, two “shortcuts” are thinkable,〈
1
〉

the SMV representation of the BP could be generated directly from C++,
and

〈
2
〉

the explicit representation in SMV could be overall omitted by rather
implementing the EM in C++, as well. However, the presented path makes full
use of the imperative MC functionality provided by Kratos2 and the rich syntax
of SMV. Both shortcuts have been tried out in the beginning and abandoned
later, since the current setup outperformed them by far.

Explainability can be simple: We experienced our method of extracting traffic
scenes from CEXs and further processing them towards visualization and testing
as highly effective for

〈
1
〉

quickly explaining bugs to both BP developers and,
during early phases, EM designers,

〈
2
〉

for re-simulation of the results with
the actual full software stack to confirm the MC results, and

〈
3
〉

for further
processing the scenes, for example, for test case generation. Generally, there are
a number of further explainability methods to explore, such as translation to
natural language [9, 31–33], or, specific to this use case, a further investigation
of which code lines of the BP lead to a violation.

General scalability: The approach scaled well across the different versions of
the Alliance BP, as well as the mock BP (i. e., runtime differences were insignifi-
cant). However, none of the BPs’ logic so far contained loops or recursion, which
might significantly increase complexity.

Granularity of abstraction is an open question: All presented results were
produced with a time scale rasterized to one iteration per second in the EM. This
shows that this granularity of abstraction can produce useful findings. Going
towards an argumentation of “error-freeness”, it needs to be more profoundly
inspected what granularity is actually required for which types of statements.

Every-day development is not impaired: In practice, for typical “every-day”
changes to the code adapting the tags was simple enough to be correctly done
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by non-MC-experienced developers. More complex changes were done by an MC
expert, or split into work packages. The additional effort was overall tolerable.

5 Related Work

In this section, we discuss related work on formal methods and how our work
complements them. In general, formal methods aim to prove safety properties
of algorithms theoretically. Redfield et al. give a good overview of the challenges
within this field [50]. Formal methods include temporal logic encodings [63], mon-
itoring [45,47], theorem proving [46,52] (see also overview in [48]) and MC [5]. In
the following, we will focus on approaches that could be used for the safety as-
sessment of AV. Notably, only few works actually incorporate such methods into
industrial production or for the verification of (parts of) products [16,18,29]. A
more extensive body of research focuses on theoretically adopting formal meth-
ods to the problem landscape given in the automotive industry, cf. overview
in [59,64].

A typical practical issue, preventing broader adoption, is the interface be-
tween the problem to solve and the theoretical tooling. The input languages for
MC are often quite low-level and lacking a lot of features of modern program-
ming languages like object-oriented features, dynamic data structures, etc. [6,
8, 15, 27, 42]. Therefore, many approaches embed MC into modeling approaches
based on domain specific languages and translate from such higher-level repre-
sentations to the model checkers [14, 22, 26, 56]. In our setting, such approaches
cannot be applied as the BP under verification is only available in source code.
Other industrial MC applications involve a manual translation step of (part of)
the code under verification into model checker language [20, 35]. However, dur-
ing the development process in a fast-changing environment this is not feasible.
Especially in early development stages, not only the code under analysis, but
also interfaces and data structures change rapidly.

For handling cases where the system under verification is only available as
source code, several MC approaches taking source code as an input have been
developed. Existing MC approaches in this category mostly focus on (subsets) of
C code [12,55,60]. Similar to our strategy, most of these approaches translate the
model of the code into a suitable mathematical input language for the model
checkers [28, 36]. Checking C++ code requires more sophisticated approaches,
since object-orientation and other specific C++ concepts introduce additional
layers of complexity. One MC method checking C++ code is DIVINE, which also
includes, e. g., exceptions [54]. It could be used as an alternative backend for our
approach. The Bogor framework [53] provides means for creating software model
checkers for object-oriented languages, but is only available for Java.

Verifying the decisions of the BP in different traffic situations requires to
represent these in the EM. While we manually implemented the EM in our
approach, there exist approaches using ontologies for representing features of
an EM [19]. They represent abstract scenes of driving scenarios and use them
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in logic-based reasoning systems. Such approaches could be combined with our
approach in future works for automatically configuring the EM.



Another approach is to directly include all safety constraints into the plan-
ning itself [25]. A popular example is to use reinforcement learning and integrate
safety constraints into the learned policy [39,57]. However, reinforcement learn-
ing approaches suffer from a strong dependency on the specific environment the
agents interact with. Thus, one can never ensure safety in all possible corner
cases.

6 Conclusion

In this paper we described the application of automated verification to improve
the development of an actual industrial behavior planner (BP). Complementing
the regular validation process based on simulation and test drives, we developed
a mechanism to automatically extract from C++ code the model of the underlying
BP logic. This model can be integrated with a model of the environment (features
of the road and the other vehicles), in a closed-loop manner. This allows to
deal in a seamless way with multiple versions of the BP, as they occur during
development, and to exhaustively analyze a huge variety of scenarios. In case of
violations, the model checker is able to produce traces that can be re-executed in
simulators of the original system to guide the search for errors. The approach was
exemplarily deployed in series development, and successfully detected multiple
relevant issues of intermediate versions of the BP at development time.

There are several directions for future activity. First, we will broaden the
scope of the environment modeling to more general scenarios. Second, we will
investigate the gray area between the exhaustive exploration of a set of scenarios
and a general guarantee of correctness in the real world. Finally, we aim at the
application of the methodology to other software components. In fact, it is often
the case that the development and the validation teams proceed in parallel. In
this respect, the context of application of automated model extraction described
in this paper can be considered paradigmatic.
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Abstract. GenMC is a state-of-the-art stateless model checker that
can verify safety properties of concurrent C/C++ programs under a wide
range of memory consistency models, such as SC, TSO, RC11, and IMM.
In this paper, we improve the performance and usability of GenMC:
we provide a probabilistic estimate of the expected verification cost, we
automate the porting of new memory models, and employ caching and
other data structure optimizations to improve the tool’s performance.

1 Introduction

GenMC [31, 27] is a state-of-the-art stateless model checker that verifies asser-
tion safety of concurrent C/C++ programs in a fully automated (“push-button”)
fashion. In its core, it implements the TruSt dynamic partial order reduction
(DPOR) algorithm [27], which has polynomial space complexity and optimal
time complexity: it explores only the consistent executions of the given program
and never repeats any work. GenMC also incorporates custom techniques for
verifying programs with constructs such as synchronization barriers [30] and
loops [29, 28] more effectively.

Despite its solid theoretical foundations, certain parts of GenMC’s imple-
mentation were somewhat neglected, and are addressed as part of this work.

Time Unpredictability (§3): Non-expert users of GenMC were finding it
difficult to estimate how long verification will take, and whether it is worth
waiting for the verification result or give up. To address this problem, we
implement a procedure that produces a probabilistic estimate of the size of
the state space so that users can anticipate the total verification cost, and
perhaps revise their code as necessary.

Customization Difficulty (§4): Although the TruSt algorithm is parametric
in the choice of the underlying memory consistency model (MCM) [9], adding
support for new MCMs to GenMC was arduous and required human effort.
To make the tool more easily customizable, we extend an already existing
domain specific language so that users can port new MCMs into the tool
completely automatically.

Overall Performance (§5): GenMC used to spend a lot of time repeatedly
simulating the execution of LLVM bytecode with an interpreter, which led
to non-trivial performance overhead. We improve the tool’s performance by
caching interpreter results and optimizing other internal data structures.
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B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14571, pp. 66–84, 2024. 
https://doi.org/10.1007/978-3-031-57249-4 4

https://orcid.org/0000-0002-7905-9739
https://orcid.org/0000-0003-2136-0542
https://orcid.org/0000-0001-8436-0334
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57249-4_4&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-57249-4_4


1 init

W(x, 1)

W(y, 1)

R(y)

R(x)

po

co

rf

2 init

W(x, 1)

W(y, 1)

R(y)

R(x)

3 init

W(x, 1)

W(y, 1)

R(y)

R(x)

4 init

W(x, 1)

W(y, 1)

R(y)

R(x)
fr

Fig. 1. mp: Three consistent and one inconsistent execution graphs under SC and RA.
We omit co edges for variable y to avoid cluttering the presentation.

2 Background

We begin with a brief tour of declarative MCM semantics (§ 2.1) and proceed
with a description of GenMC’s core model checking algorithm (§ 2.2).

2.1 Semantics of Memory Consistency Models

When dealing with multiple MCMs, it is convenient to use declarative semantics
to represent program executions as execution graphs. An execution graph com-
prises a set of nodes corresponding to program instructions (e.g., loads or stores
to shared memory), and a set of edges corresponding to various relations among
the instructions. Examples of primitive relations used by most MCMs are: the
program order (po), which orders the instructions of each thread, the reads-from
(rf) relation, which maps each read to the write it gets its value from, and the
coherence order (co), which totally orders writes to the same memory location.

The semantics of a program P under a model M is expressed as a set of
“consistent” execution graphs, representing an abstract set of program execu-
tions that the model allows. Consistency for a given MCM entails satisfying the
MCM’s consistency predicate.

Consistency predicates are typically expressed in relational algebra. For in-
stance, sequential consistency (SC) [35], a standard MCM where threads take
turns executing their instructions, demands that (po ∪ rf ∪ co ∪ fr) be acyclic,
where fr

△
= rf−1; co. Release-acquire (RA) [33] is a weaker MCM, which de-

mands that (po ∪ rf)+; (co ∪ fr)? be irreflexive.
To illustrate these concepts, consider the mp example below along with the

annotated outcome, which corresponds to graph 4 in Fig. 1 and is forbidden
under both SC and RA.1

x := 1
y := 1

a := y //1
b := x //0

(mp)

Graph 4 is inconsistent according to both SC and RA because of the po; rf; po; fr
cyclic path from W(x, 1). Intuitively, thread II cannot read a stale value for x af-
ter having read thread I’s write to y. The other three depicted execution graphs
1 , 2 , 3 are consistent and correspond to the outcomes where a = 0 ∨ b = 1.

1 In all our examples, x, y, z are shared variables, while a, b, c, ... are local.
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Algorithm 1 An optimal graph-based DPOR algorithm

1: procedure Verify(P)
2: VisitP (G∅)

3: procedure VisitP (G)
4: a← AddNextEventP (G)
5: if a = ⊥ then return “Execution complete”

6: if IsErroneousM(G) then exit(“error”)
7: if a ∈ R then
8: VisitRFsP (G, a)
9: else if a ∈ W then
10: VisitCOsP (G, a)
11: for r ∈ G.Rloc(a) \ cprefix(a) do
12: if ¬DuplicateRevisit(G, ⟨r, a⟩) then
13: Deleted ← {e ∈ G.E | r <G e <G a} \ cprefix(a)
14: VisitCOsP (SetRF(G \Deleted , r, a), a)

15: elseVisitP (G)

16: procedure VisitRFsP (G, a)
17: for w ∈ G.Wloc(a) do
18: G′ ← SetRF(G, a,w)
19: if consistentM(G

′) then VisitP (G
′)

20: procedure VisitCOsP (G, a)
21: for wp ∈ G.Wloc(a) do
22: G′ ← SetCO(G,wp, a)
23: if consistentM(G

′) then VisitP (G
′)

2.2 Dynamic Partial Order Reduction and GenMC

Declarative semantics enable effective automated verification with the “TruSt”
model checking algorithm [27]. TruSt is a graph-based dynamic partial order
reduction (DPOR) algorithm that takes as parameters a program P and a mem-
ory consistency model M. It verifies the program by generating all M-consistent
graphs of P and checking that they do not contain any errors. For this purpose,
we assume the MCM M defines three components:

1. a causal order, corder ⊆ (po∪rf)+, prescribing causal dependencies among
the instructions;

2. the consistentM(G) predicate prescribing when a graph G is consistent; and
3. the IsErroneousM(G) predicate prescribing whether the graph contains an

error (e.g., an assertion violation or a data race).

The core structure of GenMC’s DPOR algorithm can be seen in Algorithm 1.
In what follows, we provide a high-level overview of the algorithm and refer
readers to Kokologiannakis et al. [27] for a more detailed presentation.

Verify generates all possible execution graphs of P by calling Visit on the
initial graph G∅ containing only the initialization event init.
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In turn, Visit generates all program executions incrementally by extending
a given graph with one event at a time by calling AddNextEvent(Line 4),
which selects some unfinished program thread and runs an interpreter to run
the code of that thread until its next event.

Visit returns successfully if no further events can be added (Line 5, i.e.,
if all threads are finished or stuck) or when an error is encountered (Line 6).
Otherwise, the next action that Visit takes depends on the type of a.

If a is a read event (Line 7), Visit recursively explores all its possible rf

options by calling VisitRFs. The latter iterates over all same-location writes
(Line 17) and recursively explores the ones that preserve consistency (Line 19).

If a is a write event (Line 9), similarly to the read case, Visit recursively
explores all possible co options for it by calling VisitCOs (Line 10). In addition,
Visit revisits existing same-location reads in G, since they did not have the
chance to read from a when they were added. Specifically, for each read r that
does not causally precede a (Line 11), Visit checks (Line 12) whether a should
revisit r (i.e., that the revisit has not taken place in some other exploration),
and if so calls VisitCOs on an appropriately restricted graph G′ (Line 14).

Restricting the graph is necessary because the value read by r might affect
e.g., the control flow of the corresponding thread. In GenMC, the restricted
graph only contains the events that were added before the revisited read r, as
well as the ones causally preceding a, effectively creating a graph that models
a scenario where a and its prefix were present when r was added. (The way a
graph is restricted is important when estimating the program state space in §3.)

Finally, if a has any other event type (Line 15), Visit recursively calls itself.
To conclude our brief presentation of GenMC’s algorithm, we reiterate its

core properties. Algorithm 1 is optimal (i.e., it explores each consistent execution
graph of P exactly once and never embarks into futile explorations), has poly-
nomial memory consumption, and can accommodate arbitrary MCMs subject
to the following constraints:

Well-formedness: Consistency does not depend on the order in which events
are added to the graph, and, in consistent graphs, corder should be acyclic
(i.e., an event cannot circularly depend on itself).

Prefix-closedness: Restricting a consistent graph to any corder-prefix-closed
subset of its events yields a consistent graph.

Extensibility: Adding a corder-maximal event to a consistent graph preserves
consistency for some choice of rf/co. Intuitively, for the case that corder

△
=

(po ∪ rf)+, executing a program should never get stuck if a thread has
more statements to execute: each read can read from the most recent, same-
location write, and each write can be added last in co.

3 Estimating the Program State Space

The execution time of Algorithm 1 is difficult to predict because it depends on
the number of consistent execution graphs of the program P , which in turn is
challenging to estimate without actually generating the consistent graphs. In
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Fig. 2. r+w+w: three consistent execution graphs under SC

particular, the number of possible rfs/cos for a given read/write is not fixed
beforehand, and depends on the exploration choices made so far. Moreover,
since the state space is often asymmetric, we cannot estimate the remaining
exploration options merely by assuming that untaken exploration options (i.e.,
unexplored rfs or cos) will yield the same number of exploration options as their
taken counterparts.

3.1 The Basic Approach

One solution for the problem above is to use a Monte Carlo simulation [23]. In
Monte Carlo methods, one generates a number of random samples from a given
input domain, performs some computation on each sample, and then aggregates
the results. As long as the sampling process is unbiased, the law of large numbers
guarantees that the empirical mean of the obtained samples will approximate
the expected value of the corresponding random variable.

Applying this idea to our problem, we construct a randomized version of
Algorithm 1 that generates a single consistent program execution by adapting
VisitRFsand VisitCOsto explore a random rf/co choice for each read/write
(picked uniformly at random) instead of all consistent choices. For one execu-
tion, we can estimate the size of the search tree by taking the product of the
exploration options encountered for each read/write (effectively assuming a sym-
metric state space). We can then run the modified Visit on G∅ a fixed number of
times, and take the mean of the individual estimates as our state-space estimate.

Let us examine how such a method would work with the example below,
where there are three graphs to be generated (shown in Fig. 2).

x := 1 y := 1
if (x = 1)

b := y
(w+w+rr)

Assuming the algorithm adds events from left to right, the state-space size will
be estimated to be either 2 · 2 = 4 (in samples where the algorithm makes the
read of x read 1 and the read of y also appears), or 2 (in samples where the
algorithms makes the read of x read 0, and the read of y does not appear). In
fact, since the algorithm picks among the rf choices for x uniformly at random,
each of these estimations occurs with a similar frequency, thereby yielding an
estimated mean that approximates 3 (given a sufficiently large sample).
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Fig. 3. r+w+w: two possible revisits

3.2 Problems with Revisits

The challenge of applying Monte Carlo method to our setting is achieving an
unbiased sampling in the presence of revisits. (Recall from §2 that if a write w
is added after a same-location read r, GenMC will also examine the scenario
where w revisits r, but only if a certain revisiting condition C holds.)

Blindly applying this revisiting condition when estimating, however, does not
work. Since its purpose is to avoid duplication, the probability that C holds for a
sequence of random rfs/cos choices is tiny, thereby yielding a biased simulation.

Similarly, one cannot ignore the revisiting condition C and perform revisits
with some probability p because this can lead to very long runs. A given revisit R
may delete part of the execution graph, which when subsequently re-added might
invoke another revisit R′, which may in turn delete the write that performed R,
and this process can be repeated again and again. To see this, consider the
r+w+w program below and the graphs that occur as a result of each of the
writes revisiting the read of x, depicted in Fig. 3.

a := x x := 1 x := 2 (r+w+w)

As can be seen, if W(x, 1) revisits R(x) then W(x, 2) is deleted, and vice versa.
An obvious solution to this issue would be to preclude multiple revisits and

e.g., only allow one revisit per sample. Even in this case, however, it is quite
difficult to find the probability p with which revisits should take place. Indeed,
suppose that once a revisit is performed, the revisiting write and its causal
prefix can never be deleted from the execution graph. Alas, in such an approach,
the probability that some read r gets revisited by a given write w decreases
exponentially as the number of writes that are added after r (but before w)
increases, and we again obtain a biased simulation. In the r+w+w above, R(x)
will be revisited by W(x, 1) with probability p and by W(x, 2) with probability
(1 − p)p. (Observe that, even if p is not fixed, the probability that later writes
get to revisit a given read r decreases exponentially.)

Finally, precluding revisits altogether is not a viable solution either. Even
though such an approach would yield an unbiased simulation, the simulation
would only cover a subset of the input domain, as revisits would not be accounted
for. In the r+w+w example, precluding revisits means that the state-space size
would always be erroneously estimated to be 1.

3.3 Our Solution

Our solution to make the sampling process as unbiased as possible is twofold.
First, we keep a choice map for each encountered event representing its possible
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exploration alternatives (e.g., rf or co options). The reason a map is used is
to be able to account for revisiting: as possible rf options for a read r might
appear after r has been added, we cannot calculate the product of all available
explorations options on-the-fly. Instead, we populate the available rf options for
each read dynamically, as more rf options become available, and calculate the
product at the end of each complete execution.

Second, as far as revisiting is concerned, in order to maintain an unbiased
estimation, we do preclude revisits, but mitigate the negative effects of this
decision by employing a custom scheduler that prioritizes the addition of writes
over that of reads (so that reads have as many rfs as possible available when they
are added), and chooses uniformly at random when only reads can be added.

Intuitively, the reason this approach works well is that each of the graphs
in a program’s declarative semantics can be generated incrementally, following
corder (see §2). What this means is that we can, in principle, generate all
graphs in a program’s declarative semantics without any backward revisiting.
Of course, it can still be the case that a read is added before some of its possible
rfs (e.g., if the next available event of all threads is a read), but picking at
random among reads guarantees that all rf options will eventually be considered
(though, perhaps, some of them not often enough).

A modification of Verify that implements the above approach can be seen
in Algorithm 2. The Estimate function obtains a number of samples2 by calling
GetSample (Line 4), and calculates the mean of all estimations (Line 6).

GetSample closely resembles Visit, with the addition of a choice map C
that stores consistent exploration options for each event of an execution graph.
At each step, GetSample extends the current graph with an event a obtained
by our custom scheduler (Line 8), and then performs a case analysis on a’s type.

If a is a read, PickRF populates C[a] with all consistent rfs for a (Line 18),
and then picks an rf for a uniformly at random (Line 19).

If a is a write, PickCO performs actions similar to the ones taken by PickRF
in the read case (Line 14), and upon returning, GetSample also updates the
entries of all revisitable reads, recording a as a possible rf. (Observe that no
revisiting is performed during the estimation process.)

Finally, at the end of each sample (Line 9), GetSample returns the current
estimation

∏
e∈G |C[e]|.

3.4 Stopping the Sampling Process

Before concluding the presentation of our estimation procedure, let us discuss
when that estimation procedure should stop, i.e., when an adequate number of
samples has been taken.

While ShouldKeepSampling in Algorithm 2 could in principle return false
after a fixed number of samples, doing so is often undesirable. For programs
with a very small state space, it does not make sense to obtain more samples
than the number of consistent executions because that would unnecessarily delay

2 See § 3.4 for how this number is calculated.
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Algorithm 2 Estimating the DPOR state space

1: procedure Estimate(P)
2: T ← 0, Samples← 0
3: while ShouldKeepSampling(T, Samples) do
4: T ← T +GetSampleP (G∅, C∅)
5: Samples← Samples+ 1

6: print T/Samples

7: procedure GetSampleP (G,C)
8: a← AddNextEventP (G)
9: if a = ⊥ then return

∏
e∈G |C[e]|

10: if IsErroneousM(G) then exit(“error”)
11: if a ∈ R then
12: PickRFP (G,C, a)
13: else if a ∈ W then
14: PickCOP (G,C, a)
15: for r ∈ G.Rloc(a) \ cprefix(a) do C[r]← C[r] ⊎ {a}
16: else GetSampleP (G,C)

17: procedure PickRFP (G,C, a)
18: C[a]←

{
w ∈ G consistent(SetRF(G,w, a))

}
19: randomly choose some w ∈ C[a]
20: GetSampleP (SetRF(G,w, a), C)

21: procedure PickCOP (G,C, a)
22: C[a]←

{
wp ∈ G consistent(SetCO(G,wp, w))

}
23: randomly choose some wp ∈ C[a]
24: GetSampleP (SetCO(G,wp, a), C)

verification. Similarly, for programs whose state space is completely symmetric,
a near-perfect estimate can be achieved with only a few samples.

To deal with such issues, we make ShouldKeepSampling dynamic. After
a minimum (fixed) number of samples has been taken, ShouldKeepSampling
returns false if any of the following holds:

– the standard deviation of the current estimated mean M is less than some
fixed percentage of M

– the number of executions explored exceeds M
– a maximum (fixed) number of samples has been taken.

While users are free to override and tune the above heuristics, we found them sat-
isfactory in practice, and they did not seem to affect the quality of the produced
estimation.

3.5 Evaluation

To evaluate the accuracy of our approach, we estimated the state-space size of
various benchmarks, and measured how close the estimation was to the actual
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Fig. 4. Estimation accuracy for various benchmarks✞ ☎
let sc = po ∪ rf ∪ co ∪ fr
acyclic sc✝ ✆

Fig. 5. SC expressed in KAT

size. When selecting tests, we opted for non-symmetric benchmarks (as these
are more challenging to estimate), though with a manageable state-space size
(so that we can measure how accurate the estimation is). The results we obtained
for some representative benchmarks (and a varying sample size) are shown in
Fig. 4. The actual state-space size is shown in red.

As it can be seen, the state-space estimation is quite useful. It is always
within one order of magnitude from the correct number of executions (sometimes
under- and sometimes over-approximating the correct value), and converges very
quickly: even with only 20 samples we get a fairly accurate estimate of the state
space. Finally, estimation is very fast: for instance, it takes about 3 seconds to
obtain 2000 samples of ms-queue, while verification needs about 1470 seconds.

4 Automatically Porting New MCMs

To port a new MCM into GenMC, one has to define the corder relation and im-
plement the consistency checking routine consistentM(G) and the MCM-specific
error-checking code of IsErroneousM(G).

Until recently, these routines had to be written manually directly in C++. To
some extent, porting new MCMs was automated with Kater [25], a framework
for proving metatheoretic properties about MCMs, which can also generate code
for checking acyclicity constraints.
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✞ ☎
// Calculation of synchronizes -with

let relseq = [REL] ; ([F] ; po) ? ; (rf ; rmw)*
let sw_to_r = relseq ; rf ; [ACQ]
let sw_to_f = relseq ; rf ; po ; [F] ; [ACQ]
let sw = sw_to_r ∪ sw_to_f

// Optimized calculation of happens -before.
// Save the part of ‘hb ‘ that does not finish with a reads -from edge
view hb_stable = (po-imm ∪ sw_to_r ; po-imm ∪ sw_to_f) +

let hb = (hb_stable ∪ hb_stable ? ; sw_to_r)
assert hb = (po ∪ sw) +

// Coherence : Optimize the checking of irreflexive (hb ; eco)
coherence (hb_stable)

// Sequential consistency order
let eco = (rf ∪ mo ∪ fr) +

let scb = po ∪ rf ∪ mo ∪ fr
let psc = [SC] ; po ; hb ; po ; [SC]

∪ [SC] ; ([F] ; hb) ? ; scb ; (hb ; [F]) ? ; [SC]
∪ [F∩SC] ; hb ; [F∩SC]
∪ [F∩SC] ; hb ; eco ; hb ; [F∩SC]
∪ [SC] ; po ; [SC]

acyclic psc

// RC1 1 error detection
let ww_conflict = [W] ; loc -overlap ; [W]
let wr_conflict = [W] ; loc -overlap ; [R] ∪ [R] ; loc -overlap ; [W]
let conflicting = ww_conflict ∪ wr_conflict
let na_conflict = [NA] ; conflicting ∪ conflicting ; [NA]

// [...]

error RaceNotAtomic unless na_conflict ⊆ hb_stable
warning WWRace unless [W]; ww_conflict; [W] ⊆ hb_stable✝ ✆

Fig. 6. Handling irreflexivity, emptiness, and inclusion constraints

Given an acyclicity constraint of a relation expressible in Kleene Algebra
with Tests (KAT) [32] (e.g., the sc relation of Fig. 5), we can check whether
an execution graph G satisfies the acyclicity constraint by taking the product
of G with an automaton accepting the (rotational closure of) the language of
corresponding to the acyclicity constraint and performing a depth-first search
over it. Kater generates code performing such acyclicity checks in linear time
in the size of G.

4.1 Beyond Acyclicity Constraints

Although the consistency predicate of SC can be defined as a single acyclicity
constraint, more advanced models also check other kinds of constraints, for which
Kater could not generate consistency checking code out of the box.

One such model employing different types of constraints is RC11 [34], a
fragment of which expressed in KAT can be seen in Fig. 6. It contains three
other kinds of constraints, which we discuss below.

First, the assert introduces a static constraint about the MCM that is
checked at compile-time: it checks that the rewriting of the model that defines
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Error: Non-atomic race!

Event (2, 4) conflicts with event (1, 3) in graph:

<0, 1> thread_p:

[...]

(1, 4): Wrel (deq.bottom, 1) deque.h:26

[...]

(1, 22): Wrlx (deq.bottom, 4) deque.h:33

[...]

<0, 2> thread_s:

[...]

(2, 3): Racq (deq.bottom, 4) [(1, 22)] deque.h:65

[...]

Fig. 7. A GenMC error for a Chase-Lev deque [13]. Events (1, 4) and (2, 3) do not
synchronize under C/C++17

hb in terms of the hb stable relation is equivalent to the original model which
defines hb directly. As this constraint can be checked completely statically by
Kater, there is no need to generate any code for it.

Second, there is the coherence constraint about hb stable dictating that
hb stable; (rf ∪ co ∪ fr)+ be irreflexive. Such irreflexivity constraints are very
common in MCMs and can typically be checked in a very efficient manner. The
idea is to represent the hb_stable relation using a vector clock. Then, for a

read r and a candidate store s
rf−→ r in VisitRFs, we check that no other store

s′ that is co-after s is included in r’s vector clock3. (This would mean that r is
aware of a “more recent” store than s.) The total complexity of the generated
checks is O(N) in the size of the graph.

Finally, there are two inclusion constraints introduced by the error/unless
and the warning/unless constructs. Even though these constraints are not tech-
nically part of consistency checking but rather of the IsErroneousM function,
they can still be MCM-specific and so the code checking them has to be me-
chanically generated.

Generally, for inclusion constraints of the form a ⊆ b, we have extended
Kater to generate code that calculates the reachable states of a and b, and then
checks that the reachable states of a are included in those of b. In the special
case where b is represented as a vector clock (as is the case with hb stable), the
calculation of b’s reachable states is spared, and the generated code only checks
whether a’s reachable states are contained in b’s vector clock.

4.2 Experimenting with MCMs

The above extensions to Kater and GenMC made it possible to fully automate
the porting of models like SC [35], RA [33], RC11 [34] and IMM [39]. They also

3 The procedure for VisitCOs is similar and thus omitted for brevity.
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made it easier to experiment with changes in these MCMs, often leading to
interesting observations.

One such observation occurred when we “upgraded” GenMC’s RC11 model
to use the slightly different sw definition of C/C++17 (see Fig. 6), a change
that was not supposed to have any impact for most benchmarks. Surprisingly,
we found that certain data-structure implementations inadvertently relied on
the old definition, and were deemed incorrect (due to improper synchronization)
when using the new one (see Fig. 7 for an example). Subtle issues like this
underline the need for tools that support automatic porting of MCMs.

5 Performance Improvements

Let us now turn our attention to GenMC’s performance. For a program P
with E consistent executions under a model M, the actual verification cost is
E × C, where C is the average cost of generating and checking consistency of
one program execution. Even if we keep E fixed, engineering optimizations can
significantly reduce the cost C and improve the overall performance.

GenMC’s infrastructure is split into two (largely independent) components:
the runtime environment, which executes the program under test, and the model
checker, which undertakes the construction of consistent execution graphs. The
cost per execution, C, can thus be attributed either to the runtime environment
(especially in cases where the program code is large or contains some expensive
computation) or to the execution graph construction and consistency checking.

In what follows, we address these bottlenecks by presenting two engineering
optimizations: one on the runtime environment front (§ 5.1), and one on the
model checking front (§ 5.2).

5.1 Reducing Runtime Reliance

Recall that Algorithm 1 repeatedly simulates the execution of the program P to
generate all its execution graphs. When the number of shared-memory accesses
(which are the ones recorded in an execution graph) are only a small percentage
of the program code, the execution time is dominated by code unnecessary for
verification.

Obviously, it would be really helpful to reduce reliance on the runtime envi-
ronment. The key insight in doing so is that we can cache the events following
a given sequence of read values. To make this concrete, consider the following
program where N threads employ a single lock (implemented as a CAS loop) to
access a hash table HT :

while (¬CAS(lock, 0, 1)) ;
HT [i] := ...
lock := 0

...
while (¬CAS(lock, 0, 1)) ;
HT [i] := ...
lock := 0

Observe that the program above has N ! (non-blocked) executions, correspond-
ing to all the ways the threads can access the hash table. However, each CAS
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Table 1. Performance impact of label caching on data structures

GenMC/no-cache GenMC

Executions Time Time

treiber-stack(6) 720 2.26 1.32
treiber-stack(7) 5040 57.20 29.37
treiber-stack(8) 40 320 1032.09 581.20

ms-queue(5) 120 0.91 0.64
ms-queue(6) 720 20.98 13.18
ms-queue(7) 5040 445.76 294.51

buf-ring(2) 20 0.06 0.03
buf-ring(3) 1218 0.65 0.48
buf-ring(4) 193 280 353.27 253.35

ttas-lock(5) 120 0.20 0.14
ttas-lock(6) 720 2.47 1.75
ttas-lock(7) 5040 62.17 44.24

operation can read one out of two possible values: 0, indicating that the CAS
will succeed, the thread will enter its critical section, and release the lock, or 1,
indicating that the CAS acquisition failed, and that the thread will try again.

More generally, the value domain used in concurrent programs is small, and it
is thus straightforward to record the encountered values (and the corresponding
event sequences) for each thread in a trie structure. Then, whenever the model
checker e.g., changes a read’s rf, it gets the sequence of events that will be added
after the read (up until the next read) by checking whether the values that the
thread read so far have been cached in the trie.

Besides read events, there are other events with read semantics, and thus need
to be treated similarly in the trie. One such case are memory allocation events,
which are undertaken by GenMC, as opposed to the runtime environment.
If the allocated addresses are not recorded in the trie and distributed anew
by the model checker, the cache might end up being inconsistent (e.g., if the
addresses of later events depend on the allocated address). A better solution is
to ensure a deterministic semantics of memory allocation, where the memory
address returned depends only the thread identifier and the previous allocations
of the same thread.

Caching interacts with the concurrent nature of GenMC itself.GenMCmay
use multiple worker threads to parallelize the exploration procedure [27], each of
which explores a different (unique) execution graph. To avoid contention between
worker threads, we equip each GenMC thread with its own (thread-local) cache.

Evaluation As shown in Table 1, caching the encountered events can yield
significant performance benefits: depending on the benchmark, GenMC can
be 1.4 to 1.8 times faster when caching is employed. In fact, when caching is
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employed, 90-99% of the calls to the runtime environment are spared for the
benchmarks of Table 1, as the respective value sequences are cached.

The reason these savings do not directly translate to runtime gains is that the
benchmarks of Table 1 are standard concurrent data structures, which consist al-
most exclusively of shared-memory accesses. The only gains in these benchmarks
stem from the faster access times the trie provides compared to the runtime en-
vironment.

5.2 Optimizing Consistency Checking

Runtime aside, most of the remaining time is spent checking consistency of the
constructed graph. When it comes to consistency checks, there are two major
performance hindrances: (a) the fact that such checks run always, regardless
of the program under test and the constructed execution graph, and (b) the
consistency checking code itself.

For the first performance issue, we can observe that the nature of the program
might render checking full consistency of a graph unnecessary. Let us consider
RC11 (Fig. 6) as an example. A large part of the model is devoted to the handling
of SC accesses, via the psc relation. However, for a program P that does not
contain any SC accesses, checking for psc acyclicity is unnecessary, and reducing
to the Release-Acquire (RA) [33] fragment would suffice. Analogously, if P solely
contains SC accesses, we can reduce the verification problem to the SC one.

Leveraging this insight, we employ GenMC with a model simplification cri-
terion: if GenMC can statically determine that a particular program P only
uses SC/RA accesses, it will try to verify P under SC/RA.

In a somewhat similar manner, we optimize GenMC to try and re-use rela-
tions already calculated in an execution graph, rather than recalculating them
from scratch. Relations stored in vector clocks (see §4) readily offer such a prime
optimization opportunity. When a relation r to be saved in a vector clock is
transitive, instead of recalculating it every time we add an event e, we modify
GenMC to only calculate the difference between e and its predecessor in r.

For the second performance issue, we observed that that a lot of time was
spent allocating memory and indexing into arrays. We therefore optimized the
consistency checking code in the following ways.

– To make access to the graph’s primitive relations (rf, co, po and fr) faster,
we rewrote a large part of the existing GenMC infrastructure to use point-
ers to fetch relation successors/predecessors (instead of array indices), thus
sparing one level of indirection.

– To avoid using extra memory when saving relations, we converted all corre-
sponding data structures to intrusive ones, thus significantly reducing access
times and memory allocation calls.

– To avoid re-allocating memory for auxiliary data necessary for intermediate
computations (e.g., for storing reachable states during inclusion checks), we
provided each GenMC thread with a thread-local copy, thereby minimizing
memory allocations.
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Table 2. Consistency-intensive benchmarks

Time/SC Time/TSO Time/RC11

Executions Old New Old New Old New

szymanski(2) 78 0.12 0.09 0.14 0.11 0.31 0.17
szymanski(3) 1068 2.33 1.36 2.90 1.89 6.90 3.34

peterson(3) 588 0.14 0.08 0.16 0.10 0.45 0.18
peterson(4) 7360 2.11 0.97 2.51 1.40 7.81 2.80

parker(1) 54 0.02 0.02 0.02 0.02 0.04 0.04
parker(2) 6701 1.99 1.21 2.51 1.41 6.76 4.13

dekker f(3) 1344 0.51 0.27 0.62 0.39 2.53 0.62
dekker f(4) 26 797 10.39 6.78 15.25 10.23 38.39 16.74

fib bench(5) 218 243 2.14 1.97 3.06 2.45 7.48 4.08
fib bench(6) 2 363 803 23.54 21.38 33.43 26.59 90.57 46.27

lamport(2) 16 0.01 0.01 0.01 0.02 0.01 0.02
lamport(3) 9216 2.23 1.35 2.67 1.74 7.15 3.26

Evaluation To see how the optimized consistency checks perform, we compared
GenMC with its previous version4. The results are shown in Table 2. As it can
be seen, these performance optimizations greatly improved the performance of
GenMC on a set of benchmarks requiring intensive consistency checks.

6 Related Work

Even though there is a plethora of works in stateless model checking [20, 36, 17,
2, 4, 12, 14, 5, 6, 7, 10, 16, 37, 40], few tools can deal with weak MCMs [1, 3,
38, 42, 11, 24]. The only tool among them that supports more than one MCMs
is Nidhugg [1], although it is not parametric in the choice of the MCM, and
employs a different algorithm for each supported MCM.

As far as other model checking techniques are concerned, SAT/SMT-based
bounded model checking (BMC) techniques have been extended to handle weak
MCMs [15, 8, 18]. Among these, Dartagnan [18, 22] stands out, as it is also
parametric in the choice of the MCM, and porting new MCMs is also automated.

We are not aware of any other (enumerative) model checker that provides
an estimation of the state-space size. Even though there are tools that provide
a progress report (as opposed to a state space estimation), progress reports are
typically not as helpful as a size estimation. Java Pathfinder [41] provides a
progress bar by assuming that the state space is symmetric (i.e., nodes at the
same level in the exploration tree will have same-size subtrees). While the bar
grows monotonically, it may not advance at a steady pace, and be ”stuck” at

4 For this comparison, we disabled the cache (§ 5.1) and the model simplification
criterion (§ 5.2), so as to not unfairly penalize the previous GenMC version.
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e.g., 99%. DPOR tools like Concuerror [21] and Nidhugg [1] provide a progress
report based on how many backtracking options have still to be explored. This
number does not monotonically decrease, and is thus of limited use.

7 Summary

In this paper, we enhanced the usability of GenMC (and DPOR in general)
by: (a) providing a completion estimate based on a Monte Carlo simulation, and
(b) completely automating the porting of new MCMs into the tool. In addition,
we improved the tool performance using caching and engineering optimizations.
We hope that similar techniques will be leveraged by other researchers and de-
velopers working on DPOR tools.

Data-Availability Statement The paper replication package is available at
[26]. GenMC is available at [19].
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7. Albert, E., Gómez-Zamalloa, M., Isabel, M., and Rubio, A.: Constrained dynamic
partial order reduction. In: Chockler, H., and Weissenbacher, G. (eds.) CAV 2018,
pp. 392–410. Springer International Publishing, Cham (2018). doi: 10.1007/978-
3-319-96142-2 24

        81Enhancing GenMC’s Usability and Performance

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1145/3276505
https://doi.org/10.1007/978-3-030-81685-8_16
https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-319-96142-2_24


8. Alglave, J., Kroening, D., and Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: CAV 2013. LNCS, vol. 8044, pp. 141–
157. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39799-8 9

9. Alglave, J., Maranget, L., and Tautschnig, M.: Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014). doi: 10.1145/2627752

10. Aronis, S., Jonsson, B., L̊ang, M., and Sagonas, K.: Optimal dynamic partial or-
der reduction with observers. In: TACAS 2018. LNCS, vol. 10806, pp. 229–248.
Springer, Heidelberg (2018). doi: 10.1007/978-3-319-89963-3 14

11. Bui, T.L., Chatterjee, K., Gautam, T., Pavlogiannis, A., and Toman, V.: The
Reads-from Equivalence for the TSO and PSO Memory Models. Proc. ACM Pro-
gram. Lang. 5(OOPSLA) (2021). doi: 10.1145/3485541

12. Chalupa, M., Chatterjee, K., Pavlogiannis, A., Sinha, N., and Vaidya, K.: Data-
centric dynamic partial order reduction. Proc. ACM Program. Lang. 2(POPL),
31:1–31:30 (2017). doi: 10.1145/3158119

13. Chase, D., and Lev, Y.: Dynamic circular work-stealing deque. In: SPAA 2005,
pp. 21–28. ACM (2005). doi: 10.1145/1073970.1073974

14. Chatterjee, K., Pavlogiannis, A., and Toman, V.: Value-Centric Dynamic Partial
Order Reduction. Proc. ACM Program. Lang. 3(OOPSLA) (2019). doi: 10.1145/
3360550

15. Clarke, E.M., Kroening, D., and Lerda, F.: A tool for checking ANSI-C programs.
In: TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004). doi:
10.1007/978-3-540-24730-2 15

16. Coons, K.E., Musuvathi, M., and McKinley, K.S.: Bounded Partial-Order Reduc-
tion. In: OOPSLA 2013, pp. 833–848. ACM, Indianapolis, Indiana, USA (2013).
doi: 10.1145/2509136.2509556

17. Flanagan, C., and Godefroid, P.: Dynamic partial-order reduction for model check-
ing software. In: POPL 2005, pp. 110–121. ACM, New York, NY, USA (2005). doi:
10.1145/1040305.1040315

18. Gavrilenko, N., Ponce-de-León, H., Furbach, F., Heljanko, K., and Meyer, R.: BMC
for weak memory models: Relation analysis for compact SMT encodings. In: Dillig,
I., and Tasiran, S. (eds.) CAV 2019, pp. 355–365. Springer International Publish-
ing, Cham (2019). doi: 10.1007/978-3-030-25540-4 19

19. MISC
20. Godefroid, P.: Software Model Checking: The VeriSoft Approach. Form. Meth.

Syst. Des. 26(2), 77–101 (2005). doi: 10.1007/s10703-005-1489-x
21. Gotovos, A., Christakis, M., and Sagonas, K.: Test-driven development of concur-

rent programs using concuerror. In: Rikitake, K., and Stenman, E. (eds.) Erlang
2022 2011, pp. 51–61. ACM (2011). doi: 10.1145/2034654.2034664

22. Haas, T., Meyer, R., and Ponce de León, H.: CAAT: Consistency as a Theory.
Proc. ACM Program. Lang. 6(OOPSLA2) (2022). doi: 10.1145/3563292

23. Knuth, D.E.: Estimating the Efficiency of Backtrack Programs. Math. Comput.
29(129), 121–136 (1975). doi: 10.2307/2005469

24. Kokologiannakis, M., Lahav, O., Sagonas, K., and Vafeiadis, V.: Effective stateless
model checking for C/C++ concurrency. Proc. ACM Program. Lang. 2(POPL),
17:1–17:32 (2017). doi: 10.1145/3158105

25. Kokologiannakis, M., Lahav, O., and Vafeiadis, V.: Kater: Automating Weak Mem-
ory Model Metatheory and Consistency Checking. Proc. ACM Program. Lang.
7(POPL) (2023). doi: 10.1145/3571212

26. MISC

82             M. Kokologiannakis et al.

https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1145/2627752
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1145/3485541
https://doi.org/10.1145/3158119
https://doi.org/10.1145/1073970.1073974
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3360550
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/2509136.2509556
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/s10703-005-1489-x
https://doi.org/10.1145/2034654.2034664
https://doi.org/10.1145/3563292
https://doi.org/10.2307/2005469
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3571212


27. Kokologiannakis, M., Marmanis, I., Gladstein, V., and Vafeiadis, V.: Truly state-
less, optimal dynamic partial order reduction. Proc. ACM Program. Lang. 6(POPL)
(2022). doi: 10.1145/3498711

28. Kokologiannakis, M., Marmanis, I., and Vafeiadis, V.: Unblocking Dynamic Partial
Order Reduction. In: CAV 2023, pp. 230–250. Springer (2023). doi: 10.1007/978-
3-031-37706-8\ 12

29. Kokologiannakis, M., Ren, X., and Vafeiadis, V.: Dynamic Partial Order Reduc-
tions for Spinloops. In: FMCAD 2021, pp. 163–172. IEEE (2021). doi: 10.34727/
2021/isbn.978-3-85448-046-4\ 25

30. Kokologiannakis, M., and Vafeiadis, V.: BAM: Efficient Model Checking for Bar-
riers. In: NETYS 2021. LNCS, Springer, Heidelberg (2021). doi: 10.1007/978-3-
030-91014-3 16

31. Kokologiannakis, M., and Vafeiadis, V.: GenMC: A model checker for weak memory
models. In: Silva, A., and Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759,
pp. 427–440. Springer, Heidelberg (2021). doi: 10.1007/978-3-030-81685-8 20

32. Kozen, D.: Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19(3)
(1997). doi: 10.1145/256167.256195

33. Lahav, O., Giannarakis, N., and Vafeiadis, V.: Taming Release-acquire Consis-
tency. In: POPL 2016, pp. 649–662. ACM, St. Petersburg, FL, USA (2016). doi:
10.1145/2837614.2837643

34. Lahav, O., Vafeiadis, V., Kang, J., Hur, C.-K., and Dreyer, D.: Repairing sequential
consistency in C/C++11. In: PLDI 2017, pp. 618–632. ACM, Barcelona, Spain
(2017). doi: 10.1145/3062341.3062352

35. Lamport, L.: How to Make a Multiprocessor Computer that Correctly Executes
Multiprocess Programs. IEEE Trans. Computers 28(9), 690–691 (1979). doi: 10.
1109/TC.1979.1675439

36. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., and Neamtiu, I.:
Finding and reproducing Heisenbugs in concurrent programs. In: OSDI 2008, pp. 267–
280. USENIX Association (2008)
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Scalable Tree-based Register Automata Learning

Abstract. Existing active automata learning (AAL) algorithms have
demonstrated their potential in capturing the behavior of complex systems
(e.g., in analyzing network protocol implementations). The most widely
used AAL algorithms generate finite state machine models, such as Mealy
machines. For many analysis tasks, however, it is crucial to generate richer
classes of models that also show how relations between data parameters
affect system behavior. Such models have shown potential to uncover
critical bugs, but their learning algorithms do not scale beyond small
and well curated experiments. In this paper, we present SLλ, an effective
and scalable register automata (RA) learning algorithm that significantly
reduces the number of tests required for inferring models. It achieves this
by combining a tree-based cost-efficient data structure with mechanisms
for computing short and restricted tests. We have implemented SLλ as
a new algorithm in RALib. We evaluate its performance by comparing
it against SL∗, the current state-of-the-art RA learning algorithm, in a
series of experiments, and show superior performance and substantial
asymptotic improvements in bigger systems.

Keywords: Active automata learning, Register automata

1 Introduction

Model Learning (aka Active Automata Learning (AAL) [7,40,50]) infers automata
models that represent the dynamic behavior of a software or hardware component
from tests. Models obtained through (active) learning have proven useful for
many purposes, such as analyzing security protocols [18, 19, 25, 41, 45], mining
APIs [6], supporting model-based testing [26, 47, 52] and conformance testing [5].
The AAL algorithms employed in these works are efficient and supported by
various domain-specific optimizations (e.g., [31]), but they all generate finite state
machine (FSM) models, such as Mealy machines.

For many analysis tasks, however, it is crucial for models to also be able to
describe data flow, i.e., constraints on data parameters that are passed when
the component interacts with its environment, as well as the mutual influence
between dynamic behavior and data flow. For instance, models of protocol
components must describe how different parameter values in sequence numbers,
identifiers, etc. influence the behavior, and vice versa. Existing techniques for
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extending AAL to Extended FSM (EFSM) models [1, 8, 10] take several different
approaches. Some reduce the problem to inferring FSMs by using manually
supplied abstractions on the data domain [1], which requires insight into the
control/data dependencies of a system under learning (SUL). Others extend AAL
for finite state models by allowing transitions to contain predicates over rich
data domains, but cannot generate state variables to model data dependencies
between consecutive interactions [13,35]. Finally, there exist extensions of AAL to
EFSM models with guards and state variables, such as register automata [2,3,10].
While their potential has been shown by being able to uncover critical bugs in
e.g., TCP implementations [15,16], their learning algorithms do not scale beyond
small and well curated experiments.

We follow the third line of works and address the scalability of register
automata (RA) learning algorithms in our work. The main challenge when
scaling AAL algorithms is reducing the number of tests that learners perform on
a SUL. Generally, these tests are sequences of actions of the form u · v, where u
is the prefix and v the suffix of the sequence. Tests u · v and u′ · v are then used
to determine if prefixes u and u′ can be distinguished based on the SUL’s output
triggered by v. When inferring RA models, prefixes are sequences of actions
with data values, e.g., push(1) push(2), and suffixes are sequences of actions with
symbolic parameters, e.g., pop(p1) pop(p2), that, when instantiated, can incur
a number of tests that is exponential in the length of the suffix for identifying
dependencies between prefix values and suffix parameters, e.g., different test
outcomes for (p1 = 2 ∧ p2 = 1) and (p1 = 2 ∧ p2 = 3), and for distinguishing
prefixes based on suffixes. To make register automata learning scalable, it is
crucial to reduce the use of suffixes in tests along three dimensions: (i) First, it is
important to use only few tests. (ii) Second, when using suffixes in tests, shorter
suffixes should be preferred over longer ones. (iii) Third, it is essential to restrict
tests to relevant dependencies between prefix values and suffix parameters instead
of bluntly testing all possible dependencies.

In this paper, we present the SLλ algorithm for learning register automata
which achieves scalability by optimizing the use of tests and suffixes in tests in
the three stated dimensions. SLλ uses a classification tree as a data structure,
constructs a minimal prefix-closed set of prefixes and a suffix-closed set of short
and restricted suffixes for identifying and distinguishing locations, transitions,
and registers. Technically, we adopt the idea of using a classification tree from
learners for FSMs [32,33] where it proved very successful for reducing tests. We
also adopt the technique of computing short suffixes incrementally in order to
keep them short [7, 32]. This has not been studied for RAs before and leads
to an improved worst case complexity compared to state-of-the-art approaches
(Theorem 1). Finally, we show how suffixes can be restricted to relevant data
dependencies, which is essential for achieving scalability (Section 4).

We have implemented SLλ as a new algorithm in the RALib4 tool [9]. For
comparison, we have also implemented in RALib the SLCT algorithm that
uses a classification tree but relies on suffixes from counterexamples instead of

4 RALib is available at https://github.com/LearnLib/ralib.
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computing short suffixes from inconsistencies. We evaluate the SLλ algorithm by
comparing its performance against the SL∗ [10] and SLCT algorithms in a series
of experiments, confirming that: (i) classification trees scale much better than
observation tables for register automata, (ii) using restricted suffixes leads to a
dramatic reduction of tests for all compared algorithms, and (iii) computing short
suffixes from inconsistencies outperforms using suffixes from counterexamples.

Related Work. For a broad overview of AAL refer to the survey paper of de la
Higuera [27] from 2005 and to a more recent paper by Howar and Steffen [28].

Learning beyond DFAs has been investigated for many models aside from
register automata. For example, algorithms have been presented for workflow Petri
nets [14], data automata [24], generic nondeterministic transition systems [51],
symbolic automata [13], one-timer automata [48], and systems of procedural
automata [22]. Learning of register automata has been performed by combining a
FSM learner with the Tomte front-end [2, 3]. A different approach using bespoke
RA learning algorithms [30, 37] has been implemented in RALib. Active learning
algorithms for nominal automata, which extend FSMs to infinite alphabets and
infinite sets of states, have also been developed [38]. While the expressivity
of nominal DFAs is equivalent to that of deterministic register automata with
equality, nominal automata do not represent registers symbolically but through
permutations on infinite sets, leading to big models (e.g., for storing some data
value twice) and active learning algorithms with a high query complexity.

Applications of AAL are diverse. Active learning enables the generation of
behavioral models for software [43, 46], e.g. for network protocol implementa-
tions [41, 53], enabling security analyses and model checking [4, 20, 21]. It can
be used in testing [36,44] and to enable formal analyses [50]. Finally, it can be
combined with passive learning approaches to support life-long learning [23]. More
theoretical advances include the use of Galois connections to model SUL-oracle
mappers [34] and the introduction of apartness [49], to formalize state distinction.

Outline. We present the key ideas in tree-based learning of RA informally in the
next section, before providing formal definitions of basic concepts in Section 3.
Sections 4 to 6 present the SLλ algorithm, its properties, and the experimental
evaluation of its performance. The paper ends with few concluding remarks.

2 Main Ideas

In this section, we introduce the main ideas behind the SLλ algorithm. As
illustrating example, we will use a stack of capacity two, which stores a sequence
of natural numbers. The stack supports the operations push and pop, both of
which take one natural number as a parameter. The operation push(d) succeeds
if the stack is not full, i.e., contains at most one element; the operation pop(d)
succeeds if the last pushed and not yet popped element is d. Let a symbol denote
an operation with data value, such as push(1), and let LStack denote the prefix-
closed language consisting of the words of symbols representing sequences of
successful operations. Figure 1 shows an acceptor for LStack . The initial location
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l0 l1 l2

∅ {x1} {x1,x2}
push(p) | true

x1:=p

pop(p) | p=x1
−

push(p) | true
x1:=x1,x2:=p

pop(p) | p=x2
x1:=x1

Fig. 1: Register automaton accepting language of stack with capacity two.

l0 corresponds to an empty stack, location l1 corresponds to a stack with one
element, and l2 to a location where the stack is full. There is also an implicit
sink location for each word that is not accepted by LStack , e.g. pushing a third
element, or popping a non-top element. In each location, registers contain the
elements in the stack: for i = 0, 1, 2, location li has i registers, where the register
with the highest index contains the topmost stack element.

The task of the SLλ algorithm is to learn the acceptor in Fig. 1 in a black-box
scenario, i.e., knowing only the operations (push and pop) and the relations that
may be used in guards (here tests for equality), by asking two kinds of queries. A
membership query asks whether a word w is in L; it can be realized by a simple
test. An equivalence query asks whether a hypothesis RA accepts L; if so, the
query is answered by yes, otherwise by a counterexample, which is a word on which
the hypothesis and L disagree; in a black box setting it is typically approximated
by a conformance testing algorithm. Like other AAL algorithms, SLλ iterates a
cycle in which membership queries are used to construct a hypothesis, which is
then subject to validation by an equivalence query. If a counterexample is found,
hypothesis construction is resumed, etc., until a hypothesis agrees with L.

Classical AAL algorithms that learn DFAs maintain an expanding set of
words, Sp, called short prefixes, and an expanding set of words, called suffixes,
which induce an equivalence relation ≡ on prefixes, defined by u ≡ u′ iff uv ∈
L ⇔ u′v ∈ L for all suffixes v; this allows equivalence classes of prefixes to
represent states in a DFA. The SLλ algorithm maintains a set U of data words
called prefixes, which is the union of Sp and one-symbol extensions of elements

in Sp. Instead of suffixes, SLλ maintains a set V of symbolic suffixes, each of
which is a parameterized word, i.e., a word where data values are replaced by
parameters p1, . . . , pm. For each prefix u, say push(0), and symbolic suffix v, say
push(p1)pop(p2), membership in L of words of form uv depends on the relation
between the data values of u and the parameters p1, p2 of v, which in SLλ is
represented by a function L[u,v] with parameters x1 (representing the data value
of u), p1, and p2. In this case L[u,v](x1, p1, p2) is + iff p2 = p1 and − otherwise.
In SLλ, such functions are represented as decision trees of a specific form.

true

p2 = p1

p2 ̸= p1

Fig. 2: Decision tree for
L[u,v](x1, p1, p2).

Figure 2 shows the decision tree for the just described
function. Note that it checks constraints for parameters
one at a time: first the constraint on only p1 (which is
true), and thereafter the constraint on p2 (a compar-
ison with p1). Two prefixes u, u′ are then equivalent
w.r.t. V if L[u,v] and L[u′,v] are “isomorphic modulo
renaming” for all v ∈ V (details in Section 4).
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l0

sink

∅

∅

H0

push(p) | true
−

pop(p) | true
−
push(p) | true

−
pop(p) | true

−

l0 l1 l2

∅ ∅ ∅
H1

push(p) | true
−

push(p) | true
−

l0 l1 l2
H2

∅ {x1} ∅
push(p) | true

x1:=p

pop(p) | p=x1
−

push(p) | true
−

Fig. 3: Three hypotheses constructed by SLλ: H0 (left), H1 and H2 (right).

Functions of form L[u,v] are generated by so-called tree queries, which perform
membership queries for relevant combinations of relations between data values
in u and parameters in v, and summarize the results in a canonical way. The
tree query above requires five membership queries. SLλ employs techniques for
reducing this number by restricting the symbolic suffix; see end of this section.

Initially, Sp and V contain only the empty sequence ϵ. Since ϵ is a short prefix,
one-symbol extensions, push(0) and pop(0), are entered into U . Tree queries are
performed for the prefixes in U and the empty suffix, revealing that push(0) is
accepted and pop(0) is rejected. Thus, push(0) cannot be distinguished from ϵ,
but pop(0) can, so it must lead to a new location, hereafter referred to as the
sink, which is therefore added to Sp. One-symbol extensions of pop(0), in this
case pop(0)push(1) and pop(0)pop(1), are added to U and tree queries for them
and the empty suffix are performed, revealing that they cannot be separated
from the sink. At this point, we can formulate hypothesis H0 in Fig. 3(left) from
Sp, U, and the computed decision trees.

This hypothesis is then subject to validation. Assume that it finds the coun-
terexample push(0)push(1)push(2), which is accepted byH0 but rejected by LStack .
Analysis of this counterexample reveals that ϵ and push(0) are inequivalent, since
they are separated by the suffix push(p1)push(p2) (since the concatenation of
ϵ and push(p1)push(p2) is accepted for all p1, p2 but push(0) · push(1)push(2) is
always rejected for all p1, p2). It could seem natural to add push(p1)push(p2) to V ,
but SLλ will not do that, since it follows the principle (from Lλ [29]) that a
new prefix in Sp must extend an existing prefix by one symbol, and that a new
suffix in V must prepend one symbol to an existing one. This principle keeps Sp

prefix-closed and V suffix-closed, and aims to avoid inclusion of unnecessarily
long sequences. Therefore, instead of adding push(p1)push(p2) as a suffix, SLλ

enters the prefix push(0) into Sp, and adds one-symbol extensions of push(0), in
this case push(0)push(1) and push(0)pop(1), to U . It notes that push(0)push(1)
is inequivalent to both ϵ and push(0), separated by the suffix push(p1). Again,
push(0)push(1) is therefore promoted to a short prefix, and its one-symbol ex-
tensions, push(0)push(1)push(2) and push(0)push(1)pop(2), are entered into U .
Now, SLλ is able to add suffixes to V that separate all prefixes in Sp, by two
operations that achieve consistency.

1. The push-extensions of ϵ and push(0)push(1), (i.e., push(0) and push(0)push(1)-
push(2)) are separated by the empty suffix, hence these two prefixes are
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ϵ

push(p1)

push(p1) push(p2)

pop(0)

pop(0)push(1)
pop(0)pop(1)
push(0)pop(1)
push(0)push(1)pop(2)

ϵpush(0)

push(0)push(1)

true

true true

true

true true

Fig. 4: Classification tree for hypothesis H1 in Fig. 3. Short prefixes are underlined.

separated by the suffix push(p1), a one-symbol extension of ϵ which is added
to V.

2. The push-extensions of ϵ and push(0) (i.e., push(0) and push(0)push(1)) are
separated by the suffix push(p1), hence ϵ and push(0) are separated by
push(p1)push(p2), formed by prepending a symbol to the just added suffix
push(p1), which is added to V.

After adding the suffixes, the closedness and consistency criteria are met, pro-
ducing hypothesis H1 in Fig. 3(right, top). Assume that the validation of H1

finds counterexample push(0)pop(0), which is in LStack , but rejected by H1.
This counterexample reveals that after push(0), the two continuations pop(0)
and pop(1) lead to inequivalent locations (separated by suffix ϵ), suggesting
to refine the pop(p)-transition after push(0). To this end, V is extended by a
suffix formed by prepending pop(p) to the empty suffix, and a tree query is
invoked for L[push(0), pop(p1)], which is + iff p1 = x1 and − otherwise. Since
L[push(0), pop(p1)] makes a test for x1, which represents the data value of push(0),
we infer that the data parameter of the push(0)-prefix must be remembered in
a register, and that the pop(p)-transition must be split into two with guards
(x1 ̸= p) and (x1 = p). The resulting hypothesis, H2, is shown in Fig. 3(right, bot-
tom), which is subject to another round of validation; the subsequent hypothesis
construction reveals the pop-transitions from l2 in Fig. 1.

In SLλ, the sets U and V are maintained in a classification tree CT , a data
structure that is specially designed to represent how the suffixes in V partition U
into equivalence classes corresponding to locations. This permits an optimization
that can elide superfluous membership queries. A classification tree is a decision
tree. Each leaf is labeled by a subset of U . Each inner node is labeled by a
symbolic suffix v and induces a subtree for each equivalence class w.r.t. v, whose
leaves contain prefixes in this equivalence class. For example, in Fig. 4, which
shows a CT corresponding to hypothesis H1, the nodes are labeled by the suffixes
ϵ, push(p1) and push(p1)push(p2), which separate the leaves into four equivalence
classes corresponding to the four locations in Fig. 1. Each edge is labeled by the
results of the tree queries for a prefix in its equivalence class and the symbolic
suffix of the source node.

Each tree query requires a number of membership queries which may grow
exponentially with the length of the suffix. SLλ reduces this number by restricting
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the involved symbolic suffix to induce fewer membership queries, as long as the
tree query can still make the separation between prefixes or transitions for which
it was invoked. To illustrate, recall that the analysis of the counterexample
push(0)push(1)push(2) for H0 shows that ϵ and push(0) are inequivalent. To
separate these, we need not näıvely use the symbolic suffix push(p1)push(p2); but
we can restrict it by considering only values of p1 and p2 that are fresh, i.e.,
different from all other preceding parameters in the prefix and suffix. With this
restriction, the suffix can still separate ϵ and push(0), and the tree query for
prefix push(0) requires only one membership query instead of five.

3 Data Languages and Register Automata

In this section, we review background concepts on data languages and register
automata. Our definitions are parameterized on a theory, which is a pair ⟨D,R⟩
where D is a (typically infinite) domain of data values, and R is a set of relations
(of arbitrary arity) on D. Examples of theories include: (i) ⟨N, {=}⟩, the theory of
natural numbers with equality, and (ii) ⟨R, {<}⟩, the theory of real numbers with
inequality; this theory also allows to express equality between elements. Theories
can be extended with constants (allowing, e.g., theories of sums with constants).

Data Languages. We assume a set Σ of actions, each with an arity that
determines how many parameters it takes from the domain D. For simplicity, we
assume that all actions have arity 1; our techniques can be extended to handle
actions with arbitrary arities. A data symbol is a term of form α(d), where α is an
action and d ∈ D is a data value. A data word (or simply word) is a finite sequence
of data symbols. The concatenation of two words u and v is denoted uv, often we
then refer to u as a prefix and v as a suffix. Two words w = α1(d1) . . . αn(dn) and
w′ = α1(d

′
1) . . . αn(d

′
n) with the same sequences of actions areR-indistinguishable ,

denoted w ≈R w′, if R(di1 , . . . , dij ) ⇔ R(d′i1 , . . . , d
′
ij
) whenever R is a j-ary

relation in R and i1, · · · , ij are indices among 1 . . . n. A data language L is a set
of data words that respects R in the sense that w ≈R w′ implies w ∈ L ⇔ w′ ∈ L.
We often represent data languages as mappings from the set of words to {+,−},
where + stands for accept and − for reject.

Register Automata. We assume a set of registers x1, x2, . . ., and a set of formal
parameters p, p1, p2, . . .. A parameterized symbol is a term of form α(p), where α is
an action and p a formal parameter. A constraint is a conjunction of negated and
unnegated relations (from R) over registers and parameters. An assignment is a
parallel update of registers with values from registers or the formal parameter p.
We represent it as a mapping π from {xi1 , . . . , xim} to {xj1 , . . . , xjn} ∪ {p},
meaning that the value π(xik) is assigned to xik , for k = 1, . . . ,m. In multiple-
assignment notation, this would be written xi1 , . . . , xim := π(xi1), . . . , π(xim).

Definition 1. A register automaton (RA) is a tuple A = (L, l0,X , Γ, λ), where

– L is a finite set of locations, with l0 ∈ L as the initial location,
– X maps each location l ∈ L to a finite set X (l) of registers,
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– Γ is a finite set of transitions, each of form ⟨l, α(p), g, π, l′⟩, where
• l ∈ L is a source location and l′ ∈ L is a target location,
• α(p) is a parameterized symbol,
• g, the guard, is a constraint over p and X (l), and
• π (the assignment) is a mapping from X (l′) to X (l) ∪ {p}, and

– λ maps each l ∈ L to {+,−}, where + denotes accept and − reject.

A state of a RA A = (L, l0,X , Γ, λ) is a pair ⟨l, µ⟩ where l ∈ L and µ is
a valuation over X (l), i.e., a mapping from X (l) to D. A step of A, denoted

⟨l, µ⟩ α(d)−−−→ ⟨l′, µ′⟩, transfers the state of A from ⟨l, µ⟩ to ⟨l′, µ′⟩ on input of
the data symbol α(d) if there is a transition ⟨l, α(p), g, π, l′⟩ ∈ Γ such that
(i) µ |= g[d/p], i.e., d satisfies the guard g under the valuation µ, and (ii) µ′ is
defined by µ′(xi) = µ(xj) if π(xi) = xj , otherwise µ′(xi) = d if π(xi) = p. A run
of A over a data word w = α(d1) . . . α(dn) is a sequence of steps of A

⟨l0, µ0⟩
α1(d1)−−−−→ ⟨l1, µ1⟩ . . . ⟨ln−1, µn−1⟩

αn(dn)−−−−→ ⟨ln, µn⟩

for some initial valuation µ0. The run is accepting if λ(ln) = + and rejecting if
λ(ln) = −. The word w is accepted (rejected) by A under µ0 if A has an accepting
(rejecting) run over w from ⟨l0, µ0⟩. Define the language L(A) of A as the set of
words accepted by A. A language is regular if it is the language of some RA.

We require a RA to be determinate, meaning that there is no data word
over which it has both accepting and rejecting runs. A determinate RA can be
easily transformed into a deterministic one by strengthening its guards, and a
deterministic RA is by definition also determinate. Our construction of RAs in
Section 4 will generate determinate RAs which are not necessarily deterministic.
RAs have been extended to Register Mealy Machines (RMM) in several works
and it has been established how RA learning algorithms can be used to infer
models of systems with inputs and outputs [9], which we do, too.

4 The SLλ Learning Algorithm

In this section, we present the main building blocks of SLλ before an overview of
the main algorithm, followed by techniques for reducing the cost of tree queries
(page 13) and for analyzing counterexamples (page 14).

Symbolic Decision Trees. The functions, of form L[u,v], that result from tree
queries, should represent how the language L to be learned processes instantiations
of v after the prefix u. Since SLλ is intended to construct canonical RAs, it is
natural to let these functions have the form of a tree-shaped “mini-RA”, which
we formalize as symbolic decision trees of a certain form.

For a word u = α1(d1) . . . αk(dk) and a symbolic suffix v = α′
1(p1) . . . α

′
m(pm)

a (u,v)-path τ is a sequence g1, . . . , gm, where each gi is a constraint over
x1, . . . , xk and p1, . . . , pi. Define the condition represented by τ , denoted Gτ , as
g1 ∧ · · · ∧ gm. A (u,v)-tree T is a mapping from a set Dom(T ) of (u,v)-paths
to {+,−}. Write d for d1, . . . , dk, d′ for d′1, . . . , d

′
m, x for x1, . . . , xk and p for
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p1, . . . , pm. A (u,v)-tree T can be seen a function with parameters x, p to {+,−},
defined by T (x, p) = T (τ) whenever τ ∈ Dom(T ) and Gτ (x, p) holds. That
is, for data values d and d′ and each (u,v)-path τ , we have T (d, d′) = T (τ)
whenever Gτ (d, d′) is true. If L is a data language, then L[u,v] is a (u,v)-tree
representing membership in L in the sense that for any values of p1, . . . , pm
we have L[u,v](d, p) = + iff uα′

1(p1) . . . α
′
m(pm) ∈ L, and L[u,v](d, p) = − iff

uα′
1(p1) . . . α

′
m(pm) ̸∈ L. For example, Fig. 2 shows a (u,v)-tree where u =

push(d1) and v = push(p1)pop(p2). This tree maps the (u,v)-path true ∧ p2 = p1
to + and true ∧ p2 ̸= p1 to −. From this, we can determine, e.g., that the word
push(0)push(1)pop(1) ∈ L, but push(0)push(1)pop(2) ̸∈ L.

SLλ generates (u,v)-trees L[u,v] representing the language L to be learned
through so-called tree queries, which perform membership queries for values of
the data parameters p1, . . . , pm that cover relevant equivalence classes of ≈R.

From the results of tree queries, we can extract registers and guards in the
location reached by a prefix u. Intuitively, the registers must remember the data
values of u that occur in some guard in some L[u,v], and the outgoing guards
from the location reached by u can be derived from the initial guards in the
trees L[u,v], since the initial guards represent the constraints that are used when
processing the first symbol of v. Let memv(u), the set of memorable parameters,
denote the set of registers among {x1, . . . , xk} that occur on some (u,v)-path
in Dom(L[u,v]). Intuitively, if xi is a memorable parameter, then the ith data
value in u will be remembered in the register xi in the location reached by u.
For example, for the stack in Fig. 1, in the location reached by push(0) the data
value d1 = 0 is memorable so will be remembered in register x1. Note that a
(u,v)-tree itself does not have any registers: it only serves to show which registers
are needed in the location reached by u in the to-be-constructed automaton.
Define memV(u) as ∪v∈Vmemv(u). For a prefix u and symbolic suffix v whose
first action is α, let G{v}(u, α) denote the initial guards in the (u,v)-tree L[u,v],
with p1 replaced by p. For a set V, let GV(u, α) denote the set of satisfiable
conjunctions of guards in G{v}(u, α) for v ∈ V with first action α.

Two (u,v)-trees, T and T ′, are equivalent denoted T ≡ T ′, if Dom(T ) =
Dom(T ′) and T (τ) = T ′(τ) for each τ ∈ Dom(T ). For a mapping γ on registers,
we define its extension to (u,v)-paths in the natural way. For a (u,v)-tree T , we
define γ(T ) by Dom(γ(T )) = {γ(τ) : τ ∈ Dom(T )} and γ(T )(γ(τ)) = T (τ).

Let u ≡V u′ denote that L[u,v] ≡ L[u′,v], for all symbolic suffixes v ∈ V.
Let u ≃γ

V u′ denote that γ is a bijection from memV(u) to memV(u′) such that
for all v ∈ V we have γ(L[u,v]) ≡ L[u′,v]. Let u ≃V u′ denote that u ≃γ

V u′

for some bijection γ. Intuitively, two words u and u′ are equivalent if there is
a bijection γ which for each v ∈ V transforms L[u,v] to L[u′,v], Note that in
general, when u ≃V u′, there can be several such bijections.

Data Structures. During the construction of a hypothesis, the SLλ algorithm
maintains: (i) a prefix-closed set Sp of short prefixes, representing locations,
(ii) and a set of one-symbol extensions of the prefixes in Sp, representing transi-
tions; we use U to represent the union of Sp and this set, and (iii) a suffix-closed
set V of symbolic suffixes. Each one-symbol extension of form uα(d) is formed to
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Algorithm 1: Operations on the Classification Tree.

Function Sift(u,N) is
if N is a leaf then U ← U [u 7→ N ]
else

Compute L[u, suff (N)]
if N has child N ′ with u ≃V(N) rp(N

′) then Sift(u,N ′)

else
Create new leaf N ′ as child of N with rp(N ′) = u
Sift(u,N ′)

Function Expand(u) is
Sp ← Sp ∪ {u}
for α ∈ Σ do Sift(uα(dgu), root(CT )) for each g ∈ GV(u)(u, α)

Function Refine(N , v) is
Replace N by an inner node N ′ with suff (N ′) = v

for u ∈ U−1(N) do Sift(u,N ′)

let d satisfy a specific guard g; we then always choose d as a representative data
value, denoted dgu, satisfying g after u.

The sets U and V are maintained in a classification tree CT , which is designed
to represent how the suffixes in V partition the set U into equivalence classes
corresponding to locations. A classification tree is a rooted tree, consisting of
nodes connected by edges. Each inner node is labeled by a symbolic suffix, and
each leaf is labeled by a subset of U . To each node N is assigned a representative
prefix rp(N) in U . For a node N , let suff (N) its suffix and V(N) denote the set
of symbolic suffixes of N and all its ancestors in the tree. Each outgoing edge
from N corresponds to an equivalence class of ≃V(N) from which a representative
member is chosen as the representative prefix of its target node. Each leaf node N
is labeled by a set of data words, which are all in the same equivalence class of
≃V(N). Thus, nodes in different leaves are guaranteed to be inequivalent, since

they are separated by the symbolic suffixes in V(lca(N, N ′)), where lca(N, N ′)
is the lowest common ancestor node of N and N ′. We let U denote the mapping,
which maps each prefix u ∈ U to the classification tree leaf where it is contained.
We also let V(u) denote V(U(u)), the suffixes of all ancestors of U(u). The
representative prefix, rp(N), of each leaf node N will induce a location in the
RA to be constructed.

The insertion of a new prefix u into the classification tree CT is performed by
function Sift (cf. Algorithm 1). It traverses the CT from the root downwards. At
each internal node N , it checks whether u ≃V(N) rp(N

′) for any child N ′ of N .

If so, it continues the traversal at N ′, otherwise a new child of N is created as a
leaf N with rp(N) = u. When reaching a leaf N , the mapping U is updated to
reflect that u has been sifted to N . In the classification tree in Fig. 4, e.g., ϵ is the
representative prefix of inner nodes push(p1) and push(p2)push(p2) as it is the
first prefix that was sifted down this path. The short prefix push(0) at the second
leaf from right was sifted from the root to push(p1) and then to push(p1)push(p2)
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Algorithm 2: SLλ Learning.

Initialize CT as inner node root(CT ) with suffix ϵ and U ← ∅, Sp ← ∅
Sift(ϵ, root(CT ))

HYP: repeat
▷ Check closedness

if exists leaf N for which U−1(N) ∩ Sp = ∅ then // location

Expand(u) for some u ∈ U−1(N)

if u ∈ Sp and g ∈ GV(u)(u, α) but uα(dgu) /∈ U then // transition

Sift(uα(dgu), root(CT ))

if uα(d) ∈ U s.t. memV(uα(d))(uα(d)) ̸⊆memV(u)(u)∪{x|u]+1} then // register

Let v ∈ V(uα(d)) with memv(uα(d))) ̸⊆ (memV(u)(u) ∪ {x|u]+1})
Refine(U(u),αv)

▷ Check consistency

if u, u′ ∈ U−1(L) ∩ Sp with u ≃γ
V(N) u

′ for leaf N with

uα(dgu), u
′α(d

γ(g)

u′ ) ∈ U but U(uα(dgu)) ̸= U(u′α(d
γ(g)

u′ )) then // location

Refine(U(u),αv) with v = suff (lca(uα(dgu), u′α(d
γ(g)

u′ )))

if g ∈ GV(u)(u, α) and uα(dgu), uα(d) ∈ U with (u, d) ⊨ g but

U(uα(dgu)) ̸= U(uα(d)) then // transition(a)

Refine(U(u),αv) with v = suff (lca(uα(dgu), uα(d)))

if uα(dgu), uα(d) ∈ U with uα(dgu) ̸≃id
V(uα(d)) uα(d) then // transition(b)

Refine(U(u),αv) with v s.t. uα(dgu) ̸≃id
{v} uα(d)

if u, uα ∈ U with u ≃γ
V(u) u and no extension γ′ of γ with

uα(d) ≃γ′

V(uα(d)) uα(d) then // register

Refine(U(u),αv) with v s.t. uα(d) ̸≃γ′

{v} uα(d) for any γ′

until closed and consistent

H ← Hypothesis(CT )

if ∃w ∈ Σ+ s.t. H(w) ̸= L(w) then Analyze(w) and goto HYP else return H

as push(0) ≃{ϵ} ϵ and push(0) ≃{ϵ, push(p1)} ϵ. Since, however, push(0) ̸≃V ϵ for

V = {ϵ, push(p1), push(p1)push(p2)}, a new leaf was created and push(0) was
made the representative prefix of the new leaf and a short prefix.

The SLλ Algorithm. The core of the SLλ algorithm, shown in Algorithm 2,
initializes the classification tree to consist of one (root) inner node, for the empty
suffix (which classifies words as accepted or rejected); U and Sp are empty. It
then sifts the empty prefix ϵ, thereby entering it into U . Thereafter, Algorithm 2
repeats a main loop in which CT is checked for a number of closedness and
consistency properties. Whenever such a property is not satisfied, a corrective
update is made by adding information to CT . These corrective updates fall into
two categories, carried out by the following functions:

– Expand takes a prefix u ∈ U and makes it into a short prefix. Since each
short prefix must have a set of one-symbol extensions in U , the function
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forms one-symbol extensions of form uα(dgu), which are entered into the
classification tree by sifting.

– Refine takes a leaf node N and a symbolic suffix v; it sifts the prefixes u
in N , thereby obtaining L[u,v] from a tree query. This can either split N
into several equivalence classes, refine the initial guards or extend the set of
registers in the location represented by N .

Let us now describe the respective corrective updates in Algorithm 2.

Location Closedness is satisfied if each leaf contains a short prefix in Sp. Whenever
a leaf N does not contain a short prefix in Sp, one of its prefixes u is chosen for
inclusion in Sp by calling Expand(u), which adds one-symbol extensions to U .

Transition Closedness is satisfied if for each short prefix u, action α, and initial
guard in GV(u)(u, α), the extension uα(dgu) is in U . If this is not satisfied, the
missing uα(dgu) is added to U by sifting into CT .

Register Closedness is satisfied if for each pair of prefixes u and uα(d) in U , the
memorable parameters found for u contain the memorable parameters revealed
by the suffixes for uα(d), except for x|u]+1, where |u] is the length of u. Register
closedness guarantees that in a hypothesis H, values of registers in the location of
uα(d) can all be obtained by assignment from the registers in location u and the
just received parameter. If it is not satisfied, a suffix v for uα(d) which reveals a
missing register is prepended by α(p1) and added to the suffixes for u, whereafter
Refine(U(u),αv) will reveal the missing parameter. Here, and in the following, we
use α to denote α(p1), and αv to denote the result α(p1)α

′
2(p2) . . . α

′
m+1(pm+1) of

prepending α to v = α′
1(p1) . . . α

′
m(pm). If possible, we try to choose a shortest v,

and also restrict the parameters of αv to reduce the cost of the tree query for
L[u,αv].

Location Consistency. Analogously to consistency in the classic L∗ algorithm,
we split a leaf containing two short prefixes u, u′, in case their correspond-
ing extensions are not equivalent, i.e., there is a g ∈ GV(u)(u, α) such that

U(uα(dgu)) ̸= U(u′α(dγ(g)u′ )). The splitting is done by calling Refine(U(u),αv),
where v is the symbolic suffix labeling the common ancestor of the leaves of

uα(dgu) and u′α(dγ(g)u′ ).

Transition Consistency is satisfied if all one-symbol extensions uα(d) that satisfy
some guard g in GV(u)(u, α), are sifted to the same leaf as the extension uα(dgu)
with the representative data value dgu. If not, the guard g should be split by calling
Refine(U(u),αv), where v is the symbolic suffix labeling the common ancestor
of the leaves of uα(dgu) and uα(d). A similar case (Transition Consistency(b))
occurs when uα(dgu) and uα(d) are sifted to the same leaf, but are not equivalent
under the identity mapping between registers. Also here, the guard g should
be split by calling Refine(U(u),αv), where v is a shortest suffix under which
uα(dgu) ̸≃id

{v} uα(d).

Register Consistency. For some short prefix u with memorable values memV(u)(u),
there may be symmetries in L[u,v] for some v ∈ V(u), i.e., for some permutation γ
on memV(u)(u) we have u ≃γ

V(u) u. It may be that this symmetry does not exist
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in the SUL, but we did not yet add a suffix that disproves it . Register consistency
checks for the existence of such suffixes by comparing symmetries in u and its
continuations uα(d). If a symmetry between data values of u does not exist in
uα while one or more of the data values are memorable in uα, we can construct
a suffix that breaks the symmetry also for u.

Restricted Symbolic Suffixes. To reduce the number of membership queries
for tree queries of form L[u,v], we impose, when possible, restrictions to the
parameters of v, meaning that L[u,v] represents acceptance/rejection of uv only
for the suffix parameters that satisfy the imposed restrictions. An illustration was
given at the end of Section 2. A more detailed description appears in the extended
version [12] of this paper. Since a restricted symbolic suffix v′ represents fewer
actual suffixes than an unrestricted one v, it has less separating power, so suffixes
should only be restricted if their separating power is sufficient. The principles for
adding restrictions are specific to the theory; we have implemented them for the
theory ⟨N, {=}⟩. There, we consider two forms of restrictions on suffix parameters
pi: (i) fresh(pi), meaning that pi is different from all other preceding parameters
in the prefix and suffix, (ii) pi = pj , where j < i, i.e., pj is an earlier parameter in
the restricted suffix. Let us consider how restricted suffixes arise when prepending
an action α to an existing suffix v, in a call of form Refine(U(u),αv), in the
case that u, α, and v are chosen such that memv(uα(d))) contains a particular
memorable parameter. Let us denote the parameters of αv by p1, · · · , p|v|+1.
The restriction of suffix αv is then obtained by

1. letting the parameter of α be fresh if d is not equal to a previous data value
in u, and

2. restricting each parameter pi with i > 1 in αv to be (i) fresh whenever pi−1

is fresh in v or the branch taken in L[uα(d),v] for fresh pi−1 reveals the
sought register, and (ii) equal to a previous value pj in αv if the branch
taken in L[uα(d),v] for pi−1 equal to the corresponding value reveals the
sought register.

Hypothesis Construction. We can construct a hypothesis from a closed and
consistent classification tree. Location closedness ensures that every transition
has a defined source and target location, transition closedness ensures that
every transition that is observed by the tree queries we have performed so far,
is represented by a prefix, and register closedness ensures that registers exist
for all memorable data values in corresponding locations. Location consistency,
transition consistency, and register consistency ensure that we can construct a
unique (up to naming of locations and registers) determinate register automaton
eventhough there may exist multiple short prefixes for one location and symmetries
betweeen memorable data values.

We construct the register automaton A = (L, l0,X , Γ, λ), where

– L is the set of leaves of CT , and l0 is the leaf containing the empty prefix ϵ,
– X maps each location l ∈ L to memCT (u), where u is the representative

short prefix of the leaf corresponding to l, and
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Algorithm 3: Analyze Counterexample.

Function Analyze(w) is
for |w| ≥ i > 0 do

for u ∈ As(w1:i−1) do
Let uα(dgu) ∈ U represent the last transition of w1:i in H
Let v = Acts(wi+1:|w|) (or ϵ for i = |w|)
if uα(dgu) ̸≃{v} u′ for all u′ ∈ As(w1:i) then // location

Expand(uα(dgu)) and stop analysis of w
if initial guard g in L(u,αv) but no uα(dgu) ∈ U then // transition

Sift(uα(dgu), root(CT )) and stop analysis of w

– λ(l) = + if the leaf l is in the accepting subtree of the root, else λ(l) = −.
– for every location l with short prefix u, action α, and guard g in GV(u)(u, α),

there is a transition ⟨l, α(p), g, π, l′⟩, where
• l′ = U(uα(dgu)) is the target location, and
• π (the assignment) is defined by γ for which uα(dgu) ≃

γ
V(uα(dgu))

rp(uα(dgu))

Analysis of Counterexamples. When an equivalence query returns a coun-
terexample w, we process the counterexample as is shown in Algorithm 3. From
right to left, we split the counterexample at every index into a location prefix
w1:i−1, a transition prefix w1:i, and a suffix wi+1:|w|. We use the location and
transition prefixes to find corresponding short prefixes u and prefixes uα(dgu) by
tracing w1:i−1 and w1:i on the hypothesis. We write As(w1:i) for the short prefix
corresponding to the location reached by w1:i in a hypothesis and V als(w) for
the sequence of actions of w. We can then distinguish two cases: (1) The word
uα(dgu) is inequivalent to all corresponding short prefixes for the suffix of the
counterexample. In this case, we make uα(dgu) a short prefix. (2) The tree query
L(u,αv) shows a new initial guard. In this case, we add the corresponding (new)
prefix uα(dgu) to the set of prefixes. If neither case applies, we continue with the
next index. Since w is a counterexample, one of the cases will apply for some
index (cf. Lemma 1).

5 Correctness and Complexity

Let us now briefly discuss the correctness and query complexity of SLλ. The
correctness arguments are analogous to the arguments presented for other active
learning algorithms. One notable difference to SL∗ is that SLλ establishes register
consistency instead of relying on counterexamples for distinguishing symmetric
registers. Proofs can be found in the extended version [12] of this paper.

Lemma 1. A counterexample leads to a new short prefix or to a new prefix.

This is a direct consequence of Algorithm 3. Using a standard construction that
leverages properties of counterexamples (cf. [10, 40]), it can be shown that one of
the two cases in the algorithm will trigger for some index of the counterexample.
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As long as expanding (or sifting) new prefixes does not trigger a refinement, the
current counterexample can be analyzed again, until a refinement occurs.

Lemma 1 establishes progress towards a finite RA for a language L. Let m
be the length of the longest counterexample, t the number of transitions, r the
maximal number of registers at any location, and n the number of locations in
the final model. (t dominates both n and r.)

Theorem 1. SLλ infers a RA for regular data language L with O(t) equivalence
queries and O(t2 nr+tmnmm) membership queries for sifting words and analyzing
counterexamples.

O(t) is an improvement over the worst case estimate of O(tr) equivalence
queries for SL∗ [10]. SLλ also improves the worst case estimate for membership
queries for sifting to O(t2 nr) from O(t2r nr) for filling the table in SL∗. For
analyzing counterexamples, SLλ replaces O(trmmm) with O(tmnmm).

6 Evaluation

As mentioned, we have implemented the SLλ algorithm in the publicly available
RALib tool for learning register automata. RALib already implemented the SL∗

algorithm [10] that uses an observation table as its data structure. In order to
evaluate the effect of analyzing counterexamples as described in Section 4, we
have also implemented the SLCT classification tree learning algorithm that uses
the same counterexample analysis technique as the SL∗ algorithm, i.e., adding
suffixes from counterexamples to the classification tree directly. We compare the
performance of the SLλ algorithm against that of SL∗ and SLCT . All models,
the experimental setup, and infrastructure for executing the experiments are
available on the paper’s artefact at Zenodo [42] and updated versions on GitHub5.

Experimental Setup. We use two series of experiments: (1) A black-box learning
setup with random walks for finding counterexamples on small models from the
Automata Wiki [39] to establish a baseline comparison with other results and to
evaluate the impact of using non-minimal counterexamples. In these experiments,
we verify with a model checker that the inferred model is equivalent to the SUL
and we stop as soon as the correct model is produced by a learning algorithm.
(2) A white-box setup with a model checker for finding short counterexamples to
analyze the scalability of algorithms on (2a) 24 consecutive hypotheses of the
Mbed TLS 2.26.0 server,6 as well as (2b) sets of randomly generated automata.7

All results were obtained on a MacBook Pro with an Apple M1 Pro CPU and
32 GB of memory, running macOS version 12.5.1 and OpenJDK version 17.0.8.1.

5 https://github.com/LearnLib/ralib-benchmarking
6 We obtained these hypotheses by extending the machinery of DTLS-Fuzzer [17], a
publicly available tool for learning state machine models of DTLS implementations.

7 We used the algorithm of Champarnaud and Paranthoën [11] to enumerate seman-
tically distinct DFAs with a specific alphabet and number of locations. We then
replaced the alphabet symbols with RA actions of arity one, and finally replaced a
fraction of the transitions with simple gadgets that store and compare data values.
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Table 1: Results on AutomataWiki Systems.
SUL Resets (Learn) Resets (Total) CounterExs WCT Learn [ms] WCT Test [ms]

|Q| |Γ | |X| |C| SL∗ SLλ SLCT SL∗ SLλ SLCT SL∗ SLλ SLCT SL∗ SLλ SLCT SL∗ SLλ SLCT

channel-frame 5 8 3 2 11 11 15 24 28 32 1 2 2 49 43 36 295 289 294
abp-receiver3 6 10 3 2 489 88 466 614 249 610 4 4 4 147 74 245 256 282 264
palindrome 6 15 4 0 479 358 476 508 384 504 5 5 5 73 52 51 406 403 402
login 12 19 4 0 436 244 433 509 300 512 3 2 3 86 54 67 301 303 310
abp-output 30 50 1 2 363 208 311 590 4 552 6 151 5 11 11 142 151 696 260 175 154
sip 30 72 2 0 487 233 345 934 3 633 2 772 9 15 16 370 347 353 194 149 160

fifo3 12 16 4 0 29 24 23 212 202 209 5 5 5 114 106 108 547 636 563
fifo5 18 24 6 0 66 55 60 435 434 468 6 7 7 1 303 1 144 1 451 575 600 584
fifo7 24 32 8 0 118 96 123 738 839 989 7 8 9 317 435 279 888 346 897 589 591 583

Results. Table 1 summarizes the results of the experiments in a black-box learn-
ing setup. For every SUL, we report its complexity (in number of locations |Q|,
transitions |Γ |, registers |X|, and constants |C|) and, for each learning algorithm,
the number of resets (i.e., tests) during the learning phase, total tests (incl. coun-
terexample search), the number of counterexamples found, and wall clock times
(WCT) for learning and testing. In Table 1, all numbers are averages from 20
experiments. It can be seen that the SLλ algorithm consistently outperforms
the other two algorithms w.r.t. the number of tests during learning. As can be
expected, the SL∗ algorithm requires the fewest counterexamples. Execution
times do not show a consistent pattern for these small systems or a clear ‘winner’
between these three RA learning algorithms, but there is a strong correlation
between the number of learner tests and the time that learning requires. Due to
this, in most cases, SLλ is fastest overall.

The SULs of the previous set of experiments were all quite small (|Γ | ≤ 72),
and did not show any scalability differences between the three algorithms. Also,
with the exception of fifo, the benchmarks were not parametric. In the following
experiments, we scale the SULs which are learned.

Figure 5 shows the results of our experiments with DTLS models. For each
algorithm, the graphs show the relationship between the number of transitions in
each hypothesis model and the number of resets with restricted and unrestricted
suffixes (in the first two graphs), the number of counterexamples (3rd graph), and
execution times (4th graph). It is evident that, with increasing model complexity,
the number of counterexamples grows linearly for all algorithms at roughly the
same rate, yet the number of resets grows much more rapidly for SL∗ than
it does for SLCT and SLλ. In terms of time performance, the trend is even
more pronounced. For SULs with more that 100 transitions, learning times grow
significantly worse for SL∗ than the other two algorithms, and SLλ clearly also
beats SLCT on even bigger systems.

Finally, Fig. 6 shows the results of the experiments with randomly generated
automata. The graphs show how the number of resets scales with the number of
locations and actions (left) and the number of registers when using both restricted
(center) and unrestricted suffixes (right). The number of resets grows much more
rapidly for SL∗ than for the other algorithms. Not restricting suffixes leads to a
2–4x increase in resets; notice the different scales on the y-axis.

Overall, the experiments show a clear advantage of SLλ over table-based RA
learning algorithms in terms of the number of resets and execution times for
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Fig. 5: Number of resets (two leftmost graphs), counterexamples (3rd graph), and
wall clock times (4th graph) for inferring models of the Mbed TLS 2.26.0 server.
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Fig. 6: Resets for inferring models of generated SULs, scaling the number of
transitions through locations and actions as well as by increasing the percentage
of transitions with data operations using restricted and unrestricted suffixes.

bigger systems. These results confirm the theoretical properties of the algorithms
and are consistent with the behavior of AAL algorithms for FSMs.

7 Conclusion

We have presented SLλ, a scalable tree-based algorithm for register automata
learning. SLλ reduces the membership queries needed for inferring RA models by
constructing short restricted suffixes incrementally. This enables active learning
in scenarios not feasible with previous algorithms. We prove a reduction in the
worst-case number of tests and, via a practical evaluation, show performance
improvements on both real-world (i.e., on a complex network protocol) and
synthetic models compared to the state-of-the-art RA learning algorithm.
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Abstract. A bottleneck in modern active automata learning is to test
whether a hypothesized Mealy machine correctly describes the system
under learning. The search space for possible counterexamples is given
by so-called test suites, consisting of input sequences that have to be
checked to decide whether a counterexample exists. This paper shows
that significantly smaller test suites suffice under reasonable assumptions
on the structure of the black box. These smaller test suites help to
refute false hypotheses during active automata learning, even when the
assumptions do not hold. We combine multiple test suites using a multi-
armed bandit setup that adaptively selects a test suite. An extensive
empirical evaluation shows the efficacy of our approach. For small to
medium-sized models, the performance gain is limited. However, the
approach allows learning models from large, industrial case studies that
were beyond the reach of known methods.

1 Introduction

System identification algorithms aim to capture the behavior of a black-box
system, often called the system under learning (SUL), in a formal model. Among
the system identification approaches, active automata learning (AAL) [5,23,24] is
a popular methodology to extract finite automata from a black-box. AAL has been
successfully applied to learn security-critical protocol implementations [15,16,18],
legacy code [8, 44], smart cards [13], interfaces of data structures [22], embedded
control software [46], and (explainable) neural network policies [51].

Modern AAL methods [25,48] are available via mature tool sets [11,26,36] that
implement these methods. They are primarily built around Angluin’s Minimal
Adequate Teacher (MAT) framework [5]. In essence, the theoretically elegant
MAT framework requires access to two types of queries. First, an output query
(OQ) allows to execute a sequence of inputs on the black-box and observe its
outputs. Second, an equivalence query (EQ) asks whether a hypothesized Mealy
machine is indeed equivalent to the SUL. Implementing the equivalence query
provides practitioners with an impossibility [35]: How do we decide whether a
learned model is equivalent to the behavior of a black-box? To overcome this
impossibility, practitioners take a more modest stance and only approximate
equivalence queries. One approach is to randomly sample from all possible input
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sequences, which leads to a statistical guarantee1, as pioneered in the context of
learning by Angluin [6]. Alternatively, based on ideas pioneered in [14,50], the
structure of the hypothesis is used to select a finite set of input sequences to
be checked. These sets are test suites and the approach is called conformance
testing [12]. This paper considers EQs via test suites; for an overview, see Sec. 2.

Challenge: Finding small test suites. Finite test suites can be obtained using the
notion of k-completeness. In short, k-completeness guarantees equivalence under
the assumption that the number of states in the SUL is at most k states larger
than the hypothesis. Popular k-complete test are the classical W-method [14, 50]
and variations thereon, such as Wp [19], HSI [32,41] and Hybrid-ADS [34]; see
empirical evaluations in [7]. We call these methods Access-Step-Identify (ASI).
These are standard in tools like LearnLib [26] and AALpy [36]. However, k-
complete test suites such as the W -method grow with |I|k, where |I| is the
number of input symbols. Consequently, even for small k, these test suites are
prohibitively large.

Our approach for smaller test suites. Towards smaller test suites, we adapt ASI
methods and make assumptions on the shape of the SUL in relation to the shape
of the hypothesis. In particular, we consider several natural assumptions that may
occur in real-world systems. For instance, one of these assumptions is that in most
states, most inputs either lead to an error-state or are simply discarded. Other
assumptions are that certain inputs are used only in the beginning (e.g. in the
authentication phase of a protocol), or that the SUL has a component structure
where inputs are primarily used together within components. We formalize these
assumptions, demonstrate the applicability on industrial benchmarks, and develop
a notion of completeness under these assumptions. The resulting test suites are
much smaller, as the factor |I|k is restricted to |I ′|k, with |I ′|< |I|.
Challenge: finding counterexamples as soon as possible. The time to find a coun-
terexample during EQs is the bottleneck in AAL applications [47,52]. To accelerate
this process, it is helpful to constrain the search space of possible counterexamples,
allowing for a targeted search. Here complete test suites are again helpful, even if
they can not be fully executed and can only be approximated through sampling,
as implemented for instance in the randomised W-method of LearnLib. Complete
test suites then provide a constrained search space that still contains all actual
counterexamples. Another relevant aspect for finding counterexamples fast is
the order that tests are chosen: an adequate ordering in which counterexamples
(empirically) occur early in the test suites is preferred.

Our approach for finding counterexamples faster. In the context of randomised
W-methods, pruning input sequences that are not counterexamples yields a larger
probability of sampling a counterexample and thus speeds up the procedure.
However, for the smaller test suites described earlier, without domain-specific
knowledge, we can not be certain that they contain (a larger fraction of) coun-
terexamples, as we do not know whether the underlying assumptions are met.
Instead, our idea is to combine multiple test suites. We prefer tests from test

1 Typically, a probably-approximately correct (PAC) guarantee.
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if outputs different, σ

else

test case σ

Fig. 1: Interaction between the learner, teacher and SUL in the MAT framework.

suites that led to counterexamples in previous invocations of the EQ during the
learning process. We operationalize this idea using multi-armed bandits.

Contributions. In summary, this paper introduces three new test suites that are
complete under additional assumptions on the SUL (Sec. 4). We combine these test
suites via a multi-armed bandit framework to accelerate finding counterexamples
in EQs (Sec. 5). The paper demonstrates performance on scalable self-generated
benchmarks, standard benchmarks and industry benchmarks (Sec. 6). The proofs
of all theorems, the complete benchmarks results and additional figures can be
found in the appendix of the extended version of this paper [30].

2 Overview

We briefly illustrate the interactions in the MAT framework, the W-method, and
our approach for generating smaller test suites, using a toy example. Recall that
in the MAT framework the learner can pose output queries (OQ) and equivalence
queries (EQ). This is depicted in Fig. 1, where EQs are implemented by the
teacher. The Mealy machine in Fig. 2a depicts the SUL for a coffee machine with
input alphabet I = {coffee, espresso, tea, 1}. Coffee costs 1 euro, espresso costs
2 euros, and tea never gets dispensed. Via a series of queries, we may obtain the
hypothesis in Fig. 2b. The hypothesis is easy to refute with an EQ, e.g., via the
counterexample 1 · coffee. After various OQs, we learn the hypothesis in Fig. 2c.
A short counterexample that distinguishes the hypothesis H1 from the SUL S is

1︸︷︷︸
access

· 1 · coffee︸ ︷︷ ︸
infix

· coffee︸ ︷︷ ︸
distinguish

.

The counterexample consists of three parts. We first access q1 and t1, from which
we run an infix that leads to either q1 or t0, and then we distinguish both states
with coffee. Executing input coffee from q1 returns output coffee while executing
input coffee from t0 returns output −. The W-method generates test suites that
consist of input words of a similar shape. Concretely, test suites are constructed
as P · I≤k+1 ·W , where P ensures access to the states in the hypothesis, I≤k+1

is the set of sequences of at most k + 1 arbitrary input symbols, used to step to
states in the (larger) SUL, and W contains sequences that help to distinguish
states. Test suites constructed in this way tend to contain many input sequences
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(c) Hyp. H1

Fig. 2: A coffee machine and two hypotheses which can be generated using AAL.

which do not help to refute the hypothesis. In our example, the W-method test
suite with k = 2 for H1 also contains uninformative sequences such as

ϵ︸︷︷︸
access

· 1 · espresso · 1︸ ︷︷ ︸
infix

· coffee︸ ︷︷ ︸
distinguish

and 1︸︷︷︸
access

· tea · espresso︸ ︷︷ ︸
infix

· espresso︸ ︷︷ ︸
distinguish

.

A smaller test suite. In hypothesis H1, espresso and tea self-loop in all states.
The counterexample to refute this hypothesis only requires the inputs coffee and
1. It is natural that input tea is not necessary to reach new states, as this option
is obsolete. This leads us to a test suite for H1 that excludes the inputs tea and
espresso in the infix. If we generate infixes of length at most 3 (k = 2) with the
full alphabet, the test suite contains 112 test cases. If we exclude two inputs,
only 12 test cases remain.

A set of smaller test suites. The restricted test suites that aim to exclude obsolete
inputs can be refined. These restrictions can be adapted for other typical scenarios.
Consider, e.g., network protocols that only perform a three-way handshake in
the initial phase. In states where the communication protocol is initialized, these
inputs are no longer relevant. Likewise, there are often clusters where the same
input symbols are relevant. For instance, if a 10 cent coin is a relevant input in
some state of a vending machine, then a 50 cent coin is likely also relevant.

Mixing test suites. Restricting the test suites yields the risk of missing coun-
terexamples. While the test suite may be complete under (natural) additional
assumptions, in a black-box setting we have no way to check whether these
assumptions hold. We therefore present a methodology where various restricted
test suites are combined, using multi-armed bandits to select test suites. During
learning, the EQs then increasingly use test suites for which the assumptions
hold, without the need for advanced knowledge of the SUL.

3 Complete Test Suites

We recall complete test suites and start with preliminaries on Mealy machines.
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Definition 3.1. A Mealy machine is a tuple M = (Q, I,O, q0, δ, λ) with finite
sets Q, I and O of states, inputs and outputs respectively; the initial state q0 ∈ Q,
the transition function δ:Q× I → Q and the output function λ:Q× I → O.

Below, we also use partial Mealy machines; these are defined as above but with
δ:Q× I ⇀ Q and λ:Q× I ⇀ O partial functions with the same domain. For a
partial function f we write f(x)↓ if f(x) is defined and f(x)↑ otherwise. The
transition and output functions are extended to input words of length n ∈ N in
the standard way, as functions δ:Q×In ⇀ Q and λ:Q×In ⇀ On. We abbreviate
δ(q0, w) by δ(w). Given Q′ ⊆ Q and L ⊆ I∗, we write ∆M(Q′, L) = {δ(q, w) |
q ∈ Q′, w ∈ L} for the set of states reached from Q′ via words in L, and we let
∆M(L) = ∆M({q0}, L). In particular ∆M(I∗) is the set of reachable states of
M. We use the superscriptM to indicate to which Mealy machine we refer, e.g.
QM and δM. We write |M| for the number of states inM. A state q ∈ QM is a
sink if for all i ∈ I, δ(q, i) = q. We denote the set of sinks by Qsink.

Definition 3.2. Given a language L ⊆ I∗ and Mealy machines H and S, states
p ∈ QH and q ∈ QS are L-equivalent, written as p ∼L q, if λH(p, w) = λS(q, w)
for all w ∈ L. States p, q are equivalent, written p ∼ q, if they are I∗-equivalent.
The Mealy machines H and S are equivalent, written H ∼ S, if qH0 ∼ qS0 .

Conformance testing techniques construct from a current hypothesis H a
suitable test suite T ⊆ I∗, to be executed on the (black-box) SUL S. If a test
case fails, we know the machines are inequivalent. Ideally, we want a test suite
that contains a failing test case for every possible inequivalent Mealy machine.
This is called a complete test suite. We define completeness in a more generic
way than usual to make it easier to add conditions to the set of Mealy machines
for which the test suite is complete in subsequent sections.

Definition 3.3. Given a Mealy machine H and set of Mealy machines C, a test
suite T ⊆ I∗ is complete for H w.r.t. C if for all S ∈ C, H ∼T S implies H ∼ S.

In general, there are no test suites that are complete w.r.t. the (infinite) set
C containing all (inequivalent) Mealy machines [35]. In practice, we often use
k-completeness, where we assume that C only contains Mealy machines which
have at most k states more than the hypothesis.

Definition 3.4. Let H be a Mealy machines. A test suite T ⊆ I ∗ is k-
complete for H if it is complete w.r.t. CkH = {S | |S|−|H|≤ k}.

Conformance testing techniques often build k-complete test suites in a structured
manner using a state cover and a characterization set. We give a formal description
of a classical k-completeness technique: the W-method [14,50].

Definition 3.5. An access sequence for q ∈ QH is a word w ∈ I∗ such that
δH(w) = q. A language P ⊆ I∗ is a state cover if ε ∈ P and P contains an
access sequence for every reachable state, i.e., ∆H(P ) = ∆H(I∗).

Definition 3.6. A characterization set for a Mealy machine H is a non-empty
language W ⊆ I∗ such that p ∼W q implies p ∼ q for all p, q ∈ QH.
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Let P be a minimal state cover and W a characterization set for H. Then the
W -method, given k ∈ N, is given by the test suite T = P · I≤k+1 ·W . The state
cover P makes sure all states in H are reached. The role of the set of infixes in
I≤k+1 is to reach states in S. The characterization set W checks if the states
reached in H and S after reading a word from P · I≤k+1 match. Other ASI
methods differ in the computation of the characterization set and the structure
of the test suite but are constructed from the same sets P , I, and W .

In the remainder of this section, we prove that the W-method is k-complete [14,
50]. We recall the proof strategy from [34], based on reachability and bisimulations
up-to ∼L, in Appendix A of [30]. With minimal changes, this proof also works
for other ASI methods. Here, we summarize the approach in two main steps,
which we reuse in Sec. 4 to prove completeness for different test suites under
additional conditions. The first step concerns reachability in S. We assume that
H is minimal w.r.t. number of states, which is an invariant of active learning
algorithms, our intended application. This assumption is only used for k to be
correct; alternatively, one can bound the number of states of S to the sum of k
with the number of inequivalent states in H.

Lemma 3.7. Let H and S be Mealy machines with |S|−|H|≤ k for some integer
k, and assume H is minimal. Moreover, let P be a state cover for H and W a
characterization set for H. Finally, let L = P · I≤k and T = P ·W and suppose
that H ∼T S. Then L is a state cover for S.

It is in the above lemma that the assumption ε ∈ P is used, to ensure that all
states in S are reached from a state in ∆S(P ). The second step extends this to
actual equivalence of the two Mealy machines.

Lemma 3.8. Suppose L ⊆ I∗ is a state cover for both H and S. Let W be a
characterization set for H, and T = L · I≤1 ·W . If H ∼T S, then H ∼ S.

Combining the above two lemmas, we recover k-completeness of the W -method.

Corollary 3.9. The W -method is k-complete.

4 Complete Test Suites with Subalphabets

We introduce test suites that are similar to the W-method but have fewer infixes.
These test suites are roughly of the form T = P · I≤k+1

sub ·W , with different choices
for Isub ⊆ I. If the subalphabet gets smaller, the test suite size always decreases.
If we choose I for Isub, we recover the original W-method test suite.

In the following subsections, we provide three new functions, called experts,
for generating subalphabets. These experts are tailored to perform well for certain
Mealy machine structures. For each expert, we provide a parameterized family of
Mealy machines for which the expert should work well, and we show they are
complete under specific assumptions that strengthen those of k-completeness.

The experts can be embedded in any ASI method. For conciseness, we focus
on the W-method. In the definition of expert, the output is a set of subalphabets
rather than a single one Isub as described above; this is used in one of the experts.
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x1x1 . . . xaxa

y0,0y0,0 . . . y0,ay0,a

ya,0ya,0 . . . ya,aya,a
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a

Fig. 3: ASMLa,b models over inputs and outputs {xi | 1 ≤ i ≤ a}∪{yi | 1 ≤ i ≤ b}.
Transitions not drawn, including all transitions yi with 1 ≤ i ≤ b, lead to a sink
with a unique output.

Definition 4.1. An expert is a function E which takes as arguments a Mealy
machine H and a word v ∈ I∗, and returns a set of subalphabets I1, . . . , In.

The embedding in the W-method is as follows.

Definition 4.2. The expert test suite ETS for H, expert E and k ∈ N is:

ETSE,k(H) =
⋃
v∈P

(v · (
⋃

Isub∈E(H,v)

I≤k−1
sub ) · I≤2 ·W )

where P is a minimal state cover for H and W a characterization set.

Before introducing the new experts we define the trivial expert.

Definition 4.3. The trivial expert ET is given by ET(H, q) = {IH}.
If P is a minimal state cover and W a characterization set, then ETSET,k(H) is
given by P · I≤k−1 · I≤2 ·W , which is precisely the W-method test suite.

4.1 Active Inputs Expert

Motivation. Mealy machines with many inputs are challenging, even when most
inputs induce no interesting behavior, i.e., when most inputs transition to sinks.
This challenge is exemplified by the ASML models which were first described
in [52] and partially made available for the 2019 RERS challenge [27]. The ASML
models represent components of lithography systems used at ASML. These models
feature many inputs that often lead to a sink state. Model m135 in particular
has approximately 100 inputs that always transition to the sink state with the
same output. The Mealy machines ASMLa,b where a, b ∈ N, displayed in Fig. 3,
closely resemble m135. The model starts with a spine, then there is a choice
between a branches, and the spine inputs are reused in a different order after the
choice. There are b distinct inputs that always lead to a sink.

The expert. The active inputs expert addresses Mealy machines where there is a
significant set of inputs that always lead to the sink state or self-loop. We define
the active version of a Mealy machine and then the active inputs expert.
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Definition 4.4. An input i ∈ I is active in q ∈ Q, if δ(q, i) /∈ Qsink and δ(q, i) ̸=
q. The active Mealy machine of H = (Q, I,O, q0, δ, λ) is the partial Mealy machine
active(H) = (Q \Qsink, I

′, O, q0, δ
′, λ′) such that

I ′ =
{
i ∈ I | ∃q ∈ Q. i active in q

}
,

δ′(q, i) =

{
δ(q, i) if i active in q,

↑ otherwise,
and λ′(q, i) =

{
λ(q, i) if δ′(q, i) ↓,
↑ otherwise.

Definition 4.5. The active inputs expert EAI is given by EAI(H, p) = {Iactive(H)}.

Complexity. The time complexity of EAI is O(nk), where n is the number of states
and k the number of inputs. This is achieved by first determining the set Qsink

in O(nk), and then computing δ′ and I ′ simultaneously in O(nk).
Completeness. Test suite ETSEAI,k is complete for the set of Mealy machines
which 1) have at most k additional states and 2) where all non-sink states can
be reached by a word in the state cover followed by at most k active inputs.

Theorem 4.6. Suppose ETSEAI,k(H) uses state cover P . Let C = {S ∈ CkH |
QS \QS

sink ⊆ ∆S(P · (Iactive(H))≤k)}. Then ETSEAI,k(H) is complete for C.

The proof follows from Lemma 3.8; the hypotheses make sure that a variant of
Lemma 3.7 holds. The above theorem applies in particular, if H is minimal, for
the restriction of CkH to those Mealy machines S where all non-sink states are
reachable by the sub-alphabet generated by EAI.

The active inputs expert performs well on ASMLa,b once the spine is learned
because it will not generate infixes with inputs that always lead to the sink state.
In the empirical evaluation performed in Sec. 6, it can be observed that EAI

requires significantly fewer symbols to learn ASMLa,b compared to ET.

4.2 Future Expert

Motivation. Real-world systems often contain an ‘initialization phase’ where
inputs like start or login are used that are not used later in the system. Fig. 4
shows the family of Mealy machines TCPa,b inspired by the TCP models [16].
The models of TCP clients contain two distinct phases: the three-way handshake
and the connected part. After the three-way handshake, some inputs are never
active again. TCPa,b has the same two phases. For the last few hypotheses that
arise during learning, all inputs will be active. Therefore, EAI will generate the
same ETS as ET. EAI is too coarse here because, at different parts of the system,
different sets of inputs are active.

The expert. The future expert generates a subalphabet for each state in the
hypothesis. This subalphabet contains all inputs that are active from that state
onwards, within a given number of steps. Bounding the number can be useful
in large models, and avoids that we end up with the complete alphabet if the
Mealy machine is strongly connected.
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Fig. 4: TCPa,b models over inputs and outputs {xi | 1 ≤ i ≤ a} ∪ {yi | 1 ≤ i ≤ b}.
Transitions not shown lead to a sink with a unique output.

Definition 4.7. The future expert El
F, is given for l ∈ N by El

F(H, v) = {Iv,l}
where Iv,l = {i | ∃q ∈ ∆active(H)(v · I≤l−1) ∧ δactive(H)(q, i) ↓}.

Complexity. The time complexity O(n(n+ n|I|)) can be achieved for EF with a
bounded BFS for each state.

Completeness. For El
F, we have the following completeness result.

Theorem 4.8. Suppose ETSEl
F,k

(H) uses state cover P . Let C = {S ∈ CkH |
QS \QS

sink ⊆
⋃

v∈P ∆S(v · I≤k
v,l )}. Then ETSEl

F,k
(H) is complete for C.

EF performs well on TCPa,b once the spine is learned because the subalphabet
for states after ya does not contain y-symbols, contrary to subalphabet from ET.
Sec. 6 shows that El

F often outperforms the trivial expert ET.

4.3 Components Expert

Motivation. In some systems, sets of inputs are often used together. For example,
after entering a username you often enter a password as well. It is possible that
the set of inputs that are used together occur at multiple places in the system.
Fig. 5 shows Mealy machines SSHa,b, loosely inspired by OpenSSH [18]. The
OpenSSH model contains three phases: the key exchange, the authentication,
and then the connection phase where re-keying is possible. For the family of
Mealy machines SSHa,b, we assume there is a fixed set of possible keys and the
key exchange and re-keying uses the same key-specific inputs, i.e., the inputs for
the key exchange of key k are the relevant inputs for re-keying with key k.

The expert. The component expert generates subalphabets based on sets of states
and is defined as follows.2

Definition 4.9. Let g be a function that takes a Mealy machine H and returns
a set of subsets of Q, referred to below as components. The component expert
Eg

C with parameter g is defined s.t. Eg
C(H, p) = {IX | X ∈ g(H)} where IX = {i |

∃q, q′ ∈ X.δ(q, i) = q′}.
2 El

F can be seen as a refined form of the Eg
C which returns the subalphabets IX with

X consisting of the states reachable in at most l steps from state p.
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Fig. 5: SSHa,b models over inputs {xi,j | 1 ≤ i ≤ a, j = 1, 2}∪{yi | 1 ≤ i ≤ b}∪{y}
and the outputs {xi | 1 ≤ i ≤ a} ∪ {y, yfail}. Transitions not shown lead to a
sink with a unique output.
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q4q4

q5q5

q6q6

Fig. 6: Example
with colored com-
munities.

Finding components. Finding a suitable subroutine g to de-
termine components from a hypothesis is a non-trivial task.
One relatively easy method for finding components is to com-
pute the strongly connected components (SCCs). However,
if the system can be reset at any state, then the complete
model is an SCC and the components expert reduces to the
trivial expert. Therefore, SCCs are often too strict. Another
possibility is to utilize algorithms used in graph theory to
decompose graphs into subgraphs. We propose to use New-
man’s algorithm for detecting community structure [39] to
identify components. The algorithm outputs sets of states
with high transition density between states within the group.
It starts with singleton communities and then greedily joins
communities based on the maximal change in modularity,
as long as it is positive. The modularity value mod(c) for
component c is:

mod(c) =
#edges staying in c

#edges
− #outgoing edges of c ·#incoming edges of c

#edges2

Example 4.10. We illustrate Newman’s algorithm on Fig. 6. Initially, mod({q1}) =
0 − 2·3

152 ≈ −0.027,mod({q3}) = 0 − 2·2
152 ≈ −0.018. The difference between the

initial modularity and the modularity of {q1, q3} (2− 4·5
152 = 0.0444) is the high-

est possible change in modularity. We thus merge communities {q1} and {q3}.
Likewise, we then merge {q1, q3} and {q2}. After several steps we get to the final
communities {q0, q1, q2, q3} and {q4, q5, q6}.

To apply Newman’s algorithm, the subroutine g transforms active(H) to a
directed graph G = (Q,E) where E = {(q, q′) | q, q′ ∈ Q ∧ ∃i ∈ I.δ(q, i) = q′}
and then applies Newman’s algorithm on G.
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Complexity. The time complexity of Eg
C is O(g + nk) where g is the complexity

of the subroutine. The subterm O(nk) originates from the active transformation.
With Newman’s algorithm, the total complexity is in O(n(n+ n|I|)) [39].

Completeness. ETSEg
C ,k

is k-complete if all non-sink states in the SUL can be
reached from a state p in the hypothesis with at most k inputs from some IX .

Theorem 4.11. Suppose ETSEg
C ,k(H) uses state cover P . Let C = {S ∈ CkH |

QS \QS
sink ⊆

⋃
X∈g(H) ∆

S(P · I≤k
X )}. Then ETSEg

C ,k(H) is complete for C.

ENewman
C performs well on SSHa,b once the key exchange and authentication

phase have been learned because the subalphabet mostly contains symbols that
belong together and allows discovery of a whole new key exchange component.
Ideally, {xi,1, xi,2, xi,3}, {zi1 , zi2 , zi,3} for 1 ≤ i ≤ a and {y, y0, ..., yb} form
components for SSHa,b. In our experiments, Newman’s algorithm sometimes finds
slightly bigger components.

5 Test Case Prioritization

To establish equivalence, all tests in a complete test suite need to be executed
and their order is then irrelevant. However, to find a counterexample, we only
need to execute tests until we hit that counterexample. This means that different
orderings lead to significant performance changes [7]. In this section, we first
describe the state-of-the-art in (ordered) test suites. We then create new, ordered
test suites, that combine the ETS’s from Sec. 4 adaptively.

5.1 Randomised Test Suites

Test suites are often stored in a tree-like data structure. The straightforward
ordering iterates over this tree to process the test cases deterministically. However,
a variety of deterministic orderings for P , I, W are all (on average) outperformed
by randomised methods that do a better job in diversification [7, Ch. 4]. State-
of-the-art randomised test suite generation methods are described in [34, 46]
and make use of a geometric distribution to determine the length of the infix.
We present a simpler3 and more generic variation: Given an expert e and a
distribution µ over natural numbers, the randomised ETS Se,µ is a distribution
over words v · i · w ∈ P · I∗ ·W such that:

Se,µ(v · i · w) =
µ(l)

|ETSe,l|
for |i|= l (1)

Informally, (1) indicates that the probability of sampling a test case with infix
length l is the probability of sampling infix length l from distribution µ and then
uniformly sampling a test case from ETSe,l.

3 The randomised Hybrid-ADS method in [46] first exhausts P · I2 · W and then
generates test cases from P · I2 · I∗ ·W where the length of the infix is described by
a geometric distribution.
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Algorithm 1 Instantiated EXP3 Algorithm for Test Case Generation

1: procedure MAB EQ(H, weights)
2: while true do
3: probs←− UpdateProbs(weights) ▷ Eq. 2
4: e←− sample expert proportional to probs
5: σ ←− sample next test case from Se,µ ▷ Eq. 1
6: v ←− λH(qH0 , σ)
7: v′ ←− OutputQuery(σ)
8: weights←− UpdateWeights(probs,weights, e, v ̸= v′) ▷ Eq. 3
9: if v ̸= v′ return Some(σ), weights

For any µ with infinite support, the generated test suite is infinite. Thus,
randomised ASI methods are test case prioritizations over infinite test suites
P · I∗ ·W . Still, randomised ASI methods often find counterexamples faster than
k-complete ASI methods [4, 20]. To ensure k-completeness in randomised ASI
methods, we need extra bookkeeping to determine whether the right tests have
been executed and we can only guarantee that we execute these tests in the limit.

5.2 Multi-Armed Bandits

We want to use all experts from Sec.4 to generate test cases. A naive solution
is to determine a static distribution that describes how often an expert should
be selected for generating a test case. However, it is unclear how such a distri-
bution should be determined. Instead, we use so-called multi-armed bandits to
dynamically update the distribution over available experts using information from
previous testing rounds. We refer to this algorithm as the Mixture of Experts.
The multi-armed bandits problem was first described by Robbins [43] and is a
classic reinforcement learning problem. We instantiate the EXP3 algorithm for
adversarial multi-armed bandits [9]. Intuitively, our instantiation prioritizes test
cases by better performing experts. We embed the Mixture of Expert algorithm
in the MAT framework from Fig. 1 and list the pseudocode in Algorithm 1.

Algorithm 1 is used with randomised ASI-methods. The algorithm is called
with a hypothesis H and weights. The parameter weights indicates how good an
expert is and is initialized to 1 for each enabled expert. The algorithm uses the
set of enabled experts E, constant k, distribution µ, and exploration parameter γ
as global parameters. The exploration parameter determines how often we choose
an expert at random. In Algorithm 1, each iteration of the loop represents the
generation of one test case. In each iteration, we first update the distribution
probs for each expert i ∈ E using Eq. 2.

probs(i)← (1− γ) · weights(i)

Σj∈Eweights(j)
+

γ

|E|
(2)

Next, we sample an expert from probs and sample a test case from Se,µ. We
determine the output of the test case on H and S and update the weights for
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chosen expert e using Eq. 3 if v ̸= v′, otherwise the weights remain the same.

weights(e)← weights(e) · exp
(

γ

probs(i) · |E|

)
(3)

If v ̸= v′, then we have found a counterexample and the weights value for the
chosen expert significantly increases. Consequently, the expert is more likely to
be chosen to generate test cases in the next rounds. Finally, if v ̸= v′, we return
the counterexample. Otherwise, generate a new test case.

6 Experimental Evaluation

In this section, we empirically investigate the performance of our implementation
of Algorithm 1 in comparison with a state-of-the-art baseline. The source code
and all benchmarks are available online4 [29]. We investigate the performance on
four benchmark sets with varying complexities in the first three experiments:

RQ1: How does Algorithm 1 scale on the models from Figs. 3, 4, and 5?
RQ2: How does Algorithm 1 compare to the state-of-the-art on industrial

benchmarks from the RERS challenge [27]?
RQ3: How does Algorithm 1 perform on the standard automata wiki [38]

benchmark suite and randomly generated Mealy machines?

In Experiment 3, we additionally consider an alternative non-randomised version
of the presented algorithm which is not feasible to apply to the benchmarks
of Experiment 2 given the worse performance of non-randomised test suites.
Experiment 4 provides an in-depth analysis of runs on two benchmarks from the
RERS challenge. Detailed benchmark results can be found in Appendix C of [30].

Experimental Setup We have extended the L# learning library [48] with the
multi-armed bandits approach described in Sec. 5. We compare our implemen-
tation instantiated with different experts. We write MoE(∗) to refer to our key
contribution, using the Mixture of all Experts, i.e., MoE(ET, EAI, E

k
F , E

Newman
C ).

The exploration parameter γ used in Algorithm 1 is set to 0.2 (determined by
grid search) and the number of hypothesis states before we start sampling experts
to 5. We evaluate within a MAT framework as in Figure 1. Our contributions can
be paired with any learning algorithm in the MAT framework. We use L# [48],
as this is a recent learning algorithm. We sample test cases from SET,µ as our
baseline. More precisely, we use randomised Hybrid-ADS, as formulated in [34, Ch.
1], as conformance testing technique. For both the baseline and algorithm 1, the
µ in Eq. (1) is instantiated as follows: Let geom be the geometric distribution
with mean 2, then randomised Hybrid-ADS generates Se,µ as in Eq. (1), where
µ(x) = geom(x) if x > 3, µ(3) = 7/8, and µ(x) = 0 otherwise. These hyperpa-
rameters are chosen to match [20]. We run Experiments 1 and 3 with 30 seeds,
and Experiments 2 and 4 with 50 seeds. In Experiments 1, 3 and 4 we evaluate
the performance based on the total number of symbols and resets which is the

4 https://gitlab.science.ru.nl/sws/lsharp/-/tree/testingstrategy
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Fig. 7: Results Experiment 1.

sum of the length of all test cases plus the number of test cases sent to the SUT.
Additional plots based on only the symbols or only the resets can be found in
Appendix D of [30].

Experiment 1 We evaluate the performance on the benchmark families ASMLa,b,
TCPa,b, and SSHa,b, for several choices of a and b. In all models, increasing a leads
to a general increase in difficulty, while b adds the number of ‘irrelevant’ inputs.
Beyond the baseline and MoE(∗), we include for each family the associated experts
discussed in Sec. 4, to validate that they indeed perform well on these families.
Thus, for ASMLa,b we run MoE(ET, EAI), for TCPa,b we run MoE(ET, E

k
F ), and

for SSHa,b we run MoE(ET, E
Newman
C ).

Results. Fig. 7 plots the results, distinguishing six cases. Each column reflects
another benchmark family. The top row shows the values for the parameterized
models with a = 3, while the bottom row shows the values for the parameterized
models with a = 5. In each figure, the x-axis reflects the value of b. The y-axis
(log scale) shows the total number of symbols and resets to learn and test a
model. The y-axis is different for all subplots.

Discussion. From the plot, we observe that the baseline is outperformed by the
other algorithms. Interestingly, the performance of MoE(∗) and the algorithm
belonging to the parameterized model is often comparable. Increasing a leads
to an increase in the total number of symbols and resets, which illustrates the
scalability of the parameterized models. Increasing the value b has more influence
on the baseline than the other algorithms, as expected.

Experiment 2 We compare MoE(∗) to the baseline on the ASML benchmarks
introduced in the RERS challenge [27]. We consider 23 models with 25-289 states
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Fig. 8: Results Experiment 2.

and 10-177 inputs. We skip models with less than 15 states because MoE needs
time to learn which expert works best. The ASML models frequently do not
terminate within a timeout of an hour [52]. Therefore, we set a maximal symbol
budget. The SUL rejects new OQs once the budget is depleted.

Results. Fig. 8 lists different models sorted by the number of transitions. For
each model, we show how often out of 50 seeds an algorithm learns the model
within a symbol budget of 10 . We provide a similar figure with half the budget8

in Appendix D of [30].

Discussion. From the plot, we observe that MoE(∗) learns the model more often
than the baseline. The MoE(∗) algorithm can learn 12 models with at least 80%
of the seeds while the baseline only learns 3 models with at least 80% of the
seeds. The same pattern can be observed for half the budget.

Experiment 3 We consider the protocol implementations used in [17,48] (38
models, 15-133 states, 7-22 inputs) and randomly generated models (27 models,
20-60 states, 11-31 inputs). For the standard benchmarks, we perform the ex-
periment with the randomised ETS, as used in the other experiments, and the
deterministically ordered ETS from Sec. 5.1 with k = 2.

Results. Fig. 9 shows the number of symbols and resets needed to learn and test
a model (log-scaled). The y-axis shows MoE(∗) and the x-axis shows the baseline.
The diagonal solid lines correspond to using the same number of symbols and
resets, the dotted lines indicate a factor two difference. Points in the right triangle
indicate that MoE(∗) used fewer symbols and resets than the baseline.

Discussion From Fig. 9a, we observe that MoE(∗) slightly outperforms the
baseline in the k-complete test suite setting. From Fig. 9b, we observe that the
performance of MoE(∗) leads to slightly better results than the baseline. The
performance is comparable for the randomly generated models (Fig. 9c).

Experiment 4 We analyze runs of MoE(∗) and the baseline for models m159
and m189 to provide insights on the behavior of the algorithms.
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Fig. 10: Results Experiment 4 for m159 (left) and m189 (right).

Results. Fig. 10 shows the runs of the first 3 seeds for m159 and m189. Each
data point at (x, y) in the subplots represents one hypothesis, with x states, that
was learned using a total of y symbols (notice the log scale). The green (or blue)
lines correspond to runs with the baseline (or MoE(∗)). The different markers
for MoE(∗) indicate which expert was used to generate the counterexample. The
vertical lines extending to 108 indicate that the algorithm ran out of budget
before learning the correct model.

Discussion. In line with Experiment 2, we see that more runs lead to learning the
full model using MoE(∗). The plots use the number of states as a rough progress
measure. Based on this progress measure, we see that the difference is negligible
for small hypothesis sizes, but for larger hypotheses, the difference is substantial.
For m159, we observe that the baseline runs out of budget before all states have
been found, whereas the MoE(∗) is able to learn the correct model within the
budget (using the smaller test suites). In m189, we observe a significant divergence
in progress. On average, the future expert is most used to find counterexamples.
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7 Related Work

Test suites. The use of conformance testing [12] is standard in automata learn-
ing [47] and goes back to [40]. There are several recent evaluations comparing
sample-based conformance testing techniques [4, 7, 20]; these comparisons are
orthogonal to the current paper. Another idea is to use mutation testing [3].
Mutation testing performs well on small models (< 100 states) but [3] notices
that this technique is computationally too expensive for large models.

Increasing the alphabet size. Instead of reducing the alphabet size for a more guided
counterexample finding, a common theme is to use abstraction refinement [23,47]
during learning to iteratively refine the alphabet. Bobaru et al. [10] learn models
using abstractions of components to later show that a property holds or is violated.
Additionally, Vaandrager and Wißman [49] formally describe the relation between
high-level state machines and low-level models using abstraction refinement.

Using the automata structure. A recent trend is gray-box automata learning, which
assumes partial information on the SUL and aims to exploit this information. In
particular, learning algorithms addressing various types of composition (sequential,
parallel, product) have been investiged [2,31,33,37]. However, all these techniques
adapt the learning algorithm, not the testing algorithm, as in the current paper.
Furthermore, while the results in Sec. 4 are similar to a gray-box setting, the
idea in Sec. 5 is that this work leads to better performance in the strict black-box
setting, as highlighted by the experiments.

Algorithm selection. Machine learning for algorithm selection is an active area of
research, see e.g., [1, 28] and has been applied successfully, e.g., in the context
of SAT checking [21]. In formal methods, multi-armed bandits framework has
been used, e.g., to prioritize SMT solver over others [42] or to guide falsification
processes for hybrid systems [53]. In automata learning, bandits have recently
been applied to select between different oracles for answering output queries [45].

8 Conclusion

In this paper, we introduced smaller test suites for conformance testing that
preserve the typical completeness guarantees under natural assumptions on the
learned system. The paper demonstrates that a combination of these test suites
and a multi-armed bandit formulation significantly accelerates modern active
automata learning, even when the assumptions do not hold. Natural extensions
include adding additional small test suites, designing variations of the presented
experts to, for example, handle parallel components [31, 37], and using a multi-
armed bandit to select the essential parameter k. Furthermore, our approach
paves the way for using similar assumptions to those made for the completeness
of the expert test suites in other aspects of active automata learning.
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Mata: A Fast and Simple Finite Automata Library
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Abstract. Mata is a well-engineered automata library written in C++ that offers
a unique combination of speed and simplicity. It is meant to serve in applications
such as string constraint solving and reasoning about regular expressions, and
as a reference implementation of automata algorithms. Besides basic algorithms
for (non)deterministic automata, it implements a fast simulation reduction and
antichain-based language inclusion checking. The simplicity allows a straightfor-
ward access to the low-level structures, making it relatively easy to extend and
modify. Besides the C++ API, the library also implements a Python binding.
The library comes with a large benchmark of automata problems collected from
relevant applications such as string constraint solving, regular model checking,
and reasoning about regular expressions. We show that Mata is on this benchmark
significantly faster than all libraries from a wide range of automata libraries we
collected. Its usefulness in string constraint solving is demonstrated by the string
solver Z3-Noodler, which is based on Mata and outperforms the state of the art
in string constraint solving on many standard benchmarks.

1 Introduction

We introduce a new finite automata library Mata1. It is intended to be used in ap-
plications where automata languages are manipulated by set operations and queries,
presumably in a tight loop where automata are iteratively combined together using
the classical as well as special-purpose constructions. Examples are applications like
string constraint solving algorithms such as [11,24,22,1,10,3,71], processing of regular
expressions [28,49], regular model checking (e.g., [16,15,58,26,13,81,6]), or decision
procedures for logics such as WS1S or quantified Presburger arithmetic [20,80,43,12].
The solved problems are computationally hard, often beyond the PSPACE-completeness
of basic automata problems such as language inclusion. Efficiency is hence a primary
concern. Achieving speed in applications requires, on one hand, fast implementation
of basic automata algorithms (union, intersection, complement, minimization or size
reduction, determinization, emptiness/inclusion/equivalence/membership test, parsing
of regular expressions) and, on the other hand, access to low-level primitives to im-
plement diverse application-specific algorithms and optimizations that often build on
a tight integration with the application environment. Moreover, processing of regular
expressions and, even more so, string constraint solving are areas of active research,
with constantly evolving algorithms, heuristics, and optimizations. An automata library
hence needs flexibility, extensibility, easy access to the low-level data structures, and

1 https://github.com/VeriFIT/mata
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ideally a low learning curve, which is important when involving students in academic
research and utilizing limited resources of small research teams.

Fast and simple are therefore our two main requirements for the library. An additional
third requirement is a well-engineered infrastructure and a good set of benchmarks and
tests, important for effective research and reliable deployment. Mata is therefore built
around a data structure for the transition relation of a non-deterministic automaton that
is a compromise between simplicity and speed. It represents transitions explicitly, as
triples of a sources state, a single symbol, and a target state. This contrasts with various
flavors of symbolic representation of transition relation used in advanced automata
implementations in order to handle large or infinite alphabets (e.g. Unicode in processing
of texts, or bit vectors in reasoning about LTL, arithmetic, or WS1S). However, in
the applications we consider, working internally with large alphabets can essentially
always be avoided by preprocessing (mainly by mintermization, aka factorization of the
alphabet). The simplicity of an explicit representation then seems preferable. It allows
to use a data structure specifically tailored for computing post-images of tuples and sets
of states in automata algorithms: a source state-indexed array, storing at each index the
transitions from that source state in a two layered structure, with the first layer divided
and ordered by symbols, and the second layer ordered by target states. The data structure
seems to be unique among the existing libraries and yields an exceptional performance.

Mata currently provides basic functionality, basic automata operations and tests,
parsing of regexes and automata in a textual format, and mintermization. From the
more advanced algorithms for working with non-deterministic automata, it implements
antichain-based inclusion checking [35], and simulation-based size reduction based on
the advanced algorithm of [65,4,48]. The inclusion check appears to be by a large
margin the fastest implementation available, and together with the tree automata library
Vata [59], Mata is the only library with an implementation of a simulation algorithm
of the second generation originating from [65,21] (the second generation algorithms
combine partition-relation pairs to manipulate preorders that were handled explicitly
by the first generation algorithms such as [44,52]). Mata is implemented in C++,
uses almost exclusively the STL library for its data structures, and has no external
dependencies2 This makes it relatively easy to learn and integrate with other software
projects. It is a well-engineered project at GitHub, with modern test and quality of code
assurance infrastructure. Besides the C++ API, it provides a Python binding for fast
prototyping and easy experimenting, for instance using interactive Jupyter notebooks.

We evaluated its speed in, to our best knowledge, so far the most comprehensive
comparison of automata libraries. We compare with 7 well-known automata libraries on
a large benchmark of problems from domains close to Mata’s designation, mainly string
constraint solving, processing regular expressions, and regular model checking. Mata
consistently outperforms all other libraries, from several times to orders of magnitude.

That Mata is a good fit for string constraint solving is demonstrated by its central
role in the string solver Z3-Noodler, which implements the algorithms of [11,24], and
outperforms the state of the art on many standard benchmarks (see [25] for details).

2 Although, at the moment, it uses the BDD library CUDD [70] in mintermisation and the regular
expression parser from RE2 [41]. The code from these projects is, however, contained within
Mata. Moreover, the connection to CUDD is not tight and we plan to remove it in the future.
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Our contributions can be summarised by the following three points:

1. Mata, a fast, simple, and well-engineered automata library, well suited for appli-
cation in string constraint solving and regex processing, in research and student
projects, as well as in industrial applications.

2. An extension of a benchmark of automata problems from string constraint solving,
processing regular expressions, regular model checking, and solving arithmetic
constraints.

3. A comparison of a representative sample of well-known automata libraries against
the above benchmark, demonstrating the superior performance of Mata.

2 Related Work

In this overview of automata algorithms and implementations, we focus on the technol-
ogy relevant to Mata, i.e., automata used as a symbolic representation of sets of words
and manipulated mainly by set operations. We omit automata technology made for other
purposes, such as regular pattern matching, which concentrates on the membership test.

Automata techniques. The most textbook-like approach is to keep finite automata de-
terministic (the so-called DFA), which has the advantage of simple algorithms and
data structures. Essentially all classical problems reduce to product construction, de-
terminization by subset construction, final state reachability test, and minimization (by
Hopcroft’s [50], Moore’s [62], Brzozowski’s [19], or Huffman’s [51] algorithms). The
obvious drawback is the susceptibility to state explosion in determinization.

An alternative is to determinize automata only when necessary (e.g., only before
complementing). Non-determinism may bring up to exponential savings in automata
sizes and modern algorithms for nondeterministic finite automata (NFA) can in practice
avoid the exponential worst-case cost of problems like the language inclusion test.

Namely, a major breakthrough in working with NFAs were the antichain-based
algorithms for testing language universality and inclusion of NFA first introduced (to the
best of our knowledge) in [74] and later rediscovered in [82]. They dramatically improve
practical efficiency of the subset construction by subsumption pruning (discarding larger
sets). They were later extended with simulation [5,35] (and generalized to numerous
other kinds of automata and problems). A principally similar is the bisimulation up-
to congruence technique of [14], which optimizes the NFA language equivalence test.
Although experimental data in various works are somewhat contradictory, the more
systematic studies so far found antichain-based algorithms more efficient [39,38].

NFAs require more involved reduction methods than DFAs, such as those based on
simulation [65,21,44,52,48] or bisimulation [76,64,46]. Simulation reduces significantly
more but is much more costly. The algorithms for computing simulation of the second
generation [65,21], which use the so-called partition-relation pairs to represent preorders
on states, are practically much faster than the first generation algorithms [44,52].
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Representations of the transition relation. In order to handle automata over large or
infinite alphabets, such as Unicode or bit vectors, some implementations of automata
represent transitions symbolically. Transitions may be annotated by sets of symbols
represented as BDDs, logical formulae, intervals of numbers, etc. The most systematic
approach to this has been taken in works on symbolic automata [78,32,33], where
the symbol predicates may be taken from any effective Boolean algebra (essentially
a countable set closed under Boolean operations). Some libraries, such as Spot [36],
Owl [57], or Mosel [55] use BDDs to compactly represent sets of symbols on transitions.
Even more compact are the symbolic representations of the transition relation used
in Mona [43] and in the symbolic version of the tree automata library Vata [59],
where all transitions starting at a state are represented as a single multi-terminal BDDs
with the target states in the leaves (the paths represent symbols). Although symbolic
representation may offer new optimization opportunities [32] and give more generality, it
also brings complexity and overhead. Adapting the known algorithms may be nontrivial
[32,46] to the point of being a difficult unsolved problem (such as the fast computation
of simulation relation of [65,21]). In our application area, working with large alphabets
can mostly be avoided in preprocessing, for instance by means of a priori mintermization
(partitioning the alphabet into groups of symbols indistinguishable from the viewpoint
of the input problem). The simplicity and transparency of explicit representation of
transitions then seems preferable.

Alternating automata. Alternating automata (AFA) received attention recently in the
context of string solving and regex processing [79,28,45,40]. They allow to keep au-
tomata operations implicit up to the point of the PSPACE-complete emptiness test,
which can be solved by clever heuristics (e.g. [79,28,45,82,38,30]). Available implemen-
tations were recently compared with selected NFA libraries [38] and neither approach
dominated. AFA are, however, often not a viable alternative since adapting complex
algorithms from, e.g., string solving to AFA typically requires to redesign the entire
algorithm from scratch (as, e.g., in [45,79]).

String solving and SMT solvers. String constraint solving is currently the primary
application target of Mata. Mata is already a basis of an efficient string solver Z3-
Noodler [25] and a number of other string solvers could perhaps benefit from its
performance, especially those that already use automata as a primary data structure, e.g.
[23,3,10,1]. Besides, SMT string constraint solvers can also be used to reason about
regular properties, though the results of [38] suggest that their efficiency is not on par
with dedicated fast automata libraries.

Automata libraries. We give overview of known automata libraries with a focus on
those that we later include in our experimental comparison in Section 6.

The Brics [63] automata library is often considered a baseline in comparisons. It
implements both NFA and DFA, where each state keeps the set (implemented as a hash
map) of transitions, which are represented symbolically using character ranges. It is
written in Java and relatively optimized.

The Automata.net library [77], written in C#, implements symbolic NFA parame-
terized by an effective Boolean algebra. The transition relation (as well as its inverse) are
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implemented as a hash map from states to the dynamic array of transitions from a given
state, each transition annotated with a predicate over the algebra. We use it in our compar-
ison with the algebra of BDDs. Automata.net has been developed for a long time and
has accumulated a number of novel techniques (e.g., an optimized minimization [31]).

Mona [43], written in C, is a famous optimized implementation of deterministic
automata used for deciding WS1S/WS𝑘S formulae. To handle DFA with complex tran-
sition relations over large alphabets of bit vectors, Mona uses a compact fully symbolic
representation of the transition relation: a single MTBDD for all transitions originating
in a state, with the target states in its leaves. Mona can represent only a DFA, hence
every operation implicitly determinizes its output.

Vata [59], written in C++, implements non-deterministic tree automata. It can be
used with NFA, too as they are a special case of tree automata. It is relatively optimized
and features fast implementation of the antichain-based inclusion checking [15,47]
(which for NFA boils down to the inclusion check of [35]) and the second generation
simulation computation algorithm of [48].

Awali [60] is a library that targets weighted automata and transducers over an
arbitrary semiring. To implement the transition relation, it keeps a vector of transitions
and for each state 𝑠 two vectors: one keeps the indices of transitions leaving 𝑠 and the
other one the indices of transitions entering 𝑠.

AutomataLib [53] is a Java automata library and the basis of the automata learning
framework LearnLib [54]. It focuses on DFAs and implements their transition relation
as a flattened 2D matrix that maps the source state and symbol to the target state.

Automata.py [37] is written in Python. It defines the transition relation in a liberal
way, as any mapping from source states to a mapping of symbols to a target state (DFA)
or to a set of target states (NFA).

FAdo [7] is a Python library written with efficiency in mind. It uses a similar
structure as Automata.py, but more specific, with the transition as a Python dictionary
(a hash map), and states represented as numbers used as indices into an array.

There is a number of other automata libraries that we do not include into our
comparison since they seem similar to the included ones or we were not able to use
them. The C alternative of Brics [61] and the Java implementation of symbolic NFA
of [29] are in our experiment covered by Automata.net and Brics. Alaska [34]
contains interesting implementations of antichain-based algorithms, but is no longer
maintained nor available. Lash [12] is a long-developed tool for arithmetic reasoning
based on automata, with an efficient core automata library, written in C. Its transition
relation is an array indexed by states, where every state is associated with a symbol-
target ordered list of transitions. Lash uses partial symbolic representation – it encodes
symbols as sequence of binary digits. The comparison with Mona in [56] on automata
benchmark originating from arithmetic problems placed its performance significantly
behind Mona. It seems to no longer be maintained, and we were not able to run it on
our benchmarks.

There is also a number of implementations of automata over infinite words, for
instance Spot [36], Owl [57], or Goal [75], which are in their nature close to the finite
word automata libraries (Spot and Owl are optimized and use BDDs on transition edges
similarly as Automata.net), but implement different algorithms.
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Mata evolved from a prototype implementation eNfa used in the comparison of AFA
emptiness checkers as a baseline implementation of classical automata [38]. Surprised
by its performance, we decided to turn it into a serious widely usable library. Current
Mata is much more mature and efficient than the eNfa of [38].

3 Preliminaries on Finite Automata

Words and alphabets. An alphabet is a set Σ of symbols/letters (usually denoted
𝑎, 𝑏, 𝑐, . . .) and the set of all words over Σ is denoted as Σ∗. The concatenation of
words 𝑢 and 𝑣 is denoted by 𝑢 · 𝑣. The empty word, the neutral element of concatenation,
is denoted by 𝜖 (𝜖 ∉ Σ).

Finite automata. A (nondeterministic) finite automaton (NFA) over an alphabet Σ is a
tuple A = (𝑄, post , 𝐼, 𝐹) where 𝑄 is a finite set of states, post : 𝑄 × (Σ ∪ {𝜖}) → 2𝑄

is a symbol-post function, 𝐼 ⊆ 𝑄 is the set of initial states, and 𝐹 ⊆ 𝑄 is the set of final
states. A run of A over a word 𝑤 ∈ Σ∗ is a sequence 𝑝0𝑎1𝑝1𝑎2 . . . 𝑎𝑛𝑝𝑛 where for all
1 ≤ 𝑖 ≤ 𝑛 it holds that 𝑎𝑖 ∈ Σ ∪ {𝜖}, 𝑝𝑖 ∈ post (𝑝𝑖−1, 𝑎𝑖), and 𝑤 = 𝑎1 · 𝑎2 · · · 𝑎𝑛. The
run is accepting if 𝑝0 ∈ 𝐼 and 𝑝𝑛 ∈ 𝐹, and the language 𝐿 (A) of A is the set of all
words for which A has an accepting run. A is called deterministic (DFA) if |𝐼 | ≤ 1,
|post (𝑞, 𝜖) | = 0, and |post (𝑞, 𝑎) | ≤ 1 for each 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ. A state is useful if it
belongs to some accepting run, else it is useless. An automaton with no useless states is
trimmed. A state is reachable if it appears on a run starting at an initial state. In Mata,
we further use post (𝑞) = {(𝑎, post (𝑞, 𝑎)) | post (𝑞, 𝑎) ≠ ∅} to denote the state-post
of 𝑞. We call symbol-post and state-post the post-image functions. We also use 𝑞−𝑎→𝑝

where 𝑝 ∈ post (𝑞, 𝑎) to denote transitions. The set of all transitions of A is called the
transition relation of A and we denote it by Δ.

Automata operations. In this paragraph we assume automata without 𝜖 transitions. The
subset construction generates from A the DFA (𝑄⊆ , post⊆ , 𝐼⊆ , 𝐹⊆) where𝑄⊆ = P(𝑄),
𝐼⊆ = {𝐼}, 𝐹⊆ = {𝑆 ∈ 𝑄⊆ | 𝑆 ∩ 𝐹 ≠ ∅}, and where post⊆ (𝑆, 𝑎) = ⋃

𝑠∈𝑆 post (𝑠, 𝑎). The
automaton for complement is obtained from it by complementing 𝐹⊆ , i.e., the set of final
states is given as𝑄⊆\𝐹⊆ . The intersection of two automataA1 = (𝑄1, post1, 𝐼1, 𝐹1) and
A2 = (𝑄2, post2, 𝐼2, 𝐹2) is implemented by their product (𝑄1×𝑄2, post

× , 𝐼1× 𝐼2, 𝐹1×
𝐹2) where post× ((𝑞, 𝑟), 𝑎) = post1 (𝑞, 𝑎) × post2 (𝑟, 𝑎). A sensible implementation of
course only computes the reachable parts of the product and the subset construction. The
union 𝐿 (A1) ∪ 𝐿 (A2) is obtained by disjointly uniting all components of A1 and A2.
Similarly, the concatenation 𝐿 (A1).𝐿 (A2) is the automaton (𝑄1⊎𝑄2, post1⊎post2⊎
post ′, 𝐼1, 𝐹′) where ⊎ denotes the disjoint union, post ′ (𝑞, 𝑎) = {𝑟 | 𝑞 ∈ 𝐹1 ∧ ∃𝑠 ∈
𝐼2 : 𝑟 ∈ post2 (𝑠, 𝑎)} is the connecting symbol-post and 𝐹′ is 𝐹2 if 𝐼2 ∩ 𝐹2 = ∅ and
𝐹1∪𝐹2 otherwise (this construction avoids introducing 𝜖-transitions). Note that we omit
superscript of symbol-post function when it is clear from the context.
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Fig. 1: The transition relation.

4 The Architecture of Mata

We explain in this section the implementation techniques that make Mata efficient on a
wide range of automata operations.

4.1 Automata Representation

States and transition symbols are unsigned integers (starting from 0). This makes it easy
to store information about them in a state-/symbol-indexed vectors. A frequently used
low-level data structure is OrdVector, a set of ordered elements implemented as an
ordered array (with std::vector as the underlying data structure). It has constant time
addition and removal of the largest element (push back and pop back), linear union,
intersection, and difference (by variants of merging), good memory locality and fast
iteration through elements, logarithmic lookup (by binary search), but a slow insertion
and removal (insert and erase) at other than the last position, as the elements on
the right of the modified position must be shifted. Many Mata algorithms utilize the
constant time handling of the largest element in, e.g., synchronized traversal of multiple
OrdVector containers. Initial and final states are kept in sparse sets [18], with fast
iteration through elements and constant lookup, insertion, and removal.

Data structure for the transition relation. The main determinant of Mata is its three-
layered data structure Delta for the transition relation. It is implemented as a vector post
where, for every state 𝑞, post[𝑞] is of the type StatePost, representing post (𝑞) as an
OrdVector of objects of the type SymbolPost, each in turn representing one post (𝑞, 𝑎)
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by storing the symbol 𝑎 and an OrdVector of the target states. The SymbolPosts in
OrdVector are ordered by their symbols3. A visualization of Delta is shown in Fig. 1.

The weak point of Delta is inherited from OrdVector: slow insert or erase
of a specific transition (these operations are, however, used scarcely in the considered
scenarios). Its strength is mainly fast iteration through the post-image of a state, of a pair
of states in the product construction, and of a set of states in the subset construction.

4.2 Automata Operations

Generating post-images in subset construction. In the subset construction, each iteration
through post (𝑆) for a set of states 𝑆 is keeping an array of iterators, one into each post (𝑞)
for all 𝑞 ∈ 𝑆. Every iteration shifts the iterators to the right, to post (𝑞, 𝑏) where 𝑏 is the
closest from above to the current global minimal symbol 𝑎, and returns post (𝑆, 𝑎) as the
union of all post (𝑞, 𝑎)’s pointed to by the iterators. No searching in vectors is needed. The
entire iteration through all post (𝑆)’s makes the iterators in the SymbolPosts traverse
their respective vectors only once.

Constructing the transitions leading from 𝑆 while iterating through post (𝑆) is done
by appending to OrdVectors, without a need to insert at internal positions of vectors.
The iteration through the SymbolPosts is ordered by symbol, hence each newly created
transition from the macrostate 𝑆 has a larger symbol than all the previously created
ones. The symbol-post therefore belongs at the end of the OrdVector of symbol-posts
of post (𝑆), where it is push backed. Since the resulting automaton is deterministic, the
vectors of targets are singletons, and their creation does not require insert either.

Generating post-images in product construction. Similarly as in the subset construction
above, iterating through post ((𝑞, 𝑟)) in the product construction is done by synchronous
iteration through post (𝑞) and post (𝑟) from the smallest common symbol to the largest.
In each step, the iteration returns the Cartesian product of the targets in the symbol-
posts. Unlike the subset construction, adding the corresponding transitions from (𝑞, 𝑟)
to the product automaton sometimes does need an insert into the vector of targets. It is
however not that frequent: Newly discovered product states are assigned the so far highest
numbers, so these are added to the target vectors by push back. The insert may hence
be needed only when creating a non-deterministic transition to a state discovered earlier.

Storing sets and pairs of states in the subset and product construction. OrdVector is
also used to map generated sets in the subset to the identities of generated states. The map
uses a hash table (std::unordered map) where values are OrdVectors. The product
construction uses either a two-dimensional array to map pairs of states to product states
(for smaller automata) or a vector pro map of hash tables, where the identity of the
product state (𝑞, 𝑟) is found in the hash map prod map[q] under the key 𝑟.

3 Mata supports 𝜖-transitions and some operations can work with them internally. We represent
𝜖 as the symbol with the highest possible number, hence SymbolPost with 𝜖 is always the
last one in the vectors of SymbolPosts in Delta. The 𝜖 is therefore easy to be accessed in,
e.g., 𝜖-transition elimination. Some operations also support several 𝜖-like symbols (e.g., 𝜖1,
𝜖2, . . . ), which are convenient in some algorithms in string solving [11,24] or can play a role
of different synchronization symbols, etc.
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Emptiness test and trimming. Emptiness test and trimming are used frequently and
must be fast. Mata’s emptiness test is just a state space exploration that utilizes the fast
iteration through post-images of a state.

Trimming consists of two steps: (1) identification of useful states and (2) removal of
states that are not useful. Identification of useful states must, besides forward exploration
to identify reachable states, identify states that reach a final state. A naive solution
would be a backward exploration from final states. Delta is, however, not well suited
for backward search and although reverting it is doable, its cost is not negligible either.
We therefore use a smarter solution, which uses a simplification of the non-recursive
Tarjan’s algorithm [73] to discover strongly connected components (SCCs). Tarjan’s
algorithm is essentially a depth-first exploration augmented to identify the SCCs. To
identify useful states, on finding an SCC with a final state, we mark the entire SCC as
useful together with all states on the path to that SCC, which is readily stored on the
depth-first search stack. The cost of computing useful states is then similar to the cost
of a single depth-first exploration, which is indeed negligible.

Removal of useless states then needs to be done in a Delta-friendly way. The naive
approach that removes useless states and transitions incident with them one by one would
be extremely slow due to the need of searching and calling erase in the OrdVectors of
Delta. Instead, we perform the whole removal and related operations in a single pass
through Delta. Before the pass begins, first, we create a map renaming mapping each
useful state to its new name (the trimming also renames the states in order to have the
remaining states form a consecutive sequence). During the pass, the following operations
need to be performed: (i) in the outermost loop, each useful state 𝑞 in Delta is moved
to index renaming[𝑞], (ii) in every vector of target states, each useful target is moved
to the left in the target vector by that many positions, as there were smaller useless states
before it, and (iii) while doing that, the target state 𝑞 is renamed to renaming[𝑞].

Union and concatenation. Mata is relatively slow in operations that copy or create
large parts of automata, such as non-deterministic union or concatenation, or simple
copying of an automaton. This is perhaps due to the imperfect memory locality (the
three layers of vectors in Delta) and the need to copy every single transition (unlike,
e.g., symbolic automata with BDDs on transitions, where the BDDs may be shared).
Mata has, however, in-place variants of union and concatenation, which do not copy
Delta, but only append the post vectors and rename the target states in the appended
part, which is fast. The price for the speed is the loss of the original automata, but they
are in many use cases not needed (as, e.g., in inductive constructions of automata from
regular expressions or formulae).

Antichain-based inclusion checking. Mata implements the antichain-based inclusion
checking of [35]. Given the inclusion problem 𝐿 (A) ⊆ 𝐿 (B), the algorithm explores
the space of the product of A and the subset construction on B, consisting of pairs (𝑞, 𝑆)
with 𝑞 being a state of A and 𝑆 being a set of states of B. In particular, it searches, on the
fly, for a reachable pair (𝑞, 𝑆) with a final 𝑞 and a non-final 𝑆, which would be a witness
non-inclusion. The algorithm optimizes the search by subsumption pruning—discarding
states (𝑞, 𝑆) if another (𝑞, 𝑆′) with 𝑆 ⊆ 𝑆′ has been found. Our implementation uses the
infrastructure for computing post-images of product and subset construction discussed

D. Chocholatý, T. Fiedor, V. Havlena, L. Holík, M. Hruška, O. Lengál, J. Síč138



above. The reached pairs (𝑞, 𝑆) are stored in a state-𝑞-indexed vector incl map of
collections of sets 𝑆. The sets are again represented as OrdVectors. On reaching a
pair (𝑞, 𝑆), all sets 𝑆′ stored in incl map[𝑞] are tested for inclusion with 𝑆. If 𝑆 ⊇ 𝑆′,
then 𝑆 is dropped, and if 𝑆 ⊆ 𝑆′, then 𝑆′ is removed from incl map[𝑞] (as well as
other sets 𝑆′′ such that 𝑆 ⊆ 𝑆′′) and 𝑆 is added to incl map[𝑞]. A large speed-up is
sometimes obtained by prioritizing exploration of pairs (𝑞, 𝑆) with 𝑆 being of a small
size. A smaller set means a better chance to subsume other pairs, to reach a witness of
non-inclusion, and to generate other pairs with small sets. The algorithm then explores
a much smaller state space.

Simulation. Mata uses an implementation of a fast algorithms for computing simulation,
namely, the algorithm from [65], which was adapted from Kripke structures to automata
in [4], and later further optimized in [48]. The implementation originates in Vata [59].

Low-level API. The API of Mata contains an interface for accessing the most low-level
features needed to implement algorithms in the style described above. For instance, the
API provides iterators over transitions of Δ in the form of triples 𝑞−𝑎→𝑟, iterators through
moves (pairs (𝑎, 𝑟) such that 𝑞−𝑎→𝑟 ∈ Δ) of a state 𝑞, or generic synchronized iterators,
which allow a simultaneous iteration in a set of vectors used in union and in computing
the post-image in the product and subset construction. Since the main data structures
are not complicated and have simple invariants, programming with them on the low
level is possible even for an outsider. This low-level Mata API is, for instance, used
in the string solver Z3-Noodler. [25] presents a detailed comparison of Z3-Noodler
with the state of the art in string solving. Its exceptional performance on regex and word
equation-heavy constraints is to a large degree due to Mata.

5 Infrastructure of Mata

Mata comes with the following tools and features to make using, developing, and
extending it convenient.

Python interface. Mata provides an easy-to-use Python interface, making it a full-
fledged automata library for Python projects. It is available on the official Python package
repository4 and can be installed easily using the pip package manager:

$ pip install libmata

An example of using the Mata Python binding is shown in Fig. 2. The interface is
implemented using the optimizing static compiler Cython wrapping the C++ Mata
calls and covers all important parts of the C++ functionality. This low-level interaction
with the optimized C++ code keeps the Python code fast. To show the capabilities of
the interface and to provide material for easy onboarding, Mata also contains several
Jupyter notebooks with examples of how to use it.

4 https://pypi.org/project/libmata/
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from libmata import nfa, alphabets, parser, plotting
aut1 = parser.from_regex(’((a+b)*a)*’)
aut2 = parser.from_regex(’aab*’)
con_aut = nfa.nfa.concatenate(aut1, aut2).trim()
plotting.store()[’alphabet’] = \

alphabets.OnTheFlyAlphabet.from_symbol_map({’a’:97, ’b’:98})
e_h = [

(lambda aut, e: e.symbol == 98, {’color’:’black’}),
(lambda aut, e: e.symbol == 97, {’style’:’dashed’,’color’:’black’})

]
n_h = [

(lambda aut, q: q in aut.final_states,
{’color’:’red’,’fillcolor’:’red’}),

(lambda aut, q: q in aut.initial_states,
{’color’: ’orange’, ’fillcolor’: ’orange’}),

]
plotting.plot(con_aut, with_scc=True,

node_highlight=n_h, edge_highlight=e_h)

(a) An example of using Mata from Python.

4 b

3

a

0

a

a

1

a

a

2

b

a

a

(b) The output.

Fig. 2: An example of a Python interface for Mata. The code (a) loads automata from
regular expressions (a, b are transition symbols; *, and + represent iterations: 0 or more,
and 1 or more, respectively), concatenates them, and displays the trimmed concatenation
using the conditional formatting with the output in (b).

@NFA-explicit
%Initial q0 q1
%Final q1
q0 a48 q1
q0 a52 q1
q1 a48 q1

(a) NFA with explicit alphabet.

@NFA-bits
%Initial q1
%Final q2 q1 q0
q0 ((!a0 | !a1) & a2) q2
q1 (a0 & a1 & !a2) q0
q2 ((a0 & a1) | a2) q1

(b) NFA with symbolic alphabet.

Fig. 3: Examples of NFAs in the
.mata format.

.mata format and parsing. Mata brings its own
automata format. The main features of the format
are extensibility to cover various types of automata,
human-readability, yet still high level of compact-
ness. Each .matafile consists of automata definitions.
The first line of the definition describes the type of
the automaton, together with the alphabet. The for-
mat supports both explicit and symbolic (bit vector)
alphabets. For a symbolic alphabet, symbols are en-
coded as formulae over atomic propositions, where
the parser of .mata implements mintermization (par-
titioning the alphabet into groups of symbols indistin-
guishable from the viewpoint of the input problem),
which transforms it into an explicit alphabet with the
symbols representing the minterms. The following
lines contain a sequence of key-values statements that set particular traits of the au-
tomaton, such as initial or final states. The rest of the definition is a list of transitions.
Examples of automata in .mata format are shown in Fig. 3.

Other than the introduced format, Mata can also parse automata from regular
expressions using the parser from the regex matcher RE2 [41]. This means that Mata
can handle even complex syntax used in real-world regular expressions.

Continuous integration. We implement continuous integration via GitHub Actions.
In particular, actions automatically build the library including the Python binding on
MacOS and Ubuntu, check for warnings, code quality and run unit tests together with
the code coverage. The actions are triggered after each commit, and the checks are
mandatory for merging branches to the main branch, and can also be run locally.
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Fig. 4: Cactus plot showing cumulative run time per benchmark. The time axis is logarithmic.

6 Experimental Evaluation

We compared Mata against 7 selected libraries discussed in Section 2: Vata [59],
Brics [63], Awali [60], Automata.net [77], AutomataLib [53], FAdo [7], and Au-
tomata.py [37],5 on a benchmark of basic automata problems from string constraint
solving, reasoning about regular expressions, regular model checking, and a few exam-
ples from solving arithmetic formulae. Most of the benchmark problems are taken from
earlier works [38,30,40,28], but we added new problems from string constraint solving
and solving quantified linear integer arithmetic (LIA).

We mainly aim to demonstrate the efficiency of the basic data structures and imple-
mentation techniques of Mata. This is best seen on standard constructions, where all
libraries implement the same high-level algorithm, such as product, subset construction,
or reachability test within complementation, intersection, emptiness test, etc. We then
also showcase the efficiency of more advanced algorithms implemented only in Mata
and Vata, the antichain-based inclusion test and simulation reduction.

5 We also tried to compare with Mona, but using it as a standalone library that would parse
automata in our format turned to be problematic. We were getting many inconsistent results
and so we decided to drop it from the comparison.
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Table 1: Statistics for the benchmarks. We list the number of timeouts (TO), average time
on solved instances (Avg), median time over all instances (Med), and standard deviation
over solved instances (Std), with the best values in bold. The times are in milliseconds
unless seconds are explicitly stated. We use ∼0 to denote a value close to zero.

armc-incl (136) b-smt (384) email-filter (500) lia-explicit (169) lia-symbolic (169)

TO Avg Med Std TO Avg Med Std TO Avg Med Std TO Avg Med Std TO Avg Med Std

Mata 0 174 2 1 s 0 1 1 1 0 1 ∼0 9 0 42 6 356 0 2 2 6
Awali 7 1 s 17 3 s 0 6 6 4 0 46 4 162 6 21 21 16 0 8 7 14
Vata 0 324 43 577 0 7 7 10 0 42 2 322 0 121 51 671 1 11 10 11
Automata.net 9 1 s 125 3 s 0 148 153 30 0 69 66 30 0 113 117 49 6 103 107 33
Brics 5 659 34 2 s 4 43 43 19 6 103 17 280 0 66 62 63 6 55 60 33
AutomataLib 10 843 669 1 s 7 390 126 3 s 48 516 390 521 0 458 285 1 s 6 164 173 52
FAdo 58 8 s 22 s 10 s 9 109 112 67 64 6 s 1 s 11 s 1 1 s 727 2 s 6 135 149 105
Automata.py 10 913 133 3 s 334 24 TO 15 4 520 19 2 s 1 372 167 894 6 35 35 25

noodler-compl (751) noodler-conc (438) noodler-inter (4872) param-inter (267) param-union (267)

TO Avg Med Std TO Avg Med Std TO Avg Med Std TO Avg Med Std TO Avg Med Std

Mata 0 39 ∼0 401 0 100 10 286 0 ∼0 ∼0 3 156 1 s TO 4 s 0 166 7 326
Awali 0 73 2 638 0 490 55 1 s 6 3 1 7 157 6 s TO 7 s 0 1 s 81 3 s
Vata 0 57 2 296 - 2 4 ∼0 22 159 7 s TO 8 s 14 6 s 270 12 s
Automata.net 0 53 39 110 - 0 26 24 9 157 8 s TO 10 s 0 220 47 314
Brics 0 47 8 190 0 136 35 204 0 7 3 21 159 6 s TO 6 s 0 223 50 307
AutomataLib 0 293 143 793 - 17 276 216 675 227 8 s TO 13 s 227 10 s TO 15 s
FAdo 10 646 5 4 s 189 10 s 25 s 13 s 10 271 52 2 s 250 15 s TO 20 s 115 5 s 12 s 11 s
Automata.py 3 263 5 2 s - 5 38 3 353 254 4 s TO 6 s 245 11 s TO 16 s

Benchmarks. We use the following benchmark sets.

b-smt [38] contains 384 instances of boolean combinations of regular properties, ob-
tained from SMT formulae over the theory of strings. These include difficult hand-
written problems containing membership in regular expressions extended with in-
tersection and complement from [71] and emptiness problems from Norn [2,3] and
SyGuS-qgen benchmarks, collected in SMT-LIB [9,67,68].

email-filter [38] contains 500 inclusion checks of the form 𝑟5 ⊆ 𝑟1∧𝑟2∧𝑟3∧𝑟4 obtained
analogously as in [30]. Each 𝑟𝑖 is one of the 75 regexes6 from RegExLib [66],
selected so that 𝑟1 ∧ 𝑟2 ∧ 𝑟3 ∧ 𝑟4 ∧ 𝑟5 is not empty. Similar kind of these problems
is solved in spam-filtering: one tests whether a new filter 𝑟5 adds anything new to
existing filters.

param-inter [38] contains 4 sets of parametric intersection problems from [40] and 2
sets from [28]. In total, this includes 267 problems. The parameter controls the size
of the regex or the number of regexes to be combined. param-union is the variant
of the benchmark that performs union instead of intersection.

armc-incl [38] contains 136 language inclusion problems derived from runs of an
abstract regular model checker of [15] (verification of the bakery algorithm, bubble
sort, and a producer-consumer system).

6 https://github.com/lorisdanto/symbolicautomata/blob/master/
benchmarks/src/main/java/regexconverter/pattern%4075.txt
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Table 2: Relative speedup of Mata on instances where both libraries finished.
Awali Vata Automata.net Brics AutomataLib FAdo Automata.py

armc-incl 27.52 1.86 29.73 16.98 21.44 4839.55 23.22
b-smt 3.7 4.52 89.64 26.13 236.36 70.16 24.47
email-filter 25.07 22.59 37.19 55.3 273.35 9999.29 282.41
lia-explicit 2.22 2.88 2.69 1.57 10.89 85.17 25.38
lia-symbolic 3.46 4.65 51.82 27.99 82.47 67.54 17.97
noodler-compl 1.85 1.45 1.37 1.22 7.44 137.53 15.58
noodler-conc 4.87 - - 1.36 - 1979.56 -
noodler-inter 4.02 6.42 33.98 9.04 371.23 363.49 51.51
param-inter 5.36 7.3 7.27 6.49 1.43 2148.64 58.85
param-union 8.61 51.77 1.33 1.34 833.69 1618.04 5860.62

lia consists of 169 complementation problems created during the run of Amaya [8],
a tool for deciding linear integer arithmetic (LIA) formulae using an automata-based
decision procedure of [17]. The formulae are taken from UltimateAutomizer [42]
and tptp [72] benchmarks, collected in SMT-LIB [9,69]. The transition relation
in Amaya is represented symbolically using BDDs; in our experiments we tested
both symbolic representation (in lia-symbolic) and explicit representation (in lia-
explicit), where explicit symbols are bit vectors represented by the BDDs.

noodler consists of instances created during the run of the string solver Z3-Noodler
[11,24,25] on the regex-heavy benchmark AutomatArk [10] from SMT-LIB [9,67].
We collected 751 complementation, 438 concatenation, and 4,872 intersection prob-
lems in noodler-compl, noodler-conc, and noodler-inter respectively.

Experimental setup. We converted all benchmarks into a common textual automata
format (the .mata format, see Section 5), and wrote dedicated parsers or conversions for
all the libraries. The conversion and parsing are not included in the run times since the
parsers are not optimized and the typical use cases do not require parsing every input
automaton from a textual format. From some of the benchmarks, we excluded small units
of examples where the conversion failed. We measure only the time needed for carrying
out the specified operations on automata already parsed into each library’s internal data
structures. Automata in all benchmarks but lia and those coming from regexes, email-
filter, b-smt, param-inter, and param-union, had small or moderate alphabet sizes
(all below 100 symbols, except noodler-inter with up to 252 symbols). The explicit
automata from LIA solving (lia-explicit) have at most 1,024 symbols (corresponding to
10 bits).7 After performing mintermization on automata with symbolic representation
(lia-symbolic), the number of symbols was reduced to at most 30, and mintermization
runs on automata from regular expressions returned alphabets with at most 80 symbols.

7 It should be noted that these LIA problems are by no means representative of typical LIA
formulae, which could generate much larger alphabets and transition relations that require
some sort of symbolic representation.
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Fig. 5: Cactus plot showing cumulative run time per operation. The time axis is logarithmic.

Results. We summarize the results of each benchmark in cactus plots in Fig. 4 (displaying
cumulative run times of benchmarks, with the instances ordered by their run time) and
Table 1. Table 2 shows relative speedups of Mata over each library on problem instances
that both libraries finished in time. We also present statistics for individual automata
operations across the entire benchmark in Fig. 5 and Table 3. We do not show the
performance of Mata’s Python interface in the plots and tables as it is matches that one
of Mata. All examples were run in six parallel jobs on Fedora GNU/Linux 38 with an
Intel Core 3.4 GHz processor and 20 GiB RAM with 60 s timeout.

Mata consistently outperforms all other libraries on all benchmarks and in all opera-
tions, up to few exceptions. It is sometimes matched or outperformed by Automata.net
and Brics in union and concatenation operation (on param-union and noodler-conc).
Brics and Automata.net are sometimes faster since they may be able to share parts of
the representation (such as BDDs on the transitions) between the automata operands and
the union/concatenation, while Mata copies the entire data structure (and the memory
locality of Delta, with its three layers of vectors, is not perfect). Brics appears par-
ticularly fast in emptiness checking since it implicitly trims the automata, after which
the emptiness test becomes a trivial query on emptiness of the set of states. The cost
of the emptiness check is thus hidden in the cost of other operations (we do not state
statistics from trimming for Brics for this reason). Brics and Automata.net also have
a smaller average time in constructing the complements in lia-symbolic, due to a few
high run times of Mata on examples that have many transitions per a pair of states.
Solving these examples, and generally examples generated from solving LIA, is indeed
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Table 3: Statistics for the operations on solved instances. We list the average time (Avg),
median time (Med), and standard deviation (Std), with the best values in bold. The times
are in milliseconds. Note that only the operations that the given library finished within
the timeout are counted, hence the numbers are significantly biased in favour of libraries
that timeouted more (the harder benchmarks are no counted in), and should be red in
the context of Table 1 and the cactus plots. We use ∼0 to denote a value close to zero.

complement concatenation emptiness inclusion intersection trim union

Avg Med Std Avg Med Std Avg Med Std Avg Med Std Avg Med Std Avg Med Std Avg Med Std

Mata 25 1 315 78 8 235 ∼0 ∼0 2 37 ∼0 576 295 ∼0 3 s 76 ∼0 828 14 ∼0 45
Awali 38 2 462 166 22 402 17 ∼0 138 250 2 2 s 312 ∼0 2 s 516 ∼0 4 s 173 ∼0 527
Vata 36 3 294 - 14 ∼0 130 85 1 374 699 ∼0 4 s 408 ∼0 3 s 2 s ∼0 5 s
Automata.net 73 59 89 - ∼0 ∼0 ∼0 245 43 1 s 621 14 4 s 31 9 165 69 6 163
Brics 46 24 140 136 35 204 ∼0 ∼0 ∼0 204 10 1 s 115 4 1 s - 99 2 232
AutomataLib 75 31 657 - 3 2 5 60 42 102 91 59 748 - 311 2 3 s
FAdo 320 3 2 s 6 s 10 s 10 s 223 ∼0 2 s 3 s 84 8 s 479 48 3 s 10 3 70 1 s 84 6 s
Automata.py 226 25 2 s - 53 ∼0 1 s 263 6 1 s 39 2 479 - 203 TO 377

a case for symbolic representation of transitions, and it is currently not a primary target
of Mata. However, Mata is still much faster than any other library on mintermised
versions of the same examples. AutomataLib is faster in some parametric intersection
examples because of its implicit determinization, which in some particular examples
returns much smaller automata. When the other libraries are made to determinize, they
behave analogously, and Mata again solves most examples and takes the least time. Still,
on all operations except emptiness, Mata is the fastest overall, and on emptiness it is
by far the fastest from libraries that actually do solve the emptiness problem. Mata has
especially efficient inclusion test, and trimming, an operation which is usually needed
very frequently, is also a strong point of Mata’s performance.

Mata’s simulation reduction (Mata-Sim in the results) does not help much when the
time for computing the simulation is counted in, as seen in Fig. 4. Simulation reduction
is indeed costly, and our eager strategy of reducing all automata is probably sub-optimal.
The run times of complement, however, show a considerable speedup after automata
are reduced, and Mata-Sim solves some complement and also parametric intersection
examples that no other library can.

Overall, Mata appears significantly faster than all the libraries we have tried, with
the closest competitor being often more than an order of magnitude slower.

Threats to validity. Our results must be taken with a grain of salt as the experiment
contains an inherent room for error. Mainly, not knowing every library intimately, we
might have missed the most optimal solutions, and our parsers of the .mata format
might be building the internal data structures of the libraries in a sub-optimal way. The
experiment was also running in parallel on a server with limited resources, which might
lead to fluctuations in run times We are, however, confident that our main conclusions
are well justified.
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7 Conclusions and Future Work

We have introduced a new automata library Mata, explained its principles, and evaluated
its performance. Mata is not the most general or feature-full library. Libraries such as
Awali or Automata.net are much more complex and comprehensive, are more widely
applicable, either to various symbolic representations of automata or to automata with
registers, while still being impressively efficient. Mata, however, does what it is meant
to do better than all the other libraries: solve examples from string solving, regular
expression processing, and regular model checking much faster, while staying simple
and transparent, easily extensible and applicable to projects.

We continue working on Mata’s set of features as well as its efficiency. We plan to
extend Mata with transducers, add support for registers that could handle, e.g., counting
in regular expressions, and experiment with the poor man’s symbolic representation of
bit vector alphabets represented as sequences of bits (used in Lash [12]), so that Mata
can be used adequately in applications such as solving WS1S and arithmetic formulae.
We believe that the efficiency of the basic data structures discussed here can be much
improved by focusing on the low-level performance. Custom data structures, specialised
memory management, improvement in memory locality, and, generally, the class of
optimizations used in BDD packages, could shift Mata’s performance much further.
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regular properties: A comparative study. In: Pientka, B., Tinelli, C. (eds.) Automated De-
duction - CADE 29 - 29th International Conference on Automated Deduction, Rome, Italy,

D. Chocholatý, T. Fiedor, V. Havlena, L. Holík, M. Hruška, O. Lengál, J. Síč148

https://doi.org/10.1007/978-1-4613-8928-6_22
https://doi.org/10.1007/978-1-4613-8928-6_22
https://doi.org/10.1007/978-1-4613-8928-6_22
https://doi.org/10.1007/978-1-4613-8928-6_22
https://doi.org/10.1007/978-1-4613-8928-6_22
https://doi.org/10.1007/978-1-4613-8928-6_22
https://doi.org/10.1145/3622872
https://doi.org/10.1145/3622872
https://doi.org/10.23919/FMCAD.2017.8102244
https://doi.org/10.23919/FMCAD.2017.8102244
https://doi.org/10.23919/FMCAD.2017.8102244
https://doi.org/10.23919/FMCAD.2017.8102244
https://doi.org/10.5281/zenodo.10044515
https://doi.org/10.5281/zenodo.10044515
https://doi.org/10.5281/zenodo.10044515
https://doi.org/10.5281/zenodo.10044515
https://github.com/lorisdanto/symbolicautomata
https://github.com/lorisdanto/symbolicautomata
https://github.com/caleb531/automata


July 1-4, 2023, Proceedings. Lecture Notes in Computer Science, vol. 14132, pp. 286–
306. Springer (2023). https://doi.org/10.1007/978-3-031-38499-8_17,
https://doi.org/10.1007/978-3-031-38499-8_17

39. Fu, C., Deng, Y., Jansen, D.N., Zhang, L.: On equivalence checking of nondeterministic finite
automata. In: Proc. of SETTA’17. LNCS, Springer (2017)

40. Gange, G., Navas, J.A., Stuckey, P.J., Søndergaard, H., Schachte, P.: Unbounded model-
checking with interpolation for regular language constraints. In: Proc. of TACAS’13. LNCS,
Springer (2013)

41. Google: Re2. https://github.com/google/re2
42. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who love

automata. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification. pp. 36–52. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013)

43. Henriksen, J.G., Jensen, J.L., Jørgensen, M.E., Klarlund, N., Paige, R., Rauhe, T., Sandholm,
A.: Mona: Monadic second-order logic in practice. In: Proc. of TACAS ’95. LNCS, vol. 1019.
Springer (1995)

44. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite
graphs. In: Proc. of FOCS. IEEE (1995)
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47. Holı́k, L., Lengál, O., Šimáček, J., Vojnar, T.: Efficient inclusion checking on explicit and
semi-symbolic tree automata. In: Proc. of ATVA’11. LNCS, Springer (2011)
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Accelerated Bounded Model Checking Using
Interpolation Based Summaries

Abstract. We propose a novel lazy bounded model checking (BMC) al-
gorithm, Trace Inlining, that identifies relevant behaviors of the program
to compute partial proofs as procedural summaries. Whenever procedures
are reused in other contexts, Trace Inlining attempts to construct safety
proofs using these summaries. If the current summaries are sufficient to
complete the proof, it gains both in solving times and smaller encodings.
If the summaries are found to be insufficient, they are automatically
refined for future use. The partial proofs are enabled by a sequence of al-
ternating underapproximation and overapproximation rounds until the
program verification condition is found to be unsatisfiable. We evalu-
ate our Trace Inlining algorithm on real-world benchmarks consisting
of Windows and Linux device drivers. Our results show that the pro-
posed algorithm is able to solve 12% additional benchmarks that were
unsolved by state-of-the-art lazy BMC solvers Corral and Legion.
Further, Trace Inlining is 6× faster than Corral and 3× faster than
Legion in terms of verification time. The virtual best of all three veri-
fiers is 4× faster than the virtual best of Corral and Legion, implying
that our technique significantly improves on what is possible today.

Keywords: Software Verification · Bounded Model Checking · Dynamic
Inlining · Interpolation

1 Introduction

Bounded model checking (BMC) has remained a popular verification methodol-
ogy for being able to sidestep the problem of discovering inductive invariants. A
prominent framework to solving BMC instances is to reduce them to hierarchical
programs—both bounded as well as unbounded verification problems can be re-
duced to reachability on hierarchical programs [20]. For bounded programs, the
hierarchical program can be obtained by unrolling loops and unfolding recursive
procedure to a given bound. Unbounded programs need appropriate annotations
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(a) Query size v/s verification lifetime (b) Query time v/s verification lifetime

Fig. 1: Comparison of query size and SMT solver query time against the lifetime
of a verification instance (x-axis is in log scale)

for the loops and procedure calls that can allow the removal of backedges in loops
and recursive calls to yield a hierarchical program. Corral [19] and Legion [11]
are the current state-of-the-art BMC engines that adopt this methodology. Cor-
ral, at present, drives the Static Driver verification (SDV) [4] framework within
Microsoft for verification of Windows device drivers.

We propose a new algorithm, Trace Inlining, that leverages the modularity
of software towards a new algorithm for bounded model checking of hierarchi-
cal programs. Trace Inlining identifies sub-regions of a program, and alternates
between overapproximations and underapproximations, to either find a coun-
terexample or converge to a proof of that region. Whenever a proof of safety of a
region is found, it uses the Craig’s Interpolation Theorem [15] to summarize this
proof in the form of procedure summaries. We refer to such proofs on a subset of
the program as partial proofs. The learnings from these partial proofs (procedure
summaries) are then re-used in other regions where the same procedures appear.
In certain cases, because the contexts in which these summaries are computed
differ from the contexts in which they are used, the summaries may not always
be enough to reach a complete proof. In such cases, Trace Inlining continues its
search and keeps refining summaries to continuously make them stronger.

We develop a tool, Saransh, based on the above algorithm. We compare
Saransh against the two state-of-the-art BMC verifiers, Corral [19] and Le-
gion [11]. Legion is reported to be approximately 1.9× faster than Corral
and the virtual best of Corral + Legion (running both of them in parallel
and taking whichever finishes first) turns out to be 2.9× faster than Corral on
bounded verification of real life Windows and Linux device driver benchmarks.
Trace Inlining differs from these algorithms in multiple aspects:

– Nature of modeling. In terms of operation, Corral only performs overap-
proximation, while Legion only uses underapproximation. Trace Inlining,
not only uses both overapproximation and underapproximation, it also uses
procedure summaries as an effective modeling instrument.
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– Learning. None of Corral and Legion are able to learn from procedures
invoked from multiple contexts. Trace Inlining learns procedure summaries
from partial proofs and uses them effectively in different contexts.

– VC size. The VC sizes in both Corral and Legion increase monotonically,
and eventually become quite large, thereby increasing the risk of running out
of memory. As Trace Inlining is able to summarize large regions of the code
via relatively short summaries, the verification conditions from Trace Inlining
remain significantly smaller. Also, due to repeated summarization, the size
of the VCs grow non-monotonically.

– Theorem prover query times. While the VC size is an important parameter,
VC size and SMT solver times are not always strongly correlated. We ex-
perimentally validate that with Trace Inlining, the SMT solver query times
also remain low over the verification lifetime.

To illustrate the above points, consider Figure 1 that shows how the size of
the verification condition (Figure 1a) as well as the SMT solver time (Figure 1b)
evolves during the course of verification, for Corral, Legion and Saransh.
(This comparison is made on a single device driver benchmark from the SDV
suite [25].) Note that the verification lifetime (on x-axis) is plotted in log scale.
We see that while both Corral and Legion grow the VC monotonically, the
growth of the VC is non-monotonic for Saransh—in fact, it remains almost
constant over the complete verification lifetime. Furthermore, notice that VC
size is not correlated with solver time: although the VC size of Legion grows
faster than Corral, its query times are faster than Corral. The query solving
time for Saransh remains significantly lower than both the other tools. Thus,
Saransh outperforms both Corral and Legion in terms of the VC size and
query solving times, allowing it to scale much better.

In our empirical evaluation over a set of challenging benchmarks, Saransh
solves 12% additional benchmarks that were solved by neither Corral nor
Legion. Saransh reduces the PAR2 score by 36% as compared to Corral
and 11% when compared to Legion. In terms of the cumulative verification
time, Saransh is 6× faster than Corral and 3× faster than Legion on the
benchmarks that were solved by all three of the verifiers. Even when compared
to the virtual best of Corral + Legion (running both of them in parallel and
taking the time of whichever one finishes first), Saransh turns out to be 1.75×
faster. Further, the virtual best of Corral + Legion + Saransh is 4× faster
than Corral + Legion (the current state-of-the-art as shown in [11]).

Our work is orthogonal to other work that use interpolants (like[1, 22, 23, 24])
as we leverage interpolation to accelerate BMC for refuting properties rather
than performing full verification of a system. Thus, our technique does not re-
quire inductiveness of any invariants that it finds, it only requires constructing
valid abstractions (or over-approximate summaries). Furthermore, we have in-
stantiated our algorithm in a lazy inlining-based setting for verification of hier-
archical programs that is more particular to Corral and Legion. These lazy
inlining-based tools are known to perform better than static inlining based tech-
niques (like CBMC [18] and ESBMC [17]) that compute a full inling of the whole
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procedure rather than use overapproximation/underapproximation to lazily in-
line parts of the program that are relevant to the property to be proven.

This paper makes the following contributions:

– We propose a new verification algorithm, Trace Inlining, that uses both over-
approximation and underapproximation of the program to compute partial
proofs, and extracts procedural summaries from them for faster and scalable
bounded model checking;

– We instantiate our ideas in a tool, Saransh;
– We conduct detailed experiments to evaluate Saransh. Our results show

that Saransh is able to solve 12% additional benchmarks and provides a
6× speed up over Corral and 3× speed up over Legion.

We have provided an artifact containing all the benchmarks and pre-
built binaries of Saransh, Corral and Legion, which is avail-
able at https://zenodo.org/records/10440854. Saransh is open source and
the source code is available at https://github.com/mayanksolanki393/corral-
traceInlining/tree/traceInterpolation.

2 Preliminaries

2.1 Language Model

We consider a simple programming language consisting of multiple procedures,
procedure calls, assignment statements (⟨var⟩ := ⟨expr⟩) and branching state-
ments (if-then and if-then-else). A procedure call can accept multiple parameters
and return multiple values. This language does not provide any loop statements,
but loops can be realized using recursive procedure calls. Any variable type and
expression is allowed, as long as it is supported by an SMT theory. The lan-
guage additionally allows assume, assert and havoc statements. This language
is Turing complete; programs from languages like C can be compiled to it.

2.2 Verification Problem

Given a program P, we attempt to answer if P can fail, i.e., if it has any execu-
tion that can reach an assert φ statement where φ evaluates to false. If so, P is
Unsafe, else it is Safe. Our algorithm operates by running a counterexample-
guided abstraction refinement (CEGAR) loop in an underapproximate abstrac-
tion of the program. It alternates between underapproximation and overapproxi-
mation, computing procedural summaries in the process to guide verification. We
describe some relevant background that is required to understand our algorithm.

Overapproximating a procedure call. A procedure callsite r1, r2, . . . rn =
call proc(x1, x2, . . . , xk) is overapproximated by replacing the callsite with a
havoc r1, r2, ..., rn statement. A havoc statement assigns non-deterministic
values to its arguments.
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Blocking a procedure call. A callsite, r1, r2, . . . , rn = call proc(x1, x2, . . . , xk),
is blocked by replacing the callsite with assume false, i.e., any execution in
the original program that invoked the callsite is now infeasible, and hence,
this transformation creates an underapproximation of the program.

Inlining a procedure call A callsite r1, r2, ..., rn = call proc(x1, x2, ..., xk)
can be inlined in the caller p by duplicating the complete body of callee proc
within the procedure p, at its callsite.

Computing procedure summaries A procedure summary is a logical for-
mula over the (formal) input-output variables of a procedure that is an
over-approximation of the set of possible behaviours of the procedure. We
crucially rely on Craig’s interpolation theorem for computing summaries.

Theorem 1 (Craig’s Interpolation Theorem [15]). Given an Unsatisfiable
logical formula of the form A∧B, there always exists a logical formula I such that
A ⇒ I, I ∧ B is Unsatisfiable, and I only contains variables in the intersection
of the symbols of A and B.

We show in §4 the applicability of interpolation for computing procedure
summaries. Roughly, when A is a procedure and B is the context in which it is
invoked, then an interpolant is an overapproximation of the procedure (A ⇒ I)
that is sufficient in the current context (I∧B is unsatisfiable) and that I only uses
variables in the interface between A and B, i.e., the input and output variables.

Inlining tree In our algorithm, a procedure callsite can be in one of these four
states: Inlined, Blocked, Overapproximated, or Summarized. We use an inlining
tree data structure to maintain this information during the course of verification.
The root of the inlining tree is the entry procedure of the program. A node pL
inside the tree denotes a callsite: of a procedure p at location L within its caller.

In the context of bounded model checking, given a bound d on the number of
allowed recursive invocations, the inlining tree cannot grow unbounded. This is
because any path in the tree can contain at most d occurrences of a procedure,
and the set of procedures is naturally fixed.

We can think of a given inlining tree as defining an abstraction of a program.
In fact, this abstraction can be written down as a single-procedure program
that can be constructed from the entry procedure by following the status of its
callsites and taking the appropriate action (e.g., inlining it or blocking it, etc.).

2.3 Notations

For a procedure foo(), we use foo,
∧
foo,

∨
foo and

∼
foo to denote its inlined,

overapproximated (havoc foo), underapproximated (block foo) and summarized
state, respectively. We denote an inlining tree as a list of callsites with their
respective states 3.

3 We use the program to disambiguate the list representation of the inlining tree.
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int main():

int x, r, c

assume x > 0

havoc c

if (c == 1)

r := foobar(x)

else if (c == 2)

r := barbaz(x)

else

r := bazfoo(x)

assert r > 0

int foobar(int x):

int r, bool c1

havoc c1

if (c1)

C1: r := foo(x)

else

C2: r := bar(x)

return r

int barbaz(int x):

int r, bool c2

havoc c2

if (c2)

C3: r := bar(x)

else

C4: r := baz(true, x)

return r

int bazfoo(int x):

int r, bool c3

havoc c3

if (c3)

C5: r := baz(false, x)

else

C6: r := foo(x)

return r

int foo(int x):

int r, w

havoc w

if (w > 0)

r := x + w

else

r := x

return r

int bar(int x):

int r

r := 2 * x + 1

return r

int baz(bool op, int x):

int r

if (op)

r := x + 1

else

r := x * 2

return r

Fig. 2: Motivating Example

3 Overview

We now attempt to verify programs written in the language described in §2.1.
We assume that programs may have multiple procedure calls but a well-defined
unique entry procedure.

Verification Oracle. We assume the availability of a verification oracle V. Given
an inlining tree, Tree, a verification query V(Tree) returns Verified if the
abstraction defined by Tree does not lead to an assertion failure; else it returns
a counterexample trace T as a sequence of instructions that lead to the assertion
failure. The oracle V() operates by constructing a symbolic encoding of the
inlining tree (referred to as the verification condition), and using a theorem
prover to check if an assertion failure is feasible. We show how such a verification
oracle can be constructed in §4.1.

Figure 2 shows our motivating example. We will reduce it to a single pro-
cedure (inlining tree) and use our verification oracle V. For completeness, our
reduction to a single procedure must ensure that each procedure appears in every
possible context in which the procedure can possibly be invoked.
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3.1 Trace Inlining (Our Proposal)

Trace Inlining starts by inlining the entry procedure, main(), and overapproxi-
mating the procedures called by it, i.e. foobar(), barbaz() and bazfoo(). The
Verification Oracle(V) returns the following counterexample trace.

V(⟨main,
∧

foobar,
∧

barbaz,
∧

bazfoo⟩) = Error, [main,
∧

foobar]

As foobar() is overapproximated, this error can be a false positive. Hence,
we refine the inlining tree by inlining foobar. This is similar to Overapproxi-
mation Refinement. However, instead of calling the verifier on this refined tree,
Trace Inlining also blocks barbaz() and bazfoo(). This constrains the verifier
to either validate or refute the current (interprocedural) abstract trace, rather
than switching to a different one. The procedures called by foobar(), i.e., fooC1

and barC2 are overapproximated. V, now, returns the following counterexample:

V(⟨main, foobar,
∧
fooC1,

∧
barC2,

∨
barbaz,

∨
bazfoo⟩) = Error, [main, foobar,

∧
fooC1]

The new counterexample is a refinement of the previous trace as all other
paths in the program had been blocked. We inline the overapproximated fooC1()
and block barC2() (to deny the execution path through it), thereby forcing a
decision on the current trace. V returns Verified for this inlining which is a
partial proof : the verifier has proved that paths that only pass through main,
foobar, and fooC1 cannot cause an error. Trace Inlining now attempts to learn
from this proof so that it can apply it in other contexts. It uses Theorem 1
to compute the summary of foo() (see Figure 3a; details of computing these
summaries are provided in §4.1). One of the possible summaries that it could
learn is foo(x) : ret(foo) >= x. Note that, as discussed in §2.2, this summary
is both sound as well as sufficient to verify the current inlining tree, i.e., given
that the original inlining tree was verified, replacing the inlining of foo by its
summary will maintain the same decision on the verifier—this is indeed the case
considering that in both the execution paths of foo(), ret(foo) is always greater
than or equal to x.

Hence, we replace the inlining of foo() with its summary. This current in-
lining tree, if passed to V, will still return Verified. However, the verification is
not complete, as multiple paths have been blocked.

Trace Inlining follows a last-in-first-out (LIFO) strategy4 for unblocking pro-
cedures. Here, it unblocks and overapproximates barC2 (see Figure 3b). V, now,
returns the following counterexample:

V(⟨main, foobar,
∼
fooC1,

∧
barC2,

∨
barbaz,

∨
bazfoo⟩) = Error, [main, foobar,

∧
barC2]

Trace Inlining progresses in this manner, computing the summary of barC2,
and backtracking further to compute the summary of foobar (see Figure 3c).
4 the LIFO strategy can exploit the stack-based interface provided by modern incre-

mental SMT solvers

Accelerated Bounded Model Checking Using Interpolation Based Summaries             161



(a) Summarizing fooC1 (b) Inlining tree with foo
summarized

(c) Inlining tree with foobar
summarized

(d) Inlining tree with
barbaz() inlined

(e) Summary of bar()
reused to summarize barC3

(f) Summary of bazfoo in-
lined

Fig. 3: Inlining trees during verification. We depict Green for Inlined, Red for
Blocked, Gray for Overapproximated, and Yellow for Summarized callsites.

Here, the summary of foobar is a sufficient summary of the complete inlining
tree rooted at foobar. This reduces the inlining tree, leading to faster theorem
proving times and a lesser memory footprint. A verification query on this inlining
tree may make barbaz appear in the counterexample trace:

V(⟨main,
∼

foobar,
∧

barbaz,
∧

bazfoo⟩) = Error[main,
∧

barbaz]

As barbaz() is overapproximated, we inline it while blocking foobar() and
bazfoo(). At the same time, the procedures called by barbaz(), i.e barC3 and
bazC4, are overapproximated (see Figure 3d). However, as the summary of bar()
is already available, we assert its summary (see Figure 3e). For this inlining, V
returns a counterexample with the trace containing bazC4 (along with some
other inlined callsites).

V(⟨main,
∨

foobar, barbaz,
∼
bar,

∧
baz,

∨
bazfoo⟩) = Error[main, barbaz,

∧
bazC4]

Note that, if barC3 was not available, this callsite would have been in the
overapproximated state. Hence, the counterexample [main, barbaz, barC3] would
also be possible. However, with the summary of bar asserted at C3, the above
counterexample is not feasible. This shows how the learnings from our partial
proof were useful in a different context. The savings would have compounded
had barC3 been an interior node as this summary would have saved the inlining
of the (possibly large) sub-tree rooted at it.

The algorithm now inlines bazC4 and blocks barC3:

V(⟨main,
∨

foobar, barbaz,
∨
barC3, bazC4,

∨
bazfoo⟩) = Verified
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This allows Trace Inlining to compute a summary for baz; a possible summary
is baz(op, x) : op =⇒ (ret(baz) >= x+ 1).

The algorithm continues by backtracking to barbaz and computing its sum-
mary. Then, it would encounter an error trace with bazfoo; as a result bazfoo
will get inlined. At this point, the summaries of both the methods it invokes,
i.e. bazC5 and fooC6, are available, and will be asserted (see Figure 3f). Now,
invoking the verifier on this inlining tree produces the following result:

V(⟨main,
∨

foobar,
∨

barbaz, bazfoo,
∼
baz,

∼
foo⟩) = Error, [main, bazfoo,

∼
bazC5]

This seems surprising as the counterexample contains no overapproximated
callsite, but rather one that is summarized. This is because the summary of
baz, although it was sufficient in the context of where it was computed, it is not
sufficient in the context where it is now applied 5. A closer examination of the
current summary of baz reveals that it was invoked in barbaz with the first
parameter as true, and hence, the summarization could witness only the true
branch within baz. In the current context, the false branch of baz is exposed,
which renders the previous summary insufficient.

Trace Inlining fixes this problem by computing a new summary for baz in
this context; a possible summarization is:

baz(op, x) : (¬op =⇒ (ret(baz) >= 2 ∗ x))

However, this summary may not be sufficient in the previous context. To
obtain a summary that is sufficient for all contexts seen so far, we conjoin this
summary to the existing summary. Running V with the new summary gives
Verified. Hence, now the summary of bazfoo() can be computed, and swapped
for its inlining. Finally, the algorithm again makes progress by unblocking foobar
and barbaz, and moving them to the summarized state.

V(⟨main,
∼

foobar,
∼

barbaz,
∼

bazfoo⟩) = Verified

As none of the procedures are blocked, we declare the program Safe.

4 Algorithm

4.1 Symbolic Encoding

Our verification oracle translates an input program into a passified program con-
sisting of only assume statements and call statements. A passified program does
not have global variables. This program is then translated to a logical formula,
referred to as a verification condition (VC). The VC is unsatisfiable if and only
if the program does not violate any assertion in the program (when V() returns
Verified). If satisfiable, the model is a concrete execution trace of the program
5 the soundness of the summaries in all contexts is guaranteed by Criag’s Interpolation

Theorem
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bL4

∧ bL4 =⇒ (bL5 ∧ f(4) == 5)

∨ (bL6 ∧ f(4) == 6)

∧ bL5 =⇒ c1 ∧ cfoo

∧ (b7 ∧ f(5) == 7)

∧ bL6 =⇒ ¬c1 ∧ cbar

∧ (b7 ∧ f(6) == 7)

∧ bL7 =⇒ ret(foobar) == rfoobar

(a) pVC of procedure foobar() defined
in Figure 2

cfoobar =⇒ pV C(foobar) ∧
cfoo =⇒ pV C(foo) ∧

(rfoobar == rfoo) ∧ (xfoobar == xfoo) ∧
(cbar == false)

(b) VC of foobar() with foo() inlined and
bar() blocked

cfoobar =⇒ pV C(foobar) ∧
cfoo =⇒ rfoo > xfoo∧

(rfoobar == rfoo) ∧ (xfoobar == xfoo)

(c) VC of foobar() with foo() summarized

Fig. 4: Overapproximation, Inlining, Blocking and Summarization in VC

that ends in a violation of some assertion. [19] provides detailed description on
building such verification conditions.

Let pV C(p) refer to the partial verification condition for pertaining to only
a method p. To handle multi-procedure programs, V should be able to perform
overapproximation, inlining, blocking and summarization for procedure calls. We
discuss how this can be done with the Verfication Condition below.

– Overapproximating a call-site. For a procedure p that calls, say, a procedure
q, the call is overapproximated by default in pV C(p) because the correspond-
ing return variables of the call to q are left unconstrained in pV C(p).

– Inlining a procedure p is achieved by renaming all symbols in pV C(p) to fresh
symbols, say renamed(pVC(p)), and conjoining (ci =⇒ renamed(pVC(p)))
to the verification condition of the caller, where ci is the call-site variable
of the call to p. We add new constraints that bind the formal and actual
parameters to have the same value; the return values of the procedure are
also bound to appropriate variables in the caller. An example of inlining is
shown in Figure 4b, where the call to foo() from foobar() has been inlined.

– Blocking of a procedure call is achieved by setting the respective call-site
variable to false, because it disallows any feasible execution to invoke the
respective call. An example of blocking is also shown in Figure 4b where the
call to barC2() from foobar() has been blocked.

– Summarizing a call-site is similar to inlining, except that instead of using the
partial VC of the callee, its summary is instantiated and asserted instead:
(ci =⇒ instantiated(Summary(p))). For a summary foo(x1, . . . , xn) :
φ(x1, . . . , xn, ret(foo)), instantiated() adds equality constraints between
the formal arguments x1, . . . , xn and the actual arguments in the VC of the
caller, assigns ret(foo) to the respective variable in VC of the caller, and
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renames all the other symbols in V C(foo) to fresh symbols. For example,
Figure 4c shows the summary of foo() i.e. foo(x) : ret(foo) > x asserted
for call-site fooC1.

4.2 The Trace Inlining Algorithm

As we have seen before, in an inlining Tree, every call-site is in one of four
possible states: overapproximated, inlined, blocked or summarized. We define a
few helper functions to explain our algorithm.

– Tree.inline(callsite) transitions a callsite in the Tree from overap-
proximated or summarized state to inlined state.

– Tree.block(callsite, track=true) transitions a callsite in the Tree
from overapproximated or summarized state to blocked state. When track
is set to false the Tree doesnot track the callsite as a blocked callsite.

– Tree.overApproximate(callsite) transitions a callsite in the Tree from
inlined or blocked state to overapproximated state.

– Tree.summarize(callsite, SummDB) transitions a callsite in the Tree
from overapproximated state to summarized state. Note that summaries
can get updated over time. Therefore, one additional responsibility of this
method is to replace any stale summary of callsite in Tree with the latest
version available in the summary database SummDB.

– Tree.computeSummary(callsite) returns the summary of callsite.
– Tree.getOpen() returns the set of callsites in overapproximated or summa-

rized state in Tree.
– Tree.getInlined() returns the set of callsites in inlined state in Tree.
– Tree.getBlocked() returns the set of callsites in blocked state in Tree. This

method would not return the callsites that were blocked with track set to
false.

– procedureName(callsite) returns the name of the procedure correspond-
ing to callsite.

– recursionDepth(callsite) returns the recursion depth of callsite.
– computeSummaries(Tree, SummarizableCallsites, SummDB) computes the

summary of each callsites in SummarizableCallsites set and stores it in
SummDB. If the summary of a procedure is already present, then it is con-
juncted with the newly computed summary.

Algorithm 1 is the Trace Inlining algorithm. It takes as input a program P
with the entry procedure main and a Verification Oracle V. The algorithm starts
by initializing multiple variables:

– Tree, initialized at Line 1, represents an inlining tree. It is initialized by
inlining main. Note that all the procedure callsites in main would be in the
overapproximated state in Tree, as discussed in §4.1.

– SummDB is the summary map, initialized to be empty in Line 2. Note that
summaries are stored against the name of a procedure, not against a partic-
ular callsite. This allows procedure summaries computed in one part of the
inlining tree to be reused in other parts of the tree.
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Algorithm 1: Trace Inlining Algorithm
Input : Program P with starting procedure main, Verification Oracle V,

Max Recursion Depth RecursionLimit
Output: Safe, or Unsafe(with trace)

1 Tree ← ⟨ main ⟩ // Inlining tree
2 SummDB ← { } // Map from procedure name to summary
3 Context ← [ ] // Stack to track the state of callsites
4 HitRecursionLimit ← false
5 while true do
6 outcome, T ← V (Tree)
7 if outcome == Verified then
8 if Tree.getBlocked() == ∅ then
9 if HitRecursionLimit then

10 return Safe (Within recursion bounds)

11 else
12 return Safe

13 LastInlined, LastBlocked ← Context.pop()
14 computeSummaries(Tree, LastInlined, SummDB)
15 foreach callsite in LastInlined ∪ LastBlocked do
16 Tree.overApproximate(callsite)

17 else
18 // Are all the callsites in T inlined?
19 if T \ Tree.getInlined() == ∅ then
20 return Unsafe, T

21 OpenCallsites ← Tree.getOpen()
22 foreach callsite ∈ OpenCallsites do
23 if recursionDepth(callsite) > RecursionLimit then
24 HitRecursionLimit ← true
25 Tree.block(callsite, false)

26 if callsite ∈ T then
27 Tree.inline(callsite)

28 else
29 Tree.block (callsite)

30 Context.push (⟨ T , OpenCallsites \ T ⟩)
31 foreach callsite ∈ Tree.getOpen() do
32 Tree.summarize(callsite, SummDB)

– Context, initialized at Line 3, is a stack that keeps track of the callsites that
were inlined or blocked in prior iterations. Each entry in Context is a tuple
of the sets of inlined and blocked callsites.

– HitRecursionLimit initialized at Line 4, is a boolean variable to track if
the algorithm has hit the recursion limit.
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After initialization, the first iteration of the algorithm starts with a call to V
(Line 6). If V returns a counterexample, at Line 19 we check if the counterex-
ample only consists of inlined callsites. If so, we return Unsafe along with the
counterexample. Otherwise, all the overapproximated/summarized callsites in
the counterexample are inlined and others are blocked (Lines 21 to 29). Also,
the inlined and the blocked callsites are pushed on the Context stack (Line 30).
At this point if the algorithm find any callsites that have crossed the recursion
depth, those callsites are blocked at Line 25. Also, the HitRecursionLimit is
set to true indicating that we have hit the recursion bound during verification.

If V returns Verified, we check if there are any blocked callsites in Tree
(Line 8) (The callsites blocked due recursion depth are not considered). If not,
then we return Safe or Safe (Within recursion bound) depending on the
value of HitRecursionLimit. Otherwise, we pop Context to get the callsites
that were last inlined/blocked (Line 13). Next, we invoke computeSummaries
(Line 14) to update summDB with the summaries of all inlined callsites of the last
iteration.

After summarization, the inlined and blocked callsites are again set to the
overapproximated state in Tree (Line 16).

The algorithm makes progress on each iteration of the loop at Lines 31 to 32.
For an iteration where V returns a counterexample, this results in inlining of
callsites on the counterexample (Line 27) and for the iteration where V returns
Verified, this results in the summarization of callsites for which a summary was
computed/updated in the last iteration.

4.3 Summaries of recursive procedures

For recursive programs, an inlining based algorithm may never terminate as
possible callsites in the program is infinite. BMC handles this by limiting the
inlining of recursive callsites up to a fixed (user-defined) depth D. Any callsite
with a depth more than D is considered to be blocked. Hence, a verified verdict
by our algorithm is for a bounded version of the original program (unless there
are no recursive procedures in the program). Recursion creates one additional
complication for our algorithm. The summary computed for a recursive proce-
dure at depth di is not an overapproximation of the procedure at depth dj when
j < i. To see this, consider a procedure f that calls itself. A call to f at depth
D is infeasible. A call to f at depth D − 1 is to a version of f that cannot call
itself, etc. Thus, the higher the depth at which f is called, the fewer are its set of
behaviors. Hence, we create separate procedure summaries for different depths;
a summary computed for a procedure at a certain depth can only be used at a
callsite at the same depth.

4.4 Proof of Soundness

Soundness of Trace Inlining algorithm follows when a summary is asserted for
an inlined call-tree. Given an inlining I = ⟨proc1, ..., proci, ..., procn⟩, if proci is
replaced by its summary to create I ′ = ⟨proc1, ..., summary(proci), ..., procn⟩,
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then, verification of V(I ′) must imply verification of V(I) (Craig Interpolation
theorem). Further, as a new summary is computed by conjoining the newly
generated interpolant to the previous summary, the summaries computed for a
procedure grow monotonically stronger and remain sufficient to prove summaries
of all the contexts witnessed so far.

5 Experiments

We implement the Trace Inlining algorithm in our tool, Saransh, and evaluate
it on challenging Windows and Linux device driver benchmarks. The Windows
device drivers are available as the SDV benchmark suite from Microsoft [25].
These benchmarks exercise all features of the C language such as loops and
recursion (up to a bounded depth), pointers, arrays etc. SDV compiles the C
source code of a device driver to Boogie [8] and then instruments it to add
assertions that check a driver property6.

We also use Linux device drivers benchmarks available as part of the SV-
COMP [6] benchmark suite. We use SMACK [27] to compile these drivers to
Boogie and instrument the properties to be verified.

We compare Saransh against the CEGAR based model checker Corral [19]
and the proof-guided model checker Legion [11]. Both of them perform veri-
fication by bounded model checking over hierarchical programs via dynamic
inlining [20]. Tools that use static inlining (such as CBMC [18]) do not scale
well [20]. Corral and Legion have been extensively tuned for verifying device
drivers. Therefore, these tools, on the device driver benchmarks, were a strong
baseline for our work. We used Z3v4.5 [16] as the underlying SMT solver for all
of the verifiers. We extract summaries by computing interpolants using the Z3
solver (summary extraction is described in [13]). We used the default setting of
a fixed random seed for Z3 after verifying that the choice of the random seed
does not have any statistically significant impact on the results reported in this
paper. For empirical evaluation, we only select hard benchmarks on which Cor-
ral requires more than 200 seconds to solve (similar setting is used in [11, 12]).
For each verification task, we set a time budget of 2 hours and a recursion bound
of 3 for each tool [11]. Each verification instance was given access to a single core
and 32 GB of RAM.

5.1 Saransh vs Corral vs Legion

We compare Saransh against Corral and Legion on the number of instances
they can solve and the total time taken to solve those instances. We also re-
port the PAR2 score that is used in software verification competitions to rank
verifiers. The PAR2 score is defined as follows

PAR2Score(tool) =
n∑

i=1

{
VerifTimei if the i-th benchmark is verified
2 ∗ timeout otherwise

6 A reference manual to the Boogie language is available at https://boogie-
docs.readthedocs.io/en/latest/LangRef.html.
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Table 1: Summary of the comparison between tools across all benchmarks
Tool Time (hours) #Solved PAR-2 (hours)

Corral 143 342 2159.84
Legion 152 492 1568.19
Saransh 54 512 1390.5

Corral+Saransh 77 567 1193.51
Corral+Legion 136 527 1412.93
Saransh+Legion 86 619 994.96

Corral+Legion+Saransh 75 630 939.68

where n is the total number of benchmarks, VerifTimei denotes the time taken
by a tool to verify the i-th benchmark and timeout is the time budget allotted
for verifying each benchmark. A lower PAR2 score is indicative of a better tool.

Table 1 reports the number of benchmarks solved within the allotted time of
2 hours by each verifier. Out of 846 benchmarks, Corral solves 342 benchmarks
in 143 hours and Legion solves 492 benchmarks in 152 hours, whereas, Saransh
solves 512 benchmarks in only 54 hours. Hence, Saransh solves more bench-
marks than any of the tools in lesser time. Not surprisingly, Saransh has the
lowest PAR2 score among the three verifiers. Saransh reduces the PAR2 score
by 36% as compared to Corral and by 11% when compared to Legion. Out of
the 512 benchmarks solved by Saransh, 214 (25%) were unsafe, 55 (6%) were
safe and 243 (28%) were safe within the recursion bound. We did not observe
any correlation between performance and safe/unsafe.

Speed up Figure 5 presents the speed up achieved by Saransh over Corral
and Legion on the benchmarks which were solved all three of the verifiers. There
were 263 such instances. Corral took 98 hours to solve these 263 instances
and Legion required 51 hours, whereas Saransh needed only 16 hours, i.e.,
Saransh is more than 6× faster than Corral and 3× faster than Legion.

Lazy inlining techniques such as Corral and Legion monotonically grow
the VC by incrementally adding more regions of relevant code, until either a
proof or a counterexample is found. In contrast, Saransh explores individual
execution traces by blocking all traces which are disjoint to the current trace.
Once a trace has been proven, summaries are learned and reused while proving
other traces. Modular programs, i.e., where the same functions are called multiple
times across paths, the opportunity to reuse summaries is high and therefore
Saransh outperforms Corral and Legion. In contrast, programs where the
same functions are not called often in other paths, Saransh incurs the cost of
computing the summaries but the opportunity to reuse them is low. Therefore,
in these instances, Corral and Legion outperforms Saransh.

5.2 Virtual Best of Saransh, Corral and Legion

From the experiments, we observe that Saransh demonstrates a complementary
behavior to both Corral and Legion, i.e., Saransh can easily solve multiple
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Fig. 5: Cumulative time taken by each verifier to solve benchmarks.

benchmarks that are hard for Corral and Legion and vice versa as well. This
complementary nature inspires us to consider the virtual best of Saransh, Cor-
ral and Legion in order to reap the benefits from all three of the verifiers. A
virtual best of multiple verifiers involves running the verifiers in parallel and
picking the outcome of whichever verifier finishes the verification task first. We
denote the virtual best of a combination of verifiers with a ’+’ symbol. For exam-
ple, we denote the virtual best of Corral, Legion and Saransh as Corral
+ Legion + Saransh.

Table 1 depicts that Corral + Legion solves 527 benchmarks, whereas
Corral + Saransh solves 567 benchmarks and Legion + Saransh solves 619
benchmarks. Finally, the virtual best of Corral + Legion + Saransh solves
630 benchmarks in total. Hence, introducing Saransh in the verifier combina-
tion results in verification of an additional 103 benchmarks as compared to the
state-of-the-art Corral + Legion strategy [11].

Table 1 further demonstrates the cumulative time taken to solve benchmarks
by each of the virtual best combinations. The virtual best of Corral + Legion
solves 527 benchmarks in 136 hours, whereas Corral + Saransh solves 567
benchmarks in 77 hours and Legion + Saransh solves 619 benchmarks in
86 hours. Finally, the virtual best of all three verifiers Corral + Legion +
Saransh takes only 75 hours to solve 630 benchmarks. Corral + Legion +
Saransh also has the lowest PAR2 score out of all the combinations.

Speed up Figure 5 presents the cumulative time taken by each of the virtual
best verifiers to solve the 263 benchmarks which were solved by all the verifiers.
Corral + Legion, the current state-of-the-art [11], took 28 hours to solve these
benchmarks, whereas Corral + Saransh required 11 hours and Saransh +
Legion required 8 hours for the same. Finally, the virtual best of all three
verifiers Corral + Legion + Saransh required only 7 hours to solve these
263 benchmarks, i.e., introducing Saransh in the virtual best resulted in a 4×
speed up over Corral + Legion. Note that, Saransh by itself solved these
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benchmarks in only 16 hours and it is nearly 1.75× faster than the state-of-the-
art virtual best Corral + Legion.

The results conclusively demonstrate the effectiveness of Saransh in verify-
ing real-world code.

6 Related Work

BMC [14] is a popular technique owing to its ability of finding property viola-
tions within a user defined bound. It is primarily applied for refuting properties
as opposed to proving them. In [22, 23], the authors show that Craig interpolants
can be combined with SAT-based BMC to derive the termination condition for
symbolic unbounded model checking. [24] extends this idea to verify infinite
state sequential programs. Li et al. [21] further improves this idea by combin-
ing abstraction refinement and interpolation guided unbounded model checking.
Alberti et al. [2, 3] extend the idea of lazy abstraction with interpolation to pro-
grams containing arrays of unknown length. Vizel et al. [30] propose an algorithm
that imitates BDD-based symbolic model checking by computing a sequence of
interpolants for performing full verification. Cabodi et al. [9] revisits the idea
of utilizing interpolation sequences for full verification by computing a chain
of interpolants which provides a tighter integration with the abstraction refine-
ment strategy. UFO [1] utilizes a combination of abstract interpretation and
interpolation for program verification: starting the verification with abstract in-
terpretation, they refine the counterexamples by using interpolants.

Our work is orthogonal to the work discussed above as we leverage inter-
polation to accelerate BMC for refuting properties rather than performing full
system verification via a search for inductive invariants.

Caniart et al. [10] used interpolants to accelerate model checking strategies
at the refinement stage to rule out multiple spurious counterexamples at once.
However, this technique can only be applied to lazy interpolant guided model
checking techniques rather than any CEGAR technique. Sery et al. [28, 29]
leverages interpolants to compute function summaries instead of using complete
function bodies to ease the burden on BMC techniques. The function summaries
are computed after a successful verification run and can be used subsequently.
Compared to this, we compute function summaries dynamically and use it in the
same verification run itself. Beyer et al. [7] combines abstraction, CEGAR and
interpolation based model checking techniques to perform explicit value analysis
on program variables as opposed to our strategy which operates on abstraction
of callsites and leverages interpolants to derive function summaries to be used in
callsite refinements at each CEGAR step. Pick et al. [26] designed an approach
to leverage function summaries in presence of mutual recursion. Interpolants
have also been used in other settings: Bavishi et al. [5] attempt localization and
repair of program faults by leveraging interpolants derived from passing test
cases. Chatterjee et al. [12] take an orthogonal direction to scaling BMC by
employing a distributed strategy to stratified inlining that leverages proofs of
unsatisfiability as a heuristic.
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Weakest Precondition Inference for
Non-Deterministic Linear Array Programs

Abstract. Precondition inference is an important problem with many
applications. Existing precondition inference techniques for programs
with arrays have limited ability to find and prove the weakest precon-
ditions, especially when programs have non-determinism. In this paper,
we propose an approach to overcome the limitation. As the problem is
uncomputable in general, our approach targets a special class of pro-
grams called linear array programs that are commonly encountered in
practical applications and have been studied before. We also focus on a
class of quantified formulas for pre- and postconditions that suffice to
specify program properties in many applications. Our approach uses two
novel techniques called Structural Array Abduction (SAA) and Special-
ized Maximality Checking (SMC). SAA is an abduction-based technique
used to infer quantified preconditions and necessary inductive invariants.
SMC proves that an inferred precondition is the weakest by finding an
under-approximated program and solving the complement verification
problem on it using SAA. When inconclusive, it attempts to weaken the
precondition. Our approach can infer (and also prove) the weakest pre-
conditions for a range of benchmarks relatively quickly, and outperforms
competing techniques.

1 Introduction

Precondition inference is concerned with finding a set of initial states from which
all terminating executions of a given program reach states satisfying a given post-
condition. The weakest precondition refers to the largest such set of initial states.
The weakest precondition can be used as a contract on a library function’s input,
for run-time argument value checks, as a summary in compositional verification,
and in many more applications [2, 11,12,24,46,47,52,53].

Finding the weakest precondition, especially in the presence of unbounded
loops and data structures like arrays, is challenging and uncomputable in gen-
eral. To show that a precondition is valid requires reasoning about all possible
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executions of loops. Almost always this necessitates the inference of adequate in-
ductive invariants. However, automatic invariant inference is an equally difficult
problem, and in the case of array programs, the required invariants are often
quantified formulas, adding to the difficulty of reasoning about them. Moreover,
existing invariant inference techniques [22, 28, 30, 32, 41] rely on a precondition
being provided by the user. This makes it difficult to use such techniques directly
in our problem setting, where preconditions are not available to begin with.

Even if we are able to find a precondition for a given program and postcondi-
tion, proving that the precondition is the weakest presents significant technical
challenges. Specifically, we need to prove that adding any new state to the set
of initial states represented by the precondition results in an execution that
terminates in a state violating the postcondition. To find such a proof, existing
quantified precondition inference techniques assume the program to be determin-
istic, i.e., from every initial state, there is a unique program execution [49, 53].
However, it often becomes necessary to use non-deterministic features when mod-
eling programs, thereby admitting multiple possible executions starting from the
same initial state. Such non-deterministic features may be needed to model user
input, non-deterministic functions, external functions, or when programs are
abstracted. Hence, assuming that all programs are deterministic significantly re-
stricts the applicability of existing techniques for finding weakest preconditions.

We propose a novel technique for inferring weakest preconditions for a class
of terminating non-deterministic programs that manipulate arrays, with respect
to postconditions expressed in a rich language of formulas. Specifically, we target
the class of linear array programs, defined formally in Section 3. This includes
programs used in many practical applications, and the literature describes several
verification techniques for this class of programs [7, 8, 40]. However, existing
techniques for weakest precondition inference either apply to deterministic linear
array programs, or deal with non-determinism in simpler classes of programs.
Our work fills this gap, making it possible to infer weakest preconditions for
linear array programs with non-determinism.

The proposed technique works in the infer-check-weaken framework [1,27,49,
50,54]. It first infers a precondition along with adequate inductive invariants. A
maximality check follows to see whether the precondition is weakest. If the check
yields a negative answer, the precondition is weakened. This loop continues until
the weakest precondition is found. In this framework, our core contributions are
Structural Array Abduction (SAA) for inferring preconditions and associated
invariants, and Specialized Maximality Checking (SMC) for proving that the
inferred precondition is maximal (or weakest).

At a high level, SAA "guesses" candidate preconditions and inductive invari-
ants as (quantified) formulas, and checks their correctness using an SMT solver.
Since quantified formulas over arrays are challenging to reason about even with
state-of-the-art SMT solvers, the guessing has to be done carefully. SAA uses
abductive inference for this purpose. First, it constructs an abduction query to
find what property of array elements at the start of a loop iteration will result
in a desired property after the iteration. The array property thus inferred is
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then combined with a range formula [22], which is a predicate representing the
boundary between indices of the array that are processed and those that are yet
to be processed. A set of rules guide the construction of appropriate abduction
queries and range formulas.

Though SAA is effective in finding weak preconditions, it is not guaranteed
to find the weakest precondition. SMC is used to check whether a precondition is
indeed the weakest. This amounts to determining whether for every initial state
that violates the precondition, there is a terminating execution that results in
a state violating the postcondition. To accomplish this, SMC uses the insight
that every execution of a non-deterministic program is also an execution of an
under-approximation of the original program obtained by suitably restricting
the non-determinism in control flows (i.e., if statements). Specifically, the exis-
tence of inductive invariants for the complement verification problem, i.e., under-
approximated program with complemented pre-and postconditions, proves that
the inferred precondition is indeed the weakest for the given (terminating) pro-
gram and postcondition. SMC uses SAA to find an under-approximated program
and its inductive invariants. When SAA fails, SMC weakens the precondition
from a set of candidates obtained in a syntax-guided way, like in [22].

Our technique is implemented in a tool called MaxPrANQ. It takes con-
strained Horn clauses (CHCs) as input, which is a convenient way to model and
reason about programs symbolically (details in Sec 3.2). On a challenging set of
66 precondition inference tasks, our tool inferred the weakest precondition for
all 66 and automatically proved 59 of them to be the weakest. In comparison,
the state-of-the-art tool PreQSyn [49] could only solve 2/66 benchmarks, and
P-Gen [53] did not find a precondition for any of them. To further gauge the
difficulty level of reasoning about our benchmarks, we tried using two state-of-
the-art inductive invariant inference tools, FreqHorn [22] and Spacer [30],
to simply prove the correctness of the preconditions inferred by MaxPrANQ.
Neither FreqHorn nor Spacer could however complete the task for the entire
set of 66 benchmarks in the given time. This shows that even proving the cor-
rectness of the weakest preconditions was difficult for our benchmarks, let alone
inferring the preconditions automatically.

The primary contributions of our paper are:

1. SAA: a method for finding preconditions, inductive invariants, and stronger
guard conditions for non-deterministic linear array programs.

2. SMC: a method for checking if a precondition is the weakest and, when
inconclusive, weakening it.

3. MaxPrANQ: a tool for finding the weakest preconditions, with witnesses
of validity (inductive invariants) and maximality.

The rest of the paper has following sections: Sect 2 has a running example,
Sect 3 provides necessary background, Sect 4 gives an overview of our algorithm,
SAA and SMC descriptions are in Sect 5 and Sect 6, resp., Sect 7 gives evaluation
details, Sect 8 has related work, and limitations and future work are in Sect 9.
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int N = nondet (); // 𝑁 ≥ 0
int A[N], B[N], C[N];
// pre(N, A, B, C);
for (int i = 0; i < N; i++)

if (nondet ()) C[i] = i;
else A[i] = C[i];

assert(∀j. 0≤j<N =⇒ A[j]=B[j]);

(a) Program

int N = nondet ();
int A[N], B[N], C[N];
// ¬𝑝𝑟𝑒
assume(∃j. 0≤j<N ∧ (A[j] ̸=B[j] ∨ B[j] ̸=C[j]));
for (int i = 0; i < N; i++)

if (A[i] ̸=B[i]) C[i] = i; //new guard
else A[i] = C[i];

assert(∃j. 0≤j<N ∧ A[j] ̸=B[j]);//¬post

(b) Maximality Proof

Fig. 1: A non-deterministic array program and its maximality proof.

2 A Running Example

Fig. 1a shows a non-deterministic program with a postcondition that requires
a universally quantified weakest precondition. The program has three arrays: 𝐴,
𝐵, and 𝐶, each of parametric size 𝑁 . For each array index 𝑖, the program chooses
non-deterministically whether to write 𝑖 to the 𝑖-th element of 𝐶 or copy the 𝑖-th
element of 𝐶 into the corresponding index of 𝐴. The postcondition, as stated in
the assert, requires that the arrays 𝐴 and 𝐵 have the same content. Our goal is
to infer the weakest precondition (denoted by pre) over 𝐴, 𝐵, 𝐶, and 𝑁 under
which the program satisfies the postcondition.

Existing weakest precondition inference techniques [49, 53] diverge for non-
deterministic programs like the one in Fig. 1a. For instance, P-Gen [53] fails to
find a precondition, and PreQSyn [49] fails to prove that the precondition it
finds is the weakest in 200 seconds. This is because they either fail to generalise
a set of initial states to a quantified precondition or, when they do, they cannot
prove it to be the weakest for non-deterministic programs. In contrast, SAA
finds the precondition: ∀𝑗. 0≤ 𝑗 <𝑁 =⇒ (𝐴[𝑗] =𝐵[𝑗] ∧ 𝐵[𝑗] =𝐶[𝑗]) (details in
Sect 5.3), and SMC proves this to be the weakest precondition, all within a few
seconds.

To prove maximality, SMC finds an under-approximated program, as shown
in Fig. 1b. In this program, the non-determinism in the if statement is re-
stricted by a new guard: 𝐴[𝑖] ̸= 𝐵[𝑖]. Furthermore, the assume condition is the
complement of the precondition inferred by SAA earlier, and the condition in
the assert is also complemented. The existence of an adequate inductive in-
variant for this program (which in turn can be found by SAA) proves that all
its executions from every initial state violating the inferred precondition result
in states violating the given postcondition as the program is terminating. In
other words, the inferred precondition is indeed the weakest for the program
and postcondition in Fig. 1a.

3 Background

3.1 Linear Array Programs
Fig 2 shows a grammar for linear array programs over a set of integer and array
variables, V and A, respectively. In the figure, 𝑣 ̸= 𝑖 ∈ V , 𝑎 ∈ A, 𝑖 ∈ V is a fixed
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program → stmts

𝑠𝑡𝑚𝑡𝑠 → assign
⃒⃒
forloop

⃒⃒
stmts; stmts

forloop → for(𝑖 = 0; 𝑖 < 𝑢; 𝑖 = 𝑖 + 1) {𝑎𝑠𝑠𝑖𝑔𝑛}

assign → 𝑣 = 𝑡(V , A)
⃒⃒
𝑎[𝑖] = 𝑡(V , A)⃒⃒

if(:: 𝑔1(V , A) → {assign}

· · ·
:: 𝑔𝑛(V , A) → {assign})⃒⃒

assign; assign

Fig. 2: Linear Array Programs

loop counter, 𝑢 ∈ V ∪Z, 𝑡 is a linear arithmetic expression, and each 𝑔𝑖 (or guard)
is a boolean combination of linear expressions over V and A, with

⋁︀𝑛
𝑖=1 𝑔𝑖 = ⊤.

The if statement is a set of guarded assignments. When such an if statement is
executed, exactly one guard that evaluates to true in the current program state
is non-deterministically chosen and the corresponding assignment statement is
executed5. A program is non-deterministic if there are program states in which
more than one guard of an if could evaluate to true.

Let 𝑃 be a linear array program over V and A. A pre/postcondition for 𝑃 is
a formula of the form ∀𝑥.R(𝑥,V ) =⇒ Q(𝑥,V ,A) or ∃𝑥.R(𝑥,V ) ∧ Q(𝑥,V ,A),
where 𝑥 ̸∈ V is an integer variable, R is a linear predicate over 𝑥 and V that
represents a range of indices of array(s), and Q is a linear predicate over V and
elements of array(s) in A, the latter being accessed only through linear index
expressions in 𝑥. As an example, ∀𝑥. (0 ≤ 𝑥 ≤ 𝑁) =⇒ (𝐶[𝑥] ≤ 𝐵[𝑥]) qualifies
for a pre/postcondition, where 𝑁 ∈ V and 𝐶,𝐵 ∈ A. Following standard Floyd-
Hoare logic, we say a pair of conditions (𝜓, 𝜌) is a valid pre- and postcondition
pair for 𝑃 , if every execution of 𝑃 that begins in a state satisfying 𝜓 ends in a
state satisfying 𝜌.

The weakest precondition inference problem we consider is: given a linear
array program 𝑃 and a postcondition 𝜌, find the weakest precondition 𝜓 such
that (𝜓, 𝜌) forms a valid pre- and postcondition pair for 𝑃 .

Weakest precondition inference for linear array programs is undecidable in
general [49]. Therefore, we cannot hope for an algorithm that infers weakest
preconditions in all cases. Nevertheless, many practical and useful programs can
be modeled as linear array programs (see for example [7, 8, 40]). This motivates
us to design techniques for finding weakest preconditions that work well for a
large subclass of linear array programs.

3.2 Modeling Linear Array Programs as CHCs

In recent years, it is becoming popular to represent a program and its pre- and
postcondition as a system of first-order logic (FOL) formulas with uninterpreted
relations, called constrained Horn clauses (CHCs) [10, 19, 29, 33, 35–37, 43, 45].
In CHCs, the uninterpreted relations represent invariants and the goal is to find
interpretations for them. We will consider the task of precondition inference as
a CHC-solving task, with the missing precondition represented by a relation.

5 The usual if-then-else statement is easily represented as two guarded assignments.
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𝑝𝑟𝑒(𝑁,𝐴,𝐵,𝐶) ∧ 𝑖 = 0 =⇒ 𝑖𝑛𝑣1(𝑖,𝑁,𝐴,𝐵,𝐶) (𝐶1)

𝑖𝑛𝑣1(𝑖,𝑁,𝐴,𝐵,𝐶) ∧𝑖<𝑁∧ 𝐶
′
= 𝑠𝑡𝑜𝑟𝑒(𝐶, 𝑖, 𝑖) ∧𝑖

′
= 𝑖+1 =⇒ 𝑖𝑛𝑣1(𝑖

′
,𝑁,𝐴,𝐵,𝐶

′
) (𝐶2)

𝑖𝑛𝑣1(𝑖,𝑁,𝐴,𝐵,𝐶) ∧𝑖<𝑁∧ 𝐴
′
= 𝑠𝑡𝑜𝑟𝑒(𝐴, 𝑖, 𝐶[𝑖]) ∧𝑖

′
= 𝑖+1 =⇒ 𝑖𝑛𝑣1(𝑖

′
,𝑁,𝐴

′
,𝐵,𝐶) (𝐶3)

𝑖𝑛𝑣1(𝑖,𝑁,𝐴,𝐵,𝐶) ∧ ¬(𝑖<𝑁) ∧ ¬(∀𝑗. 0 ≤ 𝑗 < 𝑁 =⇒ 𝐴[𝑗]=𝐵[𝑗]) =⇒ ⊥ (𝐶4)

Fig. 3: CHC system for the program from Fig. 1a.

Definition 1. A CHC is a formula in a FOL L (linear integer arithmetic with
arrays in this paper) over a set of relations R with one of the following forms:

𝜙(�⃗�0) =⇒ 𝑟0(�⃗�0) (1)⋀︁
0≤𝑖≤𝑘

𝑟𝑖(�⃗�𝑖)∧𝜙(�⃗�0, . . . , �⃗�𝑘+1) =⇒ 𝑟𝑘+1(�⃗�𝑘+1) (2)

⋀︁
0≤𝑖≤𝑘

𝑟𝑖(�⃗�𝑖)∧𝜙(�⃗�0, . . . , �⃗�𝑘) =⇒⊥ (3)

where, for every 𝑖, 𝑟𝑖 ∈ R 6, and �⃗�𝑖 represents the vector of variables (𝑥1, . . . , 𝑥𝑎𝑟𝑖
),

where 𝑎𝑟𝑖 is the arity of 𝑟𝑖. 𝜙, called a constraint, is an L-formula in conjunctive
normal form without uninterpreted relations. CHCs of type (1) are called facts7,
of type (2) inductive, and of type (3) queries. Note that each CHC has a leading
quantification over �⃗� (e.g. ∀�⃗�0 . . . �⃗�𝑘+1 for type (2)) that is implicit in the paper.

For a CHC 𝐶, we use the following notations: body(𝐶) (resp. head(𝐶)) de-
notes the left (resp. right) side of the implication in 𝐶, rels() denotes the relations
from R that appear in body(𝐶), or head(𝐶), and args() denotes the variables in
body(𝐶), or head(𝐶). We assume the constraint 𝜙 of a CHC 𝐶 can be partitioned
into two formulas: assign(𝐶) and guard(𝐶), denoting the assignment statement
and control-flow guard conditions (if any). A system of CHCs 𝑆 is a finite set of
CHCs. For any system 𝑆, if there is a CHC 𝐶 with |rels((body(𝐶)))| ≥ 1, then
𝑆 is non-linear, otherwise linear.

We assume the input CHC system is induced by a linear array program
with 𝑛 ≥ 0 sequential loops. In particular, it is a linear CHC system over
R = {𝑝𝑟𝑒, 𝑖𝑛𝑣1, . . . , 𝑖𝑛𝑣𝑛}, where 𝑝𝑟𝑒 denotes the precondition, and each 𝑖𝑛𝑣𝑖

denotes an inductive invariant for the 𝑖-th sequential loop.

Example 1. A linear system of CHCs induced by the program from Fig 1a is
shown in Fig 3. In the system, the precondition is represented by the relation
𝑝𝑟𝑒 and the inductive invariant by 𝑖𝑛𝑣1. 𝐶1 is the initialization CHC with
𝑝𝑟𝑒. The two CHCs 𝐶2 and 𝐶3 correspond to non-deterministic writes in the
loop, while 𝐶4 is the query CHC, which has the assert condition. It is worth
noting that interpretations for 𝑝𝑟𝑒 and 𝑖𝑛𝑣1 that make each CHC valid gives a

6 𝑟𝑖’s in each form are not necessarily distinct.
7 The input CHC system will not have facts but they manifest in Algorithm 4.
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precondition and an adequate inductive invariant. For example,

𝑝𝑟𝑒 ↦→ 𝜆𝑁,𝐴,𝐵,𝐶. ∀𝑗. 0≤𝑗<𝑁 =⇒ (𝐴[𝑗]=𝐵[𝑗] ∧𝐵[𝑗]=𝐶[𝑗])

𝑖𝑛𝑣1 ↦→ 𝜆𝑁,𝐴,𝐵,𝐶, 𝑖. ∀𝑗. 0 ≤ 𝑗 < 𝑖 =⇒ 𝐴[𝑗] = 𝐵[𝑗] ∧
∀𝑗. 𝑖 ≤ 𝑗 < 𝑁 =⇒ (𝐴[𝑗] = 𝐵[𝑗] ∧𝐵[𝑗] = 𝐶[𝑗])

A map of interpretations M for R assigns to each relation symbol 𝑟 ∈ R an
interpretation of the form 𝜆𝑥1 · · ·𝜆𝑥𝑎𝑟 . 𝜓(𝑥1, . . . , 𝑥𝑎𝑟 ), where 𝜓 is a L-formula.
We use the notation M [𝑟] to denote the interpretation for 𝑟 by M . For a formula
𝛼 and a map M for R , we write 𝛼[M /R ] to denote the formula obtained by
replacing each atomic formula of the form 𝑟(𝑡1, . . . , 𝑡𝑎𝑟 ) in 𝛼 by M [𝑟](𝑡1, . . . , 𝑡𝑎𝑟 ).

Solution to CHCs A solution to a CHC 𝐶 is a map M for R such that the formula
(body(𝐶) =⇒ head(𝐶))[M /R ] is valid; in this case, we say 𝐶 is satisfiable. M
is a solution to a system 𝑆 if it satisfies all the CHCs in 𝑆; in this case, we say
𝑆 is satisfiable.

Let 𝑆 be a system of CHCs induced by a program 𝑃 and a postcondition 𝜌.
If M is a solution to 𝑆, then (M [𝑝𝑟𝑒], 𝜌) forms a valid pre/postcondition for 𝑃 .

3.3 Abductive Inference

The core method used in SAA for inference is abduction. Given a formula (𝑟(�⃗�)∧
𝛼(�⃗�)) =⇒ 𝛽(�⃗�), where 𝑟 represents a relation, 𝛼 (hypothesis) and 𝛽 (conclusion)
are formulas without relations, and the variables in �⃗� are also present in �⃗�, the
problem of abduction is to find an interpretation 𝜆𝑥1 · · ·𝜆𝑥𝑎𝑟 . 𝜓 to 𝑟 such that:

𝜓(�⃗�) ∧ 𝛼(�⃗�) ≠⇒ ⊥ and 𝜓(�⃗�) ∧ 𝛼(�⃗�) =⇒ 𝛽(�⃗�)

Example 2. Consider the abduction problem (𝑟(𝑥) ∧ 𝑦 = 42) =⇒ (𝑥− 𝑦 > 0).
The maximal solution for the problem is 𝑟 ↦→ 𝜆𝑥. 𝑥 > 42.

A given abduction problem can have multiple solutions. SAA seeks the max-
imal solution. There are techniques, like quantifier elimination, to find maximal
solutions [16], but they are limited to non-array theories. To overcome this, range
abduction [49] proposes a suitable array-to-integer abstraction, which SAA also
uses.

Non-linear CHCs have more than one relation in body , requiring an extension
of the abduction problem called multi-abduction. In multi-abduction, interpreta-
tions to multiple relations need to be inferred. SAA encounters non-linear CHCs
while searching for maximality proofs, which involve the guard and inductive in-
variant relations. To solve the multi-abduction problem, SAA uses the technique
from [1] after performing the array-to-integer abstraction from [49].

Example 3. The following is a multi-abduction problem: (𝑟1(𝐴, 𝑖) ∧ 𝑟2(𝐵, 𝑖) ∧
𝐶[𝑖] = 42) =⇒ (𝐴[𝑖]+𝐵[𝑖] > 𝐶[𝑖]). A maximal solution is 𝑟1 ↦→ 𝜆𝐴, 𝑖. 𝐴[𝑖] > 42
and 𝑟2 ↦→ 𝜆𝐵, 𝑖. 𝐵[𝑖] ≥ 0.
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Algorithm 1: WeakestPre(𝑆)
Input: 𝑆 – a system of non-deterministic CHCs over

R = {𝑝𝑟𝑒, 𝑖𝑛𝑣1, . . . , 𝑖𝑛𝑣𝑛}
Output: ⟨{𝑤𝑒𝑎𝑘𝑒𝑠𝑡, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛},M [𝑝𝑟𝑒]⟩

1 ⟨𝑟𝑒𝑠,M ⟩ ← SAA(𝑆,∅);
2 while res do
3 ⟨𝐺,𝛤 ⟩ ← GetSplCHCs(𝑆,M );
4 ⟨𝑚𝑎𝑥,_⟩ ← SAA(𝐺,𝛤 );
5 if 𝑚𝑎𝑥 then return ⟨𝑤𝑒𝑎𝑘𝑒𝑠𝑡,M [𝑝𝑟𝑒]⟩ ;
6 ⟨res,M ⟩ ←Weaken(𝑆,M );
7 return ⟨𝑢𝑛𝑘𝑛𝑜𝑤𝑛,M [𝑝𝑟𝑒]⟩;

4 Inferring Weakest Preconditions

An overview of our weakest precondition inference algorithm is in Algorithm 1.
The algorithm takes as input a CHC system 𝑆 over {𝑝𝑟𝑒, 𝑖𝑛𝑣1, . . . 𝑖𝑛𝑣𝑛}. It
first computes a solution M to 𝑆 using SAA (line 1). Though this solution gives
a precondition (as the solution will have interpretations to 𝑝𝑟𝑒, 𝑖𝑛𝑣1, . . . 𝑖𝑛𝑣𝑛),
it is not guaranteed to be the weakest. Hence, in a loop, the algorithm performs
maximality checking and weakening (lines 2 to 6). When the maximality check
succeeds, the solution is guaranteed to be the weakest (Theorem 1); hence the
algorithm returns the current precondition M [𝑝𝑟𝑒] (line 5). Otherwise, the algo-
rithm assumes the maximality check is inconclusive and tries to find a weakening
(line 6). The algorithm progresses and continues the same loop if a weakening is
found. When the weakening is inconclusive, the loop terminates, and the current
precondition is returned without a maximality guarantee (line 7).

SAA takes a CHC system, which is either a precondition inference task (𝑆),
or the encoding of maximality check (𝐺) with additional non-CHC constraints
(𝛤 ). It finds a solution M to the CHC system that also satisfies the additional
constraints.

Algorithm 1 proves the maximality of a precondition by encoding a CHC sys-
tem 𝐺 and non-CHC constraints 𝛤 , together called specialized CHCs (line 3). 𝐺
has the same set of CHCs as the input CHC system 𝑆 except the following: 1)
the relation 𝑝𝑟𝑒 is replaced by the formula ¬M [𝑝𝑟𝑒], 2) the postcondition is the
negation of the postcondition in 𝑆, and 3) new guard relations : 𝑔𝐶𝑖, . . . , 𝑔𝐶𝑗 are
added to body of CHCs: 𝐶𝑖, . . . 𝐶𝑗 corresponding to non-deterministic if condi-
tions. Thus, 𝐺 is a CHC system over the invariant relations of 𝑆 and new guard
relations. A solution to 𝐺 gives stronger if conditions and inductive invariants
for the complement pre- and postcondition. The non-CHC constraints in 𝛤 make
sure the disjunction of 𝑔𝐶𝑖, . . . , 𝑔𝐶𝑗 is ⊤; thus ensuring the interpretations for
them are not too strong.

When SAA fails to find a solution to 𝐺, Algorithm 1 calls Weaken. At a high
level, Weaken enumerates candidate preconditions obtained in a syntax-guided
way like [22] and then tries to find inductive invariants using SAA again.
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(∃𝑗. 0≤𝑗<𝑁 ∧ (𝐴[𝑗] ̸=𝐵[𝑗] ∨ 𝐵[𝑗] ̸=𝐶[𝑗])) ∧ 𝑖 = 0 =⇒ 𝑖𝑛𝑣1(𝑖, 𝑁,𝐴,𝐵,𝐶)

𝑖𝑛𝑣1(𝑖,𝑁,𝐴,𝐵,𝐶) ∧ 𝑔𝐶2(𝑖,𝑁,𝐴,𝐵,𝐶) ∧ 𝑖<𝑁 ∧ 𝐶
′
= 𝑠𝑡𝑜𝑟𝑒(𝐶, 𝑖, 𝑖) ∧ 𝑖

′
= 𝑖+1 =⇒ 𝑖𝑛𝑣1(𝑖

′
,𝑁,𝐴,𝐵,𝐶

′
)

𝑖𝑛𝑣1(𝑖,𝑁,𝐴,𝐵,𝐶)∧𝑔𝐶3(𝑖,𝑁,𝐴,𝐵,𝐶)∧𝑖<𝑁∧𝐴
′
= 𝑠𝑡𝑜𝑟𝑒(𝐴, 𝑖, 𝐶[𝑖])∧𝑖

′
= 𝑖+1 =⇒ 𝑖𝑛𝑣1(𝑖

′
,𝑁,𝐴

′
,𝐵,𝐶)

𝑖𝑛𝑣1(𝑖,𝑁,𝐴,𝐵,𝐶) ∧ ¬(𝑖<𝑁) ∧ ¬(∃𝑗. 0≤𝑗<𝑁∧𝐴[𝑗] ̸=𝐵[𝑗]) =⇒ ⊥
⊤ =⇒ 𝑔𝐶2(𝑖,𝑁,𝐴,𝐵,𝐶) ∨ 𝑔𝐶3(𝑖,𝑁,𝐴,𝐵,𝐶)

Fig. 4: Specialized CHCs for the CHCs from Example 1.

Example 4. Fig. 4 shows the specialized CHCs for the CHC system from Fig. 3
and the precondition from Example 1 (viz. ∀𝑗. 0 ≤ 𝑗 < 𝑁 =⇒ (𝐴[𝑗] = 𝐵[𝑗] ∧
𝐵[𝑗] = 𝐶[𝑗])). This system has following changes: 1) In the first CHC, the
relation 𝑝𝑟𝑒 is replaced by the complement of the precondition, 2) The next
two CHCs have 𝑔𝐶2, 𝑔𝐶3 in body , 3) In the fourth CHC, the postcondition is
complemented, and 4) The last constraint is a non-CHC constraint that makes
sure 𝑔𝐶2 ∨ 𝑔𝐶3 is ⊤.

Theorem 1 (Soundness of Algorithm 18). For a system 𝑆, if Algorithm 1
terminates with “𝑤𝑒𝑎𝑘𝑒𝑠𝑡” then M [𝑝𝑟𝑒] is the weakest precondition for 𝑆.

5 Structural Array Abduction

Structural Array Abduction (SAA) solves CHCs. In Algorithm 1, SAA solves
program-induced CHCs to identify preconditions, specialized CHCs for maximal-
ity proofs, and CHCs with candidate weakened preconditions to find invariants.

5.1 Algorithm Description

SAA aims to find interpretations to 𝑝𝑟𝑒 and 𝑖𝑛𝑣 of the following form:⋀︁(︀
∀𝑥.R(𝑥,V ) =⇒ Q(𝑥,V ,A)

)︀
or

⋁︁(︀
∃𝑥.R(𝑥,V ) ∧ Q(𝑥,V ,A)

)︀
(4)

Similar to the postcondition, here, R is a linear predicate over 𝑥 and V that
represents a range of indices of array(s), and Q is a linear predicate over V and
elements of array(s) in A, the latter being accessed only through linear index
expressions in 𝑥. Such a form is sufficient to represent inductive invariants for a
large class of array programs, as observed in existing works [22,28,30,31,38].

A relatively complete guessing algorithm involves enumerating all candidate
solutions in the form of 4 and then checking them using an SMT solver. How-
ever, given the large number of candidate solutions and the inherent challenge
that quantified formulas with arrays pose for SMT solvers, SAA brings a novel
improvement. It narrows down the search by guessing likely candidate solutions
using a logical method, as presented in Algorithm 2.
8 Proofs are in [48].
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Algorithm 2: SAA (𝑆, 𝛤 )
Input: 𝑆 – set of CHCs over R ∪ R𝑔, 𝛤 – non-CHC constraints over R𝑔

Output: ({⊤,⊥} – result, M – solution to 𝑆 that also satisfies 𝛤 )

1 while ∃𝐶 ∈ 𝑆.CheckSAT(¬
(︀
body(𝐶) =⇒ head(𝐶)

)︀
[M /R ]) do

2 if 𝐶 is not fact then
3 M ← ArrayAbduce(𝑆,𝐶,M );
4 else
5 M ←WeakenFact(𝑆,M );
6 if M is unchanged then M ← NextCandidate() ;
7 𝑟𝑒𝑠← CheckSAT(𝛤 );
8 return(𝑟𝑒𝑠,M );

Algorithm 2 begins with an initial candidate solution, e.g., ∀𝑟 ∈ R .M [𝑟] = ⊤
in our implementation, and checks whether it is a solution to all CHCs. If not, the
algorithm attempts to make the candidate a solution to the failed CHC mainly
through abduction-based strengthening (line 3), or heuristics-based weakening
if the CHC is a fact (line 5). If neither strengthening nor weakening results
in a change to the candidate, the algorithm proceeds to the next candidate in
the fixed form. When a candidate is found to be a solution, it is checked for
additional constraints in 𝛤 .

The abduction-based strengthening method is presented in Algorithm 3. It
seeks new interpretations for the relations in body of a CHC, which can be 𝑝𝑟𝑒,
𝑖𝑛𝑣, or 𝑔𝐶 , that imply the interpretation for the relation in head of the CHC.
This constitutes the abduction problem, as defined in Sec 3.3. However, existing
abduction solvers cannot be used directly as they do not support quantified
formulas with arrays. Hence, in Algorithm 3, Q and R from the fixed form ( 4)
are determined separately and then combined into a quantified formula.

To find Q, the algorithm constructs an abduction query based on the rules
provided in Table 1. In the abduction query, the hypothesis (𝛼) is the assignment
formula present in the constraint of the CHC (line 1), and the conclusion (𝛽) is
derived from the table based on the type of the CHC (line 2). Since the query
contains array terms, which are not supported by existing abduction solvers, they
are replaced by integer terms in a manner similar to the approach presented in
[49] (e.g., 𝐴[𝑖] is replaced by a new integer variable 𝑎𝑖). Subsequently, the query
is solved using an integer abduction solver to obtain a maximal solution (line 4).
When the CHC has a guard relation 𝑔𝐶 in its body , an additional abduction query
is constructed to find interpretations for the other guard relations 𝑔𝐶′ (line 6).
Finally, integer terms in the solutions of the abduction queries are mapped back
to corresponding array terms (line 7).

SAA uses the concept of range formulas as described in [22] to determine
R. In the context of linear array programs, these range formulas can take the
form of 0 ≤ j < u, 0 ≤ j < i , and i ≤ j < u9, where 𝑗 is a free variable and 𝑢

9 In [22], these are referred as Range, progressRange, and regressRange, respectively.
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Algorithm 3: ArrayAbduce(𝑆,𝐶,M )
Input: 𝑆 – set of CHCs over R ∪ R𝑔, 𝐶 – CHC in 𝑆 where rels(body(𝐶)) is

{𝑟}, or {𝑟, 𝑔𝐶}, where 𝑟 is either 𝑝𝑟𝑒 or some 𝑖𝑛𝑣 from R , and
𝑔𝐶 . . . 𝑔𝐶′ are from R𝑔 for the same control-flow condition, M –
mapping from R ∪ R𝑔 to predicates

Output: M ′ – updated M with new interpretations to 𝑟 and 𝑔𝐶 . . . 𝑔𝐶′

1 𝛼← assign(𝐶) ∧M [𝑔𝐶 ];
2 𝛽 ← Get𝛽(𝐶,M ) // cf. Tab 1;
3 Transform 𝛼 and 𝛽 to integer formulas;
4 ⟨Q,Q𝑔𝐶

⟩ ← AbdSolver(𝑟(�⃗�𝑟) ∧ 𝑔𝐶(�⃗�𝑔𝐶 ) ∧ 𝛼 =⇒ 𝛽);
5 if Q𝑔𝐶

̸= ⊥ then
6 ⟨Q𝑔𝐶′ ̸=𝐶

⟩ ← AbdSolver(
⋁︀

𝐶′ ̸=𝐶

𝑔𝐶′(�⃗�𝑔𝐶′ ) =⇒ ¬Q𝑔𝐶
);

7 Transform Q, Q𝑔𝐶
. . .Q𝑔𝐶′ to array formulas;

8 ⟨R, 𝑗⟩ ← GetR(𝑆,𝐶) // cf. Tab 1;
9 if universally quantified then M [𝑟]← M [𝑟] ∧ ∀𝑗.R =⇒ Q ;

10 else M [𝑟]← M [𝑟] ∨ ∃𝑗.R ∧Q ;
11 M [𝑔𝐶 ]← Q𝑔𝐶

. . .M [𝑔𝐶′ ]← Q𝑔𝐶′ ;
12 return M ;

is the upper bound of the loop (cf. Fig. 2). From these formulas, a suitable R is
selected based on the type of the CHC in Table 1.

The resulting R and Q are appropriately combined into a quantified formula
and conjoined (or disjoined in the case of existential quantification) with the
existing interpretation (lines 9 and 10). The guard relations are updated by the
non-quantified formulas Q𝑔𝐶

, . . . ,Q𝑔𝐶′ .
Table 1 provides a set of rules for determining R and 𝛽 for all types of CHCs

that Algorithm 3 may encounter. These CHCs include: 1) precond : the initial-
ization CHC with 𝑝𝑟𝑒 in body , 2) query : the CHC with postcondition, 3) intra:
CHCs representing potentially non-deterministic updates within a loop, and 4)
inter : CHCs occurring between two loops. For example, when a CHC 𝐶 falls into
the precond category, 𝛽 is the Q present in M [rels(head(𝐶))] corresponding to
the range i ≤ j < u, and formula R is 0 ≤ j < u. We give an intuition to these
rules while illustrating our technique in the following section.

When a fact CHC is unsatisfiable, SAA uses heuristic-based weakening for
the head relation (Algorithm 2, line 5). This method generates a candidate set of
Q formulas using the syntax of body of the CHC and combines it with i ≤ j < u
to get a quantified formula.

Theorem 2. If the input CHC system 𝑆 has a solution in the form of 4, then
Algorithm 2 will find it provided all the SMT checks return a result.

5.2 Distinguishing SAA With Closely-Related Techniques

SAA uses the concept of range formulas from [22] and array to integer abduction
technique from range abduction [49]. Nevertheless, there are notable differences:
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𝑝𝑟𝑒 ∈ rels(body(𝐶))

𝛽 ← Q(i ≤ j < u,M [rels(head(𝐶))]) R← 0 ≤ j < u
precond

rels(head(𝐶)) = ∅
𝛽 ← Q(0 ≤ j < u, 𝜌) R← 0 ≤ j < i

query

rels(head(𝐶)) ⊆ rels(body(𝐶))

𝛽 ← Q(0 ≤ j < i ,M [rels(head(𝐶))]) R← i ≤ j < u
intra

rels(head(𝐶)) ∩ rels(body(𝐶)) = ∅ and rels(head(𝐶)) ̸= ∅
𝛽 ← Q(i ≤ j < u,M [rels(head(𝐶))]) R← 0 ≤ j < i

inter

Table 1: Rules for all CHC types to construct formulas R and Q in Algorithm 3.

1) While [22] relies on preconditions to infer invariants, SAA is capable of
inferring invariants even in the absence of preconditions. 2) Both [22] and range
abduction can’t handle nonlinear CHCs resulting from guarded relations, which
SAA support by using multi-abduction. 3) In our experiments, we observed that
range abduction tends to generate stronger preconditions compared to SAA.
4) Range abduction performs two abduction queries for each CHC, whereas
SAA requires only one. 5) Range abduction uses the Houdini algorithm [23] for
weakening, which is not necessary for SAA.

5.3 Illustration

Consider the CHCs from Fig. 3. For these CHCs, the range formulas are: 0≤𝑗<
𝑁 , 0≤𝑗<𝑖, and 𝑖≤𝑗<𝑁 , as the upper bound 𝑢 of the loop is 𝑁 .

The algorithm begins with M [𝑝𝑟𝑒] = M [𝑖𝑛𝑣1] = ⊤. But, the query CHC
(C4) is unsatisfiable as M [𝑖𝑛𝑣1] is too weak. So, SAA tries to find a strength-
ening for 𝑖𝑛𝑣1 using abduction. Recall that the postcondition (𝜌) is ∀𝑗. 0≤ 𝑗 <
𝑁 =⇒ 𝐴[𝑗] = 𝐵[𝑗]. While 𝜌 itself can make this CHC satisfiable, it might be
too strong for other CHCs with 𝑖𝑛𝑣1. Therefore, the rule for query in the table
suggests to consider R as 0 ≤ 𝑗 < 𝑖, and 𝛽 as 𝐴[𝑗] = 𝐵[𝑗] from 𝜌, corresponding
to the range 0 ≤ 𝑗 < 𝑁 . The abduction query (𝑖𝑛𝑣1(𝐴,𝐵,𝐶, 𝑖,𝑁) ∧ ⊤) =⇒
𝐴[𝑗] = 𝐵[𝑗] yields Q as 𝐴[𝑗] = 𝐵[𝑗]. Combining R and Q results in:

M [𝑖𝑛𝑣1]
cand↦→ ∀𝑗. (0 ≤ 𝑗 < 𝑖) =⇒ 𝐴[𝑗] = 𝐵[𝑗]

Next, an intra CHC 𝐶2 is unsatisfiable. This is due to the absence of restric-
tions on the values of 𝐴 and 𝐵 in the range 𝑖 ≤ 𝑗 < 𝑁 within 𝑖𝑛𝑣1. One way to
fix this is to find a Q in the range 𝑖 ≤ 𝑗 < 𝑁 that implies 𝐴[𝑗] = 𝐵[𝑗]. This ap-
proach aligns with the rule for intra CHC, where 𝛽 is 𝐴[𝑗] = 𝐵[𝑗] corresponding
to the range 0 ≤ 𝑗 < 𝑖 of M [𝑖𝑛𝑣1], and R is 𝑖 ≤ 𝑗 < 𝑁 . Further, assign(𝐶2) is
𝐶 ′[𝑗] = 𝑗 (primed variables denote updated variables), resulting in the following
abduction query: (𝑖𝑛𝑣1(𝐴,𝐵,𝐶, 𝑖,𝑁) ∧ 𝐶 ′[𝑗] = 𝑗) =⇒ 𝐴[𝑗] = 𝐵[𝑗]. This query
yields 𝐴[𝑗] = 𝐵[𝑗] as Q. Combining R and Q into a quantified formula, and
conjoining it with M [𝑖𝑛𝑣1] gives:

M [𝑖𝑛𝑣1]
cand↦→ ∀𝑗. (0 ≤ 𝑗 < 𝑖) =⇒ 𝐴[𝑗] = 𝐵[𝑗] ∧

∀𝑗. (𝑖 ≤ 𝑗 < 𝑁) =⇒ 𝐴[𝑗] = 𝐵[𝑗]
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In the third iteration, another intra CHC 𝐶3 fails the check. Here, assign(𝐶3)
is 𝐴′[𝑗] = 𝐵[𝑗] and 𝛽 is 𝐴′[𝑗] = 𝐵[𝑗], resulting in the following abduction query:
(𝑖𝑛𝑣1(𝐴,𝐵,𝐶, 𝑖,𝑁) ∧ 𝐴′[𝑗] = 𝐶[𝑗]) =⇒ 𝐴′[𝑗] = 𝐵[𝑗]. This query yields 𝐵[𝑗] =
𝐶[𝑗] as Q. Combining this with R, which is 𝑖 ≤ 𝑗 < 𝑁 , results in:

M [𝑖𝑛𝑣1]
cand↦→ ∀𝑗. (0 ≤ 𝑗 < 𝑖) =⇒ 𝐴[𝑗] = 𝐵[𝑗] ∧

∀𝑗. (𝑖 ≤ 𝑗 < 𝑁) =⇒ (𝐴[𝑗] = 𝐵[𝑗] ∧𝐵[𝑗] = 𝐶[𝑗])

Subsequently, a precond CHC, 𝐶1, fails the check. These CHCs have an
initialization of the counter variable (i.e., 𝑖 = 0), rendering the formula within
the range 0 ≤ 𝑗 < 𝑖 trivially ⊤. Therefore, the rule for precond CHC selects 𝛽
from the other range, i.e., 𝛽 is 𝐴[𝑗] = 𝐵[𝑗]∧𝐵[𝑗] = 𝐶[𝑗] from the range 𝑖 ≤ 𝑗 < 𝑁
of M [𝑖𝑛𝑣1]. This leads to the following abduction query: (𝑝𝑟𝑒(𝐴,𝐵,𝐶, 𝑖,𝑁) ∧
⊤) =⇒ (𝐴[𝑗] = 𝐵[𝑗]∧𝐵[𝑗] = 𝐶[𝑗]), which yields Q as 𝐴[𝑗] = 𝐵[𝑗]∧𝐵[𝑗] = 𝐶[𝑗].
Further, R is 0 ≤ 𝑗 < 𝑁 , resulting in:

M [𝑝𝑟𝑒]
cand↦→ ∀𝑗. (0 ≤ 𝑗 < 𝑁) =⇒ (𝐴[𝑗] = 𝐵[𝑗] ∧𝐵[𝑗] = 𝐶[𝑗]).

The algorithm terminates as the candidate M is a solution.

6 Specialized Maximality Checking

While SAA effectively infers precondition, it may not always be the weakest.
To check for maximality, a specialized CHC system (𝐺 and 𝛤 ) is generated in
Algorithm 1 using the method GetSplCHCs, which is described in this section.
This section also covers the method to weaken a precondition.

6.1 GetSplCHCs method

The GetSplCHCs method constructs a new CHC system 𝐺 by iterating over
all the CHCs in the input system 𝑆 while performing the following:

1. Replacing 𝑝𝑟𝑒 with ¬M [𝑝𝑟𝑒] and the postcondition 𝜌 with ¬𝜌, and
2. For each relation 𝑖𝑛𝑣𝑖, if there exist two intra CHCs 𝐶 and 𝐶 ′ with guard(𝐶)∧

guard(𝐶 ′) ≠⇒ ⊥, then for each intra CHC 𝐶 of 𝑖𝑛𝑣𝑖, a new relation
𝑔𝐶(args(body(𝐶)) is added to body(𝐶).

Example 5. The CHC system from Fig. 3, has intra CHCs 𝐶2 and 𝐶3 with
guard(𝐶2) = guard(𝐶3) = 𝑖 < 𝑁 , so guard(𝐶)∧ guard(𝐶 ′) ≠⇒ ⊥. As a result,
two new relations 𝑔𝐶2 and 𝑔𝐶3 are introduced into body(𝐶2) and body(𝐶3),
leading to the CHC system shown in Fig. 4. For this system, SAA finds: 𝑔𝐶2 ↦→
𝐴[𝑖] ̸= 𝐵[𝑖] and 𝑔𝐶3 ↦→ 𝐴[𝑖] = 𝐵[𝑖], along with an invariant for 𝑖𝑛𝑣1.

A solution to 𝐺 can result in interpretations for guard relations that block
all executions (e.g., ⊥). To prevent this, the following non-CHC constraint (𝛤 )
will be introduced:
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Algorithm 4: Weaken(𝑆,M )
Input: 𝑆 – set of CHCs over R , M – mapping for R
Output: ⟨{⊤,⊥},M ⟩ – ⊤ indicates M has a weakened 𝑝𝑟𝑒 and ⊥ indicates

failure

1 𝛥← CandidatePrecond(𝑆,M );
2 for 𝛿 ∈ 𝛥 do
3 𝑆′ ← replace 𝑝𝑟𝑒 by 𝛿 in 𝑆;
4 (res,M ′)← SAA(𝑆′,∅);
5 if res then return (⊤,M ′) where M ′[𝑝𝑟𝑒] = 𝛿 ;
6 return ⟨⊥,M ⟩;

⊤ =⇒
⋁︀

1≤𝑗≤𝑚

(︀
𝑔𝐶𝑗 (args(body(𝐶𝑗)) ∧ guard(𝐶𝑗)

)︀
Theorem 3. If a CHC system 𝑆 induced by a program 𝑃 has a solution M ,
and its specialized CHCs (𝐺 and 𝛤 ) are satisfied, then M [𝑝𝑟𝑒] is the weakest
precondition of 𝑃 .

6.2 Weakening Procedure

When SAA is inconclusive on the specialized CHCs, the precondition M [𝑝𝑟𝑒]
is weakened, as shown Algorithm 4.The algorithm begins by computing a set
of potential candidate preconditions 𝛥. We assume that this set is computed in
a syntax-guided fashion like in [22] (can also be provided by the user). Only
candidate preconditions that are strictly weaker than M [𝑝𝑟𝑒] are taken into
consideration. For each such candidate 𝛿 ∈ 𝛥, SAA is invoked to infer inductive
invariants by passing the CHC system 𝑆 with the relation 𝑝𝑟𝑒 replaced by 𝛿.
This process continues till success or all the candidates have been exhausted.
Whenever the method succeeds, the precondition is weaker by construction.

7 Evaluation

Implementation Our algorithm is implemented in a tool called MaxPrANQ on
top of the HornSpec framework [50]. The tool takes as input a set of CHCs with
preconditions and invariants represented as uninterpreted relations. It returns
the weakest precondition, along with proof of validity (viz. inductive invariants)
and maximality (viz. specialized CHCs and its solution). It uses Z3 [14] to solve
SMT queries. Quantifier elimination is done by model-based projection [3, 20].

Research Questions We evaluate MaxPrANQ on the following questions:

RQ1 Can MaxPrANQ find weakest preconditions for a range of benchmarks?
RQ2 How well does MaxPrANQ perform in comparison with state-of-the-art

techniques?
RQ3 How challenging is it for existing techniques to infer invariants for our

benchmarks even with the preconditions being given?

188             S Prabhu et al.



Benchmarks and Configuration We use 66 precondition inference tasks with
universal quantified postconditions. While we initially intended to use the pre-
condition inference benchmarks from [53], none of them had quantified post-
conditions. Hence, we derived our benchmarks from existing verification tasks
of [22] that had quantified postconditions. Specifically, we considered multiple
loop benchmarks from [22], where the first loop is an initialization loop, and the
other loops perform various array update operations. We then removed the first
loop so that a non-trivial quantified precondition would need to be synthesized.
Overall, we consider 26 multiple loop benchmarks from [22]. Since a majority
of the 26 benchmarks were deterministic, we added non-deterministic guards to
the update operations and introduced a similar update operation in the other
branch . To further test our tool, we adapted these benchmarks to 40 more
benchmarks by using common array update operations and postconditions. We
performed the experiments on a Ubuntu machine with 2.5 GHz processor and
16 GB memory. A timeout of 200 seconds was given to all the tools.

Tools for comparison We compare our tool against PreQSyn [49], an abduction-
based precondition inference tool, and P-Gen [53], a predicate abstraction based
tool. Additionally, we compare against the CHC solvers that can generate quanti-
fied inductive invariants: FreqHorn [22], a SyGuS based tool, and Spacer [30]
(Z3 v4.8.10), an extension of PDR for quantified formulas.

RQ1 MaxPrANQ found and automatically proved 59/66 weakest precondi-
tions. For the remaining 7, it found the weakest precondition, but couldn’t prove
it automatically due to failure in finding a solution to the specialized CHCs.
Overall, it solved 125 CHC systems – 66 universal and 59 existential quantifi-
cation. The time taken was less than 30 seconds on all except one benchmark.
Details are in Fig 5 and [48].

RQ2 PreQSyn found and automatically proved 2/66 weakest preconditions.
On the remaining 64, it found preconditions for 56 but could not prove; for
8, it did not find a precondition. To compare with our maximality checking,
we provided the 56 preconditions generated by PreQSyn to our SMC module.
Out of 56, SMC proved 52 to be the weakest, where 7 were weakened before
proving. We observe that PreQSyn’s maximality checking is unsuitable for
non-deterministic programs, and its preconditions are not always the weakest.

P-Gen did not find a precondition for any of the 66 benchmarks. Its output
was not a precondition on 41, and on the rest it was stuck in the refinement
loop. Our experiments conclude that P-Gen’s inference engine is unable to gen-
eralize and find quantified preconditions when postconditions are quantified.
Hence, our technique complements P-Gen’s capability of finding preconditions
for quantifier-free postconditions.

RQ3 The reader may wonder whether the benchmarks themselves are easier
to solve, given the limited availability of weakest precondition tools for non-
deterministic programs. We experimentally demonstrate that this is not the case
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by passing the CHCs with preconditions generated by MaxPrANQ to state-of-
the-art CHC solvers for arrays: FreqHorn and Spacer. Out of 66 benchmarks,
FreqHorn found inductive invariants for 56 and Spacer found 34. In compari-
son, MaxPrANQ found preconditions and invariants for all the 66 benchmarks.
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Fig. 5: The bar graphs show the # weakest proven and valid preconditions inferred by
the tools. The scatter plots show the time taken by the tools for invariant inference.

8 Related Work

The problem of precondition inference has received considerable attention [2,11,
12,24,46,47,52,53]. In particular, for programs with arrays, closely related works
include [12,49,53]. The work in [12] infers preconditions by abstract interpreta-
tion, [53] by CEGAR based predicate abstraction, and [49] by range abduction.
Compared to [12], we don’t need a predefined abstract domain. We work in a
framework similar to [53] and [49], but they target deterministic programs. Their
maximality check assumes that from a precondition only one execution reaches
the postcondition, which is not the case for non-deterministic programs. The
novelty of our SAA algorithm, compared to range abduction [49], is in how it
constructs abduction queries using a set of rules based on the structure of the
CHCs, and support for non-linear CHCs. Range abduction, on the other hand,
creates two abduction queries and employs the Houdini technique [23], which
can generate stronger preconditions, as observed in our experiments.

Precondition inference is closely related to the problem of invariant inference.
For inferring universally quantified invariants, several techniques have been pro-
posed. The main methods include predicate abstraction [32, 41], abstract inter-
pretation [28], PDR [30], and syntax guided synthesis [22]. These techniques are
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crucially dependent on given preconditions, which are missing in our setting.
Without preconditions, they generate trivial solution like ⊥.

The validity of a precondition can be established by techniques that do not
explicitly generate inductive invariants. Such techniques include array smash-
ing [5], converting to array-free nonlinear CHCs [44], over-approximating un-
known bound of loops to a smaller known bound [40], accelerating entire tran-
sition relations [6], using CHC transformation [4, 34], induction based tech-
niques [7–9] and trace logic based techniques [25]. These techniques are useful
for assertion checking and not directly for precondition inference, however.

CHCs are widely used to symbolically encode different synthesis tasks [18,
21,50,51,55]. However, none of these works handle CHCs with arrays. SAA uses
abduction that has been used for programs without arrays to infer invariants [16,
17], preconditions [15,26], and specifications [1, 50,54].

The concept of SMC resembles angelic verification [13,42], but differs in how
it is solved. Angelic verification neither guarantees maximality nor computes
inductive invariants, and uses user supplied specifications. A recent work [27]
proposes a reduction of maximality checking to finding termination proofs for
CHC systems with integers. In comparison, SMC reduces to finding inductive
invariants and guards by exploiting the fact that the programs are terminating.

9 Limitations and Future Work

Usage of Theorem Prover: The preconditions and invariants guessed by SAA
in our evaluation are in a fragment of the theory of one-dimensional arrays and
linear integer arithmetic that state-of-the-art SMT solvers support reasonably
well. However, in a general case, SAA might generate a challenging precondi-
tion/invariant for our SMT solver. In such instances, MaxPrANQ logs a failure
and switches to another precondition/invariant. To handle such cases, we plan to
complement our SMT solver by an automated theorem prover like Vampire [39].
This can also help us to handle preconditions with alternating quantification.

Non-linear CHC Support: The multi-abduction done in SAA can help in
handling non-linear CHCs, which can encode programs with recursive functions.
For this, the range analysis in SAA has to be tweaked to determine a loop
counter-like variable for recursive functions, which we target for future work.

Termination and Compositional Verification: The assumption of terminat-
ing programs helps in proving maximality by inferring invariants and stronger
guards. Relaxing this assumption would require a more complex maximality
checking. Finally, an immediate future work is to integrate this technique in an
existing verifier to scale it compositionally.
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Automated Software Verification of Hyperliveness

raven.beutner@cispa.de

Abstract. Hyperproperties relate multiple executions of a program and
are commonly used to specify security and information-flow policies.
Most existing work has focused on the verification of k-safety properties,

k-tuples of execution traces satisfy a
given property. In this paper, we study the automated verification of
richer properties that combine universal and existential quantification
over executions. Concretely, we consider ∀k∃l properties, which state
that for all k executions, there exist l executions that, together, satisfy a
property. This captures important non-k-safety requirements, including
hyperliveness properties such as generalized non-interference, opacity,
refinement, and robustness. We design an automated constraint-based
algorithm for the verification of ∀k∃l properties. Our algorithm leverages
a sound-and-complete program logic and a (parameterized) strongest
postcondition computation. We implement our algorithm in a tool called
ForEx and report on encouraging experimental results.

Keywords: Hyperproperties · Program Logic · Hoare Logic · Symbolic
Execution · Constraint-based Verification · Predicate Transformer · Re-
finement · Strongest Postcondition · Underapproximation.

1 Introduction

Relational properties (also called hyperproperties [21]) move away from a tra-
ditional specification that considers all executions of a system in isolation and,
instead, relate multiple executions. Hyperproperties are becoming increasingly
important and have shown up in various disciplines, perhaps most prominently
in information-flow control. Assume we are given a program P with high-security
input h, low-security input l, and public output o, and we want to formally prove
that the output of P does not leak information about h. One way to ensure this
is to verify that P behaves deterministically in the low-security input l, i.e., if
the low-security input is identical across two executions, so is P’s output.

The above property is a typical example of a 2-safety property stating a re-
quirement on all pairs of traces. More generally, a k-safety property requires that
all k-tuples of executions, together, satisfy a given property. In the last decade,
many approaches for the verification of k-safety properties have been proposed,
based, e.g., on model-checking [55,33,31], abstract interpretation [43,41,4,44],
symbolic execution [30], or program logics [7,56,28,60,49].
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if (h > l) then
o = l + ⋆N

else
x = ⋆N
if (x > l) then

o = x
else

o = l

Fig. 1: Example program

However, for many relational properties, the
implicit universal quantification found in k-safety
properties is too restrictive. Consider the simple
program in Figure 1 (taken from [12]), where ⋆N
denotes the nondeterministic choice of a natural
number. This program clearly violates the 2-safety
property discussed above as the nondeterminism
influences the final value of o. Nevertheless, the
program does not leak any information about the
secret input h. To see this, assume the attacker
observes some fixed low-security input-output pair (l, o), i.e., the attacker ob-
serves everything except the high-security input. The key observation is that
(l, o) is possible for any possible high-security input, i.e., for every value of h,
there exists some way to resolve the nondeterminism such that (l, o) is the obser-
vation made by the attacker. This information-flow policy – called generalized
non-interference (GNI) [45] – requires a combination of universal and existential
reasoning and thus cannot be expressed as a k-safety property.

FEHTs. In this paper, we study the automated verification of such (functional)
∀∗∃∗ properties. Concretely, we consider specifications in a form we call Forall-
Exist Hoare Tuples (FEHT) (also called refinement quadruples [5] or RHLE
triples [26]), which have the form

⟨Φ⟩P1 ⊛ · · ·⊛ Pk ∼ Pk+1 ⊛ · · ·⊛ Pk+l⟨Ψ⟩,

where P1, . . . ,Pk+l are (possibly identical) programs and Φ, Ψ are first-order
formulas that relate k + l different program runs. The FEHT is valid if for all
k + l initial states that satisfy Φ, and for all possible executions of P1, . . . ,Pk

there exist executions of Pk+1, . . . ,Pk+l such that the final states satisfy Ψ . For
example, GNI can be expressed as ⟨l1 = l2⟩P ∼ P⟨o1 = o2⟩, where l1 and o1
(resp. l2 and o2) refer to the value of l and o in the first (resp. second) program
copy. That is, for any two initial states σ1, σ2 with identical values for l (but
possibly different values for h), and any final state σ′

1 reachable by executing P
from σ1, there exists some final state σ′

2 (reachable from σ2 by executing P) that
agrees with σ′

1 in the value of o. The program in Figure 1 satisfies this FEHT. In
the terminology of Clarkson and Schneider [21], GNI is a hyperliveness property,
hence the name of our paper. Intuitively, the term hyperliveness stems from the
fact that – due to the existential quantification in FEHTs – GNI reasons about
the existence of a particular execution. Similar to the definition of liveness in
temporal properties [2], we can, therefore, satisfy GNI by adding sufficiently
many execution traces [22].

Verification Using a Program Logic. For finite-state hardware systems, many
automated verification methods for hyperliveness properties (e.g., in the form
of FEHTs) have been proposed [20,38,15,33,13,14,22]. In contrast, for infinite-
state software, the verification of FEHTs is notoriously difficult; FEHTs mix
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quantification of different types, so we cannot employ purely over-approximate
reasoning principles (as is possible for k-safety). Most existing approaches for
software verification, therefore, require substantial user interaction, e.g., in the
form of a custom Horn-clause template [57], a user-provided abstraction [12], or
a deductive proof strategy [26,5]. See Section 6 for more discussion.

In this paper, we put forward an automatic algorithm for the verification of
FEHTs. Our method is rooted in a novel program logic, which we call Forall-
Exist Hoare Logic (FEHL) (in Section 3). Similar to many program logics for
k-safety properties [56,19], our logic focuses on one of the programs involved in
the verification at any given time (by, e.g., symbolically executing one step in
one of the programs) and thus lends itself to automation. We show that FEHL
is sound and complete (relative to a complete proof system for over- and under-
approximate unary Hoare triples).

Automated Verification. Our verification algorithm – presented in Section 4 –
then leverages FEHL for the analysis of FEHTs. During this analysis, the key al-
gorithmic challenge is to find suitable instantiations for nondeterministic choices
made in existentially quantified executions. Our algorithm avoids a direct instan-
tiation and instead treats the outcome of the nondeterministic choice symboli-
cally, allowing an instantiation at a later point in time. Formally, we define the
concept of a parametric assertion. Instead of capturing a set of states, a paramet-
ric assertion defines a function that maps concrete values for a set of parameters
(in our case, the nondeterministic choices in existentially quantified programs
whose concrete instantiations we have postponed) to sets of states. Our algo-
rithm then recursively computes a parametric postcondition and delegates the
search for appropriate instantiations of the parameters to an SMT solver. Cru-
cially, our algorithm only explores a restricted class of program alignments (as
guided by FEHL). Therefore, the resulting constraints are ordinary (first-order)
SMT formulas, which can be handled using off-the-shelf SMT solvers.

Implementation and Experiments. We implement our algorithm in a tool called
ForEx and compare it with existing approaches for the verification of ∀∗∃∗
properties (in Section 5). As ForEx can resort to highly optimized off-the-shelf
SMT solvers, it outperforms existing approaches (which often rely on custom
solving strategies) in many benchmarks.

2 Preliminaries

Programs. Let V be a set of program variables. We consider a simple (integer-
valued) programming language generated by the following grammar.

P,Q := skip | x= e | assume(b) | if(b,P,Q) | while(b,P) | P #Q | x= ⋆

where x ∈ V is a variable, e is a (deterministic) arithmetic expressions over
variables in V, and b is a (deterministic) boolean expression. skip denotes the
program that does nothing; x= e assigns x the result of evaluating e; assume(b)
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assumes that b holds, i.e., does not continue execution from states that do not
satisfy b; if(b,P,Q) executes P if b holds and otherwise executes Q; while(b,P)
executes P as long as b holds; P #Q executes P followed by Q; and x= ⋆ assigns
x some nondeterministically chosen integer. For an arithmetic expression e, we
write Vars(e) ⊆ V for the set of all variables used in the expression.

We endow our language with a standard operational semantics operating on
states σ : V → Z. Given a program P, we write JPK(σ, σ′) whenever P – when
executed from state σ – can terminate in state σ′. Our semantics is defined as
expected, and we give a full definition in [10].

Given program states σ1 : V → Z and σ2 : V ′ → Z with V ∩ V ′ = ∅, we write
σ1 ⊕ σ2 : (V ∪ V ′) → Z for the combined state, that behaves as σ1 on V and as
σ2 on V ′. For i ∈ N, we define Vi := {xi | x ∈ V} as a set of indexed program
variables.

Assertions. An assertion Φ is a first-order formula over variables in V (or in the
relational setting over

⋃k
i=1 Vi for some k). Given a state σ, we write σ |= Φ

if σ satisfies Φ. We assume that assertions stem from an arbitrarily expressive
background theory such that every set of states can be expressed as a formula.
This allows us to sidestep the issue of expressiveness in the sense of Cook [23]
(see, e.g., [50,60,56] for similar treatments).

Hyperliveness Specifications. Our verification algorithm targets specifications
that combine universal and existential quantification, similar to RHLE triples
[26] and refinement quadruples [5]:

Definition 1. A Forall-Exist Hoare Tuple (FEHT) has the form

⟨Φ⟩P1 ⊛ · · ·⊛ Pk ∼ Pk+1 ⊛ · · ·⊛ Pk+l⟨Ψ⟩,

where Φ, Ψ are assertions over
⋃k+l

i=1 Vi, and P1, . . . ,Pk+l are programs over vari-
ables V1, . . . ,Vk+l, respectively. The FEHT is valid if for all states σ1, . . . , σk+l

(with domains V1, . . . ,Vk+l, respectively) and σ′
1, . . . , σ

′
k such that

⊕k+l
i=1 σi |= Φ

and JPiK(σi, σ
′
i) for all i ∈ [1, k], there exist states σ′

k+1, . . . , σ
′
k+l such that

JPiK(σi, σ
′
i) for all i ∈ [k + 1, k + l] and

⊕k+l
i=1 σ

′
i |= Ψ .

That is, we quantify universally over initial states for all k + l programs
(under the assumption that they, together, satisfy Φ) and also universally over
executions of P1, . . . ,Pk. Afterward, we quantify existentially over executions of
Pk+1, . . . ,Pk+l and require that the final states of all k+ l executions, together,
satisfy the postcondition Ψ . A relational property usually refers to k+l executions
of the same program P (operating on variables in V); we can model this by
using α-renamed copies P⟨1⟩, . . . ,P⟨k+l⟩ where each P⟨i⟩ is obtained from P by
replacing each variable x ∈ V with xi ∈ Vi. FEHTs capture a range of important
properties, including e.g., non-inference [46], opacity [61], GNI [45], refinement
[59], software doping [16], and robustness [18]. It is easy to see that FEHTs can
also express (purely universal) k-safety properties over programs P1, . . . ,Pk as
⟨Φ⟩P1 ⊛ · · ·⊛ Pk ∼ ϵ⟨Ψ⟩, where ϵ denotes the empty sequence of programs.
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(∀-Reorder)
⊢ ⟨Φ⟩χ∀2 ⊛ χ∀1 ∼ χ∃⟨Ψ⟩
⊢ ⟨Φ⟩χ∀1 ⊛ χ∀2 ∼ χ∃⟨Ψ⟩

(∀-Skip-I)
⊢ ⟨Φ⟩P #skip⊛ χ∀ ∼ χ∃⟨Ψ⟩

⊢ ⟨Φ⟩P⊛ χ∀ ∼ χ∃⟨Ψ⟩

(∀-Skip-E)
⊢ ⟨Φ⟩χ∀ ∼ χ∃⟨Ψ⟩

⊢ ⟨Φ⟩skip⊛ χ∀ ∼ χ∃⟨Ψ⟩

(∀-If)
⊢ ⟨Φ ∧ b⟩P1 #P3 ⊛ χ∀ ∼ χ∃⟨Ψ⟩
⊢ ⟨Φ ∧ ¬b⟩P2 #P3 ⊛ χ∀ ∼ χ∃⟨Ψ⟩

⊢ ⟨Φ⟩if(b,P1,P2) #P3 ⊛ χ∀ ∼ χ∃⟨Ψ⟩

(∀-Step)
⊢ {Φ}P1{Φ′}

⊢ ⟨Φ′⟩P2 ⊛ χ∀ ∼ χ∃⟨Ψ⟩
⊢ ⟨Φ⟩P1 #P2 ⊛ χ∀ ∼ χ∃⟨Ψ⟩

(∃-Step)
⊢ [Φ ]P1[Φ

′ ]

⊢ ⟨Φ′⟩χ∀ ∼ P2 ⊛ χ∃⟨Ψ⟩
⊢ ⟨Φ⟩χ∀ ∼ P1 #P2 ⊛ χ∃⟨Ψ⟩

(Done)
⊢ ⟨Φ⟩ϵ ∼ ϵ⟨Φ⟩

(∀-Assume)
⊢ ⟨Φ ∧ b⟩P⊛ χ∀ ∼ χ∃⟨Ψ⟩

⊢ ⟨Φ⟩assume(b) #P⊛ χ∀ ∼ χ∃⟨Ψ⟩

(∃-Assume)
Φ ⇒ b ⊢ ⟨Φ⟩χ∀ ∼ P⊛ χ∃⟨Ψ⟩
⊢ ⟨Φ⟩χ∀ ∼ assume(b) #P⊛ χ∃⟨Ψ⟩

(∀-Choice)
⊢ ⟨∃x. Φ⟩P⊛ χ∀ ∼ χ∃⟨Ψ⟩

⊢ ⟨Φ⟩x= ⋆ #P⊛ χ∀ ∼ χ∃⟨Ψ⟩

(∃-Choice)
x ̸∈ Vars(e) ⊢ ⟨(∃x. Φ) ∧ x = e⟩χ∀ ∼ P⊛ χ∃⟨Ψ⟩

⊢ ⟨Φ⟩χ∀ ∼ x= ⋆ #P⊛ χ∃⟨Ψ⟩

Fig. 2: Selection of core proof rules of FEHL

3 Forall-Exist Hoare Logic

The verification steps of our constraint-based algorithm (presented in Section 4)
are guided by the proof rules of a novel program logic operating on FEHTs,
which we call Forall-Exist Hoare Logic (FEHL).

3.1 Core Rules

We depict a selection of core rules in Figure 2; a full overview can be found in
[10]. We write χ∀ (resp. χ∃) to abbreviate a list P1 ⊛ · · ·⊛ Pk of programs that
are universally (resp. existentially) quantified. Rule (∀-Reorder) allows for the
reordering of universally quantified programs; (∀-Skip-I) rewrites a program
P into P #skip; (∀-Skip-E) removes a single skip-instruction; and (Done)
derives a FEHL with an empty program sequence. Using skip-insertions and
reordering (and the analogous rules for existentially quantified programs), we

P1 #P2, targeted by the remaining rules.
Rule (∀-If) embeds the branching condition of a conditional into the precon-
ditions of both branches. Rules (∀-Step) and (∃-Step) allow us to resort
to unary reasoning over parts of the program. These rules make the multiplic-
ity of techniques developed for unary reasoning (e.g., symbolic execution [40]
and predicate transformers [27]) applicable to the verification of hyperproperties
in the form of FEHTs. For universally quantified programs of the form P1 #P2,
(∀-Step) requires an auxiliary assertion Φ′ that should hold after all execu-
tions of P1 from Φ. We can express this using the standard (non-relational) Hoare
triple (HT) {Φ}P1{Φ′} [37]. The second premise then ensures that the remaining
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(Loop-Counting)
k ≥ 1, B ≥ 1

c1, . . . , ck+l ∈ [1, B]

I1, . . . , IB+1

Φ ⇒ I
I ⇒

∧k+l
i=2(b1 ↔ bi)

I = I1 = IB+1

[
⊢
〈
Ij ∧

k+l∧
i=1|ci≥j

bi
〉 k

⊛
i=1|ci≥j

Pi ∼
k+l

⊛
i=k+1|ci≥j

Pi

〈
Ij+1 ∧

k+l∧
i=1|ci>j

bi
〉]B

j=1

⊢
〈
I ∧

k+l∧
i=1

¬bi
〉 k

⊛
i=1

Qi ⊛ χ∀ ∼
k+l

⊛
i=k+1

Qi ⊛ χ∃

〈
Ψ
〉

⊢ ⟨Φ⟩
k

⊛
i=1

while(bi,Pi) #Qi ⊛ χ∀ ∼
k+l

⊛
i=k+1

while(bi,Pi) #Qi ⊛ χ∃⟨Ψ⟩

Fig. 3: Counting-based loop rule for FEHL

FEHT (after P1 has been executed) holds. For existentially quantified programs,
we, instead, employ an underapproximation. In (∃-Step), we, again, execute
P1 but use an Under-Approximate Hoare triple (UHT) [Φ ]P1[Φ

′ ]. The UHT
[Φ ]P1[Φ

′ ] holds if for all states σ with σ |= Φ, there exists a state σ′ such that
JP1K(σ, σ′) and σ′ |= Φ′.

Remark 1. UHTs behave similar to Incorrectness Triples (ITs) [50,58] in that
they reason about the existence of a particular set of executions. The key differ-
ence is that ITs reason backward (all states in Φ′ are reachable from some state
in Φ), whereas UHTs reason in a forward direction (all states in Φ can reach Φ′).
See, e.g., Lisbon Triples [47, §5] and Outcome Triples [62] for related approaches.
We will later show that FEHL is complete when equipped with some complete
proof system for UHTs (cf. Theorem 2). In [10],

△

For assume statements, (∀-Assume) strengthens the precondition by the
assumed expression b; any state that does not satisfy b causes a (universally
quantified) execution to halt and renders the FEHT vacuously valid. In con-
trast, (∃-Assume) assumes that all states in Φ satisfy b; if any state in Φ does
not satisfy b, the FEHT is invalid. Likewise, the handling of a nondeterministic
assignment x= ⋆ differs based on whether we consider a universally quantified
or existentially quantified program. In the former case, (∀-Choice) removes
all knowledge about the value of x within the precondition by quantifying x
existentially (thus enlarging the precondition). In the latter (existentially quan-
tified) case, we can, in a forward-style execution, choose any concrete value for
x. (∃-Choice) formalizes this intuition: we first invalidate all knowledge about
x and then assert that x = e for some arbitrary expression e that does not de-
pend on x. In our automated analysis (cf. Section 4), we use (∃-Choice), but
– instead of fixing some concrete value (or expression) at application time – we
postpone the concrete instantiation by treating the value symbolically.

3.2 Asynchronous Loop Reasoning

A particular challenge when reasoning about relational properties is the align-
ment of loops. In FEHL, we propose a novel counting-based loop rule that sup-
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P1 :=


y1 = x1#
while (y1 > 0)

y1 = y1 - 1#
x1 = 4 * x1

P2 :=


y2 = 2 * x2#
while (y2 > 0)

z2 = ⋆#
y2 = y2 - z2#
x2 = 2 * x2

(a)

〈 I1 ∧
y1 > 0∧
y2 > 0

〉
y1 = y1 - 1#
x1 = 4 * x1

∼
z2 = ⋆#
y2 = y2 - z2#
x2 = 2 * x2

〈
I2 ∧

y2 > 0

〉

(b)

〈
I2 ∧

y2 > 0

〉
ϵ ∼

z2 = ⋆#
y2 = y2 - z2#
x2 = 2 * x2

〈
I3

〉

(c)

Fig. 4: In Figure 4a, we depict two example programs. In Figures 4b and 4c, we
give two intermediate FEHT verification obligations (cf. Example 1).

ports asynchronous alignments while still admitting good automation. Consider
the rule (Loop-Counting) (in Figure 3), which assumes k ≥ 1 universally
and l existentially quantified loops. The rule requires a loop invariant I that (1)
is implied by the precondition (Φ ⇒ I), (2) ensures simultaneous termination
of all loops (I ⇒

∧k+l
i=2(b1 ↔ bi)), and (3) is strong enough to establish the

postcondition for the program suffixes Q1, . . . ,Qk+l executed after the loops.
The key difference from a simple synchronous traversal is that, in each “itera-
tion”, we execute the bodies of the loops for possibly different numbers of times.
Concretely, (Loop-Counting) asks for natural numbers c1, . . . , ck+l (ranging
between 1 and some arbitrary upper bound B), and – starting from the invariant
I – we execute each Pi ci times. Crucially, we need to make sure that each Pi

will execute at least ci times, i.e., the guard bi holds after each of the first ci − 1
executions. In particular, we cannot naïvely analyze ci copies of Pi composed via
# as this might introduce additional executions of Pi that would not happen in
while(bi,Pi). To ensure this, (Loop-Counting) demands B+1 intermediate
assertions I1, . . . , IB+1. In the jth iteration (for 1 ≤ j ≤ B), we (symbolically)
execute – from Ij – all loop bodies Pi that we want to execute at least j times
(i.e., all loop bodies Pi where ci ≥ j). We require that (1) the postcondition
Ij+1 is derivable, and (2) the guards of all loops that we want to execute more
than j times (i.e., loops where ci > j) evaluate to true.

Example 1. Consider the two example programs P1,P2 in Figure 4a and the
FEHT ⟨x1 = x2⟩P1 ∼ P2⟨x1 = x2⟩. To see that this FEHT is valid, we can, in
each loop iteration, always choose z2 = 1. In this case, P1 quadruples the value
of x1 for x1 times and P2 doubles the value of x2 for 2x2 times, which, assuming
x1 = x2, computes the same result (x1 = x2 → 4x1x1 = 22x2x2). Verifying this
example automatically is challenging as both loops are executed a different num-
ber of times, so we cannot align the loops in lockstep. Likewise, computing inde-
pendent (unary) summaries of both loops requires complex non-linear reasoning.
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Instead, (Loop-Counting) enables an asynchronous alignment: After apply-
ing (∀-Step) and (∃-Step), we are left with precondition x1 = x2∧y2 = 2y1.
We use (Loop-Counting) and align the loops such that every loop iteration
in P1 is matched by two iterations in P2, which allows us to use a simple (lin-
ear) invariant. We set c1 := 1, c2 := 2 and define I := x1 = x2 ∧ y2 = 2y1,
I1 := I3 := I, and I2 := x1 = 2x2 ∧ y2 = 2y1 + 1. Note that I implies the
desired postcondition (x1 = x2). To establish that I serves as an invariant, we
need to discharge the two proof obligations depicted in Figures 4b and 4c. The
obligation in Figure 4b (corresponding to iteration j = 1) establishes that (1)
I2 is a provable postcondition after executing both loop bodies from I1 and (2)
that the loop in P2 will execute at least one more time, i.e., y2 > 0. We can
easily discharge this FEHT using (∀-Step), (∃-Step), and (∃-Choice) by
choosing z2 to be 1 (note that if y2 = 2y1 and y2 > 0, then y2 − 1 > 0). The
obligation in Figure 4c corresponds to iteration j = 2, where we only execute
the body of P2. We can, again, easily discharge this FEHT using (∃-Step) and
(∃-Choice) (again, choosing z2 to be 1). △

3.3 Soundness and Completeness

We can show that our proof system is sound and complete:

Theorem 1 (Soundness). Assume that ⊢ { · } · { · } and ⊢ [ · ] · [ · ] are
sound proof systems for HTs and UHTs, respectively. If ⊢ ⟨Φ⟩χ∀ ∼ χ∃⟨Ψ⟩ then
⟨Φ⟩χ∀ ∼ χ∃⟨Ψ⟩ is valid.

Theorem 2 (Completeness). Assume that ⊢ { · } · { · } and ⊢ [ · ] · [ · ] are
complete proof systems for HTs and UHTs, respectively. If ⟨Φ⟩χ∀ ∼ χ∃⟨Ψ⟩ is
valid then ⊢ ⟨Φ⟩χ∀ ∼ χ∃⟨Ψ⟩.

Completeness follows easily by making extensive use of unary reasoning via
(U)HTs, similar to the completeness-proof of relational Hoare logic for k-safety
properties [49]. In fact, (∀-Step), (∃-Step), (Done) along with the reorder-
ing rules (∀-Reorder), (∀-Skip-I), and (∀-Skip-E) (and their analogous
counterparts for existentially quantified programs) already suffice for complete-
ness (see [10]). In the following, we leverage the soundness of FEHL’s rules to
guide our automated verification.

4 Automated Verification of Hyperliveness

Our automated verification algorithm for FEHTs follows a strongest postcondi-
tion computation, as is widely used in the verification of non-relational properties
[1,36,51] and k-safety properties [56,19]. However, due to the inherent presence
of existential quantification in FEHT, the strongest postcondition does, in gen-
eral, not exist. For example, both ⟨⊤⟩ϵ ∼ x= ⋆⟨x = 1⟩ and ⟨⊤⟩ϵ ∼ x= ⋆⟨x = 2⟩
are valid but ⟨⊤⟩ϵ ∼ x= ⋆⟨x = 1 ∧ x = 2 ≡ ⊥⟩ is clearly not. Instead, our
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algorithm uses the proof rules of FEHL and treats the concrete value for non-
deterministic choices in existentially quantified executions symbolically. I.e., we
view the outcome as a fresh variable (called a parameter) that can be instan-
tiated later. This idea of instating nondeterminism at a later point in time has
already found successful application in many areas, such as existential variables
in Coq or symbolic execution [40]. Our analysis brings these techniques to the
realm of hyperproperty verification, which we show to yield an effective auto-
mated verification algorithm. In the following, we formally introduce parametric
assertions and postconditions (in Section 4.1) and show how we can compute
them using the rules of FEHL (in Sections 4.2 and 4.3).

4.1 Parametric Assertions and Postconditions

We assume that P = {µ1, . . . , µn} is a set of parameters. In FEHTs, we use asser-
tions (formulas) over

⋃k+l
i=1 Vi, which we interpret as sets of (relational) states.

A parametric assertion generalizes this by viewing an assertion as a function
mapping into sets of (relational) states. Formally, a parametric assertion is a
pair (Ξ, C) where Ξ is a formula over

⋃k+l
i=1 Vi∪P (called the function-formula),

and C is a formula over P (called the restriction-formula).
Given a function-formula Ξ (over

⋃k+l
i=1 Vi∪P) and a parameter evaluation κ :

P → Z, we define Ξ[κ] as the formula over
⋃k+l

i=1 Vi where we fix concrete values
for all parameters based on κ. We can thus view Ξ as a function mapping each
parameter evaluation κ to the set of states encoded by Ξ[κ]. During our (forward
style) analysis, we will use parameters to postpone nondeterministic choices in
existentially quantified programs. Intuitively, for every parameter evaluation κ
(i.e., any retrospective choice of the nondeterministic outcome), Ξ[κ] should
describe the reachable states (i.e., strongest postcondition) under those specific
outcomes. However, not all concrete values for the parameters are valid in the
sense that they correspond to nondeterministic outcomes that result in actual
executions. To mitigate this, a parametric assertion (Ξ, C) includes a restriction-
formula C (over P) which restrict the domain of the function encoded by Ξ, i.e.,
we only consider those parameter evaluations that satisfy C.

Example 2. Before proceeding with a formal development, let us discuss para-
metric assertions informally using an example. Let P1 := x= ⋆ # assume(x ≥ 9)
and P2 := y= ⋆ # assume(y ≥ 2) and assume we want to prove the FEHT
⟨⊤⟩P1 ∼ P2⟨x = y⟩. To verify this tuple in a principled way, we are interested in
potential postconditions Ψ , i.e., assertions Ψ such that ⟨⊤⟩P1 ∼ P2⟨Ψ⟩ is valid.
For example, both Ψ1 = x ≥ 9∧ y = 2 and Ψ2 = x ≥ 9∧ y = 3 are valid postcon-
ditions, but – as already seen before – there does not exist a strongest assertion.
Instead, we capture multiple postconditions using the parametric assertion (Ξ, C)
where Ξ := x ≥ 9 ∧ y = µ and C := µ ≥ 2 for some fresh parameter µ ∈ P;
we say (Ξ, C) is a parametric postcondition for (⊤,P1,P2) (cf. Definition 2). In-
tuitively, we have used the parameter µ instead of assigning some fixed integer
to y. For every concrete parameter evaluation κ : {µ} → Z such that κ |= C,
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formula Ξ[κ] defines the reachable states when using κ(µ) for the choice of y.
Observe how formula C = µ ≥ 2 restricts the possible set of parameter values,
i.e., we may only choose a value for y such that assume(y ≥ 2) holds. △

Definition 2. A parametric postcondition for (Φ,P1, . . . ,Pk+l) is a parametric
assertion (Ξ, C) with the following conditions. For all states σ1, . . . , σk+l, and
σ′
1, . . . , σ

′
k such that

⊕k+l
i=1 σi |= Φ and JPiK(σi, σ

′
i) for all i ∈ [1, k] and any pa-

rameter evaluation κ such that κ |= C the following holds: (1) There exist states
σ′
k+1, . . . , σ

′
k+l such that

⊕k+l
i=1 σ

′
i |= Ξ[κ], and (2) For every σ′

k+1, . . . , σ
′
k+l such

that
⊕k+l

i=1 σ
′
i |= Ξ[κ] we have JPiK(σi, σ

′
i) for all i ∈ [k + 1, k + l].

Condition (1) captures that no parameter evaluation may restrict universally
quantified executions, i.e., if we fix any parameter evaluation κ and reachable fi-
nal states for the universally quantified programs, Ξ[κ] remains satisfiable. This
effectively states that Ξ[κ] over-approximates the set of executions of univer-
sally quantified programs. Condition (2) requires that all executions of exis-
tentially quantified programs allowed under a particular parameter evaluation
are also valid executions, i.e., for any fixed parameter evaluation κ, Ξ[κ] under-
approximates the set of executions of the existentially quantified programs.

We can use parametric postconditions to prove FEHTs:

Theorem 3. Let (Ξ, C) be a parametric postcondition for (Φ,P1, . . . ,Pk+l). If

∀x∈V1∪···∪Vk
x.∃µ∈P µ. C ∧ ∀x∈Vk+1∪···∪Vk+l

x. (Ξ ⇒ Ψ)

holds, then the FEHT ⟨Φ⟩P1 ⊛ · · ·⊛ Pk ∼ Pk+1 ⊛ · · ·⊛ Pk+l⟨Ψ⟩ is valid.

Here, we universally quantify over final states in P1, . . . ,Pk and existentially
quantify over parameter evaluations that satisfy C (recall that C only refers to P).
The choice of the parameters can thus depend on the final states of universally
quantified programs (as in the semantics of FEHTs). Afterward, we quantify
(again universally) over final states of Pk+1, . . . ,Pk+l and state that if Ξ holds,
so does the postcondition Ψ .

Example 3. Consider the FEHT and parametric postcondition from Example 2.
Following Theorem 3, we construct the SMT formula ∀x. ∃µ. µ ≥ 2 ∧ ∀y.

(
(x ≥

9 ∧ y = µ) ⇒ x = y
)
. This formula holds; the FEHT is valid. △

Note that (Ξ,⊥) is always a parametric postcondition: no parameter evalua-
tion satisfies ⊥, so the conditions in Definition 2 are vacuously satisfied. However,
(Ξ,⊥) is useless when it comes to proving FEHTs via Theorem 3.

4.2 Generating Parametric Postconditions

Algorithm 1 computes a parametric postcondition based on the proof rules of
FEHL from Section 3. As input, Algorithm 1 expects a formula Φ over

⋃k+l
i=1 Vi∪P

– think of Φ as a precondition already containing some parameters – and two
program lists χ∀ and χ∃. It outputs a parametric postcondition.
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Remark 2. For intuition, it is oftentimes helpful to consider Φ as a parameter-
free formula over

⋃k+l
i=1 Vi. In this case, most of our steps correspond to the

computation of the strongest postcondition [27,56,19] in a purely universal (k-
safety) setting. △

Our algorithm analyses the structure of each program and applies the insights
from FEHL: If χ∀ and χ∃ are empty, we return (Φ,⊤) (line 3), i.e., we do not
place any restrictions on the parameters. In case all programs are loops (line 5),
we invoke a subroutine genppLoops (discussed in Section 4.3). Otherwise, some
program has a non-loop statement at the top level, allowing further symbolic
analysis. We consider possible steps in χ∀ (lines 7-33) and in χ∃ (lines 35-56).

We first consider the case where a universally quantified program has a non-
loop statement at its top level (lines 7-33). In lines 9, 11, 13, and 15, we bring
the first program into the form P1 #P2 where P1 ̸= _ # _ by potentially inserting
skip statements in line 15. For a program x= e #P (line 17), we use (∀-Step)
to handle the assignment. Here, we can compute the strongest postcondition of
the assignment as ∃x′.Φ[x′/x] ∧ x = e[x′/x] (using Floyd’s forward running rule
[35]). For conditionals (line 20), we analyze both branches under the strength-
ened precondition. As our analysis operates on parametric assertions, some of the
parameters found in the precondition Φ can be restricted in both branches. After
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Algorithm 1 Parametric postcondition generation for FEHT verification
1 def genpp(Φ,χ∀,χ∃):
2 if χ∀ = χ∃ = ϵ:
3 return (Φ,⊤) //(Done)
4 else if ∀P ∈ χ∀ ∪ χ∃.P = while(_,_) #_:
5 return genppLoops(Φ, χ∀, χ∃)
6 else if ∃P ∈ χ∀.P ̸= while(_,_) #_:
7 // Take a step in χ∀
8 match χ∀:
9 | skip ⊛ χ∀

′: //(∀-Skip-E)
10 return genpp(Φ,χ∀

′,χ∃)
11 | skip #P ⊛ χ∀

′: //(∀-Step)
12 return genpp(Φ,P ⊛ χ∀

′,χ∃)
13 | (P1 #P2) #P3 ⊛ χ∀

′:
14 return genpp(Φ,P1 #(P2 #P3) ⊛ χ∀

′,χ∃)
15 | P ⊛ χ∀

′ when P ̸= _ #_: //(∀-Skip-I)
16 return genpp(Φ,P #skip ⊛ χ∀

′,χ∃)
17 | x= e #P ⊛ χ∀

′: //(∀-Step)
18 Φ′ := ∃x′.Φ[x′/x] ∧ x = e[x′/x]
19 return genpp (Φ′,P ⊛ χ∀

′,χ∃)
20 | if(b,P1,P2) #P3 ⊛ χ∀

′:
21 //(∀-If)
22 (Ξ1,C1) :=
23 genpp(Φ ∧ b,P1 #P3 ⊛ χ∀

′,χ∃)
24 (Ξ2,C2) :=
25 genpp(Φ ∧ ¬b,P2 #P3 ⊛ χ∀

′,χ∃)
26 return (Ξ1 ∨ Ξ2,C1 ∧ C2)
27 | assume(b) #P ⊛ χ∀

′: //(∀-Assume)
28 return genpp(Φ ∧ b,P ⊛ χ∀

′,χ∃)

29 | x= ⋆ #P ⊛ χ∀
′: //(∀-Choice)

30 Φ′ := ∃x. Φ
31 return genpp(Φ′,P ⊛ χ∀

′,χ∃)
32 | P ⊛ χ∀

′: //(∀-Reorder)
33 return genpp(Φ,χ∀

′ ⊛ P,χ∃)
34 else:
35 // Take a step in χ∃
36 match χ∃:
37 | skip ⊛ χ∃

′ | skip #P ⊛ χ∃
′

38 | (P1 #P2) #P3 ⊛ χ∃
′

39 | P ⊛ χ∃
′ when P ̸= _ #_

40 | x= e #P ⊛ χ∃
′

41 | if(b,P1,P2) #P3 ⊛ χ∃
′:

42 //As in lines 9, 11, 17
43 //20, 13, and 15
44 | assume(b) #P ⊛ χ∃

′:
45 //(∃-Assume)
46 Cassume :=
47 ∀x∈V1∪···∪Vk+l

x. (Φ ⇒ b)

48 (Ξ,C) :=
49 genpp(Φ ∧ b,χ∀,P ⊛ χ∃

′)
50 return (Ξ,C ∧ Cassume)
51 | x= ⋆ #P ⊛ χ∃

′: //(∃-Choice)
52 µ := freshParameter()
53 Φ′ := (∃x.Φ) ∧ x = µ
54 return genpp(Φ′,χ∀,P ⊛ χ∃

′)
55 | P ⊛ χ∃

′:
56 return genpp(Φ,χ∀,χ∃

′ ⊛ P)



we have computed a parametric postcondition for each branch, we therefore com-
bine them into a parametric postcondition for the entire program by constructing
the disjunction of the function-formulas Ξ1 and Ξ2 (describing the set of states
reachable in either of the branches), and conjoining the restriction-formulas C1
and C2. For assume statements (line 27), we strengthen the precondition. For
nondeterministic assignments x= ⋆ (line 29), we invalidate all knowledge about
x. If a program matches none of the previous cases (line 33), it must be of the
form while(_,_) # _, and we move it to the end of χ∀, continuing the analy-
sis of the renaming programs in the next recursive iteration. If no universally
quantified program can be analyzed further, we continue the investigation with
existentially quantified ones (lines 35-56). Many cases are analogous to the treat-
ment in universally quantified programs (lines 37-43), but some cases are handled
fundamentally differently: If we encounter an assume statement assume(b) (line
45), we need to certify that b holds in all states in Φ (cf. (∃-Assume)). As we
already hinted in Example 2, we accomplish this by restricting the viable set
of parameters in Φ, i.e., we restrict the domain of the function formula Φ. Con-
cretely, we consider the formula Cassume := ∀x∈V1∪···∪Vk+l

x. (Φ ⇒ b) (which is a
formula over P) that characterizes exactly those parameters that ensure that all
states in Φ satisfy b. After analyzing the remaining programs, we then conjoin
Cassume with the remaining restrictions.

Remark 3. As in Remark 2, we can consider the case where Φ contains no pa-
rameter. In this case, Cassume is a variable-free formula that is equivalent to ⊤
iff all states in Φ satisfy b. If Φ does not imply b (so Cassume ≡ ⊥), the resulting
parametric postcondition thus cannot prove any FEHT via Theorem 3. △

For nondeterministic assignments x= ⋆ (line 51), we create a fresh parame-
ter µ and continue the analysis under the precondition that x = µ, effectively
postponing the choice of a concrete value for x (cf. Example 2).

Example 4. Our algorithm will automatically compute the parametric postcon-
dition from Example 2. In particular, for the assume(y ≥ 2) statement, we
match line 45 with Φ = x ≥ 9 ∧ y = µ for µ ∈ P and compute Cassume :=
∀x, y. Φ ⇒ y ≥ 2, which is logically equivalent to µ ≥ 2. △

4.3 Generating Parametric Postconditions for Loops

We sketch the postcondition generation for loops in Algorithm 2. As input,
genppLoops expects a precondition Φ over

⋃k+l
i=1 Vi ∪P and universally and ex-

istentially quantified loop programs. In the first step, we guess a loop invariant
I and counter values c1, . . . , ck+l ∈ [1, B] (cf. (Loop-Counting)). In lines 4
and 5, we ensure that I is initial and guarantees simultaneous termination by
computing restrictions Cinit and Csim on the parameters present in Φ (similar to
assume statements in line 45 of Algorithm 1). Again, in the special case where
Φ contains no parameter (as is, e.g., the case when applying our algorithm to
k-safety properties), Cinit (resp. Csim) is equivalent to ⊤ iff the invariant is initial
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Algorithm 2 Parametric postcondition generation for loops
1 def genppLoops(Φ,⊛k

i=1

(
while(bi,Pi) #Qi

)
,⊛k+l

i=k+1

(
while(bi,Pi) #Qi

)
):

2 I, c1, . . . , ck+l := guessInvariantAndCounts()
3 B := max(c1,. . .,ck+l)
4 Cinit := ∀x∈V1∪···∪Vk+l

x. (Φ ⇒ I)

5 Csim := ∀x∈V1∪···∪Vk+l
x. (I ⇒

∧k+l
i=2 b1 ↔ bi)

6 Ξ1 := I
7 for j from 1 to B:

8 (Ξj+1, Cj+1) := genpp(Ξj ∧
∧k+l

i=1|ci≥j
bi,⊛k

i=1|ci≥j Pi,⊛k+l
i=k+1|ci≥j

Pi)

9 Ccont
j+1 := ∀x∈V1∪···∪Vk+l

x. (Ξj+1 ⇒
∧k+l

i=1|ci>j
bi)

10 Cind := ∀x∈V1∪···∪Vk+l
x. (ΞB+1 ⇒ I)

11 (Ξrem , Crem ) := genpp(I ∧
∧k+l

i=1 ¬bi,⊛
k
i=1 Qi, ⊛k+l

i=k+1 Qi)

12 return (Ξrem,Cinit ∧ Csim ∧
∧B+1

j=2 Cj ∧
∧B+1

j=2 Ccont
j ∧ Cind ∧ Crem)

(resp. guarantees simultaneous termination). Afterward, we check the validity of
the guessed counter values c1, . . . , ck+l. For each j from 1 to B, we compute
a parametric postcondition (Ξj+1, Cj+1) for the bodies of all loops that should
be executed at least j times (i.e., ci ≥ j) starting from precondition Ξj via
a (mutually recursive) call to genpp (line 8). To ensure valid derivation using
(Loop-Counting) we need to ensure that – in Ξj+1 – the guard of all loops
that we want to execute more than j times still evaluates to true. We ensure
this by computing the restriction-formula Ccont

j+1 , which restricts the parameters
(both those already present in the precondition Φ and those added during the
analysis of the loop bodies) such that all states in Ξj+1 fulfill the guards of all
loops with ci > j (line 9). After we have symbolically executed all loops the
desired number of times, we construct a parameter restriction Cind that ensures
that we end within the invariant, i.e., ΞB+1 ⇒ I (line 10). In the last step, we
compute a parametric postcondition (Ξrem , Crem) for the program suffix exe-
cuted after the loops. We return the parametric postcondition that consists of
the function-formula Ξrem and the conjunction of all restriction-formulas.

4.4 The Main Verification

From the soundness of FEHL (Theorem 1) we directly get:

Proposition 1. genpp(Φ,χ∀,χ∃) computes some parametric postcondition for
(Φ, χ∀, χ∃).

Given an FEHT ⟨Φ⟩χ∀ ∼ χ∃⟨Ψ⟩, we can thus invoke genpp(Φ,χ∀,χ∃) to com-
pute a parametric postcondition, which (if strong enough) allows us to prove that
⟨Φ⟩χ∀ ∼ χ∃⟨Ψ⟩ is valid via Theorem 3. If the postcondition is too weak, we can
re-run genpp using updated invariant guesses (cf. Section 5). For loop-free pro-
grams, it is easy to see that genpp computes the “strongest possible“ parametric
postcondition (it effectively executes the programs symbolically without incur-
ring the imprecision inserted by loop invariants). In this case, the query from
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Theorem 3 holds if and only if the FEHT is valid; our algorithm thus constitutes
a complete verification method.

Invalid FEHTs. We stress that the goal of our algorithm is the verification of
FEHTs and not proving that an FEHT is invalid. For k-safety properties, a refu-
tation (counterexample) consists of a k-tuple of concrete executions that violate
the property [56,19]. In contrast, refuting an FEHT corresponds to proving a
∃∗∀∗ property, an orthogonal problem that requires independent proof ideas.

5 Implementation and Experiments

We have implemented our verification algorithm in a tool called ForEx [9] (short
for Forall Exists Verification), supporting programs in a minimalistic C-like lan-
guage that features basic control structures (cf. Section 2), arrays, and bitvectors.
ForEx uses Z3 [48] to discharge SMT queries and supports the theory of lin-
ear integer arithmetic, the theory of arrays, and the theory of finite bitvectors.
Compared to the presentation in Section 4, we check satisfiability of restriction-
formulas eagerly : For example, in Algorithm 2, we compute multiple restriction-
formulas and return their conjunction. In ForEx, we immediately check these
intermediate restrictions for satisfiability; if any restriction is unsatisfiable on
its own, any conjunction involving it will be as well, so we can abort the anal-
ysis early and re-start parts of the analysis using, e.g., updated invariants and
counter values.

5.1 Loop Invariant Generation

Our loop invariant generation and counter value inference follows a standard
guess-and-check procedure [34,54,56,19,53], i.e., we generate promising candi-
dates by combining expressions found in the programs and equalities between
variables in the loop guards. In most loops, there exist “anchor” variables that
effectively couple executions of multiple loops together [56,19]; even in asyn-
chronous cases like Example 1. Exploring more advanced invariant generation
techniques is interesting future work. However – even in the simpler setting of
k-safety properties – many tools currently rely on a guess-and-check approach
[56,19]. We maintain a lattice of possible candidates ordered by implication,
which allows us for efficient pruning. For example, if the current candidate is
not initial (i.e., Cinit computed in line 4 of Algorithm 2 is unsatisfiable), we do
not need to consider stronger candidates. Likewise, if the candidate does not
ensure simultaneous termination (Csim) we can prune all weaker invariants.

5.2 Experiments

We evaluate ForEx in various settings where FEHT-like specifications arise.
We compare with HyPA (a predicate-abstraction-based solver) [12], PCSat (a
constraint-based solver that relies on predicate templates) [57], and HyPro (a
model-checker for ∀∗∃∗ properties in finite-state systems) [11]. Our results were
obtained on a M1 Pro CPU with 32GB of memory.
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Instance tHyPA tForEx

DoubleSquareNI† 67.12 0.71
Exp1x3 3.79 0.30
Fig3 8.78 0.39
DoubleSquareNIff 4.91 0.37
Fig2† 17.7 0.73
ColIitemSymm 15.51 0.20
CounterDet 5.28 0.55
MultEquiv 13.13 0.60
HalfSquareNI 68.04 -
SquaresSum 17.03 -
ArrayInsert 16.17 -

(a)

Instance tHyPA tForEx

NonDetAdd 3.63 0.76
CounterSum 5.05 1.95
AsynchGNI 5.20 0.69
CompilerOpt1 1.79 0.59
CompilerOpt2 2.71 1.02
Refine 10.1 0.57
Refine2 9.87 0.64
Smaller 2.21 0.69
CounterDiff 8.05 0.63
Fig. 3 8.92 0.57

(b)

Instance tPCSat tForEx

TI_GNI_hFF 26.2 0.58
TI_GNI_hTT 32.5 0.10
TI_GNI_hFT†,‡ 36.2 0.70
TS_GNI_hFF 36.6 0.58
TS_GNI_hTT‡ 96.2 0.16
TS_GNI_hFT†,‡ 123.3 2.88
TI_GNI_hTF 26.1 -
TS_GNI_hTF 44.1 -

(c)
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Fig. 5: In s 5a and 5b, we compare ForEx with HyPA [12] on k-safety
and ∀∗∃∗ properties, respectively. For instances marked with †, ForEx required
additional user-provided invariant hints. In 5c, we compare ForEx with
PCSat [57]. For instances marked with ‡, PCSat required additional invariant
hints. In

Figure

5d, we compare the running time of ForEx (■) and HyPro [11]
(•). We check each of the 4 GNI instances from [11] with varying bitwidth. The
timeout is set to 3 min (marked by the horizontal dotted line).

Limitations of ForEx’s Loop Alignment. Before we evaluate ForEx on ∀∗∃∗
properties, we investigate the counting-based loop alignment principle underly-
ing ForEx. We collect the k-safety benchmarks from HyPA [12] (which themself
were collected from multiple sources [32,31,55,57]) and depict the verification re-
sults in 5a. We observe that ForEx can verify many of these instances. As
it explores a restricted class of loop alignments (guided by (Loop-Counting)),
it is more efficient on the instances it can solve. However, for some of the
instances, ForEx’s counting-based alignment is insufficient. Instead, these in-
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stances require a loop alignment that is context-dependent, i.e., the alignment
is chosen based on the current state of the programs [12,55,32,57].

ForEx and HyPA. HyPA [12] explores a liberal program alignment by exploring
a user-provided predicate abstraction. The verification instances considered in
[12] include a range of ∀∗∃∗ properties on very small programs, including, e.g.,
GNI and refinement properties. In 5b, we compare the running time of
ForEx with that of HyPA (using the user-defined predicates for its abstraction).1
We observe that ForEx can verify the instances significantly quicker. Moreover,
we stress that ForEx solves a much more challenging problem as it analyzes the
program fully automatically without any user intervention.

ForEx and PCSat. Unno et al. [57] present an extension of constraint Horn
clauses, called pfwCSP, that is able to express a range of relational properties
(including ∀∗∃∗ properties). Their custom pfwCSP solver (called PCSat) instan-
tiates predicates with user-provided templates. We compare PCSat and ForEx
in 5c. ForEx can verify 6 out of the 8 ∀∗∃∗ instances. ForEx currently
does not support termination proofs for loops in existentially quantified pro-
grams (which are needed for TI_GNI_hTF and TS_GNI_hTF), whereas
PCSat features loop variant templates and can thus reason about the termina-
tion of existentially quantified loops in isolation. In the instances that ForEx
can solve, it is much faster. We conjecture that this is due to the fact that the
constraints generated by ForEx can be solved directly by SMT solvers, whereas
PCSat’s pfwCSP constraints first require a custom template instantiation.

ForEx and HyPro. Programs whose variables have a finite domain (e.g., boolean)
can be checked using explicit-state techniques developed for logics such as Hy-
perLTL [20]. We verify GNI on variants of the four boolean programs from [11]
with a varying number of bits. We compare ForEx with the HyperLTL verifier
HyPro [11], which converts a program into an explicit-state transition system.
We depict the results in Figure 5d. We observe that, with increasing bitwidth,
the running time of explicit-state model-checking increases exponentially (note
that the scale is logarithmic). In contrast, ForEx can employ symbolic bitvector
reasoning, resulting in orders of magnitude faster verification.

6 Related Work

Most methods for k-safety verification are centered around the self-composition
of a program [6] and often improve upon a naïve self-composition by, e.g., ex-
ploiting the commutativity of statements [55,31,32,29]. Relational program logics

1 The properties checked by HyPA [12] are temporal, i.e., properties about the infinite
execution of programs of the form while(⊤,P). To make such programs analyzable
in ForEx (which reasons about finite executions), we replaced the infinite loop with
a loop that executes P some fixed (but arbitrary) number of times.
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for k-safety offer a rich set of rules to over -approximate the program behav-
ior [7,60,56,49,28,3,8]. Recently, much effort has been made to employ under-
approximate methods that find bugs instead of proving their absence; so far,
mostly for unary (non-hyper) properties [50,58,52,47,42,17,62,24].

Dardinier et al. [25] propose Hyper Hoare Logic – a logic that can express ar-
bitrary hyperproperties, but requires manual deductive reasoning. Dickerson et
al. [26] introduce RHLE, a program logic for the verification of ∀∗∃∗ properties,
focusing on the composition (and under-approximation) of function calls. They
present a weakest-precondition-based verification algorithm that aligns loops in
lock-step via user-provided loop invariants. Unno et al. [57] present an extension
of constraint Horn-clauses (called pfwCSP). They show that pfwCSP can encode
many relational verification conditions, including many hyperliveness properties
like GNI (see Section 5). Compared to the pfwCSP encoding, we explore a less
liberal program alignment (guided by (Loop-Counting)). However, we gain
the important advantage of generating standard (first-order) SMT constraints
that can be handled using existing SMT solvers (which shows significant perfor-
mance improvement, cf. Section 5).

Most work on the verification of hyperliveness has focused on more general
temporal properties, i.e., properties that reason about infinite executions, based
on logics such as HyperLTL [20,33,13]. Coenen et al. [22] study a method for
verifying hyperliveness in finite-state transition systems using strategies to re-
solve existential quantification. This approach is also applicable to infinite-state
systems by means of an abstraction [12,39] (see HyPA in Section 5). Bounded
model-checking (BMC) for hyperproperties [38] unrolls the system to a fixed
bound and can, e.g., find violations to GNI. Existing BMC tools target finite-
state (boolean) systems and construct QBF formulas; lifting this to support
infinite-state systems by constructing SMT constraints is an interesting future
work and could, e.g., complement ForEx in the refutation of FEHTs.

7 Conclusion

We have studied the automated program verification of relational ∀∗∃∗ proper-
ties. We developed a constraint-based verification algorithm that is rooted in a
sound-and-complete program logic and uses a (parametric) postcondition com-
putation. Our experiments show that – while our logic-guided tool explores a
restricted class of possible loop alignments – it succeeds in many of the instances
we tested. Moreover, the use of off-the-shelf SMT solvers results in faster verifi-
cation, paving the way toward a future of fully automated tools that can check
important hyperliveness properties such as GNI and opacity.

Acknowledgments. This work was supported by the European Research Coun-
cil (ERC) Grant HYPER (101055412), and by the German Research Foundation
(DFG) as part of TRR 248 (389792660).

Data Availability Statement. ForEx is available at [9].
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A Comprehensive Specification and Verification
of the L4 Microkernel API

Abstract. The L4 API (Application Programming Interface) is a core
component of the operating system, which serves as the interface between
user-level processes and the microkernel, facilitating communication and
interaction. It is crucial to ensure the correctness and reliability of the
API. This paper proposes a comprehensive formal specification and ver-
ification for the L4 microkernel API. The specification is reusable for all
implementations on architectures supported by the microkernel. To fur-
ther improve reusability (e.g., for the L4 family), a parameterized model
is abstracted, which mainly includes variables related to L4 components
and safety properties built on them. The desired properties are composed
of 350 functional correctness and 39 safety properties, where the safety
properties cover existing invariants of the microkernel. Several rewriting
rules and reasoning steps are proposed for verification to improve proof
efficiency. The proofs of the specification w.r.t these properties are ac-
complished in the theorem prover Isabelle/HOL, and the results show
that all definitions, lemmas, and proofs pass the prover’s check. During
modeling and verification, 10 bugs in the source code are found, all of
which are fixed in this paper.

Keywords: Formal Specification · Theorem Proving · L4 API · Cor-
rectness · Safety · Refinement · Isabelle/HOL.

1 Introduction

The L4 API is a fundamental part of an operating system (OS) that allows ap-
plications and user-level programs to interact with the kernel, provided by the
L4 microkernel family of operating systems. Ensuring the correctness and relia-
bility of the L4 API is paramount, as it forms the foundation for system stability,
security, and the seamless operation of L4 microkernel-based operating systems
in diverse and demanding environments. Although Klein et al. [3] formally veri-
fied the microkernel seL4, a specific implementation of the L4 microkernel, and
achieved great results, L4 microkernels are diverse, such as Pistachio, Fiasco,
OKL4, and each microkernel has its own API. Based on a standard L4 reference
manual [14], this paper starts out from a functional model and is committed to
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improving the correctness and reliability of the microkernel by formal verifica-
tion.

So far, there has been substantial research on the formal verification of the
microkernel [15,4,5,6]. Nevertheless, these studies predominantly mainly have
the following problems. 1)The existing formal specifications [15,4,5,6] are incom-
plete. For example, Klein et al. built an abstract model for address spaces of the
microkernel in Isabelle/HOL, then they formalized parts of the API using the B
method, where the latter mainly supplemented threads and Inter-Process Com-
munication (IPC) mechanism but did not include the key scheduling. 2)There
are quite a few properties to formalize and verify for the kernel. Klein et al. ver-
ified three invariants about address spaces in [15,4], and no property on threads
and IPC in [5,6]. 3)Klein’s model [15,4] for address spaces is too one-dimensional,
which is reflected in the lack of flexible page processing and access permission
modeling. Flexibility is one of the design principles of L4, and permissions are
an indispensable component in a practical kernel. It is necessary to model flex-
ible pages and access permissions. 4)Following our modeling and verification
experience, there are several errors in both specifications [15,5].

This paper aims to model and verify the comprehensive L4 API and make
up for all the above shortcomings. We prioritize modeling based on the L4 refer-
ence manual to build a formal specification that involves all modules of the L4
microkernel. To verify enough properties (e.g., covering all invariants in Klein’s
model), we choose a concrete implementation built on the manual and involve
more fine-grained modeling referring to the source code. By verification, we try to
exclude these errors including the incomplete or unreasonable informal descrip-
tion in the manual, the inconsistency between the source code and the manual,
the bugs in the source code, and so on.

During specification and verification for the API, we encountered three chal-
lenges. Firstly, the L4 API is quite complex, especially the address space with
both tree structures and flexible pages. For this, the sel4 microkernel omits these
two features of address spaces for simplicity. Moreover, the coupling of kernel
modules is strong, and they form a hierarchical relationship. For example, all
functions of address spaces are called by threads or IPC. Secondly, since the im-
plementation of the API is slightly different under different CPU architectures,
on the basis of fine-grained modeling, it is a challenge to build a specification
that can be reused for all implementations on architectures supported by the
microkernel. Thirdly, when facing non-trivial models and considerable proper-
ties, verification efficiency is often an important goal. It is necessary to present
some reusable proof methods or frameworks.

On the premise of solving the above challenges, we conduct a formal verifi-
cation for the L4 API in Isabelle/HOL [11], where the concrete implementation
is based on the release version of the L4Ka::Pistachio [13]. To our knowledge,
this work is the first effort at building the comprehensive specification and ver-
ification for the L4 microkernel. The contributions are described in detail as
follows.

218 L. Zhang et al.



NO. Parameters Functional Description 

1 

SpaceSpecifier ≠ 

nilthread, dest not 

existing 

Creation. The space specifier specifies in which address space the thread will reside. Since address space do not 

have own IDs, a thread ID is used as SpaceSpecifier. Its meaning is: the new thread should execute in the same 

address space as the thread SpaceSpecifier. 

The first thread in a new address space is created with SpaceSpecifier = dest. This operation implicitly creates a 

new empty address space. Note that the new address space is created with an empty UTCB and KIP area. The 

space creation must therefore be completed by a SPACECONTROL operation before the thread(s) can execute. 

2 
SpaceSpecifier ≠ 

nilthread, dest exists 

Modification Only. The addressed thread dest is neither deleted nor created. Modifications can change the version 

bits of the thread ID, the associated scheduler, the pager, or the associated address space, i.e., migrate the thread 

to a new address space. 

3 
SpaceSpecifier = 

nilthread, dest exists 

Deletion. The addressed thread dest is deleted. Deleting the last thread of an address space implicitly also deletes 

the address space. 

...... 

Fig. 1. Informal Functional Description of ThreadControl in the L4 Reference Manual

1) We propose a comprehensive formal specification of the L4 API. The speci-
fication can be reused for all implementations on architectures supported by
the microkernel.

2) We formalize 350 functional correctness and 39 safety properties. The safety
properties on address spaces cover all invariants in Klein’s model, simultane-
ously, a series of new key invariants are proposed in this model.

3) We use Isabelle/HOL to prove that the specification satisfies these properties,
which improves the correctness and reliability of the L4 API. In addition, in
this stage, we propose several rewrite rules and reasoning steps to improve
proof efficiency.

4) We found that there are in total of 10 bugs in the manual and the source
code of the microkernel. All of them are fixed in this paper.

2 Preliminaries

2.1 L4 Overview

The L4 microkernel mainly includes four core modules, i.e., thread, address
space, IPC, and scheduling, where the thread is the execution unit of the L4
microkernel, the address space provides isolated execution environments, the
IPC mechanism enables threads in different address spaces to communicate, and
the scheduling mechanism is used to switch contexts.
Thread. L4 used the thread identifier threadid to identify a thread, almost all
of whose information is recorded in TCB (Thread Control Block). The status
of each thread is defined by the status field, and the transition relationship is
shown in Fig.2(a). A special phenomenon is that L4 abstracts each interrupt as
a thread. When an interrupt is triggered, the kernel notifies the corresponding
thread to deliver the interrupt to its handler thread through IPC, ensuring that
interrupt processing in a microkernel is completed in user mode.
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Fig. 2. The graph (a) shows the status transitions of the thread, and the graph (b)
shows the tree address space structure.

Address Space. Address space is a logical concept that represents the range
of virtual addresses that a thread can access. Each address space contains a
page table, which realizes the conversion of the virtual address to a physical
address and is a way to achieve memory isolation. The mapping mechanism is
one of the features of the L4 microkernel. In addition to maintaining page table
data, this mechanism also maintains the relationship between pages in different
address spaces, which causes the address space to form a hierarchical structure
(tree-shape) as shown in Fig.2(b), and adds difficulty to our proof.

IPC. The IPC mechanism is synchronous which means that a sender blocks
until the receiver processes the message and responds. The communication of
the sender and receiver can be specified as one or two phases through a special
thread identifier called nilthread. If there is one phase, the sub-function is either
sending or receiving, otherwise, sending then receiving. For the sub-function of
receiving messages, the receiver can not only receive from a specific thread but
from any thread that is specified by another thread identifier anythread.

Scheduling. L4 introduces a unique 256-level, fixed-priority scheduling system,
combining time-sharing and round-robin (RR) principles. This scheduler priori-
tizes threads and executes them in order of their priority until certain conditions
are met: a thread blocks in the kernel, gets preempted by a higher-priority thread,
or consumes its allocated time quantum.

API. The L4 microkernel provides the API implemented in 10 system calls,
shown in Table 1. The concrete sub-function is chosen by specifying the pa-
rameters of the system call. For example, Fig. 1 is a fragment of the L4 kernel
reference manual, which informally describes three sub-functions of the system
called ThreadControl. By controlling whether the values of SpaceSpecifier are
equal to nilthread and whether the target thread dest exists, the manual speci-
fies ThreadControl to complete the creation, modification, or deletion operation.
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Table 1. L4 API Description

No. Name Functional Description
1 ThreadControl Create, activate, modify, or delete a thread by privileged threads only.
2 ExchangeRegister Exchange or read thread information such as IP, SP, etc.
3 Schedule Set scheduling attributes of a thread.
4 SpaceControl Initialize an address space by privileged threads only.
5 Unmap Revoke pages that have been mapped or granted.
6 MemoryControl Set the attributes of pages.
7 IPC Transfer data from one thread to another.
8 ThreadSwitch Switch to the specified thread or perform a normal thread scheduling.
9 SystemClock Return the current clock.
10 ProcessorControl Set the attributes of CPU by privileged threads only.

2.2 Related Work

Klein et al. modeled the virtual memory subsystem of an L4 kernel and verified
three invariants [15,4]. Then they used the B method to model Application Pro-
gramming Interface (API) as functional specifications without verification efforts
[6]. Later, they conducted the refinement verification for the seL4 kernel w.r.t
functional correctness [3]. Furthermore, they verified information-flow security
properties for the kernel [8]. All scripts for modeling and proofs are implemented
in Isabelle/HOL.

Costanzo et al. proposed the CertiKOS architecture for verifying the correct-
ness of concurrent operating system kernels [1]. They implemented the verifi-
cation by defining a series of logical abstraction layers and context refinement
relations.

Nelson et al. [10] proposed the push-button verification for OS. They built
three models for Hyperkernel in Python, a kernel with finite interfaces. They
used the Z3 solver [7] to prove functional correctness and consistency between the
abstract model and the implementation model. Later, they extended the verified
properties to information flow security, in which they proposed a framework
namely Nickel for verifying noninterference and used it to verify NiStar, NiKOS,
and ARINC 653 standard [12]. In addition, they presented the Serval framework
for developing automated verifiers [9].

3 Formal Specification of the L4 API

This section details the formal specification of the L4 API. We first define the
constants and types, then give the definitions of state and initial state, next show
the state transitions according to modules, and finally, provide the parameterized
abstract model that improves reusability.

3.1 Constants and Types

In the L4 kernel, constants mainly include several threads and address spaces.
When the kernel starts up, two privileged threads (σ0 and rootserver) and all in-
terrupt threads (IntThreads) are created, where IntThreads is a set of threads.
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Fig. 3. L4 API, Sub-functions, and Their Relationship Graph.

These threads have their own address space. The σ0’s space is Sigma0Space,
and rootserver’s space is RootserverSpace. We define the space of IntThreads
as KernelSpace because they are running in kernel mode. There is a special
thread namely idle, which starts running when the CPU is idle, and its space is
KernelSpace.

Most types are defined according to the data structure in the source code.
The following shows some special selections.

threadid t = Global globalid t | nilthread | anythread
The thread identifiers contain global identifiers, nilthread, and anythread, where
a global identifier may represent a user thread, a kernel thread, or an interrupt
thread, and the last two are special identifiers, usually used in the IPC mecha-
nism.

fpage t = base × size × perms t set
A flexible page can be specified by type fpage t that includes three fields of
the base address, size, and permissions, where the size field makes the page size
variable, and the permissions include read, write, and execute. In Klein’s address
space model, fpage t is not taken into account resulting in all pages having the
same size.

Space = spaceName t ⇀ v page t ⇀ page t × perms t set
Where spaceName t identifies address spaces, v page t identifies pages in ad-
dress spaces (virtual pages for short), the type page t is defined as:

page t = V irtual spaceName t v page t | Real r page t
Here, virtual pages and physical pages (identified by r page t) are unified into
pages. Since spaceName t appears in both parameters and results, Space is a re-
cursively constructed type with a tree structure. For a given virtual page, it can
obtain the mapping page and permissions to access that page through Space.
Actually, the type models the functionality of both page tables and Mapping
DataBase (MDB, a core data structure used for maintaining relationships be-
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Table 2. State Fields

Address Space: initialised spaces, space threads, space mapping

Thread: current thread, threads, active threads, thread space, thread scheduler,
thread state, thread pager, thread handler, thread message, thread rcvWindow,
thread error, thread priority, thread total quantum, thread timeslice length,
thread current timeslice

IPC: thread ipc partner, thread ipc timeout, thread recv for, thread recv timeout,
thread incoming

Scheduling: current time, wait queuing, ready queuing, current timeslice

Other: heap, tlb

tween virtual pages), because 1) a valid virtual page can translate to a physical
page; 2) a virtual page knows who mapped the physical page to it. The symbol
⇀ is the abbreviation of ⇒ option, i.e., the return value is wrapped with the
type option. In Space, the first ⇀ indicates that it can be known whether the
given address space is created, and the second one indicates whether the given
virtual page has a mapping.

3.2 State and Initialization

The fields of the state are shown in Table 2, which are built on the data struc-
tures in the source code, such as TCB, page tables, and so on. Some special
phenomena include: each thread has a scheduler recorded by thread scheduler.
The scheduler is a special thread that modifies scheduling-related information
for the specified thread. This may easily be confusing because there is a global
scheduler used for managing scheduling modules in the source code. In addition,
the fields related to the IPC module are defined in TCB.

The initialization operation mainly serves the threads created when the sys-
tem starts up, including the privileged threads, interrupt threads, etc. For in-
stance, the field threads is initialised as {σ0, rootserver} ∪ IntThreads.

3.3 State Transitions

In a state machine, state transitions are driven by events, where events refer to
system calls shown in Table 1. The transition functions are built on both the
Kernel Reference Manual and the source code. In order to reduce the complexity
of each module API and the coupling between modules, we analyze and decouple
the system calls into a series of sub-functions, shown in Fig. 3. The following
shows the formal specification according to modules, including threads, address
spaces, IPC, scheduling, and others.
Threads. The operations of thread modules include ThreadControl, Schedule,
and ExchangeRegister. Note that Schedule is not a traditional schedule func-
tion (like switching context), but a function for modifying the scheduling-related
fields in TCB of a thread by its scheduler thread. Taking ThreadControl as an
example, the formal specification is shown in Fig. 4. For the sub-functions of
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✞ ☎
1 definition ThreadControl :: "Sys_Config ⇒ State ⇒ threadid_t ⇒ threadid_t ⇒ threadid_t ⇒

threadid_t ⇒ State" where
2 "ThreadControl SysConf S destNo spaceSpec schedNo pagerNo =
3 (if ThreadControl_Cond SysConf S destNo spaceSpec schedNo pagerNo # basic check
4 then
5 (if ¬ dIsPrivilegedSpace (GetCurrentSpace S) # check the current space
6 then SetError S (current_thread S) eNoPrivilege
7 else
8 (if spaceSpec = nilthread # try to delete a thread
9 then

10 (if ThreadControl_Delete_Cond S destNo
11 then WeakDeleteThread SysConf S destNo
12 else SetError S (current_thread S) (SOME e. e ∈ {eUnavailableThread,eNoPrivilege}))
13 else
14 (if (spaceSpec ̸= nilthread) ∧ (destNo /∈ GetThreadsTids S) # try to create a thread
15 then
16 (if ThreadControl_Create_Cond SysConf S destNo spaceSpec schedNo pagerNo
17 then WeakCreateThread SysConf S destNo spaceSpec schedNo pagerNo
18 else SetError S (current_thread S) (SOME e. e ∈ {eInvalidSpace,eUnavailableThread,

eInvalidScheduler, eUnavailableThread,eOutOfMemory}))
19 else
20 (if (spaceSpec ̸= nilthread) ∧ (destNo ∈ GetThreadsTids S) ∧ (TidToGno destNo /∈

kIntThreads) # try to modify a thread
21 then
22 (if ThreadControl_Modify_Cond SysConf S destNo spaceSpec schedNo pagerNo
23 then WeakModifyThread SysConf S destNo spaceSpec schedNo pagerNo
24 else SetError S (current_thread S) (SOME e. e ∈ {eInvalidSpace,eUnavailableThread,

eInvalidScheduler,eOutOfMemory}))
25 else
26 (if (spaceSpec ̸= nilthread) ∧ (destNo ∈ GetThreadsTids S) ∧ (TidToGno destNo ∈

kIntThreads) # try to handle an interrupt thread.
27 then
28 (if pagerNo ∈ GetThreadsTids S
29 then IntThreadControl SysConf S destNo pagerNo
30 else SetError S (current_thread S) eUnavailableThread)
31 else S)))))
32 else S)"✝ ✆

Fig. 4. Formal Definition of the System Call ThreadControl

creation, modification, and deletion, the specification corresponds exactly to the
informal manual shown in Fig. 1. Since there is no clear description for handling
interrupt threads, we refer to the source code and add a conditional branch
(shown in Lines 26-30) to supplement information from the manual.

Address Spaces. The operations of address spaces include SpaceControl, Unmap,
and MemoryControl. The complex sub-functions focus on the mapping mecha-
nism including unmap, flush, map, and grant for pages. Before formalizing these
functions, we introduce several key definitions. We define s ⊢ x⇝1 y to represent
that both pages are in one path, and the page x can reach the page y by one step.
The terms s ⊢ x ⇝+ y and s ⊢ x ⇝∗ y represent transitive, and reflexive and
transitive paths, respectively. If a page x is a physical page or x can reach an-
other page in a given state s, then x is a valid page denoted as s ⊢ x. Leveraging
these definitions, we give the specification for the function map, shown in Fig. 5.
In the above definition, we add the formalization of access permissions in terms
of Klein’s model. Lines 3 and 5 show the conditions of successfully executing the
operation. According to our experience for proving subsequent invariants, even
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✞ ☎
1 definition map :: "State ⇒ spaceName_t ⇒ v_page_t ⇒ spaceName_t ⇒ v_page_t ⇒ perms_t set

⇒ State" where
2 "map s sp_from v_from sp_to v_to perms =
3 (if (sp_to ̸= Sigma0Space)
4 then
5 (if s ⊢ (Virtual sp_from v_from) ∧ perms ̸= {} ∧ perms ⊆ get_perms s sp_from v_from ∧

sp_from ̸= sp_to ∧ (∀ v. ¬s ⊢ (Virtual sp_from v_from) ⇝+ (Virtual sp_to v)) ∧
space_mapping s sp_to ̸= None ∧ v_to < page_maxnum

6 then s(|space_mapping:= λsp′.
7 (if space_mapping s sp′ = None
8 then None
9 else Some (λv_page1.

10 (if the (space_mapping s sp′) v_page1 = None ∧ Virtual sp′ v_page1 ̸= Virtual sp_to v_to
11 then None
12 else
13 (if s ⊢ (Virtual sp′ v_page1) ⇝∗ (Virtual sp_to v_to)
14 then
15 (if (Virtual sp′ v_page1) = (Virtual sp_to v_to)
16 then Some ((Virtual sp_from v_from), perms)
17 else None)

18 else the (space_mapping s sp′) v_page1))))|)
19 else s)
20 else s)"✝ ✆

Fig. 5. Formal Definition of the Sub-function map

if conditions related to permissions are not considered, there is a lack of these
conditions in Klein’s model, causing their first invariant (corresponding to our
Invariant 1) to not hold. Based on the above definition, we follow the method
of iteratively processing pages of the same size in the source code and define a
recursive function to handle flexible pages.

IPC. The IPC mechanism is implemented by the system call IPC. By specifying
parameter values, the call may involve both the sending phase and the receiving
phase. Only after the sending phase is completed, the receiving phase can be
executed. According to two phases, we decouple the operation into four sub-
sections, i.e., send only, receive only, send receive1, and send receive2, where
the difference between the last two definitions is whether the sending operation is
performed successfully. If not, the data of the receiving phase must be saved in a
stack. For instance, the parameters used for specifying the receiver’s information
are saved in state fields thread recv for and thread recv timeout in our model.

Scheduling. The operations of the scheduling module include ThreadSwitch
and SystemClock. For the former, the user thread can use it to actively switch
current context. To make our specification more complete, we model the unique
operation guided by the kernel, i.e., timer interrupt. The operation is used to
complete thread scheduling and its strategy is either preemption or a common
scheduling.

Others. In addition to the above operations, the behaviors of the Memory Man-
agement Unit (MMU) and Translation-Lookaside Buffer (TLB) also are involved
in our specification. For these, we just provide a model, and the proofs of the
functional correctness and safety properties are not in the scope of this work.

A Comprehensive Specification and Verification of the L4 Microkernel API    225



3.4 Parameterized Abstract Model

In addition to the above concrete model, we build a parameterized abstract
model to improve reusability using the locale system provided by Isabelle/HOL.
The system generally includes variables and assumptions, in which variables are
parameters of the system, and assumptions describe the relationships between
variables. In our model, the variables involve the initial state s0, the state tran-
sition function step, and some key L4 components such as σ0, rootserver, and
so on, denoted as:

Mabs {s0, step, σ0, rootserver, · · ·}
where Mabs is the system name, and the types of its parameters are abstract
to improve reusability, because data structures in different implementations
of L4 microkernels vary slightly. The assumptions contain only some general
safety properties. For example, an active thread must be a created thread, i.e.,
active s ⊆ threads s, which applies to almost all L4 microkernels. If a property
relies too much on the implementation of the API or sub-functions, then it will
be difficult to reuse. This is also why we do not consider adding functional cor-
rectness to the assumptions. In subsequent refinement proofs, these assumptions
must be proven to be true.

4 Formalizing Functional Correctness and Safety
Properties

The section depicts the formalization of the functional correctness and safety
properties. In general, functional correctness means that a program has a correct
output for a given input, which can be easily described by the Hoare Triple [2],
i.e., {P} c {Q}, where P is the pre-condition, Q is the post-condition, and
c represents the program. Safety means that there is no unsafe state in the
whole state space, which can be represented as a series of invariants. The form
of expressing an invariant lemma is similar to the Hoare triple, which can be
defined as {I} c {I} or {I1 ∧ I2 ∧ · · ·} c {I}. In total, we formalized 350
functional correctness and 39 safety properties.
Functional Correctness. Almost of functional correctness lemmas are built
on sub-functions and auxiliary definitions (the sum of the two quantities is 50).
These lemmas describe the changes in all state fields which are divided into 7
parts (current, UTCB, TCB, address space, mapping, IPC, scheduling). For a
given sub-function f , the correctness lemmas include two cases: 1) After execut-
ing f , the changed fields are set to correct values. 2) The values of unchanged
fields in the original state and the new state are equal. The advantage of con-
structing lemmas in this way is that the functional correctness is relatively com-
plete. In addition, these lemmas built on sub-functions provide convenience for
subsequent proofs, e.g., we can exploit these lemmas and eliminate the func-
tion through a substitution strategy instead of directly unfolding its definition
causing the structure to be destroyed.

The following shows one of the functional correctness lemmas of the sub-
function map whose function is to add mapping to a page.
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Lemma 1. ¬s ⊢ (V irtual sp v) ⇝∗ (V irtual sp to v to) =⇒
s ⊢ (V irtual sp v) ⇝+ page =⇒
(map s sp from v from sp to v to perms) ⊢ (V irtual sp v) ⇝+ page

The lemma means that if a virtual page V irtual sp v is not on the path to
V irtual sp to v to, then the operation has no effect on V irtual sp v, and its
accessibility to other pages remains unchanged.
Safety Properties. Safety properties are represented as invariants. Parts of in-
variants with cumbersome proofs are mainly related to the address space module,
and they are shown as follows.

Invariant 1 Pages do not form rings in the address space structure.

∀ s sp v1. (∄ v2. s ⊢ (V irtual sp v1) ⇝+ (V irtual sp v2))

In Klein’s model, the invariant is defined as ∀ s. (∄x. s ⊢ x ⇝+ x), which
only ensures that for a given virtual page there is no loops on this page, and is a
corollary of Invariant 1. In fact, it is naturally unreasonable if the page can reach
another page in its address space because they will eventually be translated to
the physical page. Our definition solves this problem by allowing that v1 is not
equal to v2.

Invariant 2 A page is valid if and only if there is a physical page translated
from the valid page.

∀ s x. (s ⊢ x ←→ (∃ r. s ⊢ x ⇝∗ (Real r)))

Invariant 2 improves the corresponding invariant in Klein’s model from implica-
tion to equivalence.

Invariant 3 A page has a subset of the permissions of its direct parent page.

∀ s sp1 sp2 v1 v2. s ⊢ (V irtual sp1 v1) ⇝1 (V irtual sp2 v2) −→
get perms s sp1 v1 ⊆ get perms s sp2 v2)

Invariant 4 The permissions of valid pages are not empty.

∀ s sp v. s ⊢ (V irtual sp v) −→ get perms s sp v ̸= {}

Invariants 3 and 4 are proposed to ensure properties on the additional permission
fields.

Invariant 5 A created thread must have an address space, and the space has
been created.

∀ s t. t ∈ threads s −→
(∃ sp. sp ∈ spaces s ∧ thread space s t = Some sp)

Invariant 6 For an arbitrary created address space sp, the set of threads in sp
is equal to that of threads whose space is sp.

∀ s sp. sp ∈ spaces s −→
the (space threads s sp) = {t. thread space s t = Some sp}

Invariants 5 and 6 are used to associate threads with address spaces.
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Invariant 7 The identifier of the thread that has not been created must be within
the configured range.

∀ s x. x /∈ threads s −→ x ∈ Threads Gno SysConf

Following the source code, the global identifier does not exceed 218 − 1. We use
SysConf to define the system environment, and Threads Gno obtains the set
of global identifiers from SysConf .

Invariant 8 A created thread must have a scheduler, and the scheduler has been
created.

∀ s t. t ∈ threads s −→
(∃ sche. sche ∈ threads s ∧ thread scheduler s t = Some sche)

When invariants 7 and 8 are proved, some bugs in the source code are discovered,
and they are discussed in detail in Section 6.

5 Formal Verification

The section illustrates the formal verification for the L4 API. The proof task
consists of three parts: functional correctness, safety properties, and refinement
between the abstract model and the concrete model. The following first intro-
duces the rewrite rules and reasoning steps that improve verification efficiency,
then separately shows proofs of the three parts.

5.1 Rewrite Rules and Reasoning Steps

Since different strategies can be used and the order of proof can also be differ-
ent, the properties can be proven by various proof methods. However, whether
the proof method is excellent can greatly affect the verification efficiency. A
good method generally wishes proof steps to be concise and reusable. A typi-
cal counterexample is the abuse of automatic tactics provided by Isabelle/HOL.
For example, the tactic auto tries its best to make the proof goal as simple as
possible, but the extent of simplification is unclear, in other words, the subgoal
obtained must be re-analyzed every time, as long as the original goal has not
been proven completely. Even worse, some of the structure in the original goals
has been destroyed.

To avoid these problems, we first propose 21 rewrite rules to simplify the
goal and obtain the desired subgoals. These rules are constructed for the three
expressions of if, let, and case, which are common in our specification. Some
typical rules are shown as follows:

– if . (Q =⇒ P x) =⇒ (¬Q =⇒ P y) =⇒ P (if Q then x else y)

– let. P s t =⇒ (
∧

s t. P s t =⇒ P (f s) (f t)) =⇒ P (Let s f) (Let t f)

– case. (opt = None =⇒ P f1) =⇒ ((opt ̸= None) =⇒ P (f2 (the opt))) =⇒
P (case opt of None ⇒ f1 | Some x ⇒ f2 x)
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✞ ☎
1 lemma "¬s⊢(Virtual sp v)⇝∗(Virtual sp_to v_to) =⇒ s⊢(Virtual sp v)⇝+y =⇒ (map s

sp_from v_from sp_to v_to perms)⊢(Virtual sp v)⇝+y"
2 proof-
3 assume a1:"s⊢(Virtual sp v)⇝+y" and a2:"¬s⊢(Virtual sp v)⇝∗(Virtual sp_to v_to)"
4 then show ?thesis
5 proof(induction rule:tran_path.induct)
6 case (one_path x y) # the case of direct path

7 then have "(map s sp_from v_from sp_to v_to perms)⊢x⇝1y"
8 using map_not_path_direct FatherIsVirtual by metis
9 then show ?case using tran_path.intros by blast

10 next
11 case (tran_path x y z) # the case of transitive path
12 then have "¬s⊢y⇝∗(Virtual sp_to v_to)"
13 using refl_tran by blast

14 then have h1:"(map s sp_from v_from sp_to v_to perms)⊢y⇝+z"
15 using tran_path by simp

16 have "(map s sp_from v_from sp_to v_to perms)⊢x⇝1y"
17 using tran_path map_not_path_direct FatherIsVirtual by metis
18 then show ?case using h1 tran_path.intros by simp
19 qed
20 qed✝ ✆

Fig. 6. Formal Proof for Correctness of the Sub-function map

To our knowledge, the theory library provided by Isabelle/HOL does not include
the rules we proposed, although many of them look very similar, especially for
the if rule above. But a tiny difference such as replacing =⇒ with −→ will
produce different results.

Second, we construct some general reasoning steps to improve verification
efficiency. Our construction follows two principles: 1)If the goal is not fully proven
in the current proof step, then this step must be deterministic (i.e., producing
specific subgoals); 2)Allows the use of automated tactics that only work on the
current goal if the current goal can be directly proven; 3)Allows the use of any
automated proof tactic in the last step. Since the reasoning procedure is quite
similar for a given invariant or function, these steps are mainly used for proving
invariants and they are especially effective when the state fields involved in the
invariant do not appear in the functions being proved. Leveraging these steps,
we often only need to replace auxiliary lemmas without modifying proof tactics.
Indeed, in our experience, most lemma proofs are written through a copy-replace-
paste procedure. In Section 5.3, we take proving a concrete safety property as
an example to show the use of reasoning steps.

5.2 Functional Correctness Proofs

Sophisticated proofs of functional correctness focus on mapping operations. On
the one hand, these operations involve the reflexive and transitive path, causing
that for almost every correctness lemma, we must use the induction tactic
introduced by hand; On the other hand, it is not easy to clarify the relationship
between virtual pages in the tree address space structure. Fig. 6 shows the proof
of Lemma 1 related to mapping operations. Except for mapping operations,
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✞ ☎
1 lemma DeleteThread_Inv_Space_Perms_IsNot_Empty:
2 assumes p1:"Inv_Space_Perms_IsNot_Empty s"
3 shows "Inv_Space_Perms_IsNot_Empty (DeleteThread s gno)"
4 apply(subst DeleteThread_eq)
5 apply(rule elim_if)
6 subgoal
7 apply(rule SetError_Inv_Space_Perms_IsNot_Empty)
8 apply(rule delete3_Inv_Space_Perms_IsNot_Empty)
9 apply(rule delete2_Inv_Space_Perms_IsNot_Empty)

10 apply(rule delete1_Inv_Space_Perms_IsNot_Empty)
11 using assms by simp
12 using assms by simp✝ ✆

Fig. 7. Formal Proof for Invariant 4 on DeletingThread

other operations are proven to be functionally correct mainly by unfolding their
definitions.

5.3 Safety Proofs

To verify safety properties, we prove that the specification satisfies all of the
invariants. An invariant usually is proved by induction, i.e., both the initial
state and the transition step are established on the invariant. The former is
proved by unfolding the definition of the initial state s0 def , while the latter is
demonstrated by an example, shown in Fig. 7. The lemma describes that the
transition of deleting a thread satisfies Invariant 4. Here, due to the complexity
of the function DeleteThread, we equivalently replace this function with an
execution sequence [detele1, delete2, delete3, SetError] to simplify the proof.
Line 5 shows the application of the rewrite rule elim if for if expressions, which
decouples the goal to two subgoals. The proof task is concentrated on the first
that was brought out by the keyword subgoal in Line 6. We leverage the lemma
that every element in the sequence satisfies the invariant to reduce our conclusion
to the hypothesis in reverse order. The second subgoal is the case when the
execution condition is not met (the state is unchanged), which is proved by
simp. The whole proof process forms the general reasoning steps, which is firstly
applicable to almost all proofs of DeleteThread on invariants, and secondly can
be reused for other functions but only requires modification of the auxiliary
definitions or lemmas used to assist the proof.

5.4 Refinement Proofs

The refinement proofs are used to ensure consistency between the abstract level
and the concrete level. Recalling the abstract modelMabs using the locale system,
we must instantiate it into the concrete model, which can be organized by the
keyword interpretation as follows.

interpretation Mabs {s′0, step′, σ′
0, rootserver′, · · ·}

The elements within the brackets are defined in the concrete model, and they
replace corresponding parameters of the system Mabs. Thus, an instantiation
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Table 3. Efforts for Specification and Proofs

Item
Specification Correctness Invariants
LOC PM LOP PM LOP PM

Threads ∼600 1 ∼2500 1 ∼9000 2

Address Space ∼300 1 ∼4500 2 ∼1300 1.5

IPC ∼200 0.5 ∼1000 0.5 ∼3000 1

Scheduling ∼150 0.5 ∼2000 1 ∼5000 2

Others ∼300 0.5 — — ∼500 0.5

Total ∼1550 3.5 ∼10000 4.5 ∼18800 7

theorem is defined if there is no type conflict. Next, our task is to prove that
the assumptions on these concrete variables hold. Since these assumptions are
invariants proved in Section 5.3, the theorem can be easily derived through the
tactic auto.

6 Discussion

Result.We leverage Isabelle/HOL to build a comprehensive formal specification
for the L4 API. The specification completely covers all modules in the kernel,
including address spaces, threads, IPC, scheduling, and others. We prove that
the formal specification satisfies all functional correctness and invariants we pro-
posed. To improve the readability of formal proofs, most formal proofs are writ-
ten in a structured language Isabelle/Isar [16], especially some complex lemmas.
In total, this work produces about 1.5K lines of code(LOC) for specifications
and about 29K lines of proofs(LOP) and takes about 15 person-months(PM).
Details of this work are described in Table 3.
Verified Issues. During specification and verification, we found 10 bugs that
violate functional correctness and safety properties. They are classified into 6
categories and reported as follows.

– Out-of-Bounds Access. When we prove the invariant 7, we found that
in the system calls ThreadControl, IPC, and ExchangeRegister, there is
no policy to limit the range of the destination thread’s identifier dest tid.
This bug allows threads to access non-TCB areas. We recommend adding a
condition expression into the source code, ensuring that these system calls
work only if dest tid does not exceed the maximum.

– Illegal Deletion. The source code allows the privileged threads to delete
any unprivileged thread, which may cause exceptions to occur. We know
that once a thread is created, it is assigned a scheduler used for manag-
ing its scheduling-related fields. Thus, invariant 8 needs to be guaranteed in
the whole state space. However, the invariant on the sub-function of delet-
ing thread cannot be proven to be true, this is because there will be no
scheduler to serve the thread if the deleted object is the scheduler. Our rec-
ommendation is to only allow privileged threads such as rootserver to serve
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7 Conclusion and Future Work

This paper proposes a comprehensive formal specification and verification for
an L4 microkernel API. The formal specification makes up for the missing core
components of the existing models and fixes the errors in these models. To im-
prove the correctness and reliability, 350 functional correctness and 39 safety
properties are formalized. After machine-checking proof in Isabelle/HOL, the
formal specification strictly satisfies the proposed 350 functional correctness and
39 safety properties. Through decoupling functionalities into some sub-functions,
abstracting the parameterized model, rewriting proof rules, and building reason
patterns, we solve the challenges in this work on complexity, reusability, and
efficiency. During specification and verification, we found 10 bugs in the kernel
reference manual and source code of the L4 microkernel, and we provided solu-
tions to fix them. In the future, we will expand the verification for the API to
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as the scheduler for a thread. The advantage is that it can be implemented by
modifying very little code because there is no need to check the dependencies
between unprivileged threads.

– Lack of Validity Checks. The system call ThreadControl does not check
whether the identifier of the parameter scheduler tid is valid, where validity
means the thread represented by scheduler tid has been created. The lack
of these checks still violates the invariant 8 when reasoning about the sub-
function of creating threads. Following our specification of Create Thread,
the bug can be fixed by determining whether scheduler tid exists in the
created thread collection (threads) that is defined as a ring queue called
present list in the source code.

– Unfinished Definitions.When modeling the functionality of the activating
thread, we found there is no handling of the case when the activation oper-
ation fails. We recommend that before activating a thread, make a backup
of the fields that need to be changed during activation, and restore the val-
ues of these fields if the activation fails. Some similar bugs include a lack of
handling failure to allocate address space; and a lack of implementation for
the system call ProcessorControl.

– Incomplete Initialization. In the header file schedule.h of the source code
of the Pistachio0.4 version, the initialization function init does not initial-
ize the last priority queue. In detail, in the code snippet of for(int i =
0; i < MAX PRIO; i + +){· · ·}, the loop condition should be set as
i <= MAX PRIO. It was discovered when we compared the initial state
of our model with that of the source code. Fortunately, this bug is fixed in
the latest version.

– Inconsistent Implementation. In the source code, the handler of each
interrupt thread is recorded by the field scheduler in TCB, while the advice
given in the manual is to take the field pager in UTCB. In our experience,
it is reasonable to record the handler by scheduler, because the interrupt
threads are executed in the kernel mode, and can be viewed as kernel threads,
thus, there is no need to assign them UTCB areas.



that for the entire source code and may pay more attention to the automation
technology in refined verification.
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tiKOS: An extensible architecture for building certified concurrent os kernels. In:
Keeton, K., Roscoe, T. (eds.) 12th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016.
pp. 653–669. USENIX Association (2016), https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/gu

2. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

3. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D.A., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an os kernel. In: Matthews, J.N.,
Anderson, T.E. (eds.) Proceedings of the 22nd ACM Symposium on Operat-
ing Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, October 11-
14, 2009. pp. 207–220. ACM (2009). https://doi.org/10.1145/1629575.1629596,
https://doi.org/10.1145/1629575.1629596

4. Klein, G., Tuch, H.: Towards verified virtual memory in l4. TPHOLs Emerging
Trends 4, 16 (2004)

5. Kolanski, R.: A formal model of the µ-kernel api using the b method. BE thesis,
School of Computer Science and Engineering, University of NSW, Sydney 2052
(2004)

6. Kolanski, R., Klein, G.: Formalising the l4 microkernel api. In: Proceedings of the
Twelfth Computing: The Australasian Theory Symposium-Volume 51. pp. 53–68
(2006)

7. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24, https://doi.org/10.1007/978-3-540-78800-3_24

8. Murray, T.C., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S.,
Lewis, C., Gao, X., Klein, G.: sel4: From general purpose to a proof of information
flow enforcement. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013. pp. 415–429. IEEE Computer Society (2013).
https://doi.org/10.1109/SP.2013.35, https://doi.org/10.1109/SP.2013.35

A Comprehensive Specification and Verification of the L4 Microkernel API   233

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/SP.2013.35
https://doi.org/10.1109/SP.2013.35


9. Nelson, L., Bornholt, J., Gu, R., Baumann, A., Torlak, E., Wang, X.: Scaling
symbolic evaluation for automated verification of systems code with serval. In:
Brecht, T., Williamson, C. (eds.) Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30,
2019. pp. 225–242. ACM (2019). https://doi.org/10.1145/3341301.3359641, https:
//doi.org/10.1145/3341301.3359641

10. Nelson, L., Sigurbjarnarson, H., Zhang, K., Johnson, D., Bornholt, J., Tor-
lak, E., Wang, X.: Hyperkernel: Push-button verification of an OS ker-
nel. In: Proceedings of the 26th Symposium on Operating Systems Prin-
ciples, Shanghai, China, October 28-31, 2017. pp. 252–269. ACM (2017).
https://doi.org/10.1145/3132747.3132748, https://doi.org/10.1145/3132747.

3132748

11. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A proof assistant for higher-
order logic. Springer-Verlag (2002)

12. Sigurbjarnarson, H., Nelson, L., Castro-Karney, B., Bornholt, J., Torlak, E., Wang,
X.: Nickel: A framework for design and verification of information flow control
systems. In: Arpaci-Dusseau, A.C., Voelker, G. (eds.) 13th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA,
USA, October 8-10, 2018. pp. 287–305. USENIX Association (2018), https://

www.usenix.org/conference/osdi18/presentation/sigurbjarnarson

13. Team, L.: Pistachio microkernel. https://www.l4ka.org/65.php (2010)
14. Team, L.: L4 experimental kernel reference manual version x.2 (2011), https:

//www.l4ka.org/l4ka/l4-x2-r7.pdf

15. Tuch, H., Klein, G.: Verifying the l4 virtual memory subsystem. In: Proc. NICTA
FM Workshop on OS Verification. pp. 73–97 (2004)

16. Wenzel, M., et al.: The isabelle/isar reference manual (2004)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

234 L. Zhang et al.

https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3132747.3132748
https://www.usenix.org/conference/osdi18/presentation/sigurbjarnarson
https://www.usenix.org/conference/osdi18/presentation/sigurbjarnarson
https://www.l4ka.org/65.php
https://www.l4ka.org/l4ka/l4-x2-r7.pdf
https://www.l4ka.org/l4ka/l4-x2-r7.pdf
http://creativecommons.org/licenses/by-nc/4.0/


Probabilistic Systems



Accurately Computing Expected Visiting Times
and Stationary Distributions in Markov Chains

Hannah Mertens(B) , Joost-Pieter Katoen ,
Tim Quatmann , and Tobias Winkler

RWTH Aachen University, Aachen, Germany
{hannah.mertens,katoen,tim.quatmann,tobias.winkler}@cs.rwth-aachen.de

Abstract. We study the accurate and efficient computation of the ex-
pected number of times each state is visited in discrete- and continuous-
time Markov chains. To obtain sound accuracy guarantees efficiently, we
lift interval iteration and topological approaches known from the com-
putation of reachability probabilities and expected rewards. We further
study applications of expected visiting times, including the sound compu-
tation of the stationary distribution and expected rewards conditioned on
reaching multiple goal states. The implementation of our methods in the
probabilistic model checker Storm scales to large systems with millions
of states. Our experiments on the quantitative verification benchmark
set show that the computation of stationary distributions via expected
visiting times consistently outperforms existing approaches — sometimes
by several orders of magnitude.

1 Introduction

Expected visiting times. Common questions for the quantitative analysis of Markov
chains include reachability probabilities, stationary distributions, and expected
rewards [34]. Many authors [36,23,55,24,44,48,19] have recognized the importance
of another quantity called expected visiting times (EVTs), which describe the
expected time a system spends in each state. EVTs are characterized as the
unique solution of a linear equation system [36]. They are not only relevant in
their own right, but also useful to obtain various other quantities, including the
ones mentioned above. This applies particularly to forward analyses which aim at
computing, e.g., the distribution over terminal states given an initial distribution.
Sound approximation of EVTs. In the context of (probabilistic) model checking,
the two main requirements for any numeric procedure are scalability and sound-
ness, i.e., the error in the reported result has to be bounded by a predefined
threshold. Scalability is typically achieved via numerically robust iterative meth-
ods [52,57,59] such as the Jacobi or Gauss-Seidel method [57]. In general, these
methods do not converge to the exact solution after a finite number of iterations.
Thus, the procedure is usually stopped as soon as a termination criterion is
satisfied [52]. However, standard stopping criteria such as small difference of
consecutive iterations are not sound in the above sense: They do not actually
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indicate how close the approximation is to the true solution. Since the correctness
of results in model checking, especially for safety-critical systems, is crucial,
several authors have proposed sound iterative algorithms [26,6,50,30]. While
these works focus on computing quantities such as reachability probabilities and
expected rewards, the sound computation of EVTs has not yet been studied.

Motivating example: Verifying sampling algorithms. To illustrate the use of EVTs
in probabilistic verification tasks, consider the Markov chain in Figure 1. It is
a finite-state model of a program — the Fast Dice Roller [42] — which takes
as input an integer N ≥ 1 and produces a uniformly distributed output in
{1, . . . , N} using unbiased coin flips only. The Fast Dice Roller thus solves a
generalized Bernoulli Factory problem [35]. Our model in Figure 1 is for the
case where N = 6 is fixed. How can we establish that each of the terminal states

, . . . , is indeed reached with probability sufficiently close to or exactly 1
6?
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Fig. 1: Fast Dice Roller

The standard approach for answering this ques-
tion is to solve N linear equation systems, one
for each terminal state [5, Ch. 10]. An alterna-
tive (and seemingly less well-known) method
is to compute the EVTs of each state in the
Markov chain, which requires solving just a
single linear equation system. All N desired
probabilities can then easily be derived from
the EVTs [36]: For instance, the states s3, s4, s6
can all be shown1 to have EVT 1

3 , and thus
the reachability probabilities of the terminal
states are all 1

6 = 1
2 · 1

3 . Similarly, EVTs are
useful for computing conditional expected re-
wards. For Bernoulli Factories, this allows us
to examine if some outcomes take longer to compute on expectation than others,
which is important to analyze possible side channel attacks in a security context.
Furthermore, we show in this paper how computing stationary distributions
reduces to EVTs. Such distributions provide insight into a system’s long-term
behaviour; applications include the mean-payoff of a given policy in a Markov
decision process (MDP) [49, Pr. 8.1.1], the distribution computed by a Chemical
Reaction Network [12], and the semantics of a probabilistic NetKAT network [56].

Contributions. In summary, the contributions of this paper are as follows:
– We describe, analyze, and implement the first sound numerical approximation

algorithm for EVTs in finite discrete- and continuous-time Markov chains.
Our algorithm is an adaption of the known Interval Iteration (II) [43,27,6].

– We show that computing (sound bounds on) a Markov chain’s stationary dis-
tribution reduces to EVT computations. The resulting algorithm significantly
outperforms preexisting techniques [41,45] for stationary distributions.

1 See Section 4 for how to compute these numbers. An EVT of 1
3

means that on
average, the state is visited 1

3
times. In general, EVTs of reachable recurrent states

are ∞, and the EVT of reachable transient states can take any value in (0,∞).
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– Similarly, we show how the conditional expected rewards until reaching each of
the, say, M absorbing states of a Markov chain can be obtained by computing
the EVTs and solving a second linear equation system — this is in contrast to
the standard approach which requires solving M equation systems [5, Ch. 10].

– We implement our algorithm in the probabilistic model checker Storm [32]
and demonstrate its scalability on various benchmarks.

Outline. We define general notation and EVTs in Sections 2 and 3, respectively.
In Section 4, we present our sound iterative algorithms for computing EVTs
approximately. Sections 5 and 6 present the reductions of stationary distributions
and conditional expected rewards to EVTs. We report on the experimental
evaluation of our algorithms in Section 7 and summarize related work in Section 8.

2 Background

Let N denote the set of non-negative integers and R = R ∪ {∞,−∞} the set of
extended real numbers. We equip finite sets S ̸= ∅ with an arbitrary indexing
S = {s1, . . . , sn} and identify functions of type v : S → R and A : S × S′ → R
with (column) vectors v ∈ R|S|

and matrices A ∈ R|S|×|S′|
, respectively. I denotes

the identity matrix. Vectors are compared component-wise, i.e., v ≤ v′ iff for
all s ∈ S, v(s) ≤ v′(s). Iverson brackets JBK cast the truth value of a Boolean
expression B to a numerical value 1 or 0, such that JBK = 1 iff B is true.

Definition 1. A discrete-time Markov chain (DTMC) is defined as a triple
D = (SD,PD, ιDinit), where SD is a finite set of states, PD : SD × SD → [0, 1] is
the transition probability function satisfying

∑
t∈S PD(s, t) = 1 for all s ∈ S, and

ιDinit : S → [0, 1] is the initial distribution with
∑

s∈S ιDinit(s) = 1.

We often omit the superscript from objects associated with a DTMC D whenever
this is clear from context, e.g., we write P rather than PD. An infinite path
π = s0s1 · · · ∈ Sω in a DTMC D = (S,P, ιinit) is a sequence of states such
that P(si, si+1) > 0 for all i ∈ N. We use π[i] = si to refer to the i-th state.
PathsD denotes the set of all infinite paths in D. The probability measure PrD

over measurable subsets of PathsD is obtained by a standard construction: For
finite path π̂ we set PrD(Cyl(π̂)) = ιinit(π̂[0]) ·

∏|π̂|−1
k=0 P(π̂[k], π̂[k+1]), where the

cylinder set Cyl(π̂) = {π ∈ PathsD | ∀i ∈ {0, . . . , |π̂|} : π[i] = π̂[i]} contains all
possible infinite continuations of π̂. We write PrDs for the probability measure
induced by D with the initial distribution assigning probability 1 to s ∈ S. We use
LTL-style notation for measurable sets of infinite paths. For R, T ⊆ S and k ∈ N,
let RUUU=k T = {π ∈ PathsD | π[k] ∈ T ∧ ∀i < k : π[i] ∈ R} be the set of infinite
paths that visit a state s ∈ T in the k-th step while only visiting states in R
before. We also define RUUUT =

⋃
k≥0 RUUU=k T , ♢T = SUUUT and ♢=kT = SUUU=k T .

Expected Rewards. A (non-negative) random variable over the probability space
induced by D is a measurable function v : PathsD → R≥0. Its expected value
is given by the Lebesgue integral ED[v] =

∫
PathsD

v dPrD. We write ED
s for the

expectation obtained under PrDs . The total reward w.r.t. a reward structure
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Fig. 2: Running example DTMC. The individual EVTs are below the states.

rew : S → R≥0 is defined by the random variable trrew : Paths
D → R≥0 with

trrew(π) =
∑∞

k=0 rew(π[k]); the expected total reward is ED[trrew].
Connectivity in DTMCs. A strongly connected component (SCC) of a DTMC
D is a set of states C ⊆ S such that any s, t ∈ C are mutually reachable, i.e.,
Prs(♢{t}) > 0 and Prt(♢{s}) > 0, and there is no proper subset of C that satisfies
this property. An SCC C is called bottom SCC (BSCC) if no state outside C
is reachable from C. In the following, SCCD denotes the set of SCCs of D. We
call a DTMC absorbing if all its BSCCs are singleton sets, and irreducible if
SCCD = {S}. The SCCs are ordered by a strict partial order ↪→ based on the
topology of the DTMC, where C ′ ↪→ C if and only if Prs′(♢C) > 0 for some
s′ ∈ C ′ and C ̸= C ′. An SCC chain of D is a sequence κ = C0 ↪→ C1 ↪→ · · · ↪→ Ck

of SCCs C0, C1, . . . , Ck ∈ SCCD, where k ≥ 0. The set of all SCC chains in D
is denoted by ChainsD, and ChainsDtr denotes the set of SCC chains that do not
contain a BSCC. The length of SCC chain κ = C0 ↪→ C1 ↪→ · · · ↪→ Ck is |κ| = k.

A state s is called transient if the probability that the DTMC, starting from s,
will ever return to s is strictly less than one, otherwise, s is a recurrent state. Thus,
in a finite MC, recurrent states are precisely the states contained in the BSCCs
whereas the transient states coincide with non-BSCC states. The sets of recurrent
and transient states in a DTMC are denoted by Sre and Str, respectively.

Example 1. In the DTMC D depicted in Figure 2, states s1, s2, s3, s4 are transient,
and s5, s6, s7 are recurrent. Also, SCCD = {{s1, s2}, {s3}, {s4}, {s5, s6}, {s7}},
where only {s5, s6} and {s7} are BSCCs. An example SCC chain is {s3} ↪→
{s1, s2} ↪→ {s4} ↪→ {s7}; its length is 3.

Stationary distributions. The stationary distribution (also referred to as steady-
state or long-run distribution) is a probability distribution that specifies the
fraction of time spent in each state in the long run (see, e.g., [5, Def. 10.79]).

Definition 2. The stationary distribution of DTMC D is given by θD ∈ [0, 1]|S|

with θD(s) = limn→∞
1
n

∑n
k=1 Pr(♢=k{s}).

If D is irreducible, the stationary distribution is given by the unique eigenvector
θD satisfying θD = θD ·P and

∑
s∈S θD(s) = 1, see, e.g., [39, Thm. 4.18]. If D

is reducible, θD can be obtained by combining a reachability analysis and the
eigenvector computation for each BSCC individually, see Section 5.

Definition 3. A continuous-time Markov chain (CTMC) is a quadruple C =
(S,P, ιinit, r), where (S,P, ιinit) is a DTMC and r : S → R>0 defines exit rates.
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CTMCs extend DTMCs by assigning the rate of an exponentially distributed
residence time to each state s ∈ S. We denote the embedded DTMC of a CTMC
C by emb(C) = (S,P, ιinit). The semantics are defined in the usual way (see,
e.g., [4,40]). An infinite timed path in a CTMC C = (S,P, ιinit, r) is a sequence
π = s0

τ0−→ s1
τ1−→ · · · consisting of states s0, s1, . . . ∈ S and time instances

τ0, τ1 . . . ∈ R≥0, such that P
(
si, si+1

)
> 0 for all i ∈ N. We denote the time τi

spent in state si by timei(π). Notations π[i] and PathsC are as for DTMCs. The
probability measure of C over infinite timed paths [4] is denoted by PrC . In a
CTMC, the total reward w.r.t. a reward structure rew : S → R≥0 is the random
variable trrew : Paths

C → R≥0 with trrew(π) =
∑∞

i=0 rew(π[i]) · timei(π).

3 Expected Visiting Times

We provide characterizations of expected visiting times for a fixed DTMC D =
(S,P, ιinit). Omitted proofs are in the extended version of this paper [47].

Definition 4. The expected visiting time (EVT) of a state s ∈ S is the expected
value ED[vts] of the random variable vts with vts(π) =

∑∞
k=0Jπ[k] = sK.

Example 2. The EVTs of the DTMC from Figure 2 are depicted below its states.

Intuitively, random variable vts counts the number of times state s occurs on
an infinite path. Consequently, the EVTs of unreachable states and reachable
recurrent states in a DTMC are always 0 and ∞, respectively. For this reason we
focus on the EVTs of the transient states Str. The following lemma provides an
alternative characterization of EVTs in terms of expected total rewards.

Lemma 1. For a fixed s ∈ S and x ∈ R>0 the reward structure rew : S → R≥0

given by rew(t) = x · Jt = sK satisfies E[vts] = 1
x · E[trrew].

By Lemma 1, EVTs can be obtained using existing algorithms for expected
total rewards. This approach is, however, inefficient for computing the EVTs of
multiple states since it requires solving an equation system for each single state.

Next, we elaborate on EVTs for multiple states as a solution of a single
linear equation system. In [36, Def. 3.2.2], EVTs are defined using the so-called
fundamental matrix for absorbing DTMCs. The fundamental matrix contains
as its coefficients for each possible start and target state s and t the EVT
Es[vtt].Computing the fundamental matrix explicitly becomes infeasible for large
models as it requires determining the inverse of a |Str| × |Str| matrix. To obtain
the vector (ED[vts])s∈Str of EVTs that take the initial distribution of D into
account, it suffices to solve an equation system which is linear in the size of the
DTMC. The same equation system arises by applying the dual linear program
for expected rewards in MDPs [49, Ch. 7.2.7] to the special case of DTMCs.

Theorem 1 ([36, Cor. 3.3.6]). (E[vts])s∈Str is the unique solution (x(s))s∈Str

of the following equation system: ∀s ∈ Str : x(s) = ιinit(s) +
∑

t∈Str
P(t, s) · x(t).
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Intuitively, this equation system shows that a state s can be visited initially and
that it can receive visits from its predecessor states, i.e., the EVT is computed
by considering the incoming transitions to a state. As a consequence, we obtain
that the EVTs of the transient states are always finite. In particular, if s ∈ Str is
reachable, then E[vts] ∈ R>0, and otherwise E[vts] = 0.

Example 3. Reconsider the DTMC from Figure 2 with transient states Str =
{s1, s2, s3, s4}. The EVTs of Str are the unique solution (x(s))s∈Str of

x(s1) = 0.4 + 1.0 · x(s2) + 0.7 · x(s3) x(s2) = 0.5 · x(s1)
x(s4) = 0.5 · x(s1) + 0.3 · x(s3) + 0.8 · x(s4) x(s3) = 0.6

Expected visiting times in CTMCs. Following [37], we define the EVT of a state
s ∈ SC of a CTMC C as the expected value EC [vts] of the random variable
vts : Paths

C → R≥0 with vts(π) =
∑∞

k=0Jπ[k] = sK · timek(π). Intuitively, vts
considers the total time the system spends in state s. Computing EVTs in
CTMCs reduces to the discrete-time case: The EVT of state s coincides with the
EVT in the embedded DTMC weighted by the expected residence time 1

r(s) in s:

Theorem 2. For all states s ∈ S, it holds that EC [vts] =
1

r(s) · E
emb(C)[vts].

Theorem 2 implies that all results and algorithms to compute ETVs in DTMCs are
readily applicable to CTMCs, too. We thus focus on DTMCs in the remainder.

4 Accurately Computing EVTs

In this section, we discuss algorithms to compute EVTs approximately: An
unsound value iteration algorithm (Section 4.1), its sound interval iteration exten-
sion (Section 4.2), and finally a topological, i.e., SCC-wise algorithm (Section 4.3).
Since the EVTs for recurrent states are always either 0 or ∞, we focus on the
EVTs of the transient states. Omitted proofs are in the extended version [47].

4.1 Value Iteration

Value Iteration (VI) was originally introduced to approximate expected rewards
in MDPs [7]. In a broader sense, VI simply refers to iterating a function f : R|S| →
R|S| (called Bellman operator in the MDP setting) from some given initial vector
x(0), i.e., to compute the sequence x(1) = f(x(0)),x(2) = f(x(1)), etc. Instances of
VI are usually set up such that the sequence converges to a (generally non-unique)
fixed point x = f(x). In this paper, we only consider VI for the case where f
is a linear function f(x) = Ax+ b, where A and b are a matrix and a vector,
respectively. A fixed point x of f is then a solution of the linear equation system
(I−A)x = b. Other iterative methods for solving linear equation systems such
as the Jacobi or Gauss-Seidel method can be considered optimized variants of
VI, and are applicable in our setting as well, see [47].
Value iteration for EVTs. For EVTs, the function iterated during VI is as follows:
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Algorithm 1: Value iteration for EVTs without precision guarantee.
Input: DTMC D, x(0) ∈ R|Str|, crit ∈ {abs, rel}, ϵ > 0
Output: x ∈ R|Str|

1 for k = 1, 2, 3, . . . do
2 x(k) ← Φ(x(k−1)) // x(k)(s) = ιinit(s) +

∑
t∈Str

x(k−1)(t) ·P(t, s), s ∈ Str

3 if diffcrit(x(k−1),x(k)) ≤ ϵ then return x(k)

Definition 5. The EVTs-operator Φ : R|Str| → R|Str| for DTMC D is defined as

Φ(x) =
(
ιinit(s) +

∑
t∈Str

x(t) ·P(t, s)
)
s∈Str

.

The above definition is motivated by Theorem 1. The following result, which
is analogous to [49, Thm. 6.3.1], means that VI for EVTs (stated explicitly as
Algorithm 1 for the sake of concreteness) works for arbitrary initial vectors.

Theorem 3. The EVTs-operator from Definition 5 has the following properties:
(i) (E[vts])s∈Str is the unique fixed point of Φ.
(ii) For all x(0) ∈ R|Str| we have limk→∞ Φ(k)(x(0)) = (E[vts])s∈Str .

When to stop VI? A general issue with value iteration is that even if the generated
sequence converges to the desired fixed point in the limit, it is not easy to
determine how many iterations are necessary to obtain an ϵ-precise result. An
ad hoc solution, which is implemented in probabilistic model checkers such as
Storm [32], prism [41], and mcsta [29], is to stop the iteration once the difference
between two consecutive approximations is small, i.e., the number of iterations
is the smallest k > 0 such that diff (x(k),x(k−1)) < ϵ for some predefined fixed
ϵ > 0. Common choices for the distance diff between vectors x,y ∈ R|S| are the
absolute difference diffabs(x,y) = maxs∈S |x(s)−y(s)|, and the relative difference

diffrel(x,y) = maxs∈S

∣∣∣∣x(s)− y(s)

y(s)

∣∣∣∣ ,
where by convention 0/0 = 0 and a/0 = ∞ for a ̸= 0. As pointed out by various
authors [59,27,6,43,50], there exist instances where the iteration terminates with
a result which vastly differs from the true fixed point, even if ϵ is small (e.g.
ϵ = 10−6). An example of this for the EVT variant of VI is given in [47].

4.2 Interval Iteration

Interval iteration (II) [43,27,6] is an extension of VI that formally guarantees
ϵ-close results for all possible inputs. The general idea of II is to construct two
sequences of vectors (l(k))k∈N and (u(k))k∈N such that for all k ∈ N we have
l(k) ≤ x ≤ u(k), where x is the desired fixed point solution. II can be stopped
with precision guarantee ϵ once it detects that diff (l(k),u(k)) ≤ ϵ.
Initial bounds for II. In general, II requires initial vectors l(0) and u(0) which
are already sound (but perhaps very crude) lower and upper bounds on the

Computing EVTs and Stationary Distributions in Markov Chains             243



solution. In the case of EVTs, we can use l0 = 0. Finding an upper bound
u(0) ≥ (E[vts])s∈Str is more involved since EVTs may be unboundedly large in
general. We solve this issue using a technique from [6]. II for EVTs. In Lemma 2
below we show that once we have found initial bounds l(0) and u(0), we can
readily perform a sound II for EVTs by simply iterating the operator Φ from
Definition 5 on l(0) and u(0) in parallel. Inspired by [6], we propose the following
optimization to speed up convergence: Whenever Φ decreases the current lower
bound in some entries, we retain the old values for these entries (and similar for
upper bounds). The next definition formalizes this.
Definition 6. The Max and Min EVTs-operators Φmax, Φmin : R|Str| → R|Str|

are defined by Φmax(x) = max {x, Φ(x)} = (max{x(s), (Φ(x))(s)})s∈Str and
Φmin(x) = min{x, Φ(x)} = (min{x(s), (Φ(x))(s)})s∈Str .
The following result is analogous to [6, Lem. 3.3]:
Lemma 2. Let u, l ∈ R|Str| with l ≤ (E[vts])s∈Str ≤ u. Then,
(i) Φ

(k)
max(l) ≤ Φ

(k+1)
max (l) and Φ

(k)
min(u) ≥ Φ

(k+1)
min (u) for all k ∈ N.

(ii) Φ(k)(l) ≤ Φ
(k)
max(l) ≤ (E[vts])s∈Str

≤ Φ
(k)
min(u) ≤ Φ(k)(u) for all k ∈ N.

(iii) limk→∞ Φ
(k)
max(l) = limk→∞ Φ

(k)
min(u) = (E[vts])s∈Str

.
The resulting II algorithm for EVTs is presented as Algorithm 2. Note the following
additional optimization: The algorithm stops as soon as diffcrit(u(k), l(k)) ≤ 2ϵ
and returns the mean of u(k) and l(k), ensuring that the absolute or relative
difference between (E[vts])s∈Str and the returned result is at most ϵ.

Example 4. We illustrate a run of Algorithm 2 on the DTMC from Figure 2,
with crit = abs and ϵ = 0.05 (the following numbers are rounded to 4 decimal
digits):

k l(k) u(k) diffabs(l(k),u(k))

0 (0.000, 0.000, 0.000, 0.000) (2.000, 2.000, 1.000, 5.000) 5.000
1 (0.400, 0.000, 0.600, 0.000) (2.000, 1.000, 0.600, 5.000) 5.000
2 (0.820, 0.200, 0.600, 0.380) (1.820, 1.000, 0.600, 5.000) 4.602

· · · · · · · · ·
22 (1.639, 0.819, 0.600, 4.899) (1.640, 0.820, 0.600, 5.000) 0.101
23 (1.639, 0.819, 0.600, 4.919) (1.640, 0.820, 0.600, 5.000) 0.081

After k = 23 iterations, the algorithm stops as diffabs(l(k),u(k)) = 0.081 ≤ 2 · ϵ
and outputs the mean 1

2 (l
(23) + u(23)).

Theorem 4 (Correctness of Algorithm 2). Given an input DTMC D,
initial vectors l(0), u(0) with l(0) ≤ (E[vts])s∈Str ≤ u(0), crit ∈ {abs, rel}, and
a threshold ϵ > 0, Algorithm 2 terminates and returns a vector xres ∈ R|Str|

satisfying diffcrit(xres, (E[vts])s∈Str) ≤ ϵ.

Remark 1. The monotonicity of the sequences (Φ
(k)
max(l))k∈N and (Φ

(k)
min(u))k∈N

(see Lemma 2 (i)) is not used in the proof of Theorem 4. By Lemma 2 (ii), we can
replace Φmax and Φmin with Φ in Algorithm 2 and still obtain ϵ-sound results.
However, using Φmax and Φmin instead of Φ can lead to faster convergence.
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Algorithm 2: Interval iteration for EVTs with precision guarantee.
Input: DTMC D, l(0) ≤ (E[vts])s∈Str ,u

(0) ≥ (E[vts])s∈Str , crit ∈ {abs, rel}, ϵ > 0
Output: x ∈ R|Str| with diffcrit(x, (E[vts])s∈Str) ≤ ϵ
1 for k = 1, 2, . . . do
2 l(k) ← Φmax(l

(k−1)) ; u(k) ← Φmin(u
(k−1))

3 if diffcrit(u(k), l(k)) ≤ 2 · ϵ then return 1
2
(l(k) + u(k))

4.3 Topological Algorithm

To increase the efficiency of VI for the analysis of rewards and probabilities in
MDPs, several authors have proposed topological VI [15,16], which is also known
as blockwise VI [14]. The idea is to avoid the analysis of the complete model at
once and instead consider the strongly connected components (SCCs) sequentially
based on the order relation ↪→. We lift this approach to EVTs and in particular
consider error propagations when approximative methods are used.
SCC Restrictions. To formalize the topological approach, we introduce the SCC
restriction D|C [x] of DTMC D to C ∈ SCCD with parameters x ∈ R|Str|. Intu-
itively, D|C [x] is a DTMC-like model obtained by restricting D to the states C
and assigning each s ∈ C the “initial value” ιDinit(s) +

∑
s′∈S\C PD(s′, s) · x(s′).

The idea is that x is an approximation of the EVTs of the predecessor SCCs
C ′ ↪→ C. We also define D|C = D|C [x] with x(s) = ED[vts] (i.e., the exact EVT)
for each state s ∈ S that can reach C with positive probability in one step.
See [47, Definition 7] for more formal details.

s2 s1

0.4 + 0.7 · 0.6

s3

x(s3)=0.6

0.5

0.5

1

0.7

Fig. 3: SCC restriction.

Example 5. The SCC restriction of the
DTMC D from Figure 2 to the SCC C =
{s1, s2} with parameters x = (ED[vts])s∈S

is depicted in Figure 3. Note that the initial
values depend only on the initial distribution
ιDinit and the x-values of the states that can
reach the SCC C in one step.

Lemma 3. For non-bottom SCC C and s ∈ C we have ED[vts] = ED|C [vts].

Remark 2. Since a parametric SCC restriction D|C [x] is defined for arbitrary
vectors x ∈ R|Str|, the initial values do not necessarily form a probability distribu-
tion. Strictly speaking, this means that D|C [x] is not a DTMC in general. Thus,
by abuse of notation, we define the “EVTs” in the parametric SCC restriction
D|C [x] as the unique solution of the following linear equation system: For all
s ∈ C: x(s) = ι

D|C [x]
init (s) +

∑
t∈Str

PD|C (t, s) · x(t). To solve this system, we can
still apply the methods described in Sections 4.1 and 4.2 without further ado.
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Algorithm 3: Topological EVT algorithm with relative precision.
Input: DTMC D, ϵ ≥ 0
Output: x ∈ R|Str| with diffrel(x, (E[vts])s∈Str) ≤ ϵ
1 {C1, . . . , Cn} ← SCCD

tr // obtain the non-bottom SCCs, Ci ↪→ Cj implies i < j
2 x← 0

3 δ ← L+1
√
1 + ϵ− 1 // L is the length of a longest non-bottom SCC chain

4 for j = 1 to n do
5 compute x̂ such that diffrel((ED|Cj

[x]
[vts])s∈Cj , x̂) ≤ δ // use e.g. Alg. 2

6 for s ∈ Cj do x(s)← x̂(s)

7 return x

We now describe an algorithm for computing the EVTs SCC-wise in topological
order. The desired precision ϵ ≥ 0 is an input parameter (ϵ = 0 is possible). Due
to space limitations we only discuss relative precision, see [47] for an algorithm
with absolute precision. The idea is to solve the linear equation systems tailored
to the parametric SCC restrictions, each of which is constructed based on the
analysis of the preceding SCCs. Algorithm 3 outlines the procedure.

The algorithm first decomposes the input DTMC D into its non-bottom
SCCs: The function SCCD

tr called in Line 1 returns the set {C1, . . . , Cn} of SCCs
of D which consist of transient states, i.e., the non-bottom SCCs. Furthermore,
we assume that the SCCs are indexed such that Ci ↪→ Cj implies i < j. The
algorithm considers each SCC in topological order. We assume that a “black
box” can obtain the (approximate) EVTs in Line 5. Then, the vector x ∈ R|Str|

is updated such that it contains the approximations of the EVTs in D upon
termination. For the analysis of an SCC Cj for some j ∈ {1, . . . , n}, the algorithm
considers the parametric SCC restriction D|Cj

[x], which is based on the result
x(t) for states t in SCCs Ci that are topologically before Cj . For each parametric
SCC restriction D|Cj

[x], the algorithm computes the vector (ED|Cj
[x][vts])s∈C

in Line 5. Then, the algorithm updates the corresponding entries in x in Line 6.
After each non-bottom SCC has been considered, the algorithm terminates and
returns the vector x that contains the updated value for each transient state.
The following lemma provides an upper bound on the error that accumulates
during the topological computation.

Lemma 4. Let ϵ ∈ [0, 1) and let x ∈ R|Str| such that for every non-bottom SCC
C, (x(s))s∈C satisfies diffrel

(
(x(s))s∈C , (ED|C [x][vts])s∈C

)
≤ ϵ. Then

diffrel
(
x, (ED[vts])s∈Str

)
≤ (1 + ϵ)L+1 − 1,

where L = maxκ∈ChainsDtr
|κ| is the largest length of a chain of non-bottom SCCs.

Theorem 5 (Correctness of Algorithm 3). Algorithm 3 returns a vector
xres ∈ R|Str| such that diffrel(xres, (ED[vts])s∈Str) ≤ ϵ.
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5 Stationary Distributions via EVTs

We show that EVTs can be used to determine sound approximations of the
stationary distribution θD of a (reducible) DTMC D. It is known that θD can be
computed as follows (see, e.g., [39, Thm. 4.23]). For each BSCC B:
– Compute the reachability probability PrD(♢B) to B.
– Determine the stationary distribution θD|B of the DTMC restricted to B.

Then, we obtain the stationary distribution for the recurrent states s in the
BSCC B: θD(s) = PrD(♢B) ·θD|B (s). For the remaining transient states, we have
θD(s) = 0. We show how both, PrD(♢B) and θD|B , can be computed efficiently
for every BSCC B using EVTs. We also elaborate on how relative errors propagate
through the computation, allowing us to derive sound lower- and upper bounds
for the stationary distribution θD. Omitted proofs are in the extended report [47].
Computing BSCC reachability probabilities. The absorption probabilities, i.e., the
probability of reaching a singleton BSCC can be computed using EVTs [36]. By
collapsing the BSCCs into a single state, a slightly generalised result is obtained:

Theorem 6 ([36, Thm. 3.3.7]). For any BSCC B of a DTMC D it holds
that Pr(♢B) =

∑
s∈B

(
ιinit(s) +

∑
s′∈Str

P(s′, s) · E[vts′ ]
)
.

Applying Theorem 6, we can compute the EVTs once to derive the reachability
probabilities for every BSCC. Further, when using interval iteration from Sec-
tion 4.2 to obtain x ∈ R|S| with diffrel (x, (E[vts])s∈S) ≤ ϵ for some ϵ ∈ (0, 1),
the relative error does not increase when deriving the reachability probabilities,
i.e., diffrel

(∑
s∈B

(
ιinit(s) +

∑
s′∈Str

P(s′, s) · x(s)
)
,Pr(♢B)

)
≤ ϵ.

Computing the stationary distribution within a BSCC. Next, we leverage EVTs to
compute the stationary distribution θB of an irreducible DTMC B = (S,P, ιinit).
This method can be applied to derive the stationary distribution θD|B of D|B
since the latter is an irreducible DTMC for each BSCC B. Let v ∈ S be an
arbitrary state. We construct the DTMC B↱v̂ in which all incoming transitions
of state v are redirected to a fresh absorbing state v̂. Thus, its only BSCC is
{v̂}, all other states are transient. Formally, B↱v̂ = (S ⊎ {v̂}, P̂, ι̂init), where
P̂(v̂, v̂) = 1, P̂(s, v̂) = P(s, v) and P̂(s, v) = 0 for all s ∈ S, P̂(s, t) = P(s, t) for
all s ∈ S, t ∈ S \ {v}, and ι̂init(v) = 1.

Theorem 7. The stationary distribution θB of an irreducible DTMC B is given

by θB(s) =
EB↱v̂ [vts]∑

t∈S EB↱v̂ [vtt]
. Further, if diffrel

(
x, (EB↱v̂

[vts])s∈S

)
≤ ϵ for x ∈ R|S|

and ϵ ∈ (0, 1), then diffrel
(

x∑
s∈S x(s) , θ

B
)
≤ 2ϵ

1−ϵ .

The first part of Theorem 7 can also be established by considering the renewal
processes embedded in B (see, e.g., [58, Theorem 2.2.3]).
Combining both steps. Theorems 6 and 7 and the interval iteration method yield
approximations pB and ds for PrD(♢B) and θD|B (s), respectively, where B is
a BSCC s ∈ B, and ϵ1, ϵ2 ∈ (0, 1) such that diffrel

(
pB ,PrD(♢B)

)
≤ ϵ1 and

diffrel
(
ds, θ

D|B (s)
)
≤ ϵ2. The product pB · ds approximates θD(s) = PrD(♢B) ·
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θD|B (s) such that diffrel
(
pB · ds, θD(s)

)
≤ ϵ1 + ϵ2 + ϵ1ϵ2.

s5

5
3

s6 1

1

ŝ6

∞

0.4 0.6

1

1

Fig. 4: The DTMC B↱ŝ6 .

Example 6. We compute the stationary distribu-
tion of the running example DTMC D from Fig-
ure 2. Its only non-trivial BSCC is B = D|{s5,s6}.
The DTMC B↱ŝ6 along with its (exact) EVTs is
depicted in Figure 4. We conclude that θB is pro-
portional to ( 35 , 1), i.e., θB = ( 58 ,

3
8 ). Since the

two BSCCs {s5, s6} and {s7} are both reached
with probability 1

2 , it follows that the stationary
probabilities of the three recurrent states s5, s6, s7 are 5

16 ,
3
16 , and 1

2 , respectively.

6 Conditional Expected Rewards

Theorem 6 states that the EVTs of the transient states of a DTMC D can be
used to compute the probability to reach each individual BSCC of D. We now
generalize this result and show that the EVTs can also be used to compute the
total expected rewards conditioned on reaching each BSCC.

The total expected reward conditioned on reaching a set T ⊆ S of states with
PrD(♢T ) > 0 is defined as:

ED[trrew|♢T ] =
1

PrD(♢T )

∫
♢T

trrew dPrD

Our next result asserts that given the EVTs of D, all the values {ED[trrew|♢B] |
B a BSCC of D} can be computed by solving a single linear equation system (the
standard approach is to solve one linear equation system per BSCC [5, Ch. 10]).
For simplicity, we state the result only for BSCCs {r} with a single absorbing
state r, and for reward functions that assign zero reward to all recurrent (BSCC)
states; this is w.l.o.g. as larger BSCCs can be collapsed, and positive reward in a
(reachable) BSCC causes the conditional expected reward w.r.t. this BSCC to be
∞, rendering numeric computations unnecessary.
Theorem 8. Let rew : S → Q≥0 with rew(Sre) = {0}. Then the equation system

∀s ∈ Str : y(s) = rew(s) · ED[vts] +
∑
t∈Str

P(t, s) · y(t)

has a unique solution (y(s))s∈Str and for all absorbing r ∈ S, PrD(♢{r}) > 0,

ED[trrew|♢{r}] =
∑

t∈Str
P(t, r) · y(t)

ιinit(r) +
∑

t∈Str
P(t, r) · ED[vtt]

.

Theorem 8 assumes rational rewards as required in our proof in [47].

7 Experimental Evaluation

Implementation details. We integrated the presented algorithms for EVTs and
stationary distributions in the model checker Storm [32]. The implementation
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is part of Storm’s main release available at https://stormchecker.org. It uses
explicit data structures such as sparse matrices and vectors. When computing
EVTs, we can use value iteration (VI) or interval iteration (II) as presented in
Algorithms 1 and 2. Alternatively, the corresponding linear equation systems
can be solved using LU factorization (a direct method implemented in the Eigen
library [25]) or gmres (a numerical method implemented in gmm++ [51]). Each
EVT approach can be used in combination with the topological algorithm (topo)
from Section 4.3. We use double precision floating point numbers. For II, the
propagation of (relative) errors is respected in a way that the error of the end
result does not exceed a user-defined threshold (here: ϵ = 10−3). Implementing
II with safe rounding modes as in [28] is left for future work. The methods gmres
and VI are configured with a fixed relative precision parameter (here: ϵ = 10−6).
For LU, floating point errors are the only source of inaccuracies. We also consider
an exact configuration LUX that uses rational arithmetic instead of floats.

Stationary distributions can be computed in Storm using the approaches
Classic, EVTreach, and EVTfull. The Classic approach computes each BSCC
reachability probability separately and the stationary distributions within the
BSCCs are computed using the standard equation system [39, Thm. 4.18].
EVTreach and EVTfull implement our approaches from Section 5, where EVTreach
only considers EVTs for BSCC reachability and EVTfull also derives the BSCC
distributions from EVTs. As for EVTs, we use LU(X) or gmres to solve linear equa-
tion systems. For the BSCC reachability probabilities, a topological algorithm
can be enabled as well. Using EVTfull with II yields sound approximations.

Experimental setup. The experiments ran on an Intel® Xeon® Platinum 8160
Processor limited to 4 cores and 12 GB of memory. The time timeout was set to
30 minutes. Our implementation does not use multi-threading.

7.1 Verifying the Fast Dice Roller
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N

ti
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e
in

se
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Classic/LUx/topo EVTfull/LUx/topo
Classic/gmres/topo EVTfull/II/topo

Fig. 5: Fast Dice Roller Results.

Recall Lumbroso’s Fast Dice Roller [42]
from Section 1. For a given parameter
N ≥ 1, we verify that the resulting dis-
tribution is indeed uniform by comput-
ing the stationary distribution of the
corresponding DTMC which, for this
model family, coincides with the indi-
vidual BSCC reachability probabilities
as each BSCC consists of a single state.
We conducted our experiments with an
equivalent state-reduced variant of the
Fast Dice Roller which we obtained auto-
matically using the technique from [60],
i.e., for every given N , our variant has
fewer states than the original algorithm
from [42]. The plot in Figure 5 shows for
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different values of N (x-axis) the runtime (y-axis) of the approaches Classic (us-
ing gmres or LUx) and EVTfull (using II or LUx), all using topological algorithms.
Our novel EVTfull approach is significantly faster than the Classic method,
enabling us to verify large instances with up to 4 800 255 states (N = 32 000)
within the time limit. In particular, we can compute the values using exact
arithmetic as LUx has runtimes similar to those of II in the EVTfull approach.

7.2 Performance Comparison

To evaluate the various approaches, we computed EVTs and stationary distribu-
tions for all applicable finite models of type DTMC or CTMC of the Quantitative
Verification Benchmark Set (QVBS) [31]: We excluded 2 model families for which
none of the tested parameter valuations allowed any algorithm to complete using
the available resources and for the EVT computation we excluded 8 models
that do not contain any transient states. In addition to QVBS, we included
Lumbroso’s Fast Dice Roller [42] and the handcrafted models (branch and loop)
introduced in [45]. We considered multiple parameter valuations yielding a total
of 62 instances (including 12 CTMCs) for computing EVTs and 79 instances
(including 28 CTMCs) for computing the stationary distribution.

Our experiments for stationary distributions also include the implementations
of the naive and guided sampling approaches (ap-naive and ap-sample) from [45]
as well as the implementation of the classic approach in prism [41]2 as external
baselines. These tools do not support the Jani models and can not compute EVTs.

We measured the runtime of the respective computation including the time
for model construction. In cases where the exact results are known (using exact
computations via LUX), we consider results as incorrect if the relative difference
to the exact value is greater than 10−3. Results provided by the tool from [45]
and by prism are not checked for correctness. We set the relative termination
threshold of gmres and VI to ϵ = 10−6 to compensate for inaccuracies of the
unsound methods. When using II or prism, a relative precision of ϵ = 10−3 was
requested. For the implementation of [45] — which exclusively support absolute
precision — we set the threshold to ϵ = 10−3. See [47] for more experiments.
Computing EVTs. The quantile plot at the top of Figure 6 indicates the time that
is required for computing the EVTs in 62 models for different approaches. A point
at position (x, y) indicates that the corresponding method solved the xth fastest
instance in y seconds, where only correctly solved instances are considered. The
unsound methods VI and gmres produced 7 and 2 incorrect results, respectively.
Furthermore, as errors accumulated, the topological variations of VI and gmres
more frequently exceeded the threshold of 10−3. The variants of II always
produced correct results.

The plot indicates that (topological) LU and gmres outperform VI and II for
easier instances. However, II catches up for the more intricate instances as it
is more scalable than LU and always yields correct results. The exact method
LUX is significantly slower compared to the other methods. We also observe that
2 We consider the explicit engine of prism v4.8 with the Jacobi method (default).
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Fig. 6: Runtime comparison for EVTs (top) and stationary distributions (bottom).

the topological algorithms are superior to the non-topological variants. This is
confirmed by the leftmost scatter plot in Figure 7 which compares the topological
and non-topological variant of II. Here, each point (x, y) indicates an instance
for which the methods on the x-axis and the y-axis respectively required x and y
seconds to compute the EVTs. Instances that contain only singleton SCCs are
depicted as triangles ( ), whereas cycles ( ) represent the remaining instances.
No incorrect results (INC) were obtained. The scatter plot in the middle in
Figure 7 indicates that the iterative methods are more scalable than exact LUX .
We also see that models with millions of states can be solved in reasonable time.
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Fig. 7: Scatter plots showing the EVT computation runtime for standard and
topological II (left) as well as the runtime of the EVT (right) approaches for
different state space sizes |S|.

Computing stationary distributions. The quantile plot at the bottom of Figure 6
summarizes the runtimes for the different stationary distribution approaches3.
We only consider the topological variants of the approaches of Storm as they
were consistently faster. No incorrect results were observed in this experiment.

The plot indicates that the guided sampling method (ap-sample) from [45]
and prism perform significantly better than ap-naive. However, all algorithms
provided by Storm — except for Classic/LUx — outperform the other implemen-
tations. For LU and GMRES, we observe that the EVTreach and EVTfull variants
are significantly faster than the Classic approach. The EVTreach approach using
gmres provides the fastest configuration, but is also the least reliable one in terms
of accuracy. For the sound methods, we observe that the EVTfull approach with
II is outperformed by LU combined with either EVTreach or EVTfull, where the
latter shows the better performance.

8 Related Work

Computing stationary distributions. Other methods for the sound computation
of the stationary distribution have been proposed in, e.g., [21,11,9]. In contrast
to our work, they consider only subclasses of Markov chains: [21,11] introduce
an (iterative) algorithm applicable to Markov chains with positive rows while [9]
presents a technique limited to time-reversible Markov chains. The recent ap-
proach from [45] can also handle general Markov chains. Our technique ensures

3 Six Jani [10] models that ap-naive, ap-sample, and prism do not support are omitted.
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soundness with respect to both absolute and relative differences, whereas the
approaches of [45] only consider absolute precision.
Other applications of EVTs. The authors of [36] have suggested to use EVTs
for the expected time to absorption, i.e., the expected number of steps until
the chain reaches an absorbing state. Indeed, this quantity is given by the sum
of the vector (E[vts])s∈Str [36, Thm. 3.3.5]. For acyclic DTMCs the EVT of a
state coincides with the probability of reaching this state. This is relevant in
the context of Bayesian networks [53,54] since inference queries in the network
can be reduced to reachability queries by translating Bayesian networks into
tree-like DTMCs. Existing procedures for multi-objective model checking of
MDPs employ linear programming methods relying on the EVTs of state-action
pairs [20,18,13,17]. EVTs are also employed in an algorithm proposed in [8]
for LTL model checking of interval Markov chains. Moreover, EVTs have been
leveraged for minimizing and learning DTMCs [1,2]. Further recent applications
of EVTs to MDPs include verifying cause-effect dependencies [3], as well as an
abstraction-refinement procedure that measures the importance of states based
on the EVTs under a fixed policy [33]. [22] employs EVTs in the context of policy
iteration in reward-robust MDPs.

9 Conclusion

We elaborated on the computation of EVTs in DTMCs and CTMCs: The EVTs in
DTMCs can be determined by solving a linear equation system, while computing
EVTs in CTMCs reduces to the discrete-time setting. We developed an iterative
algorithm based on the value iteration [49] algorithm lacking assurance of precision.
Building on interval iteration [27,6] — an algorithm for the sound computation of
reachability probabilities and expected rewards — we developed an algorithm for
approximating EVTs with accuracy guarantees. To enhance efficiency, we adapted
a topological algorithm [15,16,14] to compute EVTs SCC-wise in topological
order. We showed that EVTs enable the sound approximation of the stationary
distribution and the efficient computation of conditional expected rewards. For
future work, we want to extend our implementation provided in the model checker
Storm [32] by symbolic computations. Another direction is to combine EVT-
based computations with approximate verification approaches based on partially
exploring relevant parts of the system [38,45]. We conjecture that EVTs serve as
a good heuristic to identify significant sub-regions within the state space.
Data availability statement. The datasets generated and analyzed in this study
and code to regenerate them are available in the accompanying artifact [46].
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CTMCs with Imprecisely Timed Observations ⋆

Abstract. Labeled continuous-time Markov chains (CTMCs) describe
processes subject to random timing and partial observability. In applica-
tions such as runtime monitoring, we must incorporate past observations.
The timing of these observations matters but may be uncertain. Thus,
we consider a setting in which we are given a sequence of imprecisely
timed labels called the evidence. The problem is to compute reachability
probabilities, which we condition on this evidence. Our key contribution
is a method that solves this problem by unfolding the CTMC states over
all possible timings for the evidence. We formalize this unfolding as a
Markov decision process (MDP) in which each timing for the evidence is
reflected by a scheduler. This MDP has infinitely many states and actions
in general, making a direct analysis infeasible. Thus, we abstract the con-
tinuous MDP into a finite interval MDP (iMDP) and develop an iterative
refinement scheme to upper-bound conditional probabilities in the CTMC.
We show the feasibility of our method on several numerical benchmarks
and discuss key challenges to further enhance the performance.

1 Introduction

Continuous-time Markov chains (CTMCs) are stochastic processes subject to
random timing, which are ubiquitous in reliability engineering [48], network
processes [33,35], and systems biology [14,20]. Here, we consider finite-state
labeled CTMCs, which exhibit partial observability through a labeling function,
such that analysis can only be done based on observations of the state. Specific
techniques such as model checking algorithms compute quantitative aspects of
CTMC behavior under the assumption of a static and known initial state [4,10].

Conditional probabilities In applications such as runtime monitoring [13,49], we
need to analyze an already running system without a static initial state. Instead,
we must incorporate past observations, which are given as a sequence of CTMC
labels, each of which is observed at a specific time. We call this sequence of timed
labels the evidence. We want to incorporate this evidence by conditioning the
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state of the CTMC on the evidence. For example, “what is the probability of
a failure for a production machine (modeled as a CTMC) before time T , given
that we have observed particular labels at earlier times t1, t2, . . . , tn?”

Imprecise observation times These conditional probabilities depend on the exact
time at which each label was observed. However, in realistic scenarios, the times
for the labels in the evidence may not be known precisely. For example, inspections
are always done in the first week of a month, but the precise moment of inspection
may be unknown. Intuitively, we can interpret such imprecisely timed evidence
as a potentially infinite set of (precisely timed) instances of the evidence that
vary only in the observation times. For example, an inspection done on “January
2 exactly at noon” is an instance of the imprecise observation time of “the first
week of January.” This perspective motivates a robust version of the previous
question: “Given the imprecisely timed evidence, what is the maximal probability
of a failure before time T over all instances of the evidence?”

Problem statement In this paper, we are given a labeled CTMC together with
imprecisely timed evidence. For each instance of the evidence, we can define the
probability of reaching a set of target states, conditioned on that evidence. The
problem is to compute the supremum over these conditional probabilities for all
instances of the evidence. We generalize this problem by considering weighted
conditional reachability probabilities (or simply the weighted reachability), where
we assign to each state a nonnegative weight. Standard conditional reachability is
then a special case with a weight of one for the target states and zero elsewhere.

Contributions Our main contribution is the first method to compute weighted
conditional reachability probabilities in CTMCs with imprecisely timed evidence.
Our approach consists of the following three steps.

1) Unfolding In Sect. 3, we introduce a method that unfolds the CTMC over all
possible timings of the imprecisely timed evidence. We formalize this unfolding
as a Markov decision process (MDP) [47], in which the timing imprecision is
reflected by nondeterminism. We show that the weighted reachability can be
computed via (unconditional) reachability probabilities on a transformed version
of this MDP [12,39]. For the special case of evidence with precise observation
times, we obtain a precise solution to the problem that we can directly compute.

2) Abstraction In general, imprecisely timed evidence yields an unfolded MDP
with infinitely many states and actions. In Sect. 4, we propose an abstraction of
this continuous MDP as a finite interval MDP (iMDP) [27], similar to game-based
abstractions [41]. A robust analysis of the iMDP yields upper and lower bounds
on the weighted reachability for the CTMC. Moreover, we propose an iterative
refinement scheme that converges to the weighted reachability in the limit.

3) Computing bounds in practice In Sect. 5, we use the iMDP abstraction and
refinement to obtain sound upper and lower bounds on the weighted reachability
in practice. In Sect. 6, we show the feasibility of our method across several
numerical benchmarks. Concretely, we show that we obtain reasonably tight
bounds on the weighted reachability within a reasonable time. Finally, we discuss
the key challenges in further enhancing the performance of our method in Sect. 8.
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Related work Closest to our problem are works on model checking CTMCs against
deterministic timed automata (DTA) [2,22,23]. Evidence can be expressed as a
single-clock DTA, and tools such as MC4CSL [1] can calculate the weighted
reachability for precise timings. However, for imprecisely timed evidence, checking
CTMCs against DTAs yields the sum of probabilities over all instances of the
evidence, whereas we are interested in the maximal probability over all instances.

Our setting is also similar to synthesizing timeouts in CTMCs with fixed-delay
transitions [9,15,42]. Finding optimal timeouts is similar to our objective of finding
an instance of the imprecisely timed evidence such that the weighted reachability
is maximized. While timeouts can model the time between observations, we
consider global observation times, i.e., the time between observations depends on
the previous time of observation—which cannot be modeled with timeouts.

We discuss other related work in more detail in Sect. 7.

2 Problem Statement

We recap continuous-time Markov chains (CTMCs) [4,10] and formalize the
problem statement. The set of all probability distributions over a finite set X
is denoted as Dist(X ). We write tuples ⟨a, b⟩ with square brackets, and 1x is
the indicator function over x, i.e., 1(y=z) is one if y = z and zero otherwise. We
use the standard temporal operators ♢ and □ to denote eventually reaching or
always being in a state [11].

Definition 1 (CTMC). A (labeled) continuous-time Markov chain C is a
tuple ⟨S, sI , ∆,E,C, L⟩ with a finite set S of states, an initial state sI ∈ S, a
transition matrix ∆ : S → Dist(S ), exit-rates E : S → Q≥0, a finite set of colors
C, and a labeling function L : S → C.

A (timed) CTMC path π = s0t0s1t2s3 · · · ∈ Π = S × (R≥0 × S)∗ is an
alternating sequence of states and residence times, where ∆(si)(si+1) > 0 ∀i ∈ N.
The path s03s14s2 means we stayed exactly 3 time units in s0, then transition to
s1, where we stayed 4 time units before moving to s2. The CTMC state at time
t ∈ R≥0 is denoted by π(t) ∈ S, e.g., π(6.2) = s1 for the example path above.

An alternative (and equivalent) view of CTMCs is to combine the transition
matrix ∆ and exit-rates E in a transition rate matrix R : S × S → Q≥0, where
R(s, s′) = ∆(s, s′)·E(s) ∀s, s′ ∈ S [40]. From state s ∈ S, the transient probability
distribution Prs(t) ∈ Dist(S ) after time t ≥ 0 is Prs(t) = δs · e(R−diag(E))t, where
δs ∈ {0, 1}|S| is the Dirac distribution for state s, and diag(E) is the diagonal
matrix with the exit rates E on the diagonal. Thus, the probability of starting in
state s and being in state s′ ∈ S after time t is Prs(t)(s

′) ∈ [0, 1].

Example 1. Consider a simple, single-product inventory where the number of
items in stock ranges from 0 to 2, but we can only observe if the inventory is
empty or not. This system is modeled by the CTMC shown in Fig. 1a with states
S = {s0, s1, s2} (modeling the stock) and labels shown by the two colors ( for
empty and for nonempty). The rates at which items arrive and deplete are
R(s0, s1) = R(s1, s2) = 3 and R(s1, s0) = R(s2, s1) = 2, respectively.
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(c) Unfolded MDP.

Fig. 1: The CTMC (a) for Example 1, (b) the graph for the precise evidence
ρ = ⟨t1, o1⟩, ⟨t2, o2⟩, and (c) the states of the MDP unfolding defined by Def. 4.

2.1 Problem statement

The key problem we want to solve is to compute reachability probabilities for the
CTMC conditioned on a timed sequence of labels, which we call the evidence.

Evidence The evidence ρ = ⟨t1, o1⟩, . . . , ⟨td, od⟩ ∈ (R>0 × C)d is a sequence of
d times and labels such that ti < ti+1 for all i ∈ {1, . . . , d − 1}. A timed label
⟨ti, oi⟩ means that at time ti, the CTMC was in a state s ∈ S, that is, L(s) = oi.
Since each time t ∈ R>0 can only occur once in ρ, we overload ρ and denote the
evidence at time t ∈ {t1, . . . , td} by ρ(t) = o ∈ C, such that ⟨t, o⟩ ∈ ρ. While a
timed path of a CTMC describes the state at every continuous point in time,
the evidence only contains the observations at d points in time. We say that a
path π is consistent with evidence ρ, written as π |= ρ, if each timed label in ρ
matches the label of path π at time t, i.e., if L(π(t)) = ρ(t) ∀t ∈ {t1, . . . , td}.
Conditional probabilities We want to compute the conditional probability PC(π(td) =
s) | [π |= ρ]) that the CTMC C with initial state sI generates a path being in
state s at time td, conditioned on the evidence ρ. Using Bayes’ rule, we can
characterize this conditional probability as follows (assuming 0

0 = 0, for brevity):

PC(π(td) = s | [π |= ρ]) =
PC([π(td) = s] ∩ [π |= ρ])

PC(π |= ρ)
. (1)

Imprecise timings We extend evidence with uncertainty in the timing of each label.
The imprecisely timed evidence (or imprecise evidence) Ω = ⟨T1, o1⟩, . . . , ⟨Td, od⟩
is a sequence of d labels and uncertain timings Ti = ∪q

j=1[¯
tj , t̄j ], with

¯
tj ≤ t̄j and

q ∈ N. Observe that T can model both singletons (Ti = {1, 2, 3}) and unions of
intervals (Ti = [1, 1.5] ∪ [2, 2.5]). We require that maxt∈Ti(t) < mint′∈Ti+1(t

′) for
all i ∈ {1, . . . , d−1}, i.e., the order of the labels is known, despite the uncertainty
in the observation times. Again, we overload notation and denote the evidence
at time t by Ω(t) = o, such that ∃⟨T , o⟩ ∈ Ω with t ∈ T . Imprecise evidence
induces a set of instances of the evidence that only differ in the label times. This
set of instances is uncountably infinite whenever one of the imprecise timings T
is a continuous set. Formally, the evidence ρ = ⟨t1, o1⟩, . . . , ⟨td, od⟩ is an instance
of the imprecise evidence Ω, written as ρ ∈ Ω, if ti ∈ Ti for all i = 1, . . . , d.

Example 2. An example of imprecise evidence for the CTMC in Example 1 is
Ω = ⟨[0.2, 0.8], ⟩, ⟨[1.4, 2.1], ⟩. The precise evidence ρ = ⟨0.4, ⟩, ⟨1.9, ⟩ is an
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(1) MDP unfolding
M = Unfold(C,GΩ)

(Def. 4)

(2) Conditioning
on the evidence Ω

(Def. 6)

(3) Abstract iMDP
I = Abstract(M|Ω , Ψ)

(Def. 8)

(4) Compute upper
and lower bounds

(Lemma 2)

1) CTMC C
2) State-weight function w
3) Imprecise evidence Ω

Initial time
partition Ψ

Upper and
lower bounds
on W (Ω)M M|Ω I

Refinement (splitting
elements of Ψ)

Sect. 3 Sect. 4 Sect. 5

Fig. 2: Conceptual workflow of our approach for solving Problem 1.

instance of Ω, i.e., ρ ∈ Ω. However, ρ′ = ⟨0.1, ⟩, ⟨1.9, ⟩ and ρ′′ = ⟨0.4, ⟩, ⟨1.9, ⟩
are not, i.e., ρ′ /∈ Ω, ρ′′ /∈ Ω, as the timings and labels do not match, respectively.

State-weights Let w : S → R≥0 be a state-weight function, which assigns to each
CTMC state s ∈ S a non-negative weight. The weight w(s) represents a general
measure of risk associated with each state s ∈ S, as used in [39]. For example,
w(s) may represent the probability of reaching a set of target states ST from s
within some time horizon h ≥ 0. We then consider the following problem.

Problem 1 (Weighted conditional reachability probability). Given a CTMC
C, a state-weight function w, and the imprecisely timed evidence Ω, compute
the (maximal) weighted conditional reachability probability W (Ω):

W (Ω) = sup
ρ∈Ω

∑
s∈S

PC(π(td) = s | [π |= ρ]) · w(s). (2)

Example 3. For the CTMC in Example 1, consider the state-weight function
that assigns to each state the probability of reaching state s0 within time t = 0.1.
Then, the problem above is interpreted as: Given the imprecisely timed evidence
Ω, compute the probability (conditioned on Ω) of reaching state s0 within time
t = 0.1 (after the end of the evidence).

Our overall workflow to solve Problem 1 is summarized in Fig. 2 and consists
of four blocks, which we discuss in Sects. 3 to 5, respectively.

Variations To instead minimize Eq. (2), we would swap every inf and sup
(and max and min) in the paper, but our general approach remains the same.
Furthermore, by setting w(s) = 1 for all s ∈ ST and zero otherwise, we can also
compute the probability of being in a state in ST immediately after the evidence.
Finally, we remark that Problem 1 only considers events after the end of the
evidence. This setting is motivated by applications where the exact system state
is not observable, but actual system failures can be observed. Thus, one can
typically assume that the system has not failed yet and the problem as formalized
in Problem 1 is to predict the conditional probability of a future system failure.

2.2 Interval Markov decision processes

We recap interval MDPs (iMDPs) [27] and define standard MDPs as special case.
We denote (i)MDP states by q ∈ Q, whereas CTMC states are denoted s ∈ S.
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Definition 2 (iMDP). An interval MDP I is a tuple ⟨Q, q,A,P⟩, with Q a
set of states, q ∈ Q the initial state, A a set of actions, and where the uncertain
transition function P : Q × A × Q ⇀ I ∪ {[0, 0]} is defined over intervals I =
{[a, b] | a, b ∈ (0, 1] and a ≤ b}. The actions enabled in state q ∈ Q are A(q) ⊆ A.

The assumption that an interval cannot have a lower bound of 0 except the [0, 0]
interval is standard, see, e.g., [46,52]. An MDP is a special case of iMDP, where
the upper and lower bounds coincide, i.e., P(q, a, q′) = [b, b], b ∈ [0, 1] for all
intervals, and each P(q, a, ·) ∈ Dist(Q) is a distribution over states. We denote
an MDP as M = ⟨Q, q,A, P ⟩, with transition function P : Q × A ×Q ⇀ [0, 1].
For an MDP M with transition function P , we write P ∈ P if for all q, q′ ∈ Q
and a ∈ A we have P (q, a, q′) ∈ P(q, a, q′) and each P (q, a, ·) ∈ Dist(Q). Fixing
a transition function P ∈ P for iMDP I yields an induced MDP I[P ].

The nondeterminism in an iMDP I is resolved by a memoryless scheduler
σ : Q→ A, with σ ∈ SchedI the set of all schedulers. We denote a finite (i)MDP
path by ξ = q0, . . . , qn ∈ Ξσ

I , where Ξ
σ
I is the set of all paths under scheduler

σ. For the Markov chain induced by scheduler σ in I[P ], we use the standard
probability measure Pσ

I[P ] over the smallest sigma-algebra containing the cylinder

sets of all finite paths ξ ∈ Ξσ
I ; see, e.g., [11]. If SchedI is a singleton (i.e., I has

only one scheduler), we omit the script σ and simply write PI[P ] and ΞI . For
MDPs M, we use the analogous notation with subscripts M.

3 Conditional Reachability with Imprecise Evidence

In this section, we treat the first two blocks of Fig. 2. In Sect. 3.1, we unfold the
CTMC over the times in the imprecise evidence into an MDP. The main result
of this section, Theorem 1, states that the conditional reachability on the CTMC
in Problem 1 is equal to the maximal conditional reachability probabilities in the
MDP over a subset of schedulers (those that we call consistent ; see Def. 5). In
Sect. 3.2, we use results from [12] to determine these conditional probabilities via
unconditional reachability probabilities on a transformed version of the MDP.

3.1 Unfolding the CTMC into an MDP

We interpret the (precisely timed) evidence ρ = ⟨t1, o1⟩, . . . , ⟨td, od⟩ as a directed
graph that encodes the trivial progression over the time steps t1, . . . , td.

Definition 3 (Evidence graph). An evidence graph G = ⟨N , E⟩ is a directed
graph where each node t ∈ N ⊆ R>0 is a point in time, and with directed edges
E ⊂ {t→ t′ : t, t′ ∈ N}, such that t′ > t for all t→ t′ ∈ E.
The graph Gρ = ⟨Nρ, Eρ⟩ for the precise evidence ρ has nodesNρ = {0, t1, . . . , td, t⋆}
and edges Eρ = {ti−1 → ti : i = 2, . . . , d} ∪ {0 → t1, td → t⋆}. As illustrated
in Fig. 1b, the graph Gρ has exactly one path, which follows the time points
t1, . . . , td of the evidence ρ itself. Likewise, we model the imprecise evidence Ω
as a graph GΩ which is the union of all graphs Gρ for all instances ρ ∈ Ω, i.e.,

GΩ = ⟨NΩ , EΩ⟩ = ∪ρ∈Ω(Gρ) = ⟨∪ρ∈Ω(Nρ),∪ρ∈Ω(Eρ)⟩. (3)
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If Ω has infinitely many instances, then GΩ has infinite branching. Every path
t0t1 . . . tdt⋆ through graph GΩ corresponds to the time points of the precise
evidence ρ = ⟨t1, o1⟩, . . . , ⟨td, od⟩ ∈ Ω (and vice versa).

We denote the successor nodes of t ∈ N by post(t) = {t′ ∈ N : t → t′ ∈ E}.
For example, the graph in Fig. 1b has post(0) = t1, post(t1) = t2 and post(t2) = t⋆.
We introduce the unfolding operator M = Unfold(C,G), which takes a CTMC C
and a graph G, and returns the unfolded MDP M defined as follows.

Definition 4 (Unfolded MDP). For a CTMC C = ⟨S, sI , ∆,E,C, L⟩ and
a graph G = ⟨N , E⟩, the unfolded MDP Unfold(C,G) = ⟨Q, qI , A, P ⟩ has states
states Q = S × N , initial state qI = ⟨sI , 0⟩, actions A = N , and transition
function P , which is defined for all ⟨s, t⟩ ∈ Q, t′ ∈ post(t), s′ ∈ S as

P
(
⟨s, t⟩, t′, ⟨s′, t′⟩

)
=

{
Prs(t

′ − t)(s′) if t′ ̸= t⋆,

1(s=s′) if t′ = t⋆,
(4)

The unfolding of the CTMC in Fig. 1a over the graph in Fig. 1b is shown in Fig. 1c.
A state ⟨s, t⟩ ∈ Q in the unfolded MDP is interpreted as being in CTMC state
s ∈ S at time t. In state ⟨s, t⟩, the set of enabled actions is A(⟨s, t⟩) = post(t) ⊂ N ,
and taking an action t′ ∈ post(t) corresponds to deterministically jumping to time
t′. The effect of this action is stochastic and determines the next CTMC state.
The transition probability P (⟨s, t⟩, t′, ⟨s′, t′⟩) for t′ ̸= t⋆ models the probability
of starting in CTMC state s ∈ S and being in state s′ ∈ S after time t′ − t has
elapsed, which is precisely the transient probability Prs(t

′ − t)(s′) defined in
Sect. 2. Finally, the (terminal) states ⟨s, t⋆⟩ for all s ∈ S are absorbing.

Interpretation of schedulers Every instance ρ ∈ Ω of the imprecise evidence
Ω = ⟨T1, o1⟩, . . . , ⟨Td, od⟩ corresponds to fixing a precise time ti ∈ Ti for all
i = 1, . . . , d. For each such ρ ∈ Ω, there exists a scheduler σ ∈ SchedM for MDP
M = Unfold(C,GΩ) that induces a Markov chain which only visits those time
points t1, . . . , td. We call such a scheduler σ consistent with the evidence ρ.

Definition 5 (Consistent scheduler). A scheduler σ ∈ SchedM is consistent
with ρ = ⟨t1, o1⟩, . . . , ⟨td, od⟩ ∈ Ω, written as σ ∼ ρ, if for all CTMC states s ∈ S:

σ(⟨s, 0⟩) = t1, σ(⟨s, ti⟩) = ti+1 ∀i ∈ {0, . . . , d− 1}, σ(⟨s, td⟩) = t⋆. (5)

We denote the set of all consistent schedulers by SchedconM ⊆ SchedM.

A consistent scheduler chooses the same action σ(⟨s, t⟩) = σ(⟨s′, t′⟩) in any two
MDP states ⟨s, t⟩, ⟨s′, t′⟩ ∈ Q for which t = t′. There is a one-to-one correspon-
dence between choices ρ ∈ Ω and consistent schedulers: for every ρ ∈ Ω, there
exists a scheduler σ ∈ SchedconM such that σ ∼ ρ, and vice versa.

Example 4. Consider imprecise evidence Ω = ⟨[0.2, 0.8], ⟩, ⟨[1.4, 2.1], ⟩ for the
CTMC in Example 1. A scheduler with σ(⟨s0, 0.4⟩) = 1.5, σ(⟨s1, 0.4⟩) = 1.8 is
inconsistent as it chooses different actions in MDP states with the same time.
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(a) For ρ = ⟨t1, ⟩, ⟨t2, ⟩.
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(b) For ρ = ⟨t1, ⟩, ⟨t2, ⟩.

Fig. 3: The unfolded MDP from Fig. 1c conditioned on different precise evidences.
States that do not agree with the evidence are looped back to the initial state.

Remark 1. The unfolded MDP M′ = Unfold(C,Gρ) for the precise evidence ρ has
only a single action enabled in every state (i.e., M′ directly reduces to a discrete-
time Markov chain). Hence, M′ has only one scheduler, and SchedconM′ = SchedM′ .

Conditional reachability on unfolded MDP As a main result, we show that W (Ω)
in Problem 1 can be expressed as maximizing conditional reachability probabilities
in the unfolded MDP M over the consistent schedulers Schedcon

M ⊂ SchedM.

Theorem 1. For a CTMC C and the imprecise evidence Ω with graph GΩ, let
M = Unfold(C,GΩ) be the unfolded MDP. Then, using the notation from Sect. 2.2
(for the probability measure Pσ

M over paths ξ ∈ Ξσ
M), Eq. (2) is rewritten as

W (Ω) = sup
σ∈Schedcon

M

∑
s∈S

Pσ
M(♢ ⟨s, t⋆⟩ | [ξ |= ρ, σ ∼ ρ]) · w(s). (6)

Proof. The proof is in [8, Appendix A] and shows that for every instance ρ ∈ Ω,
the conditional transient probabilities in the CTMC are equivalent to conditional
reachability probabilities in the unfolded MDP under a σ ∼ ρ consistent to ρ. ⊓⊔

3.2 Computing conditional probabilities in MDPs

We describe a transformation of the unfolded MDP to compute the conditional
reachability probabilities in Eq. (6). Intuitively, we refute all paths through the
MDP that do not agree with the labels in the evidence. Specifically, we find the
subset of MDP states Qreset(Ω) ⊂ Q that disagree with the evidence, defined as

Qreset(Ω) =
{
⟨s, t⟩ ∈ Q : L(s) ̸= Ω(t)

}
⊂ Q. (7)

We reset all states in Qreset(Ω) by adding transitions back to the initial state
with probability one. Formally, we define the conditioned MDP M|Ω as follows.

Definition 6 (Conditioned MDP). For M = Unfold(C,GΩ) = ⟨Q, qI , A, P ⟩,
the conditioned MDP M|Ω = ⟨Q, qI , A, P|Ω⟩ has the same states and actions, but
the transition function is defined for all ⟨s, t⟩ ∈ Q, t′ ∈ post(t), s′ ∈ S as

P|Ω
(
⟨s, t⟩, t′, ⟨s′, t′⟩

)
=

{
P
(
⟨s, t⟩, t′, ⟨s′, t′⟩

)
if ⟨s, t⟩ /∈ Qreset(Ω),

1(s′=sI) if ⟨s, t⟩ ∈ Qreset(Ω).
(8)
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Two examples of conditioning on precise evidence are shown in Fig. 3. Compared
to Fig. 1c, we removed all probability mass over paths that are not consistent with
the evidence and normalized the probabilities for all other paths. The following
result from [12] shows that conditional reachabilities in the unfolded MDP are
equal to unconditional reachabilities in the conditioned MDP.

Lemma 1 (Thm. 1 in [12]). For the imprecise evidence Ω, unfolded MDP
M = Unfold(C,GΩ), and conditioned MDP M|Ω defined by Def. 6, it holds that

Pσ
M(♢ ⟨s, t⋆⟩ | [ξ |= ρ, σ ∼ ρ]) = Pσ

M|Ω
(♢ ⟨s, t⋆⟩) ∀σ ∈ SchedM ∀s ∈ S. (9)

Finally, combining Lemma 1 with Theorem 1 directly expresses the conditional
reachability W (Ω) in terms of reachability probabilities on the conditioned MDP.

Theorem 2. Given a CTMC C, a state-weight function w, and the imprecisely
timed evidence Ω, let M = Unfold(C,GΩ). Then, it holds that

W (Ω) = sup
σ∈Schedcon

M

∑
s∈S

Pσ
M|Ω

(♢ ⟨s, t⋆⟩) · w(s). (10)

Solving Problem 1 with precisely timed evidence is now straightforward by
solving a finite DTMC, see Remark 1. Furthermore, if the imprecise evidence has
finitely many instances, then the MDP is finite. A naive approach to optimize
over the consistent schedulers is enumeration, which we discuss in details Sect. 5.

Remark 2 (Variations on Problem 1). With minor modifications to our approach,
we can compute, e.g., the likelihood that a CTMC generates precise evidence ρ.
Concretely, we define a transformed version Mρ of the unfolded MDP in which
all states in Qreset are absorbing. We discuss this variation in [8, Appendix C]

4 Abstraction of Conditioned MDPs

For imprecisely timed evidence with infinitely many instances (e.g., imprecise
timings over intervals), the conditioned MDP from Sect. 3 has infinitely many
states and actions. In this section, we treat block (3) of Fig. 2 and propose
an abstraction of this continuous MDP into a finite interval MDP (iMDP).
Similar to game-based abstractions [29,30,41], we capture abstraction errors as
nondeterminism in the transition function of the iMDP. Robust reachability
probabilities in the iMDP yield sound bounds on the conditional reachability
W (Ω). The crux of our abstraction is to create a finite partition of the (infinite)
sets of uncertain timings in the evidence, as illustrated by Fig. 4.

Definition 7 (Time partition). A time partition Ψ of the imprecise evidence
Ω = ⟨T1, o1⟩, . . . , ⟨Td, od⟩ is a set Ψ = ∪d

i=1partition(Ti) ∪ {0, t⋆}, where each
partition(Ti) = {T 1

i , . . . , T
ni
i } is a finite partition5 of Ti into ni ∈ N elements.

5 A partition partition(X) = (X1, . . . , Xn) covers X (i.e., X = ∪n
i=1Xi) and the interior

of each element is disjoint (i.e., int(Xi) ∩ int(Xj) = ∅, i, j ∈ {1, . . . , n}, i ̸= j).
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(a) Coarsest time partition.
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(b) Refined time partition.

Fig. 4: Two partitions of imprecise evidence Ω = ⟨[0.2, 0.8], o1⟩, ⟨[1.4, 2.1], o2⟩.
The partition in (a) consists of two elements, such that T̃ 1

1 = [0.2, 0.8] and T̃ 1
2 =

[1.4, 2.1], where (b) refines this to T̃ 1
1 ∪ T̃ 2

1 = [0.2, 0.8] and T̃ 1
2 ∪ T̃ 2

2 = [1.4, 2.1].

With abuse of notation, the element of Ψ containing time t is Ψ(t) ∈ Ψ , and
Ψ−1(ψ) = {t : Ψ(t) = ψ} is the set of times mapping to ψ ∈ Ψ . As shown by
Fig. 4, for each i ∈ {1, . . . , d}, the sets T̃ 1

i , . . . , T̃
ni
i are a partition of the set Ti.

To illustrate the abstraction, let ⟨s, t⟩ t′:P ′

−−−→ ⟨s′, t′⟩ denote the MDP transition
from state ⟨s, t⟩ ∈ Q, under action t′ ∈ A(⟨s, t⟩) to state ⟨s′, t′⟩ ∈ Q, which has
probability P ′. With this notation, we can express any MDP path as

⟨sI , 0⟩
t:P−−→ ⟨s, t⟩ t′:P ′

−−−→ ⟨s′, t′⟩ t′′:P ′′

−−−−→ · · · t′′′:P ′′′

−−−−→ ⟨s, t⋆⟩. (11)

For every element ψ ∈ Ψ of partition Ψ , the abstraction merges all MDP states
⟨s, t⟩ ∈ Q for which the time t belongs to the element ψ, that is, for which t ∈
Ψ−1(ψ). Thus, we merge infinitely many MDP states into finitely many abstract
states. The MDP path in Eq. (11) matches the next path in the abstraction:

⟨sI , 0⟩
T :P−−−→⟨s, T ⟩ T ′:P′

−−−−→⟨s′, T ′⟩ T ′′:P′′

−−−−→ · · · T ′′′:P′′′

−−−−−→⟨s, t⋆⟩, (12)

where each t ∈ T , and each P is a set of probabilities. The abstraction contains
the behavior of the continuous MDP if P ∈ P at every step in Eqs. (11) and (12),
see, e.g., [38]. The following iMDP abstraction satisfies these requirements.

Definition 8 (iMDP abstraction). For a conditioned MDP M|Ω = ⟨Q, qI , A, P ⟩
and a time partition Ψ of Ω, the iMDP abstraction I = Abstract(M|Ω , Ψ) =

⟨Q̃, qI , Ã,P⟩, with states Q̃ =
{
⟨s, Ψ(t)⟩ : ⟨s, t⟩ ∈ Q

}
, actions Ã =

{
Ψ(t) : t ∈ A

}
,

and uncertain transition function P defined for all ⟨s, T ⟩, ⟨s′, T ′⟩ ∈ Q̃ as

P
(
⟨s, T ⟩, T ′, ⟨s′, T ′⟩

)
= cl

( ⋃
t∈Ψ−1(T ),t′∈Ψ−1(T ′)

P
(
⟨s, t⟩, t′, ⟨s′, t′⟩

) )
, (13)

where cl(x) = [min(x),max(x)] is the interval closure of x.

An abstraction under the coarse time partition from Fig. 4 is shown in
Fig. 5a. The transition probabilities for each MDP state are defined by transient
probabilities for the CTMC. Thus, the uncertain transition function P of the
iMDP overapproximates these transient probabilities over a range of times (as
shown in Fig. 5b), yielding probability intervals as in Fig. 5c.

Conditional reachability on iMDP We show that the iMDP abstraction can be
used to obtain sound upper and lower bounds on the conditional reachability
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(f) Refined intervals.

Fig. 5: Abstraction of an infinite set of MDP states for all times t ∈ [0.2, 0.8] into
(a) a single iMDP state ⟨s, [0.2, 0.8]⟩ with probability intervals that overapproxi-
mate the transient distribution (b) as the rectangular set in (c), where the line
shows the MDP transition probabilities for all t ∈ [0.2, 0.8]. The refinement (d)
into two iMDP states ⟨s, [0.2, 0.5]⟩ and ⟨s, [0.5, 0.8]⟩ splits the approximation of
the transient (e) into the two (less conservative) rectangular sets in (f).

W (Ω). Let WI(P̃, σ) ≥ 0 denote the value for the MDP I[P̃ ] induced by iMDP
I under transition function P̃ , and with scheduler σ ∈ SchedI :

WI(P̃, σ) :=
∑
s∈S

Pσ
I[P̃ ]

(♢ ⟨s, t⋆⟩) · w(s). (14)

The next theorem, proven in [8, Appendix B], is the main result of this section.

Theorem 3. Let I = Abstract(M|Ω , Ψ) be the iMDP abstraction for a condi-
tioned MDP M|Ω and a time partition Ψ of Ω. Then, it holds that

max
σ∈Schedcon

I

min
P̃∈P

WI(P̃, σ) ≤W (Ω) ≤ max
σ∈Schedcon

I

max
P̃∈P

WI(P̃, σ). (15)

Construction of the iMDP We want to construct the abstract iMDP directly
from the CTMC without first constructing the continuous MDP M|Ω . Consider
computing the probability interval P(⟨s, T ⟩, T ′, ⟨s′, T ′⟩) for the iMDP transition
from state ⟨s, T ⟩ to ⟨s′, T ′⟩. This interval is given by the minimum and maximum
transient probabilities Prs(t

′ − t)(s′) over all t ∈ T and t′ ∈ T ′. However, the
problem is that the transient probabilities are not monotonic over time in general
(see Fig. 5b), so it is unclear how to compute this interval.

Instead, we compute upper and lower bounds for the transient probabilities.
Let

¯
t = min(T ) and t̄ = max(T ). An upper bound on the transient probability
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is given by the probability to reach s′ from s at some time t′ − t, t ∈ T , t′ ∈ T ′:

sup
t∈T ,t′∈T ′

Prs(t
′ − t)(s′) ≤ sup

t∈T ,t′∈T ′
PC,s(♢

[t,t′]s′) = PC,s(♢
[
¯
t,t̄′]s′), (16)

where PC,s is the probability measure for the CTMC starting in initial state s,
and t̄′ −

¯
t is the maximal time difference. A lower bound is given symmetrically

by the transient probability to reach s′ in the CTMC at the earliest possible
time

¯
t′ − t̄ and staying there for the full remaining time (t̄′ −

¯
t)− (

¯
t′ − t̄):

inf
t∈T ,t′∈T ′

Prs(t
′ − t)(s′) ≥ Prs(

¯
t′ − t̄)(s′) · PC,s′(□

[0,(t̄′−
¯
t)−(

¯
t′−t̄)]s′). (17)

Abstraction refinement

To improve the tightness of the bounds in Theorem 3, we propose a refinement
step that splits elements of the time partition Ψ . For example, we may split the
single abstract state in Fig. 5a into the two states in Fig. 5d.

Definition 9 (Refinement of time partition). Let Ψ and Ψ ′ be partitions as
per Def. 7, for which |Ψ ′| > |Ψ |. We call Ψ ′ a refinement of Ψ if for all ψ′ ∈ Ψ ′,
there exists a ψ ∈ Ψ such that ψ′ ⊆ ψ.

Any refinement Ψ ’ of partition Ψ can be constructed by finitely many splits. We
lift the refinement to the iMDP, see also Figs. 5c and 5f. The refined iMDP
I ′ = Abstract(M|Ω , Ψ

′) has more states and actions, but each union in Eq. (13)
is over a smaller set than in iMDP Abstract(M|Ω , Ψ). Thus, the refinement leads
to smaller probability intervals and, in general, to tighter bounds in Theorem 3.
Repeatedly refining every element of the partition yields an iMDP with arbitrarily
many states and actions and with arbitrarily small probability intervals. Hence,
in the limit, we may recover the original continuous MDP by refinements, which
also implies that the bounds in Theorem 3 on the refined iMDP converge.

Refinement strategy By splitting every element of the partition Ψ , the number
of iMDP states and actions double per iteration, and the number of transitions
grows exponentially. Thus, we employ the following guided refinement strategy.
At each iteration, we extract the scheduler σ⋆ that attains the upper bound in
Theorem 3 and determine the set Q̃σ⋆

reach ⊂ Q̃ of reachable iMDP states. We only
refine the reachable elements ψ ∈ Ψ , that is, for which there exists a t ∈ ψ and
s ∈ S such that ⟨s, t⟩ ∈ Q̃σ⋆

reach. Using this guided strategy, we iteratively shrink
only the relevant probability intervals, resulting in the same convergence behavior
as the naive strategy but without the severe increase in abstraction size.

5 Computing Bounds on the Conditional Reachability

Theorem 3 provides bounds on the conditional reachability W (Ω) in Problem 1,
but computing these bounds involves optimizing over the subset of consistent
schedulers. Recall from Def. 5 that a consistent scheduler chooses the same actions
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in different states.6 As we are not aware of any efficient algorithm to optimize
over the consistent schedulers, we compute the following straightforward bounds:

Lemma 2 (Bounds on Problem 1). Let I = Abstract(M|Ω , Ψ) be the iMDP
abstraction for the unfolded MDP M|Ω and a time partition Ψ . It holds that

W (Ω) ≤ max
σ∈Schedcon

I

max
P̃∈P

WI(P̃, σ) ≤ max
σ∈SchedI

max
P̃∈P

WI(P̃, σ). (18)

Moreover, any consistent scheduler σ̂ ∈ SchedconsI results in a lower bound.

Obtaining lower bounds While we can use any consistent scheduler in Lemma 2
to compute a lower bound on W (Ω), we obtain better bounds by modifying a
(potentially non-consistent) optimal scheduler σ− under the worst-case choice
of probabilities, i.e., σ− = argmaxσ∈SchedI

minP̃∈P WI(P̃, σ). We check for in-
consistency of scheduler σ− by evaluating the following condition in all pairs of
states ⟨s, t⟩, ⟨s′, t′⟩ ∈ Q̃σ−

reach ⊂ Q̃ reachable under σ−:

t = t′ =⇒ σ(⟨s, t⟩) = σ(⟨s′, t⟩) ∀⟨s, t⟩, ⟨s′, t′⟩ ∈ Q̃σ−

reach. (19)

We remove inconsistencies by changing the action in one of the states to match
the others. We take a greedy approach and always adapt to the action chosen
most often across all iMDP states ⟨s, t⟩ ∈ Q̃ for the same time t. For example,
if σ(⟨s, t⟩) = σ(⟨s′, t⟩) ̸= σ(⟨s′′, t⟩), then we only modify σ(⟨s′′, t⟩) to match the

other actions. Because the set Q̃σ−

reach is finite by construction, a finite number
of modifications suffices to render any scheduler consistent. The experiments in
Sect. 6 show that modifying an inconsistent scheduler yields tighter lower bounds
than taking the maximum over many sampled consistent schedulers.

Obtaining upper bounds The set of consistent schedulers is finite but prohibitively
large, so enumerating over all consistent schedulers is infeasible. For a sound upper
bound, we instead optimize over all schedulers. The experiments in Sect. 6 show
that we obtain (relatively) tight bounds. To further refine these upper bounds, the
literature suggests another abstraction refinement loop, which can be formulated
either directly on the imprecise evidence [21] or on the consistent schedulers [51].
The latter approach leverages the fact that consistent schedulers can also be
modeled as searching for (memoryless) schedulers in partially observable MDPs,
where the schedulers would only observe the time but not the state. Finally, the
hardness of optimizing over consistent schedulers in the iMDP remains open:
Classical NP-hardness results for the problems above do not carry over.

6 Numerical Experiments

We implemented our approach in a prototypical Python tool, which is avail-
able at https://doi.org/10.5281/zenodo.10438984. The tool builds on top

6 Consistent schedulers are similar to (memoryless) schedulers in partially observable
MDPs that choose the same action in states with the same observation label.
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Table 1: Overview of considered benchmarks.

Example CTMC size State-weight function

Name Evid. len. (|Ω|) States Transit. Property

Invent 3-14 3 4 “Prob. empty inventory within time 0.1”
Ahrs 4 74 196 “Prob. system failure within time 50”
Phil 4 34 89 “Prob. deadlock within time 1”
Tandem 2 120 363 “Prob. both queues full within time 10”
Polling 3 576 2208 “Prob. all stations empty within time 10”

of Storm [34] for the analysis of CTMCs and iMDPs. It takes as input a CTMC
C, a property defining the state-weight function w, and imprecisely timed evi-
dence Ω. The tool constructs the abstract iMDP for the coarsest time partition,
computing the probability intervals as per Eqs. (16) and (17). The bounds on the
conditional reachability in Lemma 2 are computed using robust value iteration.
Then, the tool applies guided refinements, as in Sect. 4, and starts a new iteration
with the refined partition. After a predefined time limit, the tool returns the lower
bound W (Ω) and upper bound W (Ω) on the conditional reachability W (Ω):

W (Ω) = min
P̃∈P

WI(P̃, σ̂) ≤W (Ω) ≤ max
σ∈SchedI

max
P̃∈P

WI(P̃, σ) =W (Ω), (20)

where the consistent scheduler σ̂ for the lower bound is obtained by fixing all
inconsistencies in the scheduler σ− defined in Sect. 5. The tool can also compute
minimal conditional reachabilities (by swapping all min and max operators).

Benchmarks We evaluate our approach on several CTMCs from the literature,
creating multiple imprecisely timed evidence for each CTMC. Table 1 lists the
evidence length (i.e., the number of observed times and labels), the number of
CTMC states and transitions, and the property specifying the state-weight func-
tion. More details on the benchmarks are in [8, Appendix D.1], All experiments
run on an Intel Core i5 with 8GB RAM, using a time limit of 10 minutes.

Feasibility of our approach We investigate if our approach yields tight bounds
on the weighted reachability. Fig. 6 shows the results for each example with
different imprecise evidences. The gray area shows the weighted reachabilities
(as per Theorem 2) for 500 precisely timed instances ρ ∈ Ω sampled from the
imprecise evidence. Recall that the weighted reachability W (Ω) is an upper
bound to the weighted reachability for each precisely timed evidence ρ ∈ Ω.
Thus, the upper bound of the gray areas in Fig. 6, indicated as W (Ω)

′
, is a lower

bound of the actual (but unknown) value W (Ω). The blue lines are the upper
bound W (Ω) (solid) and lower bound W (Ω) (dashed) on W (Ω) returned by our
approach over the runtime (note the log-scale). Similarly, the red lines are the
bounds obtained for minimizing the minimal weighted reachability.

Tightness of bounds Fig. 6 shows that we obtain reasonably tight bounds within
a minute. In all examples, the lower bound converges close to the maximum
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Fig. 6: Results for different CTMCs and different imprecisely timed evidence. The
blue lines are the upper bound W (Ω) (solid) and lower bound W (Ω) (dashed)
on W (Ω); red lines show the analogous lower bounds.

of the samples. The improvement is steepest at the start, indicating that the
bounds can be quickly improved by only a few refinement steps. In the long run,
the improvement of the bounds diminishes, both because each refinement takes
longer, and the improvement in each iteration gets smaller.

While not clearly visible in Fig. 6a, the lower bound W (Ω) (dashed blue line)

slightly exceeds the maximal sampled value W (Ω)
′
(gray area) in the end. Thus,

the lower bound W (Ω) is closer to the actual weighted reachability W (Ω) than
the maximal lower bound obtained by sampling. We observed the same results
when increasing the number of samples used to compute W (Ω)

′
to 10 000.

Figs. 6b and 6c show the general benefit of conditioning on evidence. While
evidence 1 for AHRS results in a state in which a system failure within the next
50 time units is very likely, a failure conditioned on evidence 2 is very unlikely.

Scalability We investigate the scalability of our approach. Table 2 provides
the refinement statistics, bounds, model sizes, and runtimes for all benchmarks.
The refinement statistics show the number of iterations (Iter.) and the total
number of splits made in the partition. The bounds on W (Ω) (which are the
solid and dashed blue lines in Fig. 6) and the iMDP sizes are both given for the
final iteration. For the timings, we provide the total time (over all iterations)
and distinguish between the time spent on unfolding the model, i.e., constructing
the iMDP, and analyzing it. Our approach terminates if after an iteration, the
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Table 2: Results for all benchmarks (evidence length |Ω| is given after the name).

Example Refine Results iMDP size Timings [s]

Name (|Ω|) Iter. #split Bounds on W (Ω) States Actions Transit. Unfold Analysis Total

Invent-1 (4) 25 555 [0.082536, 0.087138] 898 128307 278163 537.51 100.28 637.81
Invent-2 (4) 27 585 [0.071768, 0.078328] 1180 167917 503537 606.91 43.85 650.74
Invent-3 (9) 14 1176 [0.071757, 0.078577] 2372 369329 1107877 658.77 127.83 786.57
Invent-4 (15) 7 528 [0.070924, 0.080409] 1016 39927 115119 42.63 974.89 1017.50
Ahrs-1 (4) 6 177 [0.962041, 0.964306] 6283 282538 1415346 620.75 179.65 800.39
Ahrs-2 (4) 8 154 [0.071239, 0.072057] 727 20626 81362 577.64 69.19 646.85
Ahrs-3 (4) 6 176 [0.964936, 0.969535] 6112 280954 1334231 749.38 152.61 902.00
Ahrs-4 (4) 7 300 [0.209591, 0.213820] 7179 535763 3618439 1801.81 111.39 1913.18
Phil-1 (5) 7 339 [0.836695, 0.851548] 4122 370091 3887339 851.92 60.32 912.23
Phil-2 (5) 6 209 [0.236734, 0.246067] 4050 203549 3669721 419.97 376.73 796.70
Tandem-1 (2) 9 77 [0.003577, 0.004009] 1203 24561 362657 917.29 3.11 920.42
Tandem-2 (2) 7 80 [0.130187, 0.162762] 587 25096 75548 549.03 327.93 876.96
Polling-1 (3) 2 9 [0.731410, 0.781912] 3267 9798 2379462 348.83 2603.08 2951.89

total run time so far exceeds the time limit of 10 minutes. The total runtime can,
therefore, be significantly longer than 10 minutes.

CTMC size The size of the CTMC has a large impact on the total runtime.
For example, for evidence with 4 labels, we can perform up to 27 iterations for
Invent (3 CTMC states) but only 6-8 for Ahrs (74 CTMC states). For Polling
(576 states) with evidence of length 2, performing 2 iterations takes nearly 50
minutes. The CTMC size affects the unfolding, which requires computing the
transient probabilities from all states in one layer to all states in the next one. A
clear example is Tandem-1 (120 CTMC states), where nearly all of the runtime
is spent on the unfolding. A larger CTMC also leads to more transitions in the
iMDP and thus, can increase the analysis time. An example is Polling-1 (576
CTMC states), where most of the runtime is spent in the analysis.

Length of evidence The time per refinement step increases with the length of
the evidence. For example, for Invent-4 (with 15 labels), only 7 iterations
are performed because the resulting iMDP has 15 layers, so the value iteration
becomes the bottleneck (nearly 96% of the runtime for this example is spent on
analyzing the iMDP). This is consistent with experiments on unfolded MDPs
in [32,39], where policy iteration-based methods lead to better results.

Caching improves performance To reduce runtimes, we implemented caching in
our tool, which allows reusing transient probability computations. For example,
if all labels in the evidence have a time interval of the same width (which is
the case for Ahrs-1), transient probabilities are the same between layers of the
unfolding. Table 1 shows that the unfolding times for Ahrs-1 are indeed lower
than for, e.g., Ahrs-3, which has time intervals of different widths.

Likelihood of evidence The size of the iMDP is influenced by the number of
CTMC states corresponding to the observed labels. Less likely observations can,
therefore, mean that fewer CTMC states need to be considered in each layer. For
example, the evidence in Ahrs-2 is 17 times less likely (probability of 0.01, with
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569 states) than Ahrs-4 (probability of 0.17, with 4007 states), and as a result
the total runtime of Ahrs-2 is less than for Ahrs-4.

7 Related work

Beyond the related work discussed in Sect. 1 on DTAs [2,22,23] and synthesis of
timeouts [9,15,42], the following work is related to ours.

Imprecisely timed evidence can also be expressed via multiphase timed until
formulas in continuous-time linear logic [28]. However, similar to DTA, condi-
tioning and computing the maximal weighted reachability are not supported.

Conditional probabilities naturally appear in runtime monitoring [13,49] and
speech recognition [24], and is, e.g., studied for hidden Markov models [50] and
MDPs [12,39]. Approximate model checking of conditional continuous stochas-
tic logic for CTMCs is studied in [25,26] by means of a product construction
formalized as CTMC, but their algorithm is incompatible with imprecise obser-
vation times. Conditional sampling in CTMCs is studied by [36], and maximum
likelihood inference of paths in CTMCs by [45].

The abstraction of continuous stochastic models into iMDPs is well-studied [43].
Various papers develop abstractions of stochastic hybrid and dynamical systems
into iMDPs [6,7,19] and relate to early work in [38]. Our abstraction in Sect. 4 is
similar to a game-based abstraction, in which the (possibly infinite-state) model
is abstracted into a two-player stochastic game [29,30,41]. In particular, iMDPs
are a special case of a stochastic game in which the actions of the second player in
each state only differ in transition probabilities [37,44]. An interesting extension
of our approach is to consider CTMCs with uncertain transition rates, which
have recently also been studied extensively, e.g., in [5,16–18,20,31].

8 Conclusion

We have presented the first method for computing reachability probabilities
in CTMCs that are conditioned on evidence with imprecise observation times.
The method combines an unfolding of the problem into an infinite MDP with
an iterative abstraction into a finite iMDP. Our experiments have shown the
applicability of our method across several benchmarks.

A natural next step is to embed our method in a predictive runtime monitoring
framework, which introduces the challenge of running our algorithm in realtime.
Another interesting extension is to consider uncertainty in the observed labels.
Furthermore, this paper gives rise to four concrete challenges. First, finding better
methods to overapproximate the union over MDP probabilities in Eq. (13) may
lead to tighter bounds on the weighted reachability. Second, we want to optimize
over the consistent schedulers only, potentially via techniques used in [3]. Third,
we wish to explore better refinement strategies for the iMDP. The final challenge is
to improve the computational performance of our implementation. One promising
option to improve performance is to adapt symbolic policy iteration [9], which
only considers small sets of candidate actions instead of all actions.
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Abstract. Computing schedulers that optimize reachability probabilities
in MDPs is a standard verification task. To address scalability concerns,
we focus on MDPs that are compositionally described in a high-level
description formalism. In particular, this paper considers string diagrams,
which specify an algebraic, sequential composition of subMDPs. Towards
their compositional verification, the key challenge is to locally optimize
schedulers on subMDPs without considering their context in the string
diagram. This paper proposes to consider the schedulers in a subMDP
which form a Pareto curve on a combination of local objectives. While
considering all such schedulers is intractable, it gives rise to a highly
efficient sound approximation algorithm. The prototype on top of the
model checker Storm demonstrates the scalability of this approach.

Keywords: Markov decision process· compositional verification · probabilistic
model checking · multi-objective optimization

1 Introduction

Markov decision processes (MDPs) are a ubiquitous model for describing systems
with both nondeterministic and probabilistic uncertainty. A key problem is to
compute the best-case probability of reaching a goal state in a given MDP, i.e.,
to compute maximal reachability probabilities. Reachability probabilities can
efficiently be computed for MDPs with ≈ 107 states [4, 15], using mature model
checkers such as Storm [17], PRISM [22] or Modest [13]. However, scalability
beyond state space sizes suffers from the memory limitations inherent to explicitly
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B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14571, pp. 279–298, 2024.
https://doi.org/10.1007/978-3-031-57249-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57249-4_14&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-57249-4_14


Ir,1

Ol,1

s1

s2 Il,1

Or,1
1 0.5

0.5
1

1
0.3

0.7

Ir,1

Ol,1

t1 Or,10.3

1

0.7

Fig. 1: Open Markov decision processes A and B.
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Fig. 2: Sequential composition A # B and sum A⊕ B

storing the transition matrix. While decision diagrams [2, 3, 19] are powerful,
compact representations, they fail to concisely represent many MDPs [7].

Sequential composition. Compositional techniques attempt to avoid reasoning
on the complete state space. We distinguish parallel and sequential composi-
tions. This paper considers the compositional analysis of sequentially composed
models [6]. This type of compositionality allows to reduce the peak memory
consumption by reasoning about the individual parts and allows to exploit the
typical existence of isomorphic parts of the state space. Sequentially composed
MDPs have seen a surge in interest recently [20, 21,26,32,33].

String diagrams. We focus on string diagrams of MDPs [33], which are MDPs
composed by two algebraic operations: the sequential composition # and the
sum ⊕. More precisely, we use open MDPs, extending MDPs with entrance and
exit states. Fig. 1 shows open MDPs A (left) and B (right). The open MDP
A, for instance, has two entrances ir,1, il,1 and two exits or,1, ol,1. The algebraic
operations define how the open MDPs are subMDPs of a larger, monolithic MDP,
cf. Fig. 2. We highlight that, in our bi-directional framework, the sequential
composition of acyclic open MDPs may lead to a cyclic monolithic MDP.

Optimal local schedulers. The idea of compositional reasoning is to analyze the
open MDPs individually and combine these results to answer reachability queries
on the monolithic MDP. The key challenge is that during the analysis of an
individual open MDP, it is unclear which exits are (un)desirable to be reached.
Equivalently, a priori, we do not know the objective that a scheduler should
(locally) optimize for, to resolve the nondeterminism in the open MDP.

State-of-the-art. So far, this problem has been circumvented in the literature on
compositional MDP verification. In [21], the notion of locally optimal policies
is used. In essence, the technique relies on syntactic restrictions, such as open
MDPs without nondeterminism or with a dedicated desirable exit. In [26], it is
assumed that agents must optimize to reach one of the exits and that reaching
another exit is equivalent to reaching an error. The results in [33] are the first to
support general string diagrams of MDPs. Algorithmically, they enumerate over all
(deterministic memoryless) schedulers in every open MDP, reducing the resulting
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set of schedulers only a posteriori using so-called meagre semantics. Finally, work
on compositional planning aims to find a good scheduler compositionally, but
without any guarantees on the optimality [6].

A multi-objective perspective. Towards a compositional analysis, we reformulate
and generalize our problem slightly. Rather than considering Given an open
MDP, what is the maximal probability to reach a dedicated exit?, we maximize the
probability towards each exit individually, i.e., What is the maximal probability
to reach the first and second exit, respectively? For this question, trade-offs are
possible: In A when starting in Ir,1 we either reach Ol,1 with probability 1 (with
one scheduler) or Or,1 with probability 0.5 (with another scheduler). However,
we search for one scheduler that makes this trade-off somehow. The unknown
objective that a scheduler in an open MDP optimizes for is not arbitrary, but it is
given by this trade-off between reaching the different exits. A key insight is that
it suffices to only consider schedulers that refer to an optimal trade-off between
the different exits. As the context of the open MDP determines the preferred
trade-off, we compute all schedulers that are optimal for a specific trade-off. These
schedulers are Pareto-optimal and their computation is well-studied [9, 12, 30].

Our approach. Towards a compositional algorithm, we suggest to compute Pareto
curves recursively on the structure of the given string diagram of MDPs: given
the Pareto curves for the open MDPs, we can compute the Pareto curve of their
composition. As the set of Pareto-optimal schedulers remains exponential, we
exploit efficient but approximative approaches to compute sound over-and-under
approximations [12]. In practice, this means that tight approximations can be
achieved that are concisely represented using only a few schedulers. Given these
sound approximations for each open MDP, we compute sound approximations4

for their composition, and ultimately for the whole string diagram.

Contributions. Our technical contribution is as follows. We provide a novel
framework for analysing sequentially composed MDPs. In particular, it takes off-
the-shelf analysis of multi-objective monolithic MDPs to provide an compositional
MDP model checking algorithm. The approximative version of this algorithm
computes guaranteed over- and under-approximations of reachability probabilities
and scales to models with both billions of states and schedulers, while generating
tight bounds. We implement the algorithm on top of the probabilistic model
checker Storm to demonstrate its performance.

2 Overview

Illustrative example. We consider the small multi-room grid world with three
rooms A,B, C and probabilistic outcomes to actions, as illustrated on the left in
Fig. 3. The doors can be travelled through in both directions. The grid world
can be modelled as a monolithic MDP. In Fig. 3(right), we show how to express
the MDP compositionally as a string diagram A # (B ⊕ id) # C, where id is an

4 Sound approximations are standard in probabilistic model checking, where the
standard and highly scalable algorithms [16] provide sound approximations [15].
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Fig. 3: From a multi-room MDP to a string diagram A # (B ⊕ id) # C.

MDP where the unique entrance reaches the exit with probability one. Now,
if we are interested (how to) reach the (main, rightmost) exit in C from the
(main, leftmost) entrance in A, we maximize the reachability probability in the
monolithic MDP. However, to determine the optimal scheduler compositionally,
we must know the optimal reachabilities in the each room individually. This is
hard: In particular, it may be true that in order to reach the main exit from the
door between A and C, it is still optimal to go via room B.

The multi-objective perspective. We consider room A from the perspective of
the main entrance. There are two doors, which means that the underlying open
MDP has two exit states. Fig. 6a shows a Pareto-plot that clarifies the possible
trade-offs, e.g., for the main entrance5. In particular, p1 reflects a scheduler
reaching the first door with probability 0.3, while the second door is then reached
with probability 0.1. The other points reflect other schedulers that reach these
doors with different probabilities. The other entrances in A induce other Pareto
curves. In room C, there are three exits (two doors and the main exit), making
the Pareto curves three-dimensional. For MDP id, the curve is a (trivial) point.

Fig. 4: Our approach

The approach illustrated. We approach the syntax
tree of the string diagram recursively (see Fig. 4),
i.e., we consider the string diagram as a syntax tree
and (conceptually) annotate the MDPs A, B, C and
id with Pareto curves. Instead of computing these
Pareto curves precisely, we create sound approxima-
tions as in Fig. 6b where the vertices of the green
area L underapproximate the Pareto curve and the
vertices of the green and white area R2 \ U overapproximate the Pareto-curve.
For the algebraic operations, we then combine these approximations. This is
straightforward for the ⊕ as the two MDPs are independent. For the sequential
composition, the cyclic dependencies are more involved. However, our algorithm
is straightforward: we take the individual approximations of the Pareto curves,
translate them to small so-called shortcut MDPs, which we then compose. On
these small MDPs, we then compute (approximations of) the Pareto curves that
are sound approximations to the composition at hand.

5 An actual MDP corresponding to this Pareto curve is given in Fig. 5a
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3 Formal Problem Statement

We recap MDPs, and discuss string diagrams of MDPs. We then give a multi-
objective version of the problem statement, leading to a compositional algorithm.

For a finite set X, we write D(X) for the set of distributions on X and D≤1(X)
for the subdistributions. The support of µ ∈ D≤1(X) is denoted by supp(µ).

3.1 Markov Decision Processes

Definition 1 (MDP). An MDP M = (S,A, P ) is a tuple with a finite set S of
states, finite set A of actions, and a partial transition function P : S×A ⇀ D(S).

We use SM , AM and PM to refer to the states, actions and transition function of
an MDP M . For a state s, the enabled actions are A(s) = {a ∈ A | P (s, a) ̸= ⊥}.
A state s is a terminal if A(s) = ∅. We write P (s, a, s′) := P (s, a)(s′) if a ∈ A(s)
and P (s, a, s′) := 0 otherwise. A state s is called absorbing if P (s, a, s) = 1 for
all a ∈ A(s). Terminals can be made absorbing by adding a self-loop. A path π is

an (in)finite alternating sequence of states and actions, i.e., π = s0
a0−→ s1

a1−→ . . .
such that si ∈ S and P (si, ai, si+1) ̸= 0. For a finite path π, last(π) denotes the
last state of π. The set of all finite paths is denoted FPathM , the set of all infinite
paths is denoted by IPathM . We drop the subscript, whenever M is clear from
the context. Finally, a Markov chain (MC) is an MDP with |A(s)| ≤ 1. We write
MCs as a tuple (S, P ), formally representing the MDP (S, {⊥}, P ).

Schedulers. Schedulers (a.k.a. policies or strategies) resolve the nondeterminism
in an MDP. In general, a (history-dependent) scheduler σ for MDP M is a (mea-
surable) function FPathM → D(AM ) with supp(σ(π)) ⊆ A(last(π)). The set of all
history-dependent schedulers is denoted ΣM

h . A scheduler σ is memoryless (a.k.a.
positional) if for every π, π′ ∈ FPath, last(π) = last(π′) implies σ(π) = σ(π′). The
set of all (stochastic) memoryless schedulers is denoted ΣM

sm. We often write such
schedulers as SM → D(AM ), i.e., as a map from the last state to a distribution
over actions. Finally, deterministic (memoryless) schedulers map paths (or states,
respectively) to Dirac distributions. We write such schedulers as maps from paths
to actions, FPathM → AM . The set of all deterministic memoryless schedulers is
denoted ΣM

dm. We also call these schedulers DM schedulers.

Reachability probabilities. LetM be an MDP without terminals. For an initial state
sι and a scheduler σ, we obtain probability measure Prsι,σM : IPathM → R≥0 on in-
finite paths via the standard cylinder set construction [5]. For a set of target states
T ⊆ SM , we define the set of paths that visit T , ♢T = {π ∈ IPathM | ∃i.πi ∈ T}.
The reachability probability RPrM,σ(sι, T ) is the integral over the reachabil-
ity measure, RPrM,σ(sι, T ) :=

∫
π∈♢T

Prsι,σM (π). We relax notation and write

RPrM,σ(sι, t) := RPrM,σ(sι, {t}). We write RPrMmax(sι, t) := maxσ RPr
M,σ(sι, t).

3.2 String Diagrams of MDPs

MDPs are given as a string diagram, i.e., as algebraically composed open MDPs.
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Definition 2 (oMDP). An open MDP (oMDP) A = (M, IO) is a pair consist-
ing of an MDP M with states S and open ends IO = (Ir, Il, Or, Ol), where
Ir, Il, Or, Ol ⊆ S are pairwise disjoint and totally ordered sets. The states
I := Ir∪ Il is the entrances, and the states O := Or∪Ol is the exits, respectively.

Fig. 1 shows two oMDPs as examples. We assume that exactly the exits are termi-
nals. We lift the notions of policies and reachability probabilities straightforwardly
from MDPs6. As the open ends are ordered, we may enumerate, e.g., its entrances
I using Ir,1, . . . , Ir,|Ir|, Il,1, . . . , Il,|Il| from rightward to leftward. We specialise
the notation for reachability probabilities RPr∗(i, j) to denote RPr∗(Ii, Oj). We
explicitly write tp(A) : (mr,ml) → (nr, nl) for the arities of A, where mr := |Ir|,
ml := |Ol|, nr := |Or|, and nl := |Il|.

String diagrams of MDPs use two algebraic operations on oMDPs: the se-
quential composition # and the sum ⊕, that we illustrated already in Fig. 2.

Definition 3 (# operator). Let A, B be oMDPs, tp(A) = (mr,ml) → (lr, ll),
tp(B) = (lr, ll) → (nr, nl). Their sequential composition A # B is an oMDP
(M, IO′) with IO′ = (IAr , IBl , O

B
r , O

A
l ), M := (SA ⊎ SB, AA ⊎AB, P ) and P s.t.

P (s, a, s′) :=


PD(s, a, s′) if D ∈ {A,B}, s ∈ SD, a ∈ AD, s′ ∈ SD,

1 if s = OA
r,i, s

′ = IBr,i for some 1 ≤ i ≤ lr,

1 if s = OB
l,i, s

′ = IAl,i for some 1 ≤ i ≤ ll,

0 otherwise.

If A # B is well-defined, we say that A # B type-matches.

Definition 4 (⊕ operator). Let A,B be oMDPs. Their sum A ⊕ B is an
oMDP (M, IO′) with IO′ = (IAr ⊎ IBr , I

A
l ⊎ IBl , O

A
r ⊎ OB

r , O
A
l ⊎ OB

l ) and M =
(SA ⊎ SB, AA ⊎AB, P ) where P is given by

P (s, a, s′) :=

{
PD(s, a, s′) if D ∈ {A,B}, s ∈ SD, a ∈ AD, and s′ ∈ SD,

0 otherwise.

Here, the total order in IAr ⊎ IBr is given by IAr,1, . . . , I
A
r,mr

, IBr,1, . . . , I
B
r,kr

, and the
total orders in other open ends are defined similarly.

Using the algebraic operators, we define string diagrams of MDPs.

Definition 5. A string diagram D of MDPs is a term adhering to the grammar

D ::= A | D # D | D⊕ D

where A ranges over oMDPs. The operational semantics JDK is the oMDP which
is inductively defined by Definitions 3 and 4.

Throughout this paper, we assume that JDK is well-defined, i.e., that all oper-
ations type-match. We omit syntactic sugar operations, such as probabilistic
or nondeterministic branching, as these can be modelled inside oMDPs. In the
literature, the JDK are also referred to as the monolithic MDP for D.
6 Where terminals have to be made absorbing by adding a self-loop.

284             Watanabe et al.



Ir,1

s1 Or,1

Or,2

a

b

1

a

b

0.27

0.3

0.2

0.4

0.3

0.1

(a) oMDP A, tp(A) = (1, 0)→ (2, 0)
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(b) Shortcut oMDP C(AchA).

Fig. 5: Two oMDPs. We omit transitions to a sink for readability.
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(a) AchA(Ir,1).
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(b) Sound approx. (Li, Ui)
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(c) Approx. (Li, Ui).

Fig. 6: Pareto curves (blue) and achievable regions and their underapproximation
(green) as well as their overapproximation (white+green).

Single-Exit Problem Statement: Given a string diagram D, an entrance
i, an exit j, and an error bound ϵ ∈ [0, 1], compute a scheduler σ such that

RPrJDK
max(i, j)− RPrJDK,σ(i, j) ≤ ϵ.

We remark that DM schedulers suffice for this problem statement.

Remark 1. String diagrams are traditionally graphical languages based on cat-
egory theory, which involve not only terms but also equations; see [18, 25, 31].
The definition of string diagrams of MDPs in [33] follows in this tradition and
satisfies certain equational axioms. In this paper, the equations do not play a
role explicitly; our algorithms assume a syntactic presentation. Solely for the
purpose of exposition, we use a more concise definition where some axioms do
not hold (although they “essentially” hold, modulo isomorphisms and removing
redundant open ends). All definitions, results, and even proofs in this paper are
concretely described and self-contained, without any use of category theory.

3.3 A Multi-Objective Generalization

Towards a recursive, compositional formulation of the problem statement, we
generalize the single-exit problem to allow for multiple exits. Concretely, the
generalized problem statement is to compute Pareto curves [12,27] that represent
combinations of reachability probabilities towards a set of exits.
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Example 1. Consider the oMDP A in Fig. 5a. From the entrance, the scheduler
σ1 that always chooses the a yields reachability probabilities (0.2, 0.4) to reach the
first and second exit, respectively, while σ2 that chooses b in s1 yields (0.3, 0.1).

Geometry. For two points p,p′ ∈ Rn, we write p ⪯ p′ for pointwise inequality,
i.e., pj ≤ p′j for every j ≤ n. The set of (normalized) weight vectors of dimension
n ∈ N is given by Wn = {w = ⟨w1, . . . , wn⟩ ∈ Rn

≥0 |
∑

i wi = 1}. The convex
closure of a set X is the set ConvCl(X) := {

∑
wi ·pi | w ∈ Wn, p1, . . . ,pn ∈ X}.

The downward closure of a set X is the set DwCl(X) := {p | ∃p′ ∈ X.p ⪯ p′}.
The downward convex closure is DwConvCl(X) := DwCl(ConvCl(X)). A set X
is convex or downward-closed, if X is equal to its convex- or downward-closure,
respectively. A convex, downward-closed set is finitely generated, if it is the
downward convex closure of a finite set of points that we call vertices.

We write RPrA,σ(i, O) ∈ RO for a point with RPrA,σ(i, O)(j) = RPrA,σ(i, j).

Definition 6 (Achievable). For an oMDP A, i ∈ IA and a scheduler σ

AchσA(i) := {p ∈ RO | p ⪯ RPrA,σ(i, O)}

is the points achieved by σ. For a set of schedulers Σ, AchΣA(i) :=
⋃

σ∈Σ AchσA(i).

The set of achievable points is AchA(i) := Ach
ΣA

h

A (i). The Pareto curve is the set

S(A, i) := {p ∈ AchA(i) | for all p′ ≻ p : p′ ̸∈ AchA(i)}.

A scheduler σ is Pareto-optimal (w.r.t. i), if RPrA,σ(i, O) ∈ S(A, i).

Points in the Pareto curve are also called Pareto-optimal. The set of achievable
points is convex and downward-closed, the downward closure of the Pareto curve
is the set of achievable points [9,11]. Fig. 6a illustrates the achievable points (the
green region) and the Pareto curve (the blue line) of A from the entrance Ir,1.
From facts on the necessary schedulers in multi-objective model-checking [9] with
the fact that exits are absorbing, we only need to consider memoryless schedulers
and the vertices of the achievable points all correspond to DM schedulers:

Lemma 1. For oMDP A and entrance i ∈ I:

DwCl(S(A, i)) = AchA(i) = Ach
ΣA

sm

A (i) = DwConvCl(Ach
ΣA

dm

A (i)).

We define the error E(X,Y ) between downward-closed convex sets X ⊆ Y ⊆ Rn

using the L2 norm ∥ ∥2 as in [29]: E(X,Y ) := supp∈Y infp′∈X ∥p− p′∥2.
To simplify notation, we write AchΣA for the indexed family

(
AchΣA(i)

)
i∈I

of the achievable points. Given families X = {Xi}i≤k and Y = {Yi}i≤k with
X(i) ⊆ Y (i), we define E(X,Y ) := supi≤k E(Xi, Yi).

We conservatively extend the single-exit problem statement. We now want
to find a set of schedulers such that the error between the achieved points
corresponding to this set and the (unknown) Pareto curve is small.
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Algorithm 1 approxMultiObjMDP: Approximation of the Pareto curve

1: Input: an oMDP A and an imprecision η ∈ [0, 1].
2: Output: a sound approximation (L,U) of A s.t. E(L,U) ≤ η.
3: initialize Li := ∅ and Ui := D≤1(O), for i ∈ I.
4: while E(L,U) > η do
5: select an entrance i ∈ I, a weight vector w := (wo)o∈O, and δ ≥ 0.
6: find lw, uw s.t. lw ≤ supσ WRPrσ(w, i) ≤ uw, |lw − uw| ≤ δ.
7: compute pl such that lw = w · pl.
8: update Li := Li ∪ {pl} and Ui := Ui ∩ {p | w · p ≤ uw}.
9: return (L,U).

Multi-Exit Problem Statement: Given a string diagram D, an error
bound ϵ ∈ [0, 1], compute a set of schedulers Σ s.t. E(AchΣA,AchA) ≤ ϵ.

4 Compositional Algorithm

We present a compositional algorithm by soundly approximating Pareto curves.

4.1 Approximating Pareto Curves on oMDPs

For an oMDP A, we can efficiently approximate AchA via an off-the-shelf multi-
objective model checking algorithm [12,30]. We outline this algorithm, tailored
to oMDPs. The key idea is that the algorithm iteratively refines a sound approxi-
mation of the Pareto curve.

Definition 7. Let A be an oMDP. An under-approximation L is a family L :=
(Li)i∈I such that Li is a convex, downward-closed, and finitely generated with
Li ⊆ AchA(i) for i ∈ I. An over-approximation U is analogously defined, with
AchA(i) ⊆ Ui for i ∈ I. We call (L,U) a sound approximation for A.

Algorithm 1 summarizes the approach. L and U are initialized as a trivial
approximation. The algorithm iteratively refines them by computing weighted
reachability probabilities for some weight vector w ∈ WO, which is adequately cho-
sen [30]7. For thatw, we denote the weighted reachability using WRPrA,σ(w, i) :=∑

j∈O wj · RPrA,σ(i, j). A scheduler τ is weighted optimal w.r.t. w and i if

WRPrA,τ (w, i) = supσ∈Sched(A) WRPrA,σ(w, i). Weighted reachability can be
computed via standard reachability query on a mildly modified MDP that has a
fresh unique target and sink state. This implies that DM schedulers suffice for
optimality. Furthermore, every Pareto optimal scheduler optimizes some weighted
reachability. Finally, from a lower bound lw we can compute an achievable pl

and use this point to update L. As the weighted optimal scheduler is optimal, we

7 While our algorithm is indeed correct for δ > 0, we only discuss δ = 0 here.
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obtain a linear inequality on the reachability probabilities that can be achieved
in the direction of w8. Fig. 6c illustrates how Algorithm 1 works.

Proposition 1 ([30]). Algorithm 1 is correct.

4.2 From Pareto Curves to Shortcut MDPs

In our algorithm, it will be convenient to construct a (small) MDP with a
particular Pareto curve. In particular, we construct the oMDP in Fig. 5b from
the Pareto curve in Fig. 6a. This construction is rather straightforward and we
give it for both finite sets of (Pareto-optimal) points and for finitely generated
convex sets. Due to the exits being terminals, RPrA,σ(i, O) ∈ D≤1(O), where we
liberally interpret distributions as points in RO.

Definition 8 (shortcut oMDP). Let A be an oMDP, B be an indexed family
B := (Bi)i∈IA of finite sets Bi ⊆ D≤1(O

A). The shortcut oMDP for B is

C(B) := (M, IOA), with M := (S,A, P ), S := IA ∪OA ∪ {⋆}, A :=
⋃

i∈IA Bi,

P (s, a, s′) :=


a(s′) if s ∈ IA, a ∈ Bs, and s′ ∈ OA,

1−
∑

o∈OA a(o) if s ∈ IA, a ∈ Bs, and s′ = ⋆,

0 otherwise.

Additionally, if B is an indexed family B := (Bi)i∈I of convex, downward-closed
and finitely generated Bi ⊆ D≤1(O) with vertices BV

i , then C(B) := C((BV
i )i∈I).

For each entrance s, exit s′ and point p ∈ Bs, the probability transition
P (s,p, s′) is the reachability probability from s to s′ in A induced by schedulers
that yielded reachability probabilities in point p. The sink ⋆ is introduced to
ensure that we obtain proper distributions.

Proposition 2. For oMDP A, i ∈ IA, and sound approximation (L,U):

AchC(L)(i) ⊆ AchA(i) ⊆ AchC(U)(i).

For the inclusions, a key element in the correctness of this statement that,
intuitively, we can add points that are not vertices of B without changing the
Pareto curve C(B). Based on the idea, we establish the following implication
for X,Y ⊆ D(O)I where X(i), Y (i) are finitely generated downward-closed
convex sets: X(i) ⊆ Y (i) implies AchC(X)(i) ⊆ AchC(Y )(i). Finally, we apply this
implication twice. Details are given in [34, Appendix B].

Prop. 2 also implies the following corollary, which claims that Pareto-optimal
schedulers suffice for optimality:

Corollary 1. For oMDP A,

AchA = AchC(AchA).

8 By construction, Ui is convex, downward-closed and finitely generated.
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Algorithm 2 approxMultiObjSD: Approximation of the Pareto curve

1: Input: a string diagram D and a local imprecision η ∈ [0, 1].
2: Output: A sound approximation (L,U) for JDK. If η = 0, then L = U .
3: if D = A then
4: return approxMultiObjMDP(A, η) ▷ Invoke Algorithm 1
5: else ▷ D = D1 ∗ D2, ∗ ∈ {#,⊕}
6: (L1, U1)← approxMultiObjSD(D1, η) ▷ Recursion
7: (L2, U2)← approxMultiObjSD(D2, η) ▷ Recursion
8: AL ← C(L1) ∗ C(L2) ▷ See Def. 8
9: AU ← C(U1) ∗ C(U2) ▷ See Def. 8

10: return
(
approxMultiObjMDP(AL, η)

)
1
,
(
approxMultiObjMDP(AU , η)

)
2

It is often convenient to obtain schedulers on either C(AchA) and obtain a
scheduler on A or vice versa. Furthermore, while Prop. 2 considers every entrance
separately, we aim to have schedulers that match on every entrance simultaneously
by remembering which entrance was taken (proof in [34, Appendix B]).

Proposition 3. Let A be an oMDP and σ ∈ Σ
C(AchA)
dm . There is a scheduler τ on

A s.t. RPrA,τ (i, OA) = RPrC(AchA),σ(i, OA) for every i ∈ IA. Let τ ′ ∈ ΣA
dm, there

is σ′ ∈ Σ
C(AchA)
dm s.t. RPrA,τ ′

(i, OA) ⪯ RPrC(AchA),σ′
(i, OA) for every i ∈ IA.

4.3 Approximating Pareto Curves for String Diagrams

We now provide a recursive algorithm in Algorithm 2. In the base case, when is
a single oMDP, we analyze the oMDP using Algorithm 1. Otherwise, we have an
string diagram D1 ∗ D2 for ∗ ∈ {#,⊕}. We recursively compute sound approxi-
mations for D1 and D2. Next, we compose the under- and over-approximations,
respectively. We discuss the under-approximation, the over-approximation is
handled analogously. Given both under-approximations L1, L2, we create the
corresponding shortcut MDPs C(L1) and C(L2) and then take their sequential
composition AL. This oMDP can be analyzed using Algorithm 1. Any under-
approximation for AL is an underapproximation for D(:= D1∗D2). This algorithm
easily supports additional operations such as n-ary compositions that significantly
reduce overhead. We remark that contrary to Algorithm 1, we do not guarantee
any error on the approximation that we return, unless all computations are
precise (η = 0). We discuss error bounds in §5.

Correctness We first state that under-approximations and over-approximations
are preserved by the algebraic operations:

Proposition 4 (Case #). For oMDPs A,B, and sound approximations (LA, UA)

and (LB, UB), the tuple
(
AchC(LA)#C(LB),AchC(UA)#C(UB)

)
is a sound approxima-

tion for A # B, i.e., for any i ∈ IA#B, the following conditions hold:

AchC(LA)#C(LB)(i) ⊆ AchA#B(i) ⊆ AchC(UA)#C(UB)(i).
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The proof (§4.4) is not trivial due to the cyclic dependency between A and
B. Similar to Corollary 2, Pareto-optimal schedulers suffice for compositionally
solving Pareto curves w.r.t. the sequential composition.

Corollary 2. For oMDPs A,B,

AchA#B = AchC(AchA)#C(AchB).

The similar compositionality result also holds for the sum:

Proposition 5 (Case ⊕). For oMDPs A,B, and sound approximations (LA, UA)

and (LB, UB), the tuple
(
AchC(LA)⊕C(LB),AchC(UA)⊕C(UB)

)
is a sound approxi-

mation for A⊕ B, i.e., for any i ∈ IA⊕B, the following conditions hold:

AchC(LA)⊕C(LB)(i) ⊆ AchA⊕B(i) ⊆ AchC(UA)⊕C(UB)(i).

The statement is straightforward due to the lack of interaction between A and B.

Theorem 1. Algorithm 2 is correct. Additionally, if η = 0 then E(L,U) = 0.

Proof. We prove that output (L,U) is a sound approximation of JDK. We prove
this recursively over the structure of D. If D = A, Prop. 1 applies. Otherwise,
we focus on L being a lower bound and with ∗ = # the upper bound and ⊕
are analogous. Indeed L(i) ⊆ AchC(L1)#C(L2)(i) for any entry i by Algorithm 1.
Likewise, L1, L2 are lower bounds to JD1K and JD2K and thus the theorem follows
Prop. 4 and Prop. 5. If η = 0, then L and U recursively coincide. ⊓⊔

Obtaining schedulers To obtain a scheduler, first observe that in Algorithm 1,
every point in Li can be annotated with a memoryless scheduler (using standard
model checking). Now, when we obtain a memoryless scheduler for some A ∗ B,
then we can translate this straightforwardly to memoryless schedulers for A and
B. Finally, if we obtain a scheduler for C(L′) and L′ is an underapproximation
for A, then Prop. 3 states that we can recover a scheduler for A.

4.4 Proof outline for Prop. 4

We give the main ingredients for Prop. 4, the key ingredient for our approach.
We discuss the crux for showing AchC(AchA)#C(AchB)(i) = AchA#B(i): We can
map (memoryless) schedulers in A # B and C(AchA) # C(AchB) to each other
while matching reachability probabilities. More precisely, we lift Prop. 3 to
the sequential composition, while using that Prop. 3 already established the
mapping for A and C(AchA). Therefore, we note that for any σ, i ∈ IA ∪ IB

and j ∈ OA#B, the following equations hold directly from the definition of the
sequential composition and from the definition of reachability probabilities by
adequately partitioning the paths from entrance to exit, i.e. RPrA#B,τ (i, j) ={

RPrA,τ (i, j) +
∑

k∈OA
r
RPrA,τ (i, k) · RPrA#B,τ (Nx(k), j) if i ∈ IA,

RPrB,τ (i, j) +
∑

k∈OB
l
RPrB,τ (i, k) · RPrA#B,τ (Nx(k), j) if i ∈ IB,

290             Watanabe et al.



where Nx((OA
r )i) = (IBl )i and Nx((OB

l )i) = (IAr )i, are the next states that are
visited from any exits which are not in OA#B. Naturally, by substitution we
obtain the equations for C(AchA) # C(AchB). We observe that various parts of
these equations are independent of the sequential composition. Thus, for these,
Prop. 3 applies. Once we apply these, we obtain two times the same linear
equation system with variables for RPrA#B,τ (i, j) and RPrC(AchA)#C(AchB),τ (i, j),
respectively, which shows that the probabilities coincide. In [34, Appendix C],
we derive the inclusions formally and show that it indeed preserves reachability
probabilities. We also establish the inclusions in Prop. 4 analogously to Prop. 2.

5 Compositional Estimation of Error Bounds

As we discussed above, Algorithm 2 provides a way to obtain the Pareto curve
precisely, for η = 0. However, setting the imprecision η = 0 is often infeasible.
When setting an η > 0, we only have soundness of the bounds, but no guarantee
on the tightness. A naive extension to Algorithm 2 would be to a posteriori
determine the error and tighten the sound approximation if the error is not
matched. This process terminates with the required error bound as there are
only finitely many schedulers. In this section, we discuss the (im)possibility of a
one-shot approach, where we would recursively compute sound approximations
with an approximate error bound given a priori. To that end, we study how the
error propagates through the composition. We show positive results by restricting
the compositional structure: we maintain errors on string diagrams that are only
constructed by the sum and the rightward sequential composition, as we show
in Prop. 6 and Thm. 2. After showing negative results that explode the error
on the (general) sequential composition in Ex. 3, we end with a positive note,
showing that the final result can have an error that is (significantly) smaller than
the individual errors in Ex. 4.

The L∞-Error. For conciseness, this section uses the L∞-error between sound ap-
proximations. Let (L,U) be a sound approximation. The L∞-error is E∞(L,U) :=
supi∈I supp∈Ui

infp′∈Li
∥p− p′∥∞, where ∥ ∥∞ is the L∞ norm. The L∞-error

E∞(L,U) and the error E(L,U) are equivalent in the sense that a sequence(
E∞(Ln, Un)

)
n∈N converges to 0 iff

(
E(Ln, Un)

)
n∈N converges to 0.

The sum. For the sum A⊕B, we can easily obtain an error bound compositionally,
since there are no interactions between A and B.
Proposition 6. Let A,B be oMDPs, and (LA, UA), (LB, UB) be sound approx-
imations. Then: E∞(LA⊕B, UA⊕B) ≤ max

(
E∞(LA, UA),E∞(LB, UB)

)
, where

LA⊕B := AchC(LA)⊕C(LB), and UA⊕B := AchC(UA)⊕C(UB).

Rightward composition. An open MDP A is rightward if tp(A) = (m, 0) → (l, 0).

Example 2. Let A,B be rightward oMDPs with tp(A) = (1, 0) → (2, 0) and
tp(B) = (2, 0) → (1, 0), and (LA, UA), (LB, UB) be sound approximations all
generated by a singleton, such that we can write:

LA
1 := (0.3, 0.2), UA

1 := (0.4, 0.3), LB
1 := 0.7, LB

2 := 0.6, UB
1 := 0.75, UB

2 := 0.65.
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Fig. 7: Bidirectional sequential compositions A # B.

Then the lower bound LA#B on their composition consists of one point 0.3·0.7+0.2·
0.6 = 0.33, and the upper bound consists of one point 0.4 ·0.75+0.3 ·0.65 = 0.495.
These values can be easily calculated from the shortcut MDPs. While the error
was 0.1 and 0.05 respectively on A and B, the composition has an error of 0.165.

We can estimate sufficient error bounds for rightward A,B in order to ensure
a certain error bound for the sequential composition A # B:
Theorem 2. Let A,B be rightward oMDPs, (LA, UA), (LB, UB) sound approxi-
mations, and (LA#B, UX), (LX , UA#B) be sound approximations of C(LA) # C(LB)
and C(UA) # C(UB), respectively. Then E∞(LA#B, UA#B) is bounded from above by

|OA| · E∞(LA, UA) + E∞(LB, UB) + E∞(LA#B, UX) + E∞(LX , UA#B)

See [34, Appendix D] for the proof. Whereas the first two summands are inherent
to the approximation of A and B, the latter two terms originate from the
approximations when computing a Pareto curve of the composed shortcut MDPs.
Thm. 2 thus provides reasonably tight error bounds for the sequential composition
on rightward oMDPs (only) when the number of exits OA is small.

(General, bidirectional) sequential composition. In general, we cannot obtain tight
error bounds for A # B, even if their error bounds of A and B are small.

Example 3. For oMDPs A,B in Fig. 7a, and (LA, UA), (LB, UB) be sound ap-
proximations with LA

1 , L
A
2 , U

A
1 , UA

2 are all singleton sets with 1, and LB
1 :=

(0.001, 0.99), UB
1 := (0.009, 0.99). Then, E∞(LA, UA) = 0, E∞(LB, UB) = 0.008.

In the composition C(LA) # C(LB), we obtain a Pareto point on 0.001
1−0.99 = 0.1,

while for C(UA) # C(UB), we obtain 0.009
1−0.99 = 0.9. Then, E∞(LA#B, UA#B) = 0.8.

The example demonstrates that with highly-likely loops, errors measured in
the infinity norm may be amplified. This motivates looking at different distance
measures, e.g., based on ratios [8]. These bounds may be tight for various shortcut
MDPs, but require additional assumptions, such as inducing the same graph in
the shortcut MDPs. We briefly discuss these bounds in [34, Appendix D].

Finally, the error may also disappear when composing oMDPs. For the
motivating example in Fig. 3, a large error in room B is irrelevant if the best
scheduler never visits this room. We provide a concrete example:

Example 4. Consider oMDPs A, B in Fig. 7b. A lower bound L for A is a Pareto
curve that only contains (1, 0), i.e., the point induced by taking action a. The
error for this lower bound is 1, as we may reach exit Or,2 with probability 1.
However, the error for C(AchL) #B is 0 as we already recover an optimal scheduler.
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6 Implementation and Experiments

ImplementationWe have implemented a prototypical C++ extension of Storm [17]
that takes a string diagram in JSON-format as input. The syntax allows to name
terms for simple reuse and oMDPs are defined as PRISM models with a list of
entrances and exits defined via expressions over the variables. The tool supports
caching of Pareto curves and shortcut MDPs, which is hugely beneficial if the
same string diagram occurs in multiple contexts. We provide dedicated support
for some syntactic sugar, most notably n-ary operations and the trace opera-
tor [33]. We have implemented two approaches. The monolithic (Mon) approach
takes a string diagram D and inductively constructs the monolithic MDP JDK.
The recursive Pareto computation (rPareto) follows the explanation in §4.

Setup We run the algorithms using a time out of 15 minutes and a memory limit
of 16GB. All experiments run on a single core of an Intel i9-10980XE processor.

Benchmarks. Our benchmarks exhibit fundamental topological structures such
as chains, which seems common structures for discretized (grid) worlds, and
protocols that work in rounds or keep track of the number of rounds won/lost.
Specifically, we create 8 benchmarks families with 50 different instances. We
use three simple types of string diagrams: a two-dimensional grid of rooms with
bidirectional doors (BiGrid), a grid of rooms that can only be passed in one
direction (UniGrid), a big chain (Chain), and a chain with a loop (ChainLoop).
Each string diagram is initialized at the leaves with 6 to 16 different simple
open MDPs of similar shape that occur multiple times. The shapes are a small
room RmS, a big room RmB, and a selection of biased dice Dice. Details are given
in [34, Appendix A].

Baselines. The only comparable compositional algorithm in the literature executes
scheduler enumeration [33]. We approximate this using Prec = rPareto(η = 0),
i.e., with precise Pareto curve computations. While pure scheduler enumeration
produces less overhead, it requires analyzing all schedulers, whereas Prec only
computes the Pareto-optimal DM schedulers. Scheduler enumeration over more
than 1012 schedulers is completely infeasible. All benchmarks in our benchmark
set have over 1032 schedulers. The monolithic algorithm is not optimised but uses
mature data structures for sparse model construction, in particular for building
the oMDPs. All algorithms use standard settings for MDP solving in Storm, in
particular OVI with precision 10−4 and double arithmetic.

Results In Fig. 8a (log-log scale) we compare the run time of rPareto and Mon.
Every point matches a benchmark, the point (x, y) indicates that Mon required
x seconds, while rPareto took y seconds. A point above the diagonal means
that rPareto was faster. A point above the dotted diagonal means that rPareto
was 10x faster. A point is on the IMP line, if the error is bigger then 8 · 10−3,
i.e., significantly above 10−4. Fig. 8b similarly compares rPareto(η = 10−4) vs
rPareto(η = 10−2) to visualise the performance benefit when reducing η. Table 1
gives details: The columns give the string diagram and class of open MDPs, the
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(a) Performance vs baseline (b) Performance for imprecision (c) Legend

Fig. 8: Performance (time in s, OoR=time-out or memory-out, IMP=imprecise)

Table 1: Benchmark details (time in s, MO=memory out, TO=time out)

Prec

t tm t t tm E p t tm E p

UniGrid100 RmB 1.1e+08 14 148582 MO MO MO 17 2 7e-11 58 32 2 4e-12 155
UniGrid200 RmB 4.2e+08 14 148582 MO MO MO 37 2 2e-19 58 84 2 1e-20 155
UniGrid250 RmB 6.6e+08 14 148582 MO MO MO 58 2 5e-23 58 141 2 3e-24 155
UniGrid100 Dice 5.4e+07 14 74424 170 41 MO 5 <1 3e-01 56 7 <1 2e-04 94
UniGrid200 Dice 2.1e+08 14 65424 MO MO MO 25 <1 8e-01 56 45 <1 5e-04 94
UniGrid250 Dice 3.3e+08 14 74424 MO MO MO 46 <1 1e+00 56 88 <1 7e-04 94
Chain1000 RmB 1.6e+07 6 42463 181 16 MO 11 <1 2e-50 44 22 <1 6e-52 82
Chain2000 RmB 2.1e+07 6 42463 258 24 MO 11 <1 3e-68 44 22 <1 7e-70 82
BiGrid100 RmS 8.5e+05 16 1353 19 1 TO TO TO TO TO TO TO TO TO
BiGrid200 RmS 3.4e+06 16 1352 145 5 TO TO TO TO TO TO TO TO TO

D M |SJDK| #A |SA| Mon rPareto [η = 10−2] rPareto [η = 10−4]

number of monolithic states |SJDK|, the unique #A oMDPs in D, and their state
count |SA|. We then consider the Mon and rPareto with η ∈ {0, 10−2, 10−4}
respectively: We list the total time t, the model building time tm, the error E, and
the total number of vertices p in all sound approximations (L,U) combined. For
Mon, the error is guaranteed to be below 10−4. A complete table is in [34, Appendix
A].

Discussion We discuss performance and error bounds.

Performance. Our Monolithic baseline is reasonably fast, can construct a mono-
lithic MDP with millions of states in a matter of seconds and analyze it in minutes.
However, the approach reaches memory limitations when handling > 108 states.
In contrast, rPareto reduces the amount of time for model building, may speed
up model checking by orders of magnitude, and is applicable even when the
(monolithic) MDP has > 108 states. The ‘vertical lines’ in Fig. 8a are due to the
effect of caching intermediate results. However, rPareto is not a silver bullet:
In particular, handling open MDPs with more than 3 exits, in particular as in
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BiGrid, is challenging to the multi-objective engine. This effect is amplified when
using open MDPs that are challenging for value iteration, due to the iterative
nature of Algorithm 1. Precisely computing Pareto curves is not competitive at
all for any of these benchmarks due to the large number of schedulers.

Error bounds. In all experiments, when η = 10−4, the approximations are suffi-
ciently tight such that E < 8 · 10−3. The error actually mostly collapses: The
lower bound typically includes a scheduler ‘close’ to the optimal scheduler, similar
to Ex. 4. Consider Fig. 8b: Increasing η from 10−4 to 10−2 decreases the number
of Pareto points roughly by a factor 2-3 and similarly the model checking time:
However, the error sometimes explodes and for UniGrid250/Dice, the error is 1.

7 Related Work and Conclusion

Related Work Compositional verification methods for sequential MDPs [6, 21,
26,33] have been discussed in §1. For hierarchical MCs [1], there are no schedulers.
Hierarchical methods for reinforcement learning (RL) have been surveyed in [28].
Particularly interesting is [20], which applies compositional RL w.r.t. to some
sequentially composed MDP, derived from the task specification.

Compositional probabilistic verification w.r.t. the parallel composition is
investigated in [10, 23, 35]. Most relevant is an multi-objective optimization
framework [24] that reasons compositionally in an assume-guarantee fashion.

The computation of multi-objective reward-bounded properties [14] gener-
alizes topological value iteration. Their notion of episodes resembles rightward
sequential composition. We support bidirectional composition where topological
value iteration may not apply. For rightward MDPs, our approach caches the
Pareto curves and thus supports exponentially many episodes in linear time.

Conclusion In this work, we employ multi-objective model checking of monolithic
MDPs to obtain a novel compositional algorithm for MDPs compositionally
defined by string diagrams. Future work includes support for reward properties
and a complete temporal logic, in particular also including support for finite
horizon properties. Furthermore, it is interesting to develop property-driven
algorithms that compute Pareto-curves up to a context-dependent precision
and to improve scalability for oMDPs with many exits. Finally, we think it is
important to extract the compositional structure in form of string diagrams from
popular formalisms like Prism programs.
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Havelund, K. (eds.) TACAS. LNCS, vol. 8413, pp. 593–598. Springer
(2014). https://doi.org/10.1007/978-3-642-54862-8 51, https://doi.org/10.1007/
978-3-642-54862-8_51

14. Hartmanns, A., Junges, S., Katoen, J., Quatmann, T.: Multi-cost bounded tradeoff
analysis in MDP. J. Autom. Reason. 64(7), 1483–1522 (2020)

15. Hartmanns, A., Junges, S., Quatmann, T., Weininger, M.: A practitioner’s guide to
MDP model checking algorithms. In: TACAS (1). LNCS, vol. 13993, pp. 469–488.
Springer (2023)

16. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: CAV (2). LNCS,
vol. 12225, pp. 488–511. Springer (2020)

296             Watanabe et al.

https://doi.org/10.1007/978-3-642-28729-9_18
https://doi.org/10.1007/978-3-642-28729-9_18
https://doi.org/10.1007/978-3-642-28729-9_18
https://doi.org/10.2168/LMCS-4(4:8)2008
https://doi.org/10.2168/LMCS-4(4:8)2008
https://doi.org/10.2168/LMCS-4(4:8)2008
https://doi.org/10.1007/978-3-642-19835-9_11
https://doi.org/10.1007/978-3-642-19835-9_11
https://doi.org/10.1007/978-3-642-19835-9_11
https://doi.org/10.1007/978-3-642-33386-6_25
https://doi.org/10.1007/978-3-642-33386-6_25
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51


17. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilis-
tic model checker Storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610
(2022). https://doi.org/10.1007/s10009-021-00633-z, https://doi.org/10.1007/
s10009-021-00633-z

18. Hinze, R., Marsden, D.: Introducing String Diagrams: The Art of Category Theory.
Cambridge University Press (2023). https://doi.org/10.1017/9781009317825

19. Holtzen, S., Junges, S., Vazquez-Chanlatte, M., Millstein, T.D., Seshia, S.A., den
Broeck, G.V.: Model checking finite-horizon Markov chains with probabilistic
inference. In: CAV (2). LNCS, vol. 12760, pp. 577–601. Springer (2021)

20. Jothimurugan, K., Bansal, S., Bastani, O., Alur, R.: Compositional reinforcement
learning from logical specifications. In: NeurIPS. pp. 10026–10039 (2021)

21. Junges, S., Spaan, M.T.J.: Abstraction-refinement for hierarchical probabilistic
models. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification - 34th Inter-
national Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part
I. LNCS, vol. 13371, pp. 102–123. Springer (2022). https://doi.org/10.1007/978-3-
031-13185-1 6, https://doi.org/10.1007/978-3-031-13185-1_6

22. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of prob-
abilistic real-time systems. In: CAV. LNCS, vol. 6806, pp. 585–591. Springer
(2011). https://doi.org/10.1007/978-3-642-22110-1 47, https://doi.org/10.1007/
978-3-642-22110-1_47

23. Kwiatkowska, M.Z., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification
for probabilistic systems. In: TACAS. LNCS, vol. 6015, pp. 23–37. Springer (2010)

24. Kwiatkowska, M.Z., Norman, G., Parker, D., Qu, H.: Compositional probabilistic
verification through multi-objective model checking. Inf. Comput. 232, 38–65
(2013). https://doi.org/10.1016/j.ic.2013.10.001, https://doi.org/10.1016/j.ic.
2013.10.001

25. Mac Lane, S.: Categories for the working mathematician, Graduate Texts in Math-
ematics, vol. 5. Springer-Verlag, New York, second edn. (1978)

26. Neary, C., Verginis, C.K., Cubuktepe, M., Topcu, U.: Verifiable and compositional
reinforcement learning systems. In: ICAPS. pp. 615–623. AAAI Press (2022)

27. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of web sources. In: FOCS. pp. 86–92. IEEE Computer Society
(2000). https://doi.org/10.1109/SFCS.2000.892068, https://doi.org/10.1109/

SFCS.2000.892068

28. Pateria, S., Subagdja, B., Tan, A., Quek, C.: Hierarchical reinforcement learning:
A comprehensive survey. ACM Comput. Surv. 54(5), 109:1–109:35 (2021)

29. Quatmann, T., Junges, S., Katoen, J.: Markov automata with multiple objectives.
Formal Methods Syst. Des. 60(1), 33–86 (2022). https://doi.org/10.1007/s10703-
021-00364-6, https://doi.org/10.1007/s10703-021-00364-6

30. Quatmann, T., Katoen, J.: Multi-objective optimization of long-run average
and total rewards. In: TACAS. LNCS, vol. 12651, pp. 230–249. Springer
(2021). https://doi.org/10.1007/978-3-030-72016-2 13, https://doi.org/10.1007/
978-3-030-72016-2_13

31. Selinger, P.: A survey of graphical languages for monoidal categories. New structures
for physics pp. 289–355 (2011)

32. Watanabe, K., Eberhart, C., Asada, K., Hasuo, I.: A compositional ap-
proach to parity games. In: MFPS. EPTCS, vol. 351, pp. 278–295 (2021).
https://doi.org/10.4204/EPTCS.351.17, https://doi.org/10.4204/EPTCS.351.

17

Pareto Curves for Compositionally Model Checking (...)  MDPs             297

https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1017/9781009317825
https://doi.org/10.1007/978-3-031-13185-1_6
https://doi.org/10.1007/978-3-031-13185-1_6
https://doi.org/10.1007/978-3-031-13185-1_6
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1016/j.ic.2013.10.001
https://doi.org/10.1016/j.ic.2013.10.001
https://doi.org/10.1016/j.ic.2013.10.001
https://doi.org/10.1109/SFCS.2000.892068
https://doi.org/10.1109/SFCS.2000.892068
https://doi.org/10.1109/SFCS.2000.892068
https://doi.org/10.1007/s10703-021-00364-6
https://doi.org/10.1007/s10703-021-00364-6
https://doi.org/10.1007/s10703-021-00364-6
https://doi.org/10.1007/978-3-030-72016-2_13
https://doi.org/10.1007/978-3-030-72016-2_13
https://doi.org/10.1007/978-3-030-72016-2_13
https://doi.org/10.4204/EPTCS.351.17
https://doi.org/10.4204/EPTCS.351.17
https://doi.org/10.4204/EPTCS.351.17


33. Watanabe, K., Eberhart, C., Asada, K., Hasuo, I.: Compositional probabilistic
model checking with string diagrams of MDPs. In: CAV. LNCS, vol. 13966, pp.
40–61. Springer (2023), https://doi.org/10.1007/978-3-031-37709-9_3

34. Watanabe, K., van der Vegt, M., Hasuo, I., Rot, J., Junges, S.: Pareto curves for
compositionally model checking string diagrams of MDPs (2024), https://arxiv.
org/abs/2401.08377, a longer version
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Learning Explainable and Better Performing
Representations of POMDP Strategies ⋆

Alexander Bork1 , Debraj Chakraborty2 , Kush Grover3 , Jan
Křet́ınský2,3 , and Stefanie Mohr3 (B)

Abstract. Strategies for partially observable Markov decision processes
(POMDP) typically require memory. One way to represent this memory
is via automata. We present a method to learn an automaton representa-
tion of a strategy using a modification of the L∗-algorithm. Compared to
the tabular representation of a strategy, the resulting automaton is dra-
matically smaller and thus also more explainable. Moreover, in the learn-
ing process, our heuristics may even improve the strategy’s performance.
We compare our approach to an existing approach that synthesizes an
automaton directly from the POMDP, thereby solving it. Our experi-
ments show that our approach can lead to significant improvements in
the size and quality of the resulting strategy representations.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) combine
non-determinism, probability and partial observability. Consequently, they have
gained popularity in various applications as a model of planning in an unsafe
and only partially observable environment. Coming from the machine learning
community [30], they also gained interest in the formal methods community
[25,11,14,22]. They are a very powerful model, able to faithfully capture real-life
scenarios where we cannot assume perfect knowledge, which is often the case.
Unfortunately, the great power comes with the hardness of analysis. Typical
objectives of interest such as reachability or total reward already result in un-
decidable problems [25]. Namely, the resolution of the non-determinism (a.k.a.
synthesis of a strategy, policy, scheduler, or controller) cannot be done algorithmi-
cally while guaranteeing optimality w.r.t. the objective. Consequently, heuristics
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B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14571, pp. 299–319, 2024.
https://doi.org/10.1007/978-3-031-57249-4_15

http://orcid.org/0000-0002-7026-228X
http://orcid.org/0000-0003-0978-4457
http://orcid.org/0000-0003-4575-1302
http://orcid.org/0000-0002-8122-2881
http://orcid.org/0000-0002-8630-3218
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57249-4_15&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-57249-4_15


to synthesize practically well-performing strategies became of significant interest.
Let us name several aspects playing a key role in applicability of such synthesis
procedures:③❤1 quality of the synthesized strategies,③❤2 size and explainability of the representation of the synthesized strategies,③❤3 scalability of the computation method.

Strategy Representation. While 1 and 3 are of obvious importance, it is
important to note the aspect 2 . A strategy is a function mapping the current
history (sequence of observations so far) to an action available in the current
state. When written as a list of history-action pairs, it results in a large and in-
comprehensible table. In contrast, when equivalently written as a Mealy machine
transducing the stream of observation to a stream of actions, its size may be dra-
matically lower (making it easier to implement and more efficient to execute)
and its representation more explainable (making it easier to certify). Besides,
better understandability allows for easier maintenance and modification. To put
it in a contrast, explicit (table-like) or, e.g., neural-network representations of
the function can hardly be hoped to be understandable by any human (even
domain expert). Compact and understandable representations of strategies have
recently gained attention, e.g., [12,27], also for POMDP [21,3], and even tool
support [7] and [4], respectively. See [6] for detailed aspects of motivation for
compact representations.

Current Approaches For POMDP, the state of the art is torn into two
streams.

On the one hand, tools such as Storm [11] feature a classic belief-based
analysis, which essentially blows up the state space, making it easier to analyze.
Consequently, it is still reasonably scalable 3 , but the size of the resulting strat-
egy is even larger than that of the state space of the POMDP and is simply given
as a table, i.e., not doing well w.r.t. the representation 2 . Moreover, to achieve
the scalability (and in fact even termination), the analysis has to be stopped at
some places (“cut-offs”), resulting in poorer performance 1 . On the other hand,
the exhaustive bounded synthesis as in PAYNT [4] tries to synthesize a small
Mealy machine representing a good strategy (while thus solving the POMDP)
and if it fails, it tries again with an increased allowed size of the automaton.
While this approach typically achieves better quality 1 and, by principle, bet-
ter size and explainability 2 , it is extremely expensive and does not scale at all
if the strategy requires a larger automaton 3 . While symbiotic approaches are
emerging [2], the best of both worlds has not been achieved yet.

Our Contribution We design a highly scalable postprocessing step, which
improves the quality and the representation of the strategy. It is compatible
with any framework producing any strategy representation, requiring only that
we can query the strategy function (which action corresponds to a given observa-
tion sequence). In particular, Storm, which itself is scalable, can thus profit from
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improving the quality and the representation of the produced strategies. Our pro-
cedure learns a compact representation of the given strategy as a Mealy machine
using automata-learning techniques, in two different ways. First, through learn-
ing the complete strategy, we get its automaton representation, which is fully
equivalent and thus achieving also the same value. Second, we provide heuristics
learning small modifications of the strategy. Indeed, for some inputs (observa-
tion sequences), we ignore what the strategy suggests, in particular when the
strategy is not defined, but also when it explicitly states that it is unsure about
its choice (such as at the cut-off points, where the sequences become too long
and the strategy was not optimised well at these later points). Whenever we
ignore the strategy, we try to devise with a possibly better solution. For in-
stance, we can adopt the decision that the currently learnt automaton suggests,
or we can reflect other decisions in similar situations. This way we produce a
simpler strategy (thus also comparatively smaller), which can, in principle, fix
the suboptimal decisions of the strategy stemming from the limitations of the
original analysis (such as bounds on the exploration) or any other irregularities.
Of course, this only works well if the true optimal strategy is “sensible”, i.e., has
inner structure allowing for a simple automaton representation. For practical,
hence sensible, problems, this is typically the case.

Summary of our contribution:

– We provide a method to take any POMDP strategy and transform it into
an equivalent or similar (upon choice) automaton, yielding small size and
potential for explainability.

– Thereby we often improve the quality of the strategy.

– The experiments confirm the improvements and frequent proximity to best
known values (typically of PAYNT) on the simpler benchmarks.

– The experiments indicate great scalability even on harder benchmarks
where the comparison tool times out. The auspicious comparison on sim-
pler benchmarks warrants the trust in good absolute quality and size on the
harder ones.

Related Work Methods to solve planning problems on POMDPs have been
studied extensively in the literature [34,18,32]. Many state-of-the-art solvers use
point-based methods like PBVI [29], Perseus [35] and SARSOP [23] to treat
bounded and unbounded discounted properties. For these methods, strategies
are typically represented using so called α-vectors. Apart from a significant over-
head in the analysis, they completely lack of explainability. Notably, while the
SARSOP implementation provides an export of its computed strategies in an
automaton format, we have not been able to find an explanation of how it is
generated.

Methods based on the (partial) exploration and solving of the belief MDP
underlying the POMDP [28,10,11] have been implemented in the probabilistic
model checkers Storm [20] and Prism [24]. The focus of these methods is opti-
mizing infinite-horizon objectives without discounting. Recent work [2] describes
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how strategies are extracted from the results of these belief exploration meth-
ods. The resulting strategy representation, however, is rather large and contains
potentially redundant information.

Orthogonal to the methods above, there are approaches that directly synthe-
size strategies from a space of candidates [16,26]. The synthesized strategy is then
applied to the POMDP to yield a Markov chain. Analyzing this Markov chain
yields the objective value achieved by the strategy. Methods used for searching
policies include using inductive synthesis [3], gradient decent [19] or convex op-
timization [1,21,15]. [2] describes an integration of a belief exploration approach
[11] with inductive synthesis [3].

Our approach is orthogonal to the solution methods in that it uses an ex-
isting strategy representation and learns a new, potentially more concise finite-
state controller representation. Furthermore, our modifications of learned strat-
egy representations shares similarities with approaches for strategy improvement
[36,13,33].

2 Preliminaries

For a countable set S, we denote its power set by 2S . A (discrete) probabil-
ity distribution on a countable set S is a function d : S → [0, 1] such that∑

s∈S d(S) = 1. We denote the set of all probability distributions on the set S
as Dist(S). For d ∈ Dist(S), the support of d is supp(d) = {s ∈ S | d(s) > 0}.
We use the Iverson bracket notation where [x] = 1 if the expression x is true
and 0 otherwise. For two sets S, T , we define the set of concatenations of S with
T as S · T = {s · t | s ∈ S, t ∈ T}. We analogously define the set of n-times
concatenation of S with itself as Sn for n ≥ 1 and S0 = {ϵ} is the set containing
the empty string. We denote by S∗ =

⋃∞
i=0 S

n the set of all finite strings over S
and by S+ =

⋃∞
i=1 S

n the set of all non-empty finite strings over S. For a finite
string w = w1w2 . . . wn, the string w[0, i] with w[0, 0] = ϵ and w[0, i] = w1 . . . wi

for 0 < i ≤ n is a prefix of w. The string w[i, n] = wi . . . wn with 0 < i ≤ n is a
suffix of w. A set W ⊆ S∗ is prefix-closed if for all w ∈ S∗, w = w1 . . . wn ∈ W
implies w[0, i] ∈ W for all 0 ≤ i ≤ n. A set W ′ ⊆ S∗ is suffix-closed if ϵ /∈ W
and for all w ∈ S∗, w = w1 . . . wn ∈W implies w[i, n] ∈W for all 0 < i ≤ n.

Definition 1 (MDP). A Markov decision process (MDP) is a tuple M =
(S,A, P, s0) where S is a countable set of states, A is a finite set of actions,
P : S × A ⇀ Dist(S) is a partial transition function, and s0 ∈ S is the initial
state.

For an MDP M = (S,A, P, s0), s ∈ S and a ∈ A, let PostM(s, a) = {s′ |
P (s, a, s′) > 0} be the set of successor states of s in M that can be reached
by taking the action a. We also define the set of enabled actions in s ∈ S by
A(s) = {a ∈ A | P (s, a) ̸= ⊥}. A Markov chain (MC) is an MDP with |A(s)| = 1
for all s ∈ S. For an MDP M, a finite path ρ = s0a0s1 . . . si of length i ≥ 0
is a sequence of states and actions such that for all t ∈ [0, i − 1], at ∈ A(st)
and st+1 ∈ PostM(st, at). Similarly, an infinite path is an infinite sequence ρ =
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s0a0s1a1s2 . . . such that for all t ∈ N, at ∈ A(st) and st+1 ∈ PostM(st, at). For
an MDPM, we denote the set of all finite paths by FPathsM, and of all infinite
paths by IPathsM.

Definition 2 (POMDP). A partially observable MDP (POMDP) is a tuple
P = (M, Z,O) whereM = (S,A, P, s0) is the underlying MDP with finite num-
ber of states, Z is a finite set of observations, and O : S → Z is an observation
function that maps each state to an observation.

For POMDPs, we require that states with the same observation have the same
set of enabled actions, i.e., O(s) = O(s′) implies A(s) = A(s′) for all s, s′ ∈ S.
This way, we can lift the notion of enabled actions to an observation z ∈ Z by set-
ting A(z) = A(s) for some state s ∈ S with O(s) = z. The notion of observation
O for states can be lifted to paths: for a path ρ = s0a0s1a1 . . ., we define O(ρ) =
O(s0)a0O(s1)a1 . . .. Two paths ρ1 and ρ2 are called observation-equivalent if
O(ρ1) = O(ρ2). We call an element ō ∈ Z∗ an observation sequence and denote
the observation sequence of a path ρ = s0a0s1 . . . by O(ρ) = O(s0)O(s1) . . . .

0
b

1
y

2
b

3
g

Fig. 1: Running
example: POMDP

Example 1. Consider the POMDP graphically depicted in
Fig. 1, modeling a basic robot planning task. A robot is
dropped uniformly at random in one of four grid cells.
Its goal is to reach cell 3. The robot’s sensors cannot to
distinguish cells 0 and 2, while cells 1 and 3 provide unique
information. For the POMDP model, we use states 0, 1,
2, and 3 to indicate the robot’s position. We mimic the
random initialization by introducing a unique initial state
s0 with a unique observation i (init). s0 has a single action

that reaches any of the other four states with equal probability 0.25. Thus, the
state space of the POMDP is S = {s0, 0, 1, 2, 3}. To represent the observations
of the robot, we use three observations b, y and g, so Z = {i, b, y, g}. States 0
and 2 have the same observation, while states 1 and 3 are uniquely identifiable,
formally O = {(s0 → i), (0→ b), (1→ y), (2→ b), (3→ g)}. The goal is for the
robot to reach state 3. In each state, it can choose to move up, down, left, or
right, A = {s, u, d, l, r}. In each step, executing the chosen action may fail with
a probability of p = 0.5, causing the robot to remain in its current cell without
changing states.

Definition 3 (Strategy). A strategy for an MDPM is a function π : FPathsM →
Dist(A) such that for all paths ρ ∈ FPathsM, supp(π(ρ)) ⊆ A(last(ρ)).

A strategy π is deterministic if |supp(π(ρ))| = 1 for all paths ρ ∈ FPathsM.
Otherwise, it is randomized. A strategy π is called memoryless if it depends only
on last(ρ) i.e. for any two paths ρ1, ρ2 ∈ FPathsM, if last(ρ1) = last(ρ2) then
π(ρ1) = π(ρ2). As general strategies have access to full state information, they
are unsuitable for partially observable domains. Therefore, POMDPs require a
notion of strategies based only on observations. For a POMDP P, we call a
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strategy observation-based if for any ρ1, ρ2 ∈ FPathsM, O(ρ1) = O(ρ2) implies
π(ρ1) = π(ρ2), i.e. the strategy has same output on observation-equivalent paths.

We are interested in representing observation-based strategies approximating
optimal objective values for infinite horizon objectives without discounting, also
called indefinite-horizon objectives, i.e., maximum/minimum reachability prob-
abilities and expected total reward objectives. We emphasize that our general
learning framework also generalizes straightforwardly to strategies for different
objectives. In contrast to fully observable MDPs, deciding if a given strategy is
optimal for an indefinite-horizon objective on a POMDP is generally undecidable
[25]. In fact, optimal behavior requires access to the full history of observations,
necessitating an arbitrary amount of memory. As such, our goal is to learn a
small representation of a strategy using only a finite amount of memory that
approximates optimal values as well as possible.

We represent these strategies as finite-state controllers (FSCs) – automata
that compactly encode strategies with access to memory and randomization in
a POMDP.

Definition 4 (Finite-State Controller). A finite-state controller (FSC) is a
tuple F = (N, γ, δ, n0) where N is a finite set of nodes, γ : N × Z → Dist(A)
is an action mapping, δ : N × Z → N is the transition function, and n0 is the
initial node.

We denote by πF the strategy represented by the FSC F and use F for the set
of all FSCs for a POMDP P. Given an FSC F = (N, γ, δ, n0) that is currently
in node n, and a POMDP P with underlying MDP M = (S,A, P, s0), in state
s, the action to play by an agent following F is chosen randomly from the
distribution γ(n,O(s)). F then updates its current node to n′ = δ(n, z). The
state of the POMDP is updated according to P . As such, an FSC induces a
Markov chain MF = (S × N, {α}, PF , (s0, n0)) where PF ((s, n), α, (s′, n′)) is
[δ(n,O(s)) = n′] ·

∑
a∈A(s) γ(n,O(s))(a) · P (s, a, s′).

An FSC can be interpreted as a Mealy machine: nodes correspond directly
to states of the Mealy machine, which takes observations as input. The set of
output symbols is the set of all distributions over actions occurring in the FSC.

3 Learning a Finite-State Controller

We present a framework for learning a concise finite-state controller representa-
tion from a given strategy for a POMDP. Our approach mimics an extension of
the L* automaton learning approach [5] for learning Mealy machines [31]. The
main difference in our approach is that we have a sparse learning space: not
all observations of a POMDP are possible to reach from all states. Thus, there
are many observation sequences that can never occur in the POMDP. To mark
situations where this occurs, i.e. where a learned FSC has complete freedom to
decide what to do, we introduce a “don’t-care” symbol †.

Furthermore, for some policy computation methods, the strategy we receive
as input may be incomplete. Although some observation sequence can appear
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Minimize FSC

Fig. 2: Depiction of the FSC learning framework

in the POMDP, the strategy does not specify what to do when it occurs. This
can for example be caused by reaching the depth limit in an exploration based
approach. We use a “don’t-know” symbol χ to mark such cases. While the non-
occurring sequences do not directly influence the learning process, they cannot
be ignored completely. These χ need to be replaced by actual actions using some
heuristics for the final FSC to yield a complete strategy (see Section 3.4).

An overview of the learning process is depicted in Fig. 2. We expect as
input a (partially defined) strategy in the form of a table that maps observation
sequences in the POMDP to a distribution over actions.

Definition 5 (Strategy Table). A strategy table S for a POMDP P is a
relation S ⊆ Z∗ × (Dist(A) ∪ {χ}). A row of S is an element (ō, d) ∈ S.

For (ō, d) ∈ S, if supp(d) contains only a single action a, we write it as (ō, a).
We say a strategy table S is consistent if and only if for ō ∈ Z∗, (ō, d1) ∈ S
and (ō, d2) ∈ S implies d1 = d2, i.e. each observation sequence has at most one
unique output. A consistent strategy table S (partially) defines an observation-
based strategy πS with πS(ρ) = d if and only if (O(ρ), d) ∈ S and d ̸= χ.
For consistent strategy tables, the FSC resulting from our approach correctly
represents the partially defined strategy.

Example 2. Table 1 depicts a strategy table for the POMDP described in Exam-
ple 1. The table does not specify what to do in state 3 as at that point, the robot
has already achieved its target. The action chosen at that point is irrelevant. In-
tuitively, the strategy table describes that the robot should go right as long as
it sees b, and goes down once it sees y. The FSC in Figure 3 fully captures the
behaviour described by the strategy table and thus accurately represents it.

In our framework, the input strategy table is used to build an initial FSC
which is then compared to the input. If the initial FSC is already equivalent to
the given strategy table, we are done and we output the FSC. Otherwise, we get
a counterexample and use it to update the FSC. This process of checking for
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Observation sequence Action

i s

i y d

i b r

Table 1: Example strategy table for the POMDP
in Example 1. It only contains observation se-
quences of length at most 2.

b: r

y: d

i: s

Fig. 3: FSC representing the
strategy table of Table 1.

equivalence and updating the FSC is repeated until the FSC is equivalent to the
table.

In the sequel, we first explain how our learning approach works on general
input of the form described above. Then we show how the learning approach
is integrated with an existing POMDP solution method by means of the belief
exploration framework from [11]. Lastly, we introduce heuristics for improvement
of the learned policies when the information in the table is incomplete.

3.1 Automaton Learning

The regular L* approach is used to learn a DFA for a regular language. It is
intuitively described as: a teacher has information about an automaton and a
student wants to learn that automaton. The student asks the teacher whether
specific words are part of the language (membership query). At some point,
the student proposes a solution candidate (in case of L*, a DFA) and asks the
teacher whether it is correct, i.e. whether the proposed automaton accepts the
language (equivalence query). Instead of the membership query of standard L*,
the extension to Mealy machines [31] uses an output query, since we are not
interested in the membership of a word in a language but rather the output of the
Mealy machine corresponding to a specific word. As such, our learning approach
needs access to an output query, specifying the output of the strategy table for
a given observation sequence, and an equivalence query, checking whether an
FSC accurately represents the strategy table. We formally define the two types
of queries.

Definition 6 (Output Query (OQ)). The output query for a strategy table
S is the function OQS : Z∗ → Dist(A) ∪ {χ, †} with OQS(ō) = d if (ō, d) ∈ S
and OQS(ō) = † otherwise.

Definition 7 (Equivalence Query (EQ)). The equivalence query for a strat-
egy table S is a function EQS : F → Z∗ defined as follows: EQS(F) = ϵ if for
all (ō, d) ∈ S and for all ρ with O(ρ) = ō, πF (ρ) = d. Otherwise, EQS(F) = c
where c ∈ {ō | (ō, d) ∈ S, ∃ρ ∈ FPathsM(P) : O(ρ) = ō ∧ πF (ρ) ̸= d} is a
counterexample where S and F have different output.

The output query (OQ) takes an observation sequence ō, and outputs the
distribution (or the χ symbol) suggested by the strategy table. If the given ob-
servation sequence is not present in the strategy table, it returns the † symbol,
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i.e., a ”don’t care”-symbol. The equivalence query (EQ) takes a hypothesis FSC
Fhyp and asks whether it accurately represents S. In case it does not, an obser-
vation sequence where Fhyp and S differ is generated as a counterexample.

Using the definitions of these two queries, we formalise our problem statement
as follows:
Problem Statement: Given a POMDP P, a strategy table S, an output
query OQS and an equivalence query EQS , compute a small FSC F such
that EQS(F) = ϵ.

Learning Table We aim at solving the problem using a learning framework
similar to L∗. We learn an FSC by creating a learning table which keeps track
of the observation sequences and the outputs the learner assumes they should
yield in the strategy. Formally, it is defined as follows:

Definition 8 (Learning Table). A learning table for POMDP P is a tuple
T = (R,C, E) where R ⊂ Z∗ is a prefix-closed finite set of finite strings over
the observations representing the upper row indices, the set R · Z are the lower
rows indices and C ⊂ Z+ is a suffix-closed finite set of non-empty finite strings
over Z – the columns. E : (R ∪R ·Z)×C → Dist(A) ∪ {χ, †} is a mapping that
represents the entries of the table.

i b y

ϵ s † †

i † r d

b † † †
y † † †

Table 2:
Running example -
initial table

Intuitively speaking, the table is divided into upper
and lower rows. Initially, the columns of the learning
table are the observations in the POMDP. Additional
columns may be added in the learning process to further
refine the behavior of the learned FSC. Upper rows ef-
fectively result in nodes of the learned FSC, while lower
rows specify destinations of the transitions. For a row
in the upper rows, each entry represents the output of
the FSC corresponding to their respective observation
(column). For an upper row, if a column is labelled only
with an observation, the corresponding entry represents
the output of the FSC on that observation. As an ex-

ample, Table 2 contains the initial learning table for our running example. We
do not include observation g for the target state as we are not interested in the
behavior of the strategy after the target has been reached.

We say that two rows r1, r2 ∈ R ∪R ·Z are equivalent (r1 ≡ r2) if they fully
agree on their entries, i.e., r1 ≡ r2 if and only if E(r1, c) = E(r2, c) for all c ∈ C.
The equivalence class of a row r ∈ R ∪R · Z is [r] = {r′ | r ≡ r′}.

From Learning Table to FSC To transform a learning table into an FSC,
the table needs to be of a specific form. In particular, it needs to be closed and
consistent. A learning table is closed if for each lower row l ∈ R · Z, there is an
upper row u ∈ R such that l ≡ u.
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x y

ϵ a b

x a b

y a b

ϵ

x: a

y: b

Fig. 4: Transformation of a
learning table to an FSC.

A learning table is consistent if for each
r1, r2 ∈ R such that r1 ≡ r2, we have r1 · e ≡
r2 · e for all e ∈ Z. Closure of a learning table
guarantees that each transition – defined in
the FSC by a lower row – leads to a valid node,
i.e. the node corresponding to the equivalent
upper row. Consistency, on the other hand,
guarantees that the table unambiguously de-
fines the output of a node in the FSC given
an observation.

Using the notions of closure and consistency, we can define the transformation
of a learning table into the learned FSC :

Definition 9 (Learned FSC). Given a closed and consistent learning table
T = (R,C, E), we obtain a learned FSC FT = (NT , γT , δT , n0,T ) where:
NT = {[r] | r ∈ R}, i.e., the nodes are the upper rows of the table; γT ([r], o) =
E(r, o) for all o ∈ Z, i.e. the output of a transition is defined by its entry in the
table; δT ([r], o) = [r · o] for all r ∈ R, o ∈ Z, i.e., the destination of a transition
from node [r] with observation o is the node corresponding to the upper row
equivalent to the lower row r · o; n0,T = [ϵ], i.e., the initial state is [ϵ].

Example 3. We demonstrate how to transform a table to an FSC in Fig. 4. The
upper rows become states, the lower rows show the transitions. In this example,
on both the observations x,y, we stay in the state and play action a and b,
respectively.

3.2 Algorithm

We present our algorithm for learning an FSC from a strategy table. We have
already seen the abstract view of the approach in Fig. 2. Algorithm 1 contains
the pseudo-code for our learning algorithm. It consists of four main parts, also
pictured in Fig. 2: initialization, equivalence check, update of the FSC, mini-
mization.

First, we initialise the learning table. The columns are initially filled with all
available observations Z, i.e. we set C ← Z. We start with a single upper row
ϵ, representing the empty observation sequence. In the lower rows, we add the
observation sequences of length 1. The entries of the table are then filled using
output queries. For example, consider the strategy table in Table 1. The learning
table after initialisation is shown in Table 2. The strategy table only contains
observation sequences starting with i. Thus, for any sequence starting with b or
y, all entries are †.

After initialising the table, we check whether it is closed. If the table is
not closed, all rows in the lower part of the table that do not occur in the
upper part are moved to the upper part. Formally, we set R ← R ∪ {l} for
all l ∈ R · Z with l ̸≡ u for all u ∈ R. In our example, this means that we
move the rows (i | † r d) and (b | † † †) to the upper part of the table.
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Algorithm 1 Learning an FSC

Input: POMDP P, strategy table S

1: R← {ϵ}, C ← Z
2: for all r ∈ R ∪R · Z, e ∈ C do
3: E(r, e)←OutputQuery(r · e)
4: end for

5: MakeClosedAndConsistent(R,C, E)

6: c←EquivalenceQuery(S,F(R,C,E))

7: while c ̸= ϵ do

8: C ← C ∪ set of all prefixes of c
9: for all r ∈ R ∪R · Z, e ∈ C do
10: E(r, e)←OutputQuery(r · e)
11: end for

12: MakeClosedAndConsistent(R,C, E)

13: c←EquivalenceQuery(S,F(R,C,E))

14: end while
15: T ← (R,C, E),T ←Minimize(T )
Output: FSC FT generated from S

Once the table is closed (and naturally consistent), we check for each row in
the given strategy table S whether it coincides with the action provided for this
observation sequence by our hypothesis FSC Fhyp. This is done formally using
the equivalence query, i.e. we check if EQS(Fhyp) = ϵ. If our hypothesis is not
correct, we get a counterexample c ∈ Z+ where the output of S and Fhyp differ.
We add all non-empty prefixes of c to C and fill the table. We repeat this until
Fhyp is equivalent to the strategy table S.

After the equivalence has been established, we use the “don’t-care” entries †
to further minimise the FSC. These entries only appear for observation sequences
that do not occur in the strategy table. Thus, changing them to any action does
not change the FSC’s behaviour with respect to the strategy table. We use this
fact to merge nodes of the FSC to obtain a smaller one that still captures the
behaviour of the strategy table. It is not trivial to already exploit “don’t care”
entries during the learning phase. Two upper rows that are compatible in terms
of the outputs they suggest, i.e. they either agree or have a † where the other
suggests an output, might be split when a new counterexample is added. As
such, we postpone minimisation of the FSC until the learning is finished.

3.3 Proof of Concept: Belief Exploration

For integrating our learning approach with an existing POMDP solution frame-
work, we need to consider how the strategy table is constructed. Assume that the
solution method outputs some representation of a strategy. For strategies that
are equivalent to some FSC, one possibility is to pre-compute the strategy table.
However, it is not clear how to determine the length of observation sequences
that need to be considered. A more reasonable view is considering the strategy
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representation as a symbolic representation of the strategy table as long as it
permits computable output and equivalence queries.

We demonstrate how this works by considering the belief exploration frame-
work of [11]. The idea of belief exploration is to explore (a fragment of) the belief
MDP corresponding to the POMDP. Then, model checking techniques are used
on this finite MDP to optimise objectives and find a strategy. States of the belief
MDP are beliefs – distributions over states of the POMDP that describe the like-
lihood of being in a state given the observation history. The strategy output of
the belief exploration is a memoryless deterministic strategy πbel that maps each
belief to the optimal action. It is well-known that there is a direct correspon-
dence between strategies on the belief MDP and its POMDP [34]. A decision in
a belief corresponds to a decision in the POMDP for all observation sequences
that lead to the belief in the belief MDP. Thus, πbel can also be interpreted as
a strategy for the POMDP that we want to learn using our approach.

First, assume that the belief MDP is finite. Defining the computation of
the output query is conceptually straightforward. During each output query, we
search for the belief b that corresponds to the observation sequence in the belief
MDP. If we find it, the output is πbel(b), otherwise the query outputs “don’t
care” (†). For the equivalence query, we consider one representative observation
sequence for each belief b. We compare whether πbel(b) coincides with the output
of the hypothesis FSC on the corresponding observation sequence. If not, this
sequence is a counterexample. To deal with infinite belief MDPs, [11] employs a
partial exploration of the reachable belief space of the POMDP. At the points
where the exploration has been stopped (cut-off states), they use approxima-
tions based on pre-computed, small strategies on the POMDP to yield a finite
abstraction of the belief MDP. The strategy πbel computed on this abstraction,
however, does not output valid actions for the POMDP in the cut-off states. We
modify the output query described above and introduce a set of χ symbols, i.e.,
χ0, ...χn. On observation sequences of cut-off states, the output query returns
“don’t-know” corresponding to that cutoff, i.e., χi for “cut-off” strategy i. This
allows us to later integrate the strategies used for approximation in our learned
FSC or even substitute these strategies by different ones.

3.4 Improving Learned FSCs for Incomplete Information

FSCs learned using the learning approach described in Section 3.2 may still con-
tain transitions with output “don’t-know” (χ). To make the FSC applicable to a
POMDP, these outputs need to be replaced by distributions over actions of the
POMDP. For this purpose, we suggest two heuristics. They are designed to be
general, i.e. they do not consider any information that the underlying POMDP
solution method provides. Furthermore, they use the idea that already learned
behavior might offer a basis for generalization. As a result, the information al-
ready present in the FSC is used to replace the “don’t-know” outputs. We note
that additional heuristics can take for example the structure of the POMDP
or information available in the POMDP solution method used to generate the
strategy table into account. For illustrating the heuristics, we assume that all
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output distributions are Dirac. We denote the number of transitions in the FSC
with observation o with output not equal to †i or χi for some i by #(o) and the
number of transitions with output action a for o by #(o, a).
– Heuristic 1 – Distribution: Intuitively, this heuristic replaces “don’t know”

by a distribution over all actions that the FSC already chooses for an ob-
servation. The resulting FSC therefore represents a randomized strategy, i.e.
the strategy may probabilistically choose between actions. This happens only
in nodes of the FSC where “don’t know” occurs. Furthermore, this does not
mean that the FSC itself is randomized; its structure remains deterministic.
Only some outputs represent randomization over actions. In this method, we
replace the ith “don’t know” χi by an action distribution where the proba-

bility of action a under observation o is given by #(o,a)
#(o) . If #(o) = 0, we keep

χi instead which, in the belief exploration approach of Storm, represents
a precomputed cutoff strategy. In approaches where the strategy does not
provide any information at all it can be replaced by †. Intuitively, we try
to copy the behavior of the FSC for an observation and since the optimal
action is unknown, we use a distribution over all possible actions.

– Heuristic 2 – Minimizing Using †-transitions: As for ease of implementation
and explainability, smaller FSCs are preferable, this heuristic aims at replac-
ing χi outputs such that we can minimise the FSC as much as possible. For
this purpose, we simply replace all occurrences of χi by †, i.e. we replace
“don’t-know” by “don’t-care” outputs. This allows the FSC to behave ar-
bitrarily on these transitions. By then applying an additional minimisation
step, we can potentially reduce the size of our FSC. Intuitively, this allows
for a smaller FSC that might be able to generalize better than specifying
all actions directly. Note that this heuristic will transform any deterministic
FSC into a smaller representation that is still deterministic, and will not
induce any randomization.

4 Experimental Evaluation

We implemented a prototype of the policy automaton learning framework on
top of version 1.8.1 of the probabilistic model checker Storm [20]. As input,
our implementation takes the belief MC induced by the optimal policy on the
belief MDP abstraction computed by Storm’s belief exploration for POMDPs
[11]. This Markov chain, labeled with observations and actions chosen by the
computed strategy, encodes all information necessary for our approach as de-
scribed in Section 3.3. We apply our learning techniques to obtain a finite-state
controller representation of a policy. This FSC can be exported into a human-
readable format or analyzed by building the Markov chain induced by the learned
policy directly on the POMDP. As a baseline comparison for the learned FSC, we
use the tool PAYNT [4]. Recall that PAYNT uses a technique called inductive
synthesis to directly synthesize FSCs with respect to a given objective.

Recent research has shown that PAYNT’s performance greatly improves
when working in tandem with belief exploration [2]. As such, the comparison
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Fig. 5: Comparison of the resulting FSC size

made here does not show the full capabilities of PAYNT. The tandem approach
is likely to outperform our approach in many cases. We want to, however, show
a comparison of our approach with a more basic, and thus more comparable,
method. We emphasize furthermore that integrating our approach in the frame-
work of [2] is a promising prospect for future work.

Setup. The experiments are run on two cores of an Intel® Xeon® Platinum
8160 CPU using 64GB RAM and a time limit of 1 hour. We run Storm’s
POMDP model checking framework using default parameters. In particular, we
use the heuristically determined exploration depth for the belief MDP approx-
imation and apply cut-offs where we choose not to explore further. We refer
to [11] for more information. For PAYNT, we use abstraction-refinement with
multi-core support [3]. We run experiments for the two heuristics described in
Section 3.4. Additionally, we provide another result described as the “base” ap-
proach. This is specific to the input given by Storm and encodes the strategy
obtained from Storm exactly by keeping the cut-off strategies, represented as
χi (see the extended version of this paper [8] for more technical details).

Benchmarks. As benchmarks for our evaluation, we consider the models from
[2]. The benchmark set contains models taken from the literature [3,10,11,17]
meant to illustrate the strengths and weaknesses of the belief exploration and
inductive synthesis approaches. As such, they also showcase how our learning
approach transforms the output of the belief exploration concerning the size and
quality of the computed FSC. An overview of the used benchmarks is available
as part of the extended version of this paper [8].

4.1 Results

Our approach is general and meant to be used on top of other algorithms to
transform possibly big and hardly explainable strategies into small FSCs. How-
ever, we want to explore whether our results are comparable to state-of-the-art
work for directly learning FSCs. Therefore, we compare our FSCs to PAYNT.

312 A. Bork et al.



First, we talk about the size of the FSC generated by our method compared
to the MC generated by Storm and the FSCs generated by PAYNT. Secondly,
we show the scalability of our approach by comparing the runtime with PAYNT.
Lastly, we discuss the quality of the synthesized FSCs compared to PAYNT and
also discuss the trade-off between runtime and quality of the FSC.
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Fig. 6: Runtime comparison:
our approach vs. PAYNT

Small and Explainable FSCs. Given a strategy
table, our approach results in the smallest possible
FSC for the represented strategy. As an overview,
in Fig. 5a, we show a comparison of the sizes of the
belief MC from Storm to the size of our FSC. The
dashed line corresponds to a 10-fold reduction in
size, showing our approach’s usefulness. We gen-
erate FSCs of sizes 1 to 64; however, more than
80% of the FSCs are smaller than ten nodes, and
only two are bigger than 60. More than half of the
generated FSCs have less than four nodes. In one
case, we reduce 4517 states in the MC to an FSC
of size 12.

We claim that these concise representations
can generally be considered explainable, in particular when compared to huge
original strategy representations. When the given strategy is deterministic, our
learning approach would construct a deterministic FSC which is easy to explain.
While improving the FSC by replacing the “don’t know” actions (Section 3.4),
heuristic 2 still keeps the FSC deterministic as it only replaces the χ actions with
† actions before minimisation. Heuristic 1 often introduces some randomization
when it replaces the χ actions with a distribution. But even in that case, they
are only in selected sink states which does not impede explainability.

In Fig. 5b, we provide the size comparison of PAYNT’s FSCs and ours.
Our FSCs are slightly bigger than PAYNT’s in general, but our approach also
returns smaller FSCs in some cases. This is to be expected since the approach of
PAYNT is iteratively searching through the space of FSCs, starting with only
one memory node and adding memory only once it is necessary. Therefore, it
is meant to find the smallest possible FSC. However, PAYNT times out much
more often because of its exhaustive search on small FSC. Additionally, our
FSC are bound to be as big as necessary to represent the given strategy. Let
us consider the benchmark grid-avoid-4-0. In this model, a robot moves in a
grid of size four by four with no knowledge about its position. It starts randomly
at any place in the grid and has to move towards a goal without falling into a
“hole”. PAYNT produces a strategy of size 3, which moves right once and then
iterates between moving right and down. The nature of Storm’s exploration
leads to a strategy that moves right three times and then down forever. This can
be represented in an FSC of size at least 5.

Scalability. Regarding scalability, Figure 6 shows that our approach outper-
forms PAYNT on almost all cases. The dotted lines show differences by a factor
of 10. There are only two benchmarks, for which our approach times out and
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Table 3: Comparison to PAYNT on value, size, and time (in that order) on
selected benchmarks. The reported time for our approach includes the time of
Storm for producing the strategy table and the time for learning the FSC.

Learning heuristics
Category Model Storm base H1 H2 Paynt

A

problem-paynt-storm-combined
8.07 8.07 7.67 7.67 7.67
18 6 7 3 3

Rmin <1s <1s 349s

problem-storm-extended
3009.0 3009.0 98.0 98.0 98.0
64 61 62 1 1

Rmin <1s <1s <1 s

refuel-20
0.14 0.14 0.23 0.23 TO
46 4 4 3

Pmax 73s s 75s 74s 74s

grid-avoid-4-01
0.75 0.75 0.9 0.67 0.93
10 5 6 3 5

Pmax <1s <1s 726s

B

posterior-awareness
12.0 12.0 12.0 12.0 11.99
5 4 4 4 4

Rmin <1s <1s <1 s

4x5x2-95
1.29 1.29 1.28 1.26 2.02
26 18 18 16 4

Rmax <1s <1s 2807s

C

query-s2
395.66 395.66 391.9 343.94 486.69
43 9 9 4 2

Rmax <1s <1s 5s

drone-4-1
0.75 TO TO TO 0.87
3217 1

Pmax 1s 2250s

PAYNT does not. In one of these cases, PAYNT also takes more than 2000s to
produce a result.

Runtime and Quality of FSCs. Comparing the quality of results, we need
to put into consideration that our approach often runs within a fraction of the
available time. We run Storm with its default values to get a strategy. As
demonstrated in [3], running Storm using non-default parameters, specifically
larger exploration thresholds, results in better strategies at the cost of longer
runtimes. Our approach directly profits from such better input strategies.

Since the learning is done in far less than a second for most of the benchmarks,
we suggest using a portfolio of the heuristics. This allows us to output the optimal
solution among all our heuristics with negligible computational overhead. To
simplify the presentation of our results, we categorize the benchmarks into three
groups: A, B, and C, based on the overall performance of our method. Due to
space constraints, we provide detailed results for only a selection of benchmarks
for each category and do not discuss benchmarks for which both approaches
experienced timeouts. The complete set of results is given in [8].

Category A. This category represents benchmarks where our approach is ar-
guably favored, assuming the portfolio approach. There are a total of 19 bench-
marks in this category, and we observe that we can improve all variants of
properties using heuristics. Only one time, PAYNT produces a slightly better
probability value (0.93 vs 0.9), but it takes significantly more time (726s vs < 1s).
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There are 7 cases where we can generate FSCs while PAYNT times out and on
6 out of these 7 cases, we get the smallest FSCs reported in state-of-the-art
[2]. In this category, we also include benchmarks on which the heuristics im-
proved on Storm’s strategy to achieve the same value as PAYNT while being
more efficient, e.g. problem-paynt-storm-combined. Also, for the benchmark
problem-storm-extended, designed to be difficult for Storm, we reduce the
approximate total reward from 3009 to 98, resulting in an FSC of size 1 in < 1s.

Category B. This category contains benchmarks on which there is no clear front-
runner. There are a total of 7 benchmarks in this category. Three of these bench-
marks are similar to posterior-awareness, where the results produced and the
time taken are quite similar for both approaches. The other 4 benchmarks (sim-
ilar to 4x5x2-95) show that the value generated by our approach is significantly
worse; however, it takes significantly less time. Depending on the situation, this
trade-off between quality and runtime may favor either approach.

Category C. This category shows the weakness of our method compared to
PAYNT. In this category, there are a total of 3 benchmarks, out of which our
approach times out 2 times. It is notable that the drone-benchmarks seem to be
generally hard: PAYNT needs 2250s for drone-4-1, and both approaches time
out for the bigger instances. There is only one benchmark, query-s2, where we
produce a worse value without any significant time advantage over PAYNT.

5 Conclusion

In this paper, we present an approach to learn an FSC for representing POMDP
strategies. Our FSCs are (i) always smaller than the given representation, and
(ii) the FSC structure is simple, which together increases the strategy’s explain-
ability. The structure of the FSC is always deterministic. Additionally, one of our
heuristics only generates deterministic output actions (without randomization).
The other heuristic typically represents a randomized strategy. However, only
output actions are randomized, not the FSC structure. Besides, this randomiza-
tion happens in only a very restricted form. Further, our heuristics achieved no-
table improvements in the performance of many strategies produced by Storm
and provably perform equal or better than the baseline, while retaining negligible
resource consumption. Altogether, our comparison against PAYNT underscores
the competitiveness of our method, frequently yielding FSCs of comparable qual-
ity with significant improvements in terms of runtime and size.

This attests to the scalability and efficiency of our approach and also high-
lights its applicability in scenarios challenging for other tools.

Concerning future work, several directions open up. Further heuristics can
be designed to solve some of the patterns occurring in the cases where our
approach could not match the size achieved by PAYNT. Furthermore, we would
like to integrate our approach into other approaches in order to improve them,
in particular the tandem synthesis approach from [2] is a suitable candidate.
Data Availability. The artifact accompanying this paper [9] contains source code,
benchmark files, and replication scripts for our experiments.
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Abstract. Quadratization refers to a transformation of an arbitrary
system of polynomial ordinary differential equations to a system with at
most quadratic right-hand side. Such a transformation unveils new vari-
ables and model structures that facilitate model analysis, simulation,
and control and offer a convenient parameterization for data-driven ap-
proaches. Quadratization techniques have found applications in diverse
fields, including systems theory, fluid mechanics, chemical reaction mod-
eling, and mathematical analysis.
In this study, we focus on quadratizations that preserve the stability
properties of the original model, specifically dissipativity at given equilib-
ria. This preservation is desirable in many applications of quadratization
including reachability analysis and synthetic biology. We establish the ex-
istence of dissipativity-preserving quadratizations, develop an algorithm
for their computation, and demonstrate it in several case studies.

Keywords: differential equations · quadratization · stability · variable
transformation

1 Introduction

Systems of ordinary differential equations (ODEs) are the standard choice when
it comes to modeling processes happening in continuous time, for example, in
the sciences and engineering. For a given dynamical process, one can derive
different ODE models, in particular, by choosing different sets of variables. It
has been observed in a variety of areas and contexts that these choices may have
a significant impact on the utility and relevance of the resulting model, and a
number of different types of variable transformations have been studied.

In this paper, we will study one such transformation, quadratization, which
aims at transforming an ODE system to a system where the right-hand side
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consists of polynomials of degree at most two. Let us illustrate this transforma-
tion on a toy example: we start with a scalar ODE x′ = x3 in a single variable
x = x(t) with cubic right-hand side. If we now augment the state space with an
additional coordinate y = x2, we can write the original equation as x′ = xy with
quadratic right-hand side, and we can do the same for y′:

y′ = 2xx′ = 2x4 = 2y2.

So, the transformation in this case is the following:

x′ = x3 →

{
x′ = xy,

y′ = 2y2.

It turns out that every polynomial ODE system can be similarly lifted to an at
most quadratic one: this fact has been established at least 100 years ago [2,27]
and has been rediscovered several times since then [8,10,11,17,24]. In the recent
years quadratization has been used in a number of application areas including
model order reduction [5,6,17,25,26], synthetic biology [13,20,21], numerical inte-
gration [16,18,19], and reachability analysis [14]. While it has been shown in [21]
that the problem of finding the minimal number of extra variables necessary for
quadratization is NP-hard, at least two practically useful software packages have
been developed for performing quadratization: BioCham [21] and QBee [7].

In the majority of the applications mentioned above, the constructed quadratic
ODE model is further used in the context of numerical simulations. It is, there-
fore, a natural question whether one can not only guarantee that the transformed
model is at most quadratic, but also that it preserves some desirable dynami-
cal/numerical properties of the original ODE system. To the best of our knowl-
edge, this question has not been studied systematically, and in this paper, we
initiate this line of research by studying dissipativity-preserving quadratizations.

We will say that an ODE system is dissipative at an equilibrium point if
the real parts of the eigenvalues of the linearization of the system around this
point are negative. In particular, dissipativity implies that the system is asymp-
totically stable at this point [23, Theorem 8.2.2]. The main contribution of the
paper is two-fold. First, we prove that, for every polynomial system dissipative
at several equilibrium points, there exists a quadratization which is also dissi-
pative at all these points. Second, we design and implement an algorithm to
search automatically for such quadratization attempting to minimize the dimen-
sion. Our algorithm is based on a combinatorial condition on the new variables
which is sufficient to guarantee that the resulting quadratic model can be made
dissipative as well. This combinatorial condition can be viewed as a general-
ization and formalization of the artificial stabilization used in [26, Section 4.1].
We implemented the new algorithm and we illustrate it in several case studies
including an application for reachability analysis (in combination with the al-
gorithm from [14]). Our implementation together with the examples from this
paper is available at [1].

The rest of the paper is organized as follows. In Section 2, we introduce the
main notions, quadratization, and dissipativity, and show that quadratization
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performed straightforwardly may not preserve dissipativity (and, thus, render
the model into a numerically unstable one). Section 3 contains the statement
and the proof of the main theoretical result of the paper (Theorem 1) that there
always exists a dissipativity-preserving quadratization for any collection of dis-
sipative equilibria. Based on the ideas from the proof, we give an algorithm
(Algorithm 2) for constructing such a quadratization in Section 4. We show-
case our implementation of this algorithm on several case studies in Section 5.
Concluding remarks are contained in Section 6.

2 Preliminaries

Throughout this section, we will consider a polynomial ODE system, that is, a
system of differential equations

x′ = p(x), (1)

where x = x(t) = (x1(t), . . . , xn(t)) is a vector of unknown functions and p =
(p1, . . . , pn) is a vector of n-variate polynomials p1, . . . , pn ∈ R[x].

Definition 1 (Quadratization). For a system (1), quadratization is a pair
consisting of

– a list of new variables

y1 = g1(x), . . . , ym = gm(x)

– and two lists

q1(x,y) = (q1,1(x), . . . , q1,n(y)) and q2(x,y) = (q2,1(x,y), . . . , q2,m(x,y))

of m+ n-variate polynomials in x and y = (y1, . . . , ym)

such that the degree of each of of q1 and q2 is at most two and

x′ = q1(x,y) and y′ = q2(x,y). (2)

If all the polynomials g1, . . . , gm are monomials, the quadratization is called
monomial quadratization.

Note that unlike, for example, [7, Definition 1], by quadratization we mean
not just the set of new variables but also the quadratic ODE system (2). The
reason for this is that, for a fixed set of new variables, there may be many
different systems of the shape (see Example 1) prescribed by (2) exhibiting
different numerical behaviors (see Example 2).

Example 1 (Quadratization). Consider the following scalar ODE

x′ = −x+ x3.
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Here we have n = 1 and p1(x) = −x + x3. Consider y = g1(x) = x2. Then we
can write

x′ = −x+ x3 = −x+ xy,

y′ = 2xx′ = −2x2 + 2x4 = −2y + 2y2.

Therefore, one possible quadratization is given by

g1(x) = x2, q1,1(x, y) = −x+ xy, q2,1(x, y) = −2y + 2y2.

As we have mentioned above, there may be different q’s corresponding to the
same g. In this example, we could take, for example, q2,1 = −2y+2y2+2(y−x2) =
−2x2 + 2y2 or q2,1 = y − 3x2 + 2y2. As we will see in Example 2, such choices
may have a dramatic impact on the numerical properties of the resulting ODE
system.

Definition 2 (Equilibrium). For a polynomial ODE system (1), a point x∗ ∈
Rn is called an equilibrium if p(x∗) = 0.

Definition 3 (Dissipativity). An ODE system (1) is called dissipative at an
equilibrium point x∗ if all the eigenvalues of the Jacobian J(p)|x=x∗ of p and
x∗ have negative real part.

It is known that a system which is dissipative at an equilibrium point x∗

is asymptotically stable at x∗ [23, Theorem 8.2.2], that is, any trajectory starting
in a small enough neighborhood of x∗ will converge to x∗ exponentially fast.

Note that if x∗ = 0, then the Jacobian at this point is simply the matrix of
the linear part of p(x).

Assume that x∗ ∈ Rn is an equilibrium of x′ = p(x), and consider a quadra-
tization of this system as in Definition 1. Then a direct computation shows that
(x∗,g(x∗)) is an equilibrium point of the resulting quadratic system (2).

Definition 4 (Dissipative quadratization). Assume that a system (1) is dis-
sipative at an equilibrium point x∗ ∈ Rn. Then a quadratization given by g,q1

and q2 (see Definition 1) is called dissipative at x∗ if the system

x′ = q1(x,y), y′ = q2(x,y)

is dissipative at a point (x∗,g(x∗)).

The following example shows that, even for the same new variables y = g(x),
different quadratizations may have significantly different stability properties.

Example 2 (Stable and unstable quadratizations). Consider the scalar ODE x′ =
−x+ x3 from Example 1. We have already found a quadratization for it using a
new variable y = g1(x) = x2 with the resulting quadratic system being

x′ = −x+ xy and y′ = −2y + 2y2. (3)
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We notice that we can add/subtract y− x2 with any coefficients from the right-
hand sides of the system. For example, we can obtain:

x′ = −x+ xy and y′ = −2y + 2y2 + 12(y − x2) = 10y − 12x2 + 2y2. (4)

Both systems above are quadratizations of the original system and, thus, math-
ematically, for any initial condition (x0, y0) satisfying y20 = x2

0, they must follow
the same trajectory. However, (3) is stable at (0, 0) while (4) is not. By numer-
ically integrating them, we can observe in Figure 1 that in practice (3) reflects
the dynamics of the original equation accurately and (4) heavily suffers from
numerical instability.

Fig. 1: Plot of the original equation, (3), and (4) with initial condi-
tion X0 = [x0, y0 = x2

0] = [0.1, 0.01]. Numerical method: “LSODA”
(uses hybrid Adams/BDF method with automatic stiffness detection) in
scipy.integrate.solve_ivp package [22,29].

3 Existence of dissipativity-preserving quadratizations

The main result of this section is the following theorem. Its proof is constructive
and is used to design an algorithm in Section 4.

Theorem 1. For every polynomial ODE system x′ = p(x), there exists a quadra-
tization that is dissipative at all the dissipative equilibria of x′ = p(x).

Remark 1. In fact, the key ingredients of the proof, Propositions 1 and 2, imply
a stronger statement: for every set of finitely many equilibria, there is a quadra-
tization such that the number of nonnegative eigenvalues of the Jacobian of the
quadratic system at these points is the same as for the original system.

The rest of the section will be devoted to proving Theorem 1. The main
technical notion will be an inner-quadratic set of polynomials.

Definition 5 (Inner-quadratic set). As finite set g1(x), . . . , gm(x) ∈ R[x] of
nonconstant polynomials in x = (x1, . . . , xn) is called inner-quadratic if, for ev-
ery 1 ⩽ i ⩽ m, there exist (not necessarily distinct) a, b ∈ {x1, . . . , xn, g1, . . . , gm}
such that gi = ab.
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A quadratization will be called inner-quadratic if the set of new variables g
is inner-quadratic. We will also always assume that the new variables are sorted
by degree, that is, deg g1 ⩽ deg g2 ⩽ . . . ⩽ deg gm.

The rationale behind the notion of inner-quadratic quadratization is that
at most quadratic relations between the new variables give us the flexibility to
“tune” the right-hand side of the resulting quadratic system in the same fashion
as we added a multiple of y−x2 in Example 2. These additional terms force the
trajectory to stay on the image of the map x → (x,y), on which the properties
of the original dynamics (such as dissipativity) are preserved. The following
definition formalizes this observation.

Definition 6 (Stabilizers). Consider a polynomial ODE system x′ = p(x) and
its inner-quadratic quadratization given by m new variables y = g(x) and right-
hand side q1(x,y),q2(x,y) of the resulting quadratic system as in Definition 1.
For every 1 ⩽ i ⩽ m, by the definition of inner-quadratic set, there exist ai, bi ∈
{x, y1, . . . , yi−1} such that the equality yi = aibi holds if we replace each yj with
gj(x). We define the i-th stabilizer by hi(x,y) := yi − aibi.

Since each stabilizer is at most quadratic and vanishes under the substitution
y = g(x), adding any stabilizer to any of q1,q2 still yields a quadratization of
x′ = p(x).

Example 3 (Stabilizers). Let us give an example of the stabilizers. Consider a
system:

x′
1 = −3x1 + x4

2, x′
2 = −2x2 + x2

1.

By applying Algorithm 1, we introduce the following new variables to obtain
an inner-quadratic quadratization:

y1 = x2
1, y2 = x2

2, y3 = x1x2, y4 = x3
2 = x2y2.

Then the corresponding stabilizers, according to the definition above, will be:

h1(x,y) = y1 − x2
1, h2(x,y) = y2 − x2

2,

h3(x,y) = y3 − x1x2, h4(x,y) = y4 − x2y2

Theorem 1 follows directly from the following two properties of inner-quadratic
quadratizations:

– every polynomial ODE system has an inner-quadratic quadratization (Propo-
sition 1);

– for any inner-quadratic quadratization, one can modify the right-hand sides
of the quadratic system (but not the new variables) using the stabilizers in
order to obtain a dissipativity-preserving quadratization (Proposition 2).

Proposition 1. Every polynomial ODE system x′ = p(x) admits an inner-
quadratic quadratization. Furthermore, it can be chosen to be a monomial quadra-
tization.
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Proof. We will show that the quadratization which is typically used to prove
the existence of a quadratization for every polynomial ODE system (see, e.g. [9,
Theorem 1]) is in fact inner-quadratic. For every 1 ⩽ i ⩽ n, we introduce di =
max
1⩽j⩽n

degxi
pj . Then it is proven in [9, Theorem 1] that the following set of new

variables yields a quadratization of x′ = p(x):

M = {xi1
1 . . . xin

n | ∀j : 0 ⩽ ij ⩽ dj ,
∑

ij > 1}.

Let g ∈ M. Then there exists 1 ⩽ j ⩽ n such that degxj
g > 0. Then we can

write g = (g/xj) ·xj , where g/xj is either in M or belongs to {x1, . . . , xn}. Thus,
M is an inner-quadratic set.

Proposition 2. Consider a system x′ = p(x) and its inner-quadratic quadra-
tization defined by new variables g(x) and the new right-hand side q1,q2 as in
Definition 1. Let x∗

1, . . . ,x
∗
ℓ be a finite subset of the equilibria of the system. Then

there exist vectors of quadratic polynomials r1(x,y), r2(x,y) such that g, r1, r2
define a quadratization for which the eigenvalues of the Jacobian at each equilib-
rium point of the form (x∗

i ,g(x
∗
i )) are the union of the eigenvalues of J(p)|x=x∗

i

and a set of numbers with negative real part.

Corollary 1. Consider a system x′ = p(x) and its inner-quadratic quadrati-
zation defined by new variables g(x) and the new right-hand side q1,q2 as in
Definition 1. Then there exist vectors of quadratic polynomials r1(x,y), r2(x,y)
such that g, r1, r2 define a quadratization which is dissipative at every dissipative
equilibrium of x′ = p(x).

Proof (Proof of Corollary 1). Since each dissipative equilibrium of the system is
an isolated root of the polynomial system obtained by equating the right-hand
side to zero, there are only finitely many of them. So we apply Proposition 2 to
this finite set of equilibria and obtain the desired quadratization.

Before proving Proposition 2, we establish a useful linear-algebraic lemma.

Lemma 1. Let A ∈ Rn×n be a square matrix and B ∈ Rn×n be an upper
triangular matrix with ones on the diagonal. Then there exists λ0 ∈ R such that,
for every λ > λ0, the real parts of all the eigenvalues of A− λB are negative.

Proof. Consider the characteristic polynomial of A− λB. It can be written as

det(A− λB − tI) = (−λ)n det(B −A/λ+ (t/λI)).

We set T = t/λ and rewrite the latter determinant as Q(T, 1/λ) := det((B +
T · I)− A/λ). Since Q is the determinant of a matrix with the entries linear in
T and 1/λ, it is a bivariate polynomial in T and 1/λ of total degree at most
n. Furthermore, if we set λ = ∞ (equivalently, if we set 1/λ = 0), we have
Q(T, 0) = det(B+T · I). Since B is upper-triangular with ones on the diagonal,
this determinant is equal to det(B+T ·I) = (T+1)n, so Q(T, 1/λ) can be written
as Q(T, 1/λ) = (T + 1)n + 1

λp
(
T + 1, 1

λ

)
, where p is a bivariate polynomial of
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the total degree at most n− 1 in T +1 and 1
λ . Let C be an upper bound for the

absolute value of the coefficients of p. Then, for λ > 1, we can bound:∣∣∣∣p(T + 1,
1

λ

)∣∣∣∣ < Cn2 max(|T + 1|n−1, 1).

Let T0 be any root of Q(T, 1/λ). Then we have

|T0 + 1|n ⩽
1

λ
Cn2 max(|T0 + 1|n−1, 1).

Let us take λ > Cn2. Then

|T0 + 1|n < max(|T0 + 1|n−1, 1) =⇒ |T0 + 1| < 1.

So, in this case, the real part of any root of Q will be negative. Then the same
is true for the characteristic polynomial of A− λB because these two polynomi-
als differ by scaling by a positive number λ. Therefore, λ0 can be taken to be
max(1, Cn2).

We will also use the following folklore analytic lemma.

Lemma 2. Let x′ = f(x) a system of polynomial differential equations of di-
mension n with an equilibrium point x∗. Let φ : Rn → Rn be an invertile change
of coordinates, and let y′ = g(y) be the image of the system under the coordi-
nate change. Then the matrices Jx(f)|x=x∗ and Jy(g)|y=φ(x∗) are conjugate. In
particular, they have the same eigenvalues.

Proof. By the chain rule, we have

y′ = (φ(x))′ = Jx(φ)x
′ = Jx(φ)|x=φ−1(y)f(φ

−1(y)) = g(y).

Then we can write Jy(g) as

Jx(φ)|x=φ−1(y)Jx(f)|x=φ−1(y)Jy(φ
−1) +

n∑
i=1

Aifi(φ
−1(y)),

where Ai is the Jacobian of the i-th column of Jx(φ)|x=φ−1(y). If we plug φ(x∗)
for y, since f(x∗) = 0, the latter sum will vanish, so we get

Jx(φ)|x=x∗Jx(f)|x=x∗Jy(φ
−1)|y=φ(x∗).

By the chain rule, the matrices Jx(φ)|x=x∗ and Jy(φ
−1)|y=φ(x∗) are inverses to

each other, so the Jacobians are indeed conjugated.

Proof (Proof of Proposition 2). Before starting the proof, we would like to point
at Example 6 in our extended version of the paper 3 which illustrates the main
steps of the proof.
3 https://arxiv.org/pdf/2311.02508.pdf
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We define a map φ : Rn+m → Rn+m from a space with coordinates (x,y) to
a space with coordinates (x, z), where z = (z1, . . . , zm), by

φi(x,y) = xi for 1 ⩽ i ⩽ n,

φn+j(x,y) = yj − gj(x) for 1 ⩽ j ⩽ m.

This map is invertible with the inverse given by (φ−1)i(x, z) = xi for 1 ⩽ i ⩽ n
and (φ−1)n+j(x, z) = zj + gj(x) for 1 ⩽ j ⩽ m, so φ is bijective. Note that
φ(x◦,g(x◦)) = (x◦,0) for every x◦ ∈ Rn. We apply a change of coordinates
defined by φ to the quadratic system x′ = q1(x,y), y

′ = q2(x,y) and obtain a
(not necessarily quadratic) system of the form:

x′ = q̃1(x, z) and z′ = q̃2(x, z), (5)

where q̃1 = q1(x, z+ g(z)) and q̃2 can be found using the chain rule as follows:

z′ = (y−g(x))′ = q2(x, z+g(x))−Jx(g)x
′ = q2(x, z+g(x))−Jx(g)q1(x, z+g(x)).

(6)
Since the variety {(x◦,g(x◦)) | x◦ ∈ Rn} was an invariant variety of x′ =
q1(x,y), y′ = q2(x,y) by construction, the linear space {(x◦,0) | x◦ ∈ Rn}
is invariant for (5) and the restriction of (5) to this space coincides with the
original system x′ = p(x). This implies the following constraints on q̃1 and q̃2:

– q̃1(x, z) = p(x)+O(z), where O(z) stands for a polynomial with each mono-
mial containing at least one of the z;

– q̃2(x, z) = O(z).

Due to these constraints, for every x◦ ∈ Rn, the Jacobian of (q̃1, q̃2) at (x◦,0)
is of the form

Jx,z(q̃1, q̃2)|x=x◦,z=0 =

(
Jx(p)|x=x◦ ∗

0 Jz(q̃2)|x=x◦,z=0

)
(7)

Let h1(x,y), . . . , hm(x,y) be the stabilizers of the quadratization (see Defini-
tion 6). We take an arbitrary parameter λ ∈ R and consider q2,λ(x,y) defined by

q2,λ(x,y) = q2(x,y)− λh(x,y). (8)

Since the hi’s are stabilizers, g,q1,q2,λ is a quadratization of the original system
for any value of λ (see Definition 6). By using q2,λ instead of q2 in (6), we obtain
q̃2,λ = q̃2 − λh(x, z+ g(x)). Then, as in (7), we get

Jx,z(q̃1, q̃2,λ)|x=x◦,z=0 =

(
Jx(p)|x=x◦ ∗

0 (Jz(q̃2)− λJz(h))|x=x◦,z=0

)
(9)

Observe that, since every gi is of the form zi plus polynomial in x and z’s with
smaller indices, Jz(h) is a lower-triangular matrix with ones on the diagonal.

Having such a convenient expression for the Jacobian, we consider the given
equilibria x∗

1, . . . ,x
∗
ℓ . For any x◦ ∈ {x∗

1, . . . ,x
∗
ℓ}, the eigenvalues of the Ja-

cobian (9) are the union of the eigenvalues of Jx(p)|x=x◦ and the eigenval-
ues of (Jz(q̃2) − λJz(h))|x=x◦,z=0. Applying Lemma 1 to ℓ pairs of matrices
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A = Jz(q̃2)|x=x∗
i ,z=0 and B = Jz(h)|x=x∗

i ,z=0, we choose λ to be larger than any
of the λ0’s provided by the lemma. Then all the eigenvalues of this block will
also have negative real parts. By Lemma 2, the same true for the Jacobian of
x′ = q1(x,y), y

′ = q2,λ(x,y).

4 Algorithms

Based on the proof of Theorem 1, finding a dissipativity-preserving quadratiza-
tion can be done in two following steps:

(Step 1) finding an inner-quadratic quadratization
(Step 2) modifying the corresponding quadratic system to achieve dissipativity

at the given equilibria.

In this section, we give algorithms for both steps. Section 4.1 shows how to mod-
ify the quadratization algorithm from [7] to search for inner-quadratic quadra-
tizations. Using this algorithm as a building block, we give a general algorithm
for computing dissipativity-preserving quadratizations in Section 4.2.

4.1 Computing inner-quadratic quadratization

Our algorithm follows the general Branch-and-Bound (B&B) paradigm [28] and
is implemented based on the optimal monomial quadratization algorithm from [7,
Section 4]. Therefore, we will describe the algorithm briefly, mainly focusing on
the differences with the algorithm from [7].

We define each subproblem [7, Definition 3.3] as a set of new monomial
variables {y1(x), . . . , yℓ(x)}, and the subset of the search space [7, Definition
3.1] for the subproblem will be the set of all quadratizations including these
new variables. To each subproblem {y1(x), . . . , yℓ(x)}, the algorithm from [7]
assigns a set of generalized variables V (new variables, x’s, and 1) and a set
of nonsquares NS (monomials in the right-hand side which are not quadratic
in the generalized variables [7, Definition 4]). Additionally, we define the set
of non-inner-quadratic new variables NQ which consist of all the monomials
among y1(x), . . . , yℓ(x) which are not quadratic in {y1(x), . . . , yℓ(x), x1, . . . , xn}.
In particular, a subproblem is an inner-quadratic quadratization if and only if
NS = ∅ and NQ = ∅. Note that NS and NQ are disjoint since NQ ⊆ V and
V ∩NS = ∅.

Example 4. The notation previously introduced will now be demonstrated through
the system x′ = x4 + x3 (taken from [7, Example 4], to display the difference
between two algorithms). We consider a subproblem with one already added new
variable y1(x) := x3 (so, y′1 = 3x2x′ = 3x6 + 3x5). In this case, we have

V = {1, x, x3}, V 2 =
{
1, x, x2, x3, x4, x6

}
, NS = {x5}, NQ = {x3}.

The algorithm starts from the subproblem ∅. For every iteration, we select
one element m from NS ∪ NQ (using a heuristic score function [7, Section 4.1])
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and compute all the decompositions of the form m = m1m2, where m1 and
m2 are monomials. If m ∈ NS, for every such decomposition, we create a new
subproblem by adding the elements of {m1,m2} \V and at least one new variable
will be added due to the property of NS. If m ∈ NQ, we only do this for the
decompositions with m1 ̸= 1 and m2 ̸= 1.

We apply this operation recursively and stop when NS ∪ NQ = ∅ for each
branch. Therefore, we can find all the possible inner-quadratic quadratization of
the system. To improve the efficiency, we do not consider branches with more
new variables than in already found answers and use versions of domain-specific
pruning rules from [7]. The algorithm is summarized as Algorithm 1.

Algorithm 1: Computing optimal inner-quadratic quadratization

Input
- polynomial ODEs system x′ = p(x).
- a set of already chosen new variables y1(x), . . . , yℓ(x) (at the first call, ∅).
- the order N of the smallest inner-quadratic quadratization found so far (at

the first call, N = ∞).
Output a more optimal inner-quadratic quadratization containing y1(x), . . . , yℓ(x) if

such quadratization exists.

(Step 1) If y1(x), . . . , yℓ(x) is a inner-quadratic quadratization, that is, NS = ∅ and
NQ = ∅, and ℓ < N , return y1, . . . , yℓ.

(Step 2) Select the element m ∈ NS ∪NQ with the smallest score, compute all the
decompositions m = m1m2 as a product of two monomials. If m ∈ NQ, we
only consider the decompositions with m1 ̸= 1 and m2 ̸= 1.

(Step 3) For each decomposition m = m1m2 from the previous step, we consider a
subproblem {z1, . . . , zℓ} ∪ ({m1,m2} \ V ). If its size is less than N and none
of the pruning rules apply, we run recursively on this subproblem and
update N if a more optimal inner-quadratic quadratization has been found
by the recursive call.

4.2 Computing dissipativity-preserving quadratization

Based on the proof of Theorem 1, the main idea behind the search for dissipativity-
preserving quadratization is to start with any inner-quadratic quadratization,
and replace the right-hand side for the new variables, q2(x,y), by q2(x,y) −
λh(x,y) (see (8)) for increasing values of λ until the desired quadratization is
found. The detailed algorithm is given as Algorithm 2, the proof of its correct-
ness and termination is provided by Proposition 3, and a step-by-step example
is given in Example 5.

Proposition 3. Algorithm 2 always terminates and produces a correct output.

Proof. We will start with proving the correctness. Note that since g,q1,q2 com-
puted in (Step 1) yield a quadratization of the input system, and h vanishes if
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Algorithm 2: Computing a quadratization dissipative at all provided
equilibria

Input polynomial ODE system x
′

= p(x) and a list of its dissipative equilibria
x∗
1, . . . ,x

∗
ℓ ;

Output a quadratization of the system which is dissipative at x∗
1, . . . ,x

∗
ℓ .

(Step 1) Compute an inner-quadratic quadratization of x′ = p(x) using
Algorithm 1. Let the introduced variables be y1 = g1(x), . . . , ym = gm(x).
Let q1(x,y) and q2(x,y) be the right-hand sides of the quadratic system as
in Definition 1. If the corresponding quadratic system is dissipative at
x∗
1, . . . ,x

∗
ℓ , return it.

(Step 2) Construct the stabilizers h(x,y) for the quadratization from (Step 1) as in
Definition 6, and set λ = 1.

(Step 3) While True
(a) Construct a quadratic system Σλ

x′ = q1(x,y), y
′ = q2(x,y)− λh(x,y).

(b) Check if Σλ is dissipative at (x∗
i ,g(x

∗
i )) for every 1 ⩽ i ⩽ ℓ (using the

Routh-Hurwitz criterion [15, Chapter XV]). If yes, return
quadratization defined by g(x),q1(x,y),q2(x,y)− λh(x,y).
Otherwise, set λ = 2λ .

y is replaced with g(x), then g,q1,q2−λh yield a quadratization of the original
system as well. Furthermore, if the algorithm returned at (Step 3)b, then this
quadratization is dissipative at x∗

1, . . . ,x
∗
ℓ .

The termination of the algorithm follows from the proof of Proposition 2. We
observe that the constructed q2−λh is exactly q2,λ in the notation of the proof,
and it is shown that there exists λ0 such that, for every λ > λ0, g,q1,q2,λ is
dissipative at x∗

1, . . . ,x
∗
ℓ . Since λ in the algorithm is doubled on each iteration of

the while loop, it will at some point exceed λ0, and the algorithm will terminate.

Example 5. We will illustrate how Algorithm 2 works with the following differ-
ential equation:

x′ = −x(x− a)(x− 2a) (10)

where a is a positive scalar parameter. The system’s equilibria are 0, a, 2a, and,
among them, x = 0 and x = 2a are dissipative. Regardless of the value of a,
Algorithm 1 called at (Step 1) will produce an inner-quadratic quadratization
with one new variable y = x2 and quadratic system:{

x′ = −xy + 3ax2 − 2a2x,

y′ = −2y2 + 6axy − 4a2x2

The stabilizer computed at (Step 2) will be h(x, y) = y − x2.
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Now let us fix a = 1 and continue with (Step 3). At (Step 3)a, we form a
new quadratic system Σλ:{

x′ = −xy + 3x2 − 2x,

y′ = −2y2 + 6xy − 4x2 − λ(y − x2)

For λ = 1, 2, 4, 8, . . . we check the eigenvalues of its Jacobian at points (0, 0) and
(2, 4). The Jacobian of Σλ is

J =

[
−y + 6x− 2 −x

6y + 2λx− 8x −4y − λ+ 6x

]
The eigenvalues we get on different iterations of the while-loop are summarized
in Table 1 (the ones with nonnegative real parts are bold).

λ at (0, 0) at (2, 4)

1 −2, −1 −2, 3

2 −2, −2 −2, 2

4 −2, −4 −2, 0

8 −2, −8 −2, −4

Table 1: Eigenvalues of the Jacobian of Σλ at (Step 3)b

From the table we see, that the algorithm will stop and return at λ = 8. Note
that our implementation offers three way of verifying the dissipativity: by com-
puting the eigenvalues directly numerically (with numpy) or symbolically (with
sympy) or by using the Routh-Hurwitz criterion [15, Chapter XV], [4, Chap-
ter 3] (via tbcontrol package [30]). The numerical evaluation of eigenvalues is
the fastest (see Tables 2 and 3) but does not yield fully rigorous guarantees, the
other two methods may be slower but provide such guarantees.

As the value of a increases, the original system is more unstable at equilib-
rium xeq = 2a, which requires a larger value of λ in order to make the system
dissipative at (xeq, x

2
eq). We compute the dissipative quadratization of the sys-

tem (10) with different values of a and the running time for each method, which
is presented in Table 2.

5 Case studies

The code for reproducing the results of the case studies below is available in the
“Examples” folder of [1].
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a λ (output) time (Numpy) time (Routh-Hurwitz ) time (Sympy)

1 8 33.63 36.89 40.98
5 128 34.04 38.36 39.84
10 512 33.07 41.91 43.66
50 16384 33.38 41.18 54.70
100 65536 34.90 43.06 54.31

Table 2: Output λ value and runtimes (in milliseconds) with different methods
for a of the system 10, results were obtained on a laptop Apple M2 Pro CPU @
3.2 GHz, MacOS Ventura 13.3.1, CPython 3.9.1. Runtime is averaged over 10
executions.

5.1 Application to reachability analysis

The reachability problem is: given an ODE system x′ = p(x), a set S ⊆ Rn of
possible initial conditions, and a time t ∈ R>0, compute a set containing the set

{x(t) | x′ = p(x) & x(0) ∈ S} ⊆ Rn

of all points reachable from S at time t. One recent approach to this problem
in the vicinity of a dissipative equilibrium x∗ proposed by Forets and Schilling
in [14] is to use Carleman linearization to reduce the problem to the linear case
which is well-studied. However, the approach described in [14] relied on explicit
bounds available only for quadratic systems under the assumption of dissipativity
and weak nonlinearity (see [14, definition 1 and 2]). Algorithm 2 allows this
restriction to be relaxed by computing a quadratization which preserves the
dissipativity of x∗.

We will illustrate this idea using the Duffing equation

x′′ = kx+ ax3 + bx′

which describes a damped oscillator with non-linear restoring force. The equation
can be written as a first-order system by introducing x1 := x, x2 := x′ as follows

x′
1 = x2, x′

2 = kx1 + ax3
1 + bx2.

We take a = 1, b = −1, k = 1. Then the system will have three equilibria
x∗ = (0, 0), (−1, 0), (1, 0), among which it will be dissipative only at the origin.
Algorithm 1 finds an inner-quadratic quadratization for the system using a new
variable y(x) = x2

1 resulting in the following quadratic system:

x′
1 = x2, x′

2 = ax1y + bx2 + kx1, y′ = 2x1x2.

Obviously, the quadratization is an inner-quadratic quadratization as well. By
applying Algorithm 2, we get λ = 1 with the following dissipative quadratization:x′

1 = x2

x′
2 = x1y + x1 − x2

y′ = −y + x2
1 + 2x1x2

(11)
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For the initial conditions x1(0) = 0.1, x2(0) = 0.1, y(0) = x1(0)
2 = 0.01,

system (11) satisfies the requirement of the algorithm from [14]. We apply the
algorithm with truncation order N = 5 and report the result of the reachability
analysis in Figure 2. The grey curve is the computed trajectory and the blue
area is an upper bound for the reachable set.

Fig. 2: Reachability analysis results with the computed trajectory (gray) and
overapproximation of the reachable set (light blue). Initial condition X0 =
[0.1, 0.1, 0.01], truncation order N = 5, and the estimate reevaluation time t = 4
(see [14, Section 6.1]).

5.2 Preserving bistability

An ODE model is called bistable (or multistable) if it has at least two stable
equilibria. This is a fundamental property for models in life sciences since such
a model describes a system that can exhibit a switch-like behaviour, in other
words, “make a choice” [12]. One of the smallest possible bistable models arising
from a simple chemical reaction network [31, Table 1] is given by the following
scalar ODE:

x′ = k1x
2 − k2x

3 − k3x,

where k1, k2, k3 are positive reaction rate constants. The equation has always one
dissipative equilibrium at x = 0. It has two more equilibria as long as k21 > 4k2k3,
and in this case, the largest of them will be dissipative as well. For any nonzero
parameter values, the inner-quadratic quadratization computed by Algorithm 1
will consist of a single new variable y(x) := x2 and the quadratic system:

x′ = k1w − k2xw − k3x, y′ = 2k1xy − 2k2y
2 − 2k3y. (12)
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For the case-study, we pick k1 = 0.4, k2 = 1, k3 = 0.03. For these parameter
values, the dissipative equilibria are x = 0 and x = 0.3, and Algorithm 2 finds
that (12) is dissipative at them already. The plot below shows that, indeed,
the trajectories of (12) staring in the neighbouthoods of (0, 0) and (0.3, 0.09)
converge

Fig. 3: Plot of the original equation and system (12) with initial state X0 =
[x0, w0] = [−0.1, 0.01] (x(1), w(1)) and X0 = [0.4, 0.16] (x(2), w(2)).

5.3 Coupled Duffing oscillators

For a larger example, we will consider an ensemble consisting of Duffing oscilla-
tors from Section 5.1 which is an extended version of a pair of coupled oscillators
from [3]. The model consisting of n oscillators is parametrized by a number δ ∈ R
and a matrix A ∈ Rn×n, and is defined by the following system:

x′′ = Ax− (Ax)3 − δx′,

where x = [x1, . . . , xn]
⊤ are the positions of the oscillators, and (Ax)3 is the

component-wise cube of vector Ax. Similarly to Section 5.1, we can rewrite
this as a first-order system of dimension 2n by introducing new variables z =
[z1, . . . , zn]

⊤ for the derivatives of x:

ẋ = z, z′ = Ax− (Ax)3 − δz.

Similarly, to [3, Table 1], if the eigenvalues of A are positive real numbers, then
this system has 2n dissipative equilibria. We run our code for n = 1, . . . , 8 taking
δ = 2 and A being the tridiagonal matrix with ones on the diagonal and 1

3 on the
adjacent diagonals. Table 3 reports, for each n, the number of introduced vari-
ables and the times for computing inner-quadratic quadratization (Algorithm 1)

to the respective equilibria (Fig. 3).
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and making it dissipative at all 2n equilibria (Algorithm 2 using numpy for the
eigenvalue computation or the symbolics Routh-Hurwitz criterion). We can ob-
serve that numerical methods for checking the dissipativity scale well (given that
the number of points grows exponentially) while symbolic methods become very
costly as the dimension grows.

n dimension # equilibria # new vars time (inner-quadratic)
time (dissipative)

numpy Routh-Hurwitz

1 2 2 1 0.02 0.05 0.07
2 4 4 2 0.07 0.19 0.65
3 6 8 4 0.20 0.74 36.57
4 8 16 5 0.39 1.62 1179.33
5 10 32 7 0.72 4.30 > 2000
6 12 64 9 1.20 11.28 > 2000
7 14 128 10 1.75 28.23 > 2000
8 16 256 12 2.63 78.70 > 2000
Table 3: Runtimes (in seconds) for n coupled Duffing oscillators, results were
obtained on a laptop with the following parameters: Apple M2 Pro CPU @ 3.2
GHz, MacOS Ventura 13.3.1, CPython 3.9.1.

6 Conclusions

While various quadratization techniques have been used recently in a number
of application areas, and in most of the cases this was primarily involving nu-
merical simulations, we are not aware of prior general results on the stability
properties of the quadratized systems. In this paper, we studied quadratizations
that preserve dissipativity at prescribed equilibria. First, we have shown that,
for any set of dissipative equilibria such a quadratization exists. Then we have
presented an algorithm capable of computing a quadratization with this property
with dimension low enough to be of interest for applications. We showcase the
algorithm on several case studies, including examples from reachability analysis
and chemical reaction network theory.

The key ingredient of our algorithm is the computation of a quadratization
(we call it inner-quadratic) which gives us substantial control over the stability
properties of the quadratized system. We expect that this construction will be
useful for further research in this direction.

In future research, we plan to extend the results of the paper in different
directions. One natural problem is to extend the results and algorithms from
the present paper beyond polynomial systems, for example, by designing an
algorithm for dissipativity-preserving polynomialization. Additionally, exploring
the preservation of other stability properties, such as limit cycles, attractors, and
Lyapunov functions, is another promising avenue for research.
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Abstract. Efficient methods for the simulation of quantum circuits on
classic computers are crucial for their analysis due to the exponential
growth of the problem size with the number of qubits. Here we study
lumping methods based on bisimulation, an established class of tech-
niques that has been proven successful for (classic) stochastic and deter-
ministic systems such as Markov chains and ordinary differential equa-
tions. Forward constrained bisimulation yields a lower-dimensional model
which exactly preserves quantum measurements projected on a linear
subspace of interest. Backward constrained bisimulation gives a reduc-
tion that is valid on a subspace containing the circuit input, from which
the circuit result can be fully recovered. We provide an algorithm to com-
pute the constraint bisimulations yielding coarsest reductions in both
cases, using a duality result relating the two notions. As applications,
we provide theoretical bounds on the size of the reduced state space for
well-known quantum algorithms for search, optimization, and factoriza-
tion. Using a prototype implementation, we report significant reductions
on a set of benchmarks. Furthermore, we show that constraint bisimula-
tion complements state-of-the-art methods for the simulation of quantum
circuits based on decision diagrams.

Keywords: bisimulation · quantum circuits · lumpability

1 Introduction

Quantum computers can solve certain problems more efficiently than classic
computers. Earlier instances are Grover’s quantum search [28] and Shor’s fac-
torization [47]; more recent works address the efficient solution of linear equa-
tions [30] and the simulation of differential equations [36]. Despite its potential
and increasing interest from a commercial viewpoint [41], quantum computing
is still in its infancy. The number of qubits of current quantum computers is
prohibitively small; furthermore, low coherence times and quantum noise lead
to high error rates. Further research and improvement of quantum circuits thus
hinges on the availability of efficient simulation algorithms on classic computers.
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Being described by a unitary complex matrix, any quantum circuit can
be simulated by means of array structures and the respective matrix opera-
tions [32,50,38]. Unfortunately, direct array approaches are subject to the curse
of dimensionality [41] because the size of the matrix is exponential in the number
of qubits. This motivated the introduction of techniques that try to overcome the
exponential growth, resting for instance upon the stabilizer formalism [1], tensor
networks [55,56], path sum reductions [3] and decision diagrams [57,41,29].

Here we study bisimulation relations for quantum circuits. Bisimulation has
a long tradition in computer science [46]. For the purpose of this paper, the
most relevant strand of research on this topic regards bisimulations for quanti-
tative models such as probabilistic bisimulation [34,9]. This is closely related to
ordinary lumpability for Markov chains [13], also known as forward bisimula-
tion [25], which yields an aggregated Markov chain by means of partitioning the
original state space, such that the probability of being in each macro-state/block
is equal to the sum of the probabilities of each state in that block. Exact lumpa-
bility [13], also known as backward bisimulation [49], exploits a specific linear
invariant induced by a partition of the state space such that states in the same
partition block have the same probability at all time points [13]. In an analogous
fashion, forward and backward bisimulations have been developed for chemical
reaction networks [16,51,15], rule-based systems [25,24], and ordinary differential
equations [14,19].

In all these cases, lumping can be mathematically expressed as a specific
linear transformation of the original state space into a reduced one that is in-
duced by a partition. In general, however, lumping allows for arbitrary linear
transformation [49,12]. Since this may introduce loss of information, constrained
lumping allows one to specify a subspace of interest that ought to be preserved
in the reduction [53,12,42,31]. In partition-based bisimulations, constraints can
be specified as suitable user-defined initial partitions of states for which lump-
ing is computed as their (coarsest) refinement [17,20]. Bisimulation relations
for dynamical systems [43,11] and the notions of constrained linear lumping
in [53,42,31], instead, can be understood as linear projections (also known as
“lumping schemes”) into a lower-dimensional system that preserves an arbitrary
linear constraint subspace.

The aim of this paper is to boost simulation of quantum circuits via forward-
and backward-type bisimulations that can be constrained to subspaces.3 Analo-
gously to the cited literature, with forward constrained bisimulation (FCB) the
aim is to obtain a lower-dimensional circuit which (exactly) preserves the be-
havior of the original circuit on the subset of interest. In backward constrained
bisimulation (BCB), the reduction is valid on the constraint subspace; in this
manner, the original quantum state can be fully recovered from the reduced
circuit. Overall, this setting has complementary interpretation with respect to
the analysis of a quantum circuit. It is known that a quantum state can only
be accessed by means of a quantum measurement, mathematically expressed as

3 In the following, the simulation of quantum circuits refers to their execution on a
classic computer and not to the notion of one-sided bisimulation.

344 A. Jiménez-Pastor et al.



a projection onto a given subspace. FCB, in general, preserves any projection
onto the constraint subspace. That is, if the constraint subspace contains the
measurement subspace, FCB will exactly preserve the quantum measurement,
but the full quantum state cannot be recovered in general. Instead, constraining
the invariant set of BCB to contain the input of the circuit ensures that the full
circuit result can be recovered from the reduced circuit.

We show that FCB and BCB are related by a duality property stating that
a lumping scheme is an FCB if and only if its complex conjugate transpose is a
BCB. Interestingly, this is analogous to the duality established between ordinary
(forward) and exact (backward) lumpability for Markov chains [20,18], although
it does not carry over to other models in general [7,52]. A relevant implication of
this result is that one needs only one algorithm to compute both FCB and BCB.
As a further contribution of this paper, we present such an algorithm, developed
an as adaptation of the CLUE method for the constrained lumping of systems
of ordinary differential equations with polynomial right-hand sides [42] of which
it inherits the polynomial-time complexity in matrix size.

To show the applicability of our constrained bisimulations, we analyze sev-
eral case studies for which we report both theoretical and experimental results.
Specifically, we first study three classic quantum circuits for search (Grover’s al-
gorithm [40, Section 6.2]), optimization [21], and factorization [40, Section 5.3.2],
respectively. In Grover’s algorithm, the cardinality of the search domain is ex-
ponential in the number of qubits; we prove that BCB can always reduce the
circuit matrix to a 2× 2 matrix while exactly preserving the output of interest.
Next, we consider quantum approximate optimization algorithm for solving SAT
and MaxCut instances [21]; in this setting, our main theoretical result is an up-
per bound on the size of the reduced (circuit) matrix by the number of clauses
(SAT) or edges (MaxCut). Finally, for quantum factorization we prove that the
size of the reduced matrix gives the multiplicative order, that is, solves the order
finding problem to which the factorization problem can be reduced [40].

From an experimental viewpoint, using a prototype based on a publicly
available implementation of CLUE, we compare the aforementioned theoretical
bounds against the actual reductions on a set of randomly generated instances.
Moreover, we conduct a large-scale evaluation on common quantum algorithms
collected in the repository [44], showing considerable reductions in all cases. Fi-
nally, we demonstrate that constrained bisimulation complements state-of-the-
art methods for quantum circuit simulation based on decision diagrams [41], as
implemented in the tool DDSIM [57].

Further related work. Probabilistic bisimulations [9,5,6] have been considered
for quantum extensions of process calculi, see [26,23] and references therein.
Similar to their classic counterparts, these seek to identify concurrent (quantum)
processes with similar behavior. The current work, instead, is about boosting the
simulation of quantum circuits and is in line with [8,18,54]. Specifically, it oper-
ates directly over quantum circuits rather than processes and exploits general lin-
ear invariants in the (complex) state space. In engineering, invariant-based reduc-
tions of linear systems are known under the names of proper orthogonal decom-

Forward and Backward Constrained Bisimulations for Quantum Circuits 345



position [4,39], Krylov methods [4], and dynamic mode decomposition [45,33,27].
Linear invariants describe also safety properties [10] in quantum model check-
ing [59,58], without being used for reduction though. L-bisimulation [12] and
[33,27] yield the same reductions, with the difference being that the former ob-
tains the smallest reduction up to a given initial constraint, while the latter
computes the smallest reduction up to an initial condition. While relying simi-
larly to us on reduction techniques, [33,27] focus on the reduction of quantum
Hamiltonian dynamics, with applications mostly in quantum physics and chem-
istry. Instead, we study the reduction of quantum circuits which are the prime
citizens of quantum computing. Moreover, we provide a prototype implementa-
tion of our approach and perform a large-scale numerical evaluation.

Paper outline. The paper is structured as follows. After a review of core con-
cepts, Section 2 introduces forward and backward constrained bisimulation of
(quantum) circuits. There, we also provide an algorithm for the computation of
constrained bisimulations by extending [42,35] to circuits. Section 3 then derives
bounds on the reduction sizes of quantum search [28], quantum optimization [21]
and quantum order finding [40]. Section 4, instead, conducts a large-scale eval-
uation on published quantum benchmarks [44] and compares constrained bisim-
ulations against DDSIM with respect to the possibility of speeding up circuit
simulations. The paper concludes in Section 5.

2 Constrained Bisimulations for Quantum Circuits

Notation. We shall denote by n the number of qubits and set N = 2n for
convenience. Column vectors are denoted by the ket notation |z⟩, while the
complex conjugate transpose of |z⟩ is denoted by |z⟩† = ⟨z|, i.e., ⟨z| = |z̄⟩T
with ·̄ and ·T denoting complex conjugation and transpose, respectively. In a
similar vein, ⟨z| |z⟩ = ⟨z|z⟩, where ⟨· | ·⟩ is the standard scalar product over CN .
Following standard notation, the canonical basis vectors of CN are expressed
using tensor products and bit strings x ∈ {0, 1}n; specifically, writing ⊗ for the
Kronecker product, we have |xn⟩ ⊗ |xn−1⟩ ⊗ . . . ⊗ |x1⟩ = |xn⟩ |xn−1⟩ . . . |x1⟩ =
|xnxn−1 . . . x1⟩ = |d⟩, where 0 ≤ d ≤ 2n − 1 is a decimal representation of
x, see [40] for details. We usually denote by |x⟩ canonical basis vectors with
x ∈ {0, 1}n, whereas |u⟩ , |v⟩ , |w⟩ , |z⟩ ∈ CN refer to linear combinations in the
form |z⟩ =

∑
x∈{0,1}n cx |x⟩ with cx ∈ C. For any canonical basis vector, we

have |x⟩ = |x̄⟩. To avoid confusion, forward constrained bisimulations (FCB) are
denoted by row matrices L ∈ Cd×N with d ≤ N , while backward constrained
bisimulations (BCB) are denoted by column matrices L† ∈ CN×d.

Preliminaries. We begin by introducing core concepts from linear algebra and
quantum computing [37,40].

Definition 1 (Core Concepts).

– The column space of a matrix M are all linear combinations of its columns
and is denoted by ⟨M⟩c. One says, the columns of M span ⟨M⟩c.
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– The row space of a matrix is the set of all linear combinations of its rows
and is denoted by ⟨M⟩r. One says, the rows of M span ⟨M⟩r.

– A (quantum) circuit over n qubits is described by a unitary map U ∈ CN×N ,
that is, U−1 = U †.

– A (quantum) state |z⟩ ∈ CN is a vector with (Euclidian) norm one.
– A matrix P ∈ CN×N is an orthogonal projection if P ◦ P = P = P †.
– Any vector |z⟩ ∈ CN generates the linear subspace S|z⟩ = ⟨|z⟩⟩c.

Throughout the paper, we do not work at the higher level where quantum
circuits are defined by means of a quantum gate compositions [40]. Instead,
we work directly at the level of the unitary maps that are induced by such
compositions. With this in mind, we use the terms “unitary map” and “quantum
circuit” interchangeably.

We distinguish between one- and multi-step applications of a quantum cir-
cuit [40]. For an input state |w0⟩ ∈ CN , the full quantum state after one-step
application is U |w0⟩. Instead, the full quantum state after a multi-step applica-
tion is given by Uk |w0⟩, where k > 1 is the number of steps.

These definitions justify interpreting a quantum circuit as a discrete-time
dynamical system as follows.

Definition 2 (Dynamical System). A circuit U ∈ CN×N with input state
|w0⟩ induces the discrete time dynamical system (DS) |wk+1⟩ = U |wk⟩, with
k ≥ 0. We call |wk⟩ the full quantum state at step k.

Example 1 The one-qubit circuit U =
(
0 1
1 0

)
is known as the Pauli X-gate [40].

In the case of k ≥ 1 steps and input |w0⟩ = |ϕ⟩, where |ϕ⟩ = (1,−1)/
√
2, the

induced DS can be shown to be |wk⟩ = (−1)k |ϕ⟩.

The result of a quantum computation is not directly accessible and is usually
queried using quantum measurements [40]. These can be described by projec-
tive measurements [40], formally given by a family of orthogonal projections
{P1, . . . , Pm} satisfying P1 + . . . + Pm = I. When a quantum state |z⟩ ∈ CN is
measured, the probability of outcome 1 ≤ i ≤ m is πi = ⟨z|Pi |z⟩. In case of
outcome i, the quantum state after the measurement is Pi |z⟩ /

√
πi. We will be

mostly concerned with the case {P, I − P} for a given orthogonal projection P .
Often, one is interested in querying states from a specific subspace S. For

instance, the result of the HHL algorithm [30], considered in Section 4, is stored
in a subset of all qubits, i.e., in a subspace. To this end, it suffices to use a
projective measurement identifying S.

Definition 3. Given an orthogonal projection P , we call P |z⟩ the P -measure-
ment of |z⟩. A subspace S ⊆ CN is identifiable by P if P |z⟩ = |z⟩ for all |z⟩ ∈ S.

A particularly simple yet useful class of projective measurements are those
that measure a single state |w⟩, i.e., identify the space S|w⟩ spanned by |w⟩. This
is given by the orthogonal projection P|w⟩ := |w⟩ ⟨w|.

Example 2 Assume that we are interested in measuring the result of Example 1
using measurement P|ϕ⟩ that identifies S|ϕ⟩. Then, for |w0⟩ =

(
1
0

)
, it holds that

P|ϕ⟩ |wk⟩ = (−1)k |ϕ⟩ /
√
2.
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Forward Constrained Bisimulation. We next introduce FCB.

Definition 4 (Forward Constrained Bisimulation, FCB). Fix a circuit
defined by U ∈ CN×N with initial state |w0⟩ and a matrix L ∈ Cd×N with
orthonormal rows.

a) The DS reduced by L is given by |ŵk+1⟩ = Û |ŵk⟩, where Û = LUL†, and
initial state |ŵ0⟩ = L |w0⟩.

b) L is called forward constrained bisimulation of DS |wk+1⟩ = U |wk⟩ wrt con-
straint subspace S ⊆ CN when S ⊆ ⟨L†⟩c and L |wk⟩ = |ŵk⟩ for all k ≥ 1.

Before commenting on the definition, we establish the following.

Lemma 1. The reduced map Û in Definition 4 is unitary.

Proof. See proof of Theorem 2.

We remark that the reduction holds for any choice of initial state |w0⟩, analo-
gously to the aforementioned forward-type bisimulations [14,18] for (real-valued)
dynamical systems. The assumption of orthonormality of rows of L implies that
d ≤ N , i.e., L is a transformation onto a possibly smaller-dimensional state
space. Although it can be dropped without loss of generality [42], it allows for a
more immediate relation to projective measurements. Indeed, matrix L induces
the orthogonal projection PL defined as PL = L†L. This projective measurement
identifies S because S ⊆ ⟨L†⟩c. Moreover, PL |wk⟩ is preserved in the reduced
system for any k. To see this, it suffices to multiply L |wk⟩ = |ŵk⟩ by L† from
the left and to note that this yields PL |wk⟩ = L† |ŵk⟩.

Example 3 Continuing Example 1, it can be shown that the 2× 1 matrix L =
|ϕ⟩† = (1,−1)/

√
2 is an FCB wrt S|ϕ⟩. Indeed, since Û = LUL† = −1, we

obtain |ŵk+1⟩ = − |ŵk⟩, while a direct calculation confirms that L |w0⟩ = |ŵ0⟩
implies L |wk⟩ = |ŵk⟩ for all k > 0. Multiplying both sides by L† from the left
yields L†LUk |w0⟩ = (−1)kL†L |w0⟩. Consequently, the P|ϕ⟩-measurement of the
original map can be obtained from the P|ϕ⟩-measurement of the reduced map.

Algorithm 1 adapts the algorithm for (real-valued) systems of ordinary differ-
ential equations with polynomial derivatives developed in [42,35] to the complex
domain and yields the minimal FCB wrt subspace S, i.e., it returns an orthonor-
mal L ∈ Cd×N whose dimension d is minimal.

Theorem 1 (Minimal FCB). Algorithm 1 computes a minimal FCB L ∈
Cd×N wrt subspace S, i.e., the rowspace of any FCB L′ wrt S contains that of
L. The complexity of Algorithm 1 is polynomial in N .

Proof. See proof of Theorem 2.

We briefly comment on Algorithm 1. The idea behind it exploits that L can
be shown to be an FCB whenever L† is an invariant set of the map U , that
is, if the column space of L†U is contained in the column space of L†. The
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Algorithm 1 Computation of an FCB L wrt subspace S

Require: Unitary map U ∈ CN×N and subspace S ⊆ CN .
1: compute orthonormal basis of S, store it in column matrix L† ∈ CN×d0

2: repeat
3: for all columns |z⟩ of L† do
4: compute |π⟩ = PLU |z⟩
5: if |π⟩ ̸= U |z⟩ then
6: |w⟩ = U |z⟩ − |π⟩
7: append column |w⟩ / ⟨w|w⟩ to L†

8: end if
9: end for

10: until no columns have been appended to L†

11: return matrix L††.

algorithm begins by initializing L† with a basis of S in line 1. This ensures that
S is contained in the column space of the final result. For every column |z⟩ of
L†, the main loop in line 2 checks whether U |z⟩ is in the column space of L†

(line 5) by computing its projection |π⟩ onto the column space of L† (line 4). If it
is not in the column space, the projection will differ from U |z⟩ and the residual
|w⟩ must be added to L†. This shows the correctness, while the minimality of
FCB L follows from the fact that only the necessary residuals are being added to
L†. The complexity of the algorithm, instead, follows by noting that at most N
columns can be added to L† and that all computations of the main loop require,
similarly the computation in line 1, at most O(N3) operations.

Remark 1. As can be noticed in Algorithm 1, e.g., line 4, the computation of
an FCB subsumes the computation of a single step of the circuit. For practical
applications to single-step circuits where the modeler is interested in only a
single input, FCB may be as expensive as simulating the original circuit directly.
Hence, it is obvious that that the effectiveness of constrained bisimulations is
particularly relevant when simulating the circuit with respect to several inputs,
or when considering multi-step applications. Examples of this are provided in
Section 3 and a numerical evaluation is carried out in Section 4.

Example 4 Consider the FCB L = |ϕ⟩† wrt subspace S|ϕ⟩ from Example 3.
Then, noting that (I − PL) |ϕ⟩ = 0, we infer that Algorithm 1 terminates in
Line 5. Hence, L is a minimal FCB wrt S|ϕ⟩.

Backward Constrained Bisimulation. BCB yields a reduced system through
the identification of an invariant set, i.e., a subspace S such that Uk |z⟩ ∈ S for
any |z⟩ ∈ S and k ≥ 1. Whereas in FCB the reduced model can recover projective
measurements onto the constraint set for any initial set, here one can recover
the full quantum state, so long as the initial states belong to the invariant set.

Definition 5 (Backward Constrained Bisimulation, BCB). Let U,L and
Û be as in Definition 4. Then, L† is a BCB of the dynamical system |wk+1⟩ =
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U |wk⟩ wrt a subspace of inputs S ⊆ CN when S ⊆ ⟨L†⟩c and whenever |w0⟩ =
L† |ŵ0⟩ implies |wk⟩ = L† |ŵk⟩ for all k ≥ 1.

Similarly to FCB, we assume without loss of generality that L ∈ Cd×N has
orthonormal rows. As anticipated above, FCB and BCB are not comparable in
general. Indeed, an FCB L makes no assumption on the initial condition |w0⟩,
while a BCB L† does so by requiring L†L |w0⟩ = |w0⟩. Conversely, a BCB L†

allows one to obtain |wk⟩, while an FCB L allows to obtain L |wk⟩ instead of
|wk⟩ itself.

Example 5 Fix |ϕ⟩ = (1,−1)T /
√
2 from Example 4 and recall that L = |ϕ⟩†,

U |ϕ⟩ = − |ϕ⟩ and Û = −1. Then, L† is a BCB of U wrt S|ϕ⟩. Indeed, L†L |w0⟩ =
|w0⟩ implies |w0⟩ = |ϕ⟩, while

L† |ŵk⟩ = (−1)kL† |ŵ0⟩ = (−1)kL†L |w0⟩ = (−1)k |w0⟩ = Uk |ϕ⟩ = |wk⟩ .

Example 5 anticipates the next result that states FCB and BCB are dual
notions. This generalizes the known duality of ordinary and exact lumpability
of Markov chains [20,18].

Theorem 2 (Duality). Fix a unitary map U ∈ CN×N and a subspace S ⊆ CN .
L is an FCB wrt S if and only if L† is a BCB wrt S.

Proof. Let S0 ⊆ S be a basis of some fixed S ⊆ CN . We first note that the
discussion of [42,31,35] and [45,4] can be extended to the complex field in a
direct manner. With this, we obtain:

1. L ∈ Cd×N is an FCB wrt S if and only if ⟨LU⟩r ⊆ ⟨L⟩r with ⟨S†
0⟩r ⊆ ⟨L⟩r.

2. D ∈ CN×d is a BCB wrt S if and only if ⟨UD⟩c ⊆ ⟨D⟩c with ⟨S0⟩c ⊆ ⟨D⟩c.

Moreover, we observe the following:

⟨LU⟩r ⊆ ⟨L⟩r ⇔ [U bijection]
⟨LU⟩r = ⟨L⟩r ⇔ [daggering]

⟨U†L†⟩c = ⟨L†⟩c ⇔ [U unitary]

⟨U−1L†⟩c = ⟨L†⟩c ⇔ [U bijection]

⟨L†⟩c = ⟨UL†⟩c ⇔ [U bijection]

⟨UL†⟩c ⊆ ⟨L†⟩c

This yields Theorem 2, i.e., L ∈ Cd×N is an FCB of U wrt constraint S if and
only if L† ∈ CN×d is a BCB of U wrt S (because S††

0 = S0). Moreover, if L† is
computed by Algorithm 1, then L† is a BCB wrt S, while L†† is an FCB wrt S.
This follows by noting that in such a case L† ∈ CN×d satisfies

⟨L†⟩c = ⟨Uk |z⟩ | 0 ≤ k ≤ N − 1, |z⟩ ∈ S⟩c
= ⟨Uk |z⟩ | 0 ≤ k ≤ N − 1, |z⟩ ∈ S0⟩c
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The complexity follows from the discussion after Theorem 1. A detailed com-
plexity discussion can be obtained in [42]. Exploiting that an FCB L satisfies
LUL†L = LU by [53], we obtain

(LUL†)†(LUL†) = (LU †L†)(LUL†) = LU †UL† = LL† = Id×d,

showing that Û is unitary. ⊓⊔

In light of the above result, we often speak of a (constrained bisimulation)
reduction. Moreover, we note that Theorem 2 ensures that a BCB reduction up
to input yields an FCB reduction up result, a discussed next.

Remark 2. Let L† be the BCB of U wrt S|w0⟩, where |w0⟩ is the input. Then,
L = L†† is an FCB wrt S|w0⟩, implying that PL = L†L identifies the column
space of L†, see discussion after Definition 4. At the same time, result Uk |w0⟩
is in the column span of L† because Uk |w0⟩ = |wk⟩ = L† |ŵk⟩ = L†ÛL |w0⟩.

We end the section by pointing out that, thanks to Theorem 2, Algorithm 1
can be used to compute a minimal BCB L† wrt subspace S. Indeed, the only
difference is that one should return L† rather than L†† in the last line of the
algorithm. With this change, we notice that Algorithm 1 coincides, in the case
of a one dimensional subspace S ⊆ CN , with the Krylov subspace [4] that can
be obtained by the Arnoldi iteration [45].

3 Applications

In this section we demonstrate that established quantum algorithms enjoy sub-
stantial bisimulation reductions. For each application, we provide a brief descrip-
tion of the quantum algorithm and a theoretical bound on its reduction.

3.1 Quantum Search

Let us assume we are given a non-zero function f : {0, 1}n → {0, 1} and that
we are asked to find some x ∈ {0, 1}n such that f(x) = 1. Grover’s seminal
algorithm describes how this can be achieved in O(

√
N) steps on a quantum

computer [40, Section 6.2], thus yielding a quadratic speed-up over a classic
computer. For any x ∈ {0, 1}n, the Grover map is given by

G |x⟩ = (−1)f(x)(I − 2 |ψ⟩ ⟨ψ|) |x⟩ , with |ψ⟩ = 1√
N

N−1∑
x=0

|x⟩ (1)

The Grover map yields the following celebrated result.

Theorem 3 (Quantum Search [40]). Map G is unitary. Moreover, if the
number of sought solutions M = |{x | f(x) = 1}| satisfies M ≤ N/2, then
measuring Gκ |ψ⟩ for κ = ⌈π4

√
N/M⌉ yields a state |x⟩ satisfying f(x) = 1 with

probability at least 1
2 .
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The next result allows one to compute result Gκ |ψ⟩ from Theorem 3 using
a map over a single qubit.

Theorem 4 (Reduced Grover). The BCB L† ∈ CN×d of G wrt S|ψ⟩ has
dimension d = 2 and a column space spanned by |ψ⟩ and G |ψ⟩.

Proof. The claim follows by noting that the column space of an BCB wrt S|ψ⟩ is
spanned by |ψ⟩ , G |ψ⟩ , G2 |ψ⟩ , . . . , GN−1 |ψ⟩ and so on. This, in turn, is known
to have as basis [40, Section 6.2]

|α⟩ = 1√
M

∑
x:f(x)=1

|x⟩ and |β⟩ = 1√
N −M

∑
x:f(x)=0

|x⟩ ,

where M is as above, while |α⟩ is the superposition (i.e., sum) of all solution
states and |β⟩ is the superposition of all non-solution states. ⊓⊔

Remark 3. While the BCB L† wrt S|ψ⟩ has always dimension 2, its column space
depends on the oracle function f . This is because f appears in G, see (1).

3.2 Quantum Optimization

Quantum approximate optimization algorithm (QAOA) [21] is a computational
model that has the same expressive power as the common quantum circuit
model [22,21,2]. It is described by two matrices. The first one is the problem
Hamiltonian HP for which we are interested to compute a maximal eigenstate,
i.e., an eigenvector for a maximal eigenvalue of HP . The second is the begin
Hamiltonian HB for which a maximal eigenstate |ψ⟩ is known already. With
this, a maximal eigenstate of HP can be obtained by conducting the QAOA
introduced next.

Definition 6 (QAOA [21]). For a problem Hamiltonian HP and a begin Hamil-
tonian HB, fix the unitary matrices

UB(δ) = exp(−iδHB) and UP (δ) = exp(−iδHP )

where δ > 0 is a sufficiently small time step and exp(A) is the matrix exponential.
For a sequence of natural numbers (ki, li)

κ
i=1 of length κ ≥ 1, we define

|wκ⟩ = UB(δ)
kκUP (δ)

lκ · . . . · UB(δ)k1UP (δ)l1 |ψ⟩ (2)

The QAOA with κ ≥ 1 stages is then given by max{⟨wκ|HP |wκ⟩ | (ki, li)κi=1}.

While the problem Hamiltonian HP depends on the task or problem we are
solving, the choice of the begin Hamiltonian HB is informed by the so-called
adiabatic theorem, a result that identifies conditions QAOA returns a global
optimum. A common heuristic is to pick HB such that HB and HP do not
diagonalize over a common basis [22,21] and to assume without loss of generality
that |ψ⟩ =

∑
x |x⟩ /

√
N is the unique maximal eigenvector of HB .

We next demonstrate bisimulation can be reduce QAOA when it is applied
to SAT and MaxCut, two NP-complete problems [48]. We start by introducing
the problem Hamiltonians HP for both cases.
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Definition 7 (SAT and MaxCut Problem Hamiltonians).

– For a boolean formula ϕ =
∧M
i=1 Ci, where Ci is a clause over n boolean

variables, the problem Hamiltonian is given by HP =
∑
iHi, where

Hi |x⟩ =

{
|x⟩ , Ci(x) is true
0 , Ci(x) is false

for any x ∈ {0, 1}n representing a boolean assignment.
– For an undirected unweighted graph G = (V,E) with vertices V = {1, . . . , n}

and edges E ⊆ V×V , we define the problem Hamiltonian HP =
∑

(i,j)∈E Hi,j,
where

Hi,j |x⟩ =

{
|x⟩ , xi ̸= xj

0 , xi = xj

for any x ∈ {0, 1}n that represents a cut C ⊆ {1, . . . , n} by setting i ∈ C if
and only if xi−1 = 1.

Following this definition, it can be shown that the QAOA ⟨wκ|HP |wκ⟩ from
Definition 6 corresponds to a quantum measurement reporting either the ex-
pected number of satisfied clauses or the expected size of the cut. It is possible
to guarantee that QAOA finds a global optimum for a sufficiently high κ [22,21].

The next result ensures that HP has BCB L† wrt S|ψ⟩ whose reduced map
is provably small. Moreover, for any such L, it ensures that there exists a begin
Hamiltonian HB for which L† is a BCB too, thus ensuring substantial reductions
of the entire QAOA calculation (2).

Theorem 5 (Reduced QAOA). Fix HP as in Definition 7, any δ > 0 and
let L† ∈ CN×d be a BCB of UP (δ) wrt S|ψ⟩. Then

1. The column space of L† is spanned by(
|ψ⟩ , UP (δ) |ψ⟩ , U2

P (δ) |ψ⟩ , . . . , UM−1
P (δ) |ψ⟩

)†
, (3)

where M is the number of clauses (SAT) or edges (MaxCUT). Specifically,
the dimension of the BCB d is bounded by M .

2. Then, for any Hamiltonian ĤB ∈ Cd×d (i.e., Hermitian matrix), there is a
Hamiltonian HB ∈ CN×N such that
– L† is a BCB of UB(δ) = exp(−iδHB) wrt S|ψ⟩, while its reduced map is
ÛB(δ) = exp (−iδĤB)

– The computation (2) satisfies

|wκ⟩ = UB(δ)
kκUP (δ)

lκ · . . . · UB(δ)k1UP (δ)l1 |ψ⟩
= L†ÛB(δ)

kκÛP (δ)
lκ · . . . · ÛB(δ)k1ÛP (δ)l1L |ψ⟩ (4)

The QAOA in CN thus corresponds to a QAOA in the reduced space Cd.
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Proof. We begin by proving 1. For SAT, it can be noticed that HP |x⟩ = ν |x⟩,
where 0 ≤ ν ≤ M is the number of clauses that are satisfied by assignment
x. A similar formula holds for MaxCut, with the difference being that ν is the
size of the cut x. It is worth noting that HP is in diagonal form for both SAT
and MaxCut. If m denotes the number of distinct eigenvalues of HP , then m ≤
M , where M is in the case of SAT or MaxCUT, respectively, the number of
clauses or edges. The same can be said concerning its matrix exponential UP (δ)
which, being unitary, enjoys an eigendecomposition, allowing us to write |ψ⟩ =∑m
i=1 ci |zi⟩, where |zi⟩ is an eigenvector for eigenvalue λi of UP (δ). This yields

Uk |ψ⟩ =
m∑
i=1

ciλ
k
i |zi⟩

for all k ≥ 0. Without lost of generality, consider d ≤ m such that ck = 0 for all
k > d and ck ̸= 0 otherwise. Writing vectors {Uk |ψ⟩ | 0 ≤ k ≤ m − 1} in basis
|z1⟩ , . . . , |zd⟩ gives rise to a regular Vandermonde matrix [45] in Cd×d. This shows
that {Uk |ψ⟩ | d ≤ k ≤M−1} are linear combinations of {Uk |ψ⟩ | 0 ≤ k ≤ d−1},
completing the proof of 1. Instead, 2. follows from the definition of BCB and
Lemma 2 from below. ⊓⊔

The auxiliary result below is needed in the proof of Theorem 5.

Lemma 2. Pick any L ∈ Cd×N and Q ∈ C(N−d)×N so that the rows of L and
Q comprise an orthonormal basis of CN , and define

UB = L†ÛBL+Q†ŨBQ, ÛB = exp
(
−iδĤB

)
, ŨB = exp

(
−iδH̃B

)
for any Hamiltonian ĤB ∈ Cd×d and H̃B ∈ C(N−d)×(N−d). Then, UB is unitary,
L is an FCB of it wrt S|ψ⟩, and ÛB is its reduced map. Further, there exists a
Hamiltonian HB ∈ CN×N satisfying UB = exp(−iδHB).

Proof. We first show that LUB = LUBL
†L as this implies that L is an FCB of

U by [53]. To see this, we note that

LUBL
†L = L

(
L†ÛBL+Q†ŨBQ

)
L†L = LL†ÛBLL

†L+ LQ†ŨBQL
†L = ÛBL

LUB = L
(
L†ÛBL+Q†ŨBQ

)
= LL†ÛBL+ LQ†ŨBQ = ÛBL

where we have used that LL† = 0 and LQ† = 0, which follows from the choice of
Q. From the calculation, we can also infer that ÛB = LUBL

†, i.e., ÛB in indeed
the reduced map. In a similar fashion, one can note that Q is also an FCB
of UB and that ŨB is the respective reduced map. Since both ÛB and ŨB are
unitary, we infer that also UB is unitary (alternatively, a direct calculation yields
I = UBU

†
B). Since any unitary matrix can be written as a matrix exponential of

a Hamiltonian, there exists a Hamiltonian HB satisfying UB = exp(−iδHB). ⊓⊔
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3.3 Quantum Factorization and Order Finding

Let us assume that we are given a composite number N which we seek to factor-
ize. As argued in [40, Section 5.3.2], this problem can be solved in randomized
polynomial time, provided the same holds true for the order finding problem.
Given some randomly picked x ∈ {2, 3 . . . , N − 1}, the latter asks to compute
the multiplicative order of x modulo N , i.e., the smallest r ≥ 1 satisfying xr

mod N = 1. Following [40, Section 5.3.1], we consider the quantum algorithm
defined by the unitary map

U |y⟩ =

{
|xy mod N⟩ , 0 ≤ y < N

|y⟩ , N ≤ y < 2l

Here, l ≥ 1 is the smallest number satisfying N ≤ 2l.
The next result allows us to relate the order of x to the dimension of the

BCB wrt S|1⟩. This fact is exploited in Shor’s factorization algorithm [40].

Theorem 6 (Reduced Order Finding). The dimension of the BCB of U wrt
S|1⟩ coincides with the order of x modulo N .

Proof. If can be shown [40] that the U from above is unitary and that U |us⟩ =
e2πis/r |us⟩ for all 0 ≤ s ≤ r − 1, where

|us⟩ =
1√
r

r−1∑
k=0

exp
[−2πisk

r

] ∣∣xk mod N
〉

and
1√
r

r−1∑
s=0

|us⟩ = |1⟩ .

With this, Uk |1⟩ = 1√
r

∑r−1
s=0(e

2πis/r)kus for any p ≥ 0. Hence, the minimal
BCB with respect to S|1⟩ is contained in the span of u0, . . . , ur−1. To see that
the dimension is exactly r, we note that vectors {Uk |ψ⟩ | 0 ≤ k ≤ r−1}, written
in basis u0, . . . , ur−1, constitute a regular Vandermonde matrix [45] in Cr×r. ⊓⊔

4 Numerical Experiments

We evaluate our approach on the applications from Section 3 and the quan-
tum benchmark repository [44]. The approach has been implemented in Python
by extending the publicly available implementation of the CLUE algorithm
from [42,35]. The prototype is accessible at https://www.doi.org/10.5281/zenodo.
8431443. All results reported were executed on a machine with i7-8665U CPU,
32GB RAM and 1024GB SSD. The reduced circuits of CLUE were simulated
using Python’s numpy libraries. All simulations using quantum circuits were done
with qiskit 0.44.1 and DDSIM simulations were performed with mqt.ddsim ver-
sion 1.19.0. All libraries are available using the default pip command in Python.

In our prototype, we have implemented Algorithm 1 by changing in CLUE the
domain of definition from the real numbers to complex numbers and, instead of
using Gaussian elimination [42,31] for deciding membership properties, we used
orthogonal projections.
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4.1 Applications from Section 3

Here we report the results of numerical experiments on the applications discussed
in Section 3 and a comparison against DDSIM. For this, we considered circuits
ranging from 5 to 15 qubits and fixed a timeout of 500 seconds. To allow for
a representative evaluation, we averaged runtimes over 5 independent runs of
Grover’s circuit; instead, in case of quantum optimization, we averaged over 50
independent runs because SAT formulas and graphs were picked randomly in
each run. Specifically, the instances were generated as follows:

– Grover algorithm (Sec. 3.1): following the convention of [44], we set up a
search function f where f(x) = 0 for all x ∈ {0, 1}n except for f(11...1) = 1.
This can be realized via an oracle using the Toffoli gate.

– Quantum Optimization for SAT (Sec. 3.2): for each number of qubits n, we
generate a random formula with m clauses (m is randomly picked between
n and 3n), where each clause has 3 variables at most. We guarantee that
every formula contains all n variables.

– Quantum Optimization for MaxCut (Sec. 3.2): for each number of qubits n,
we generate an Erdős-Rényi graph with n nodes and edge probability 1

3 .

For Grover’s algorithm the experiments confirmed the two-dimensional bisim-
ulation reduction theoretically demonstrated in Theorem 4. Instead, for quantum
optimization we measured the (average) achieved reduction against the theoret-
ical bounds developed in Theorem 5. For the comparison against DDSIM, we
measured DDSIM’s wallclock execution time for each circuit instance against
CLUE’s corresponding end-to-end runtime consisting of both computing the
constrained bisimulation and simulating the reduced circuit. For quantum opti-
mization, the number of steps κ was set to the smallest integer greater or equal
to

√
N . The choice of κ is motivated by Theorem 3 and the discussion around

the so-called adiabatic theorem in [22,21].
Discussion. For quantum optimization, Table 1 reports logarithmic CLUE

reductions, reducing in particular 215 × 215 matrices to 15× 15 matrices in less
than 4 s. Overall, DDSIM was faster than CLUE in case of Grover, while CLUE
outperformed DDSIM on quantum optimization. We explain this by the diagonal
form of the quantum optimization circuit. The results for quantum optimization
and Grover confirm the observation made in Remark 1 that CLUE reductions
may be practically useful in multi-step applications.

4.2 Benchmark Circuits

In this section, we report a numerical evaluation of the quantum benchmarks
from [44], available at https://www.cda.cit.tum.de/mqtbench/. For each num-
ber 0 ≤ x ≤ N − 1, we computed U |x⟩ by computing the bisimulation wrt
subspace S|x⟩ and the respective reduced circuit; we report only circuit families
which could be reduced, which were 9 out of 17. As before, we used 5 instances
for each model and a timeout of 500 s; in the computation of the average re-
duction dimension d across all subspaces S|x⟩, a timeout was reached when the
computation across all N subspaces S|x⟩ took more than 500 s.
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Grover SAT MaxCut

qubits DDSIM CLUE DDSIM CLUE d DDSIM CLUE d

5 0.292 0.482 0.313 0.001 4.93/15 0.162 0.001 4.28/20
6 0.109 2.271 0.529 0.002 5.51/18 0.368 0.001 5.33/30
7 0.184 7.254 2.267 0.006 6.83/21 0.645 0.002 7.15/42
8 0.272 22.787 5.417 0.014 7.11/24 1.128 0.003 9.05/56
9 0.431 111.920 20.319 0.031 8.77/27 3.873 0.006 10.61/72
10 0.896 369.531 232.948 0.072 9.15/30 6.069 0.013 13.13/90
11 1.262 >500 >500 0.147 9.74/33 105.713 0.027 15.26/110
12 1.574 >500 >500 0.361 10.92/36 287.671 0.059 18.24/132
13 2.431 >500 >500 0.738 11.63/39 442.855 0.114 20.62/156
14 3.583 >500 >500 1.496 11.74/42 >500 0.232 24.24/182
15 5.452 >500 >500 3.232 13.08/45 >500 0.528 26.21/210

Table 1: Comparison of simulation times between DDSIM and the reduced model
by CLUE. The latter includes the runtimes for computing the bisimulations
by Algorithm 1. For SAT and MaxCut, column d reports the average size of
the reduced circuit and its theoretical bounds from Theorem 5, separated by
backslash.

Table 2 differentiates between reduction dimension wrt subspace S|0⟩ and the
average reduction dimension across all subspaces S|x⟩. This is because the former
can be interpreted as a BCB since |0⟩ is the default input for most quantum
circuits. Instead, the latter is meant to study the average reduction power of
FCB, since FCB preserves quantum measurements. We remark that some circuits
were only available for specific number of qubits (e.g., HHL and price calls).
The reduction ratio d/N is given by the quotient between the dimension of
the reduction dimension d and N = 2n (unlike Table 1 no bounds on d were
available).

Overall, it can be noticed that substantial reductions could be obtained for a
number of benchmark families. However, given that the benchmarks from Table 2
are all single-step applications, DDSIM was consistently faster than CLUE, once
again confirming the observation from Remark 1.

5 Conclusion

We introduced forward and backward constrained bisimulations for quantum
circuits which allow by means of reduction to preserve an invariant subspace
of interest. The applicability of the approach was demonstrated by obtaining
substantial reductions of common quantum algorithms, including, in particular,
quantum search, quantum approximate optimization algorithms for SAT and
MaxCut, as well as a number of benchmark circuits. Overall, the results sug-
gest that constrained bisimulation can be used as a tool for speeding up the
simulation of quantum circuits on classic computers, complementing state-of-
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Circuit name #-qubits d
N

wrt S|0⟩ Avg. d
N

across S|x⟩ Avg. time (s) DDSIM time

Deutsch-Jozsa

3 50.00% 47.22% 0.046 0.019
4 25.00% 24.26% 0.226 0.021
5 12.50% 12.31% 1.127 0.023
6 6.25% 6.20% 5.294 0.024
7 3.12% TO TO 0.026

GHZ

3 75.00% 69.44% 0.025 0.088
4 87.50% 83.08% 0.339 0.070
5 50.00% 48.67% 1.802 0.073
6 25.00% 24.66% 5.766 0.078
7 12.50% TO TO 0.082

Graph State

3 50.00% 66.67% 0.073 0.102
4 25.00% 23.23% 0.242 0.086
5 25.00% 28.98% 2.636 0.093
6 9.38% 10.96% 8.981 0.104
7 6.25% TO TO 0.116

HHL algorithm 5 12.50% 78.79% 1.874 0.032

Pricing Call Option
5 25.00% 27.27% 0.256 0.564
7 12.50% TO TO 0.736
9 6.25% TO TO 0.996

Pricing Put Option
5 25.00% 27.27% 0.256 0.564
7 12.50% TO TO 0.801
9 6.25% TO TO 1.207

QFT

3 25.00% 41.67% 0.041 0.115
4 12.50% 22.79% 0.159 0.108
5 6.25% 11.93% 1.312 0.130
6 3.12% 6.11% 5.971 0.157
7 1.56% TO TO 0.184

Quantum Walk

3 75.00% 65.00% 0.026 0.123
4 50.00% 45.83% 0.150 0.331
5 50.00% 47.43% 0.968 0.739
6 50.00% 48.58% 6.885 0.762
7 50.00% TO TO 0.784

Travelling Salesman 4 87.50% 87.50% 1.014 0.178
9 TO TO TO 0.316

Table 2: Evaluation of (single-step) quantum benchmarks from repository [44].
The simulation times of DDSIM refer to the computation with respect to input
|0⟩, while the third and fourth columns report dimensions of bisimulation reduc-
tions. Instead, the fifth column reports the average computation time of U |x⟩
via a reduction wrt S|x⟩, including the computation time of the bisimulation. A
cumulative timeout of 500 s is denoted by TO.
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the-art methods based on decision diagrams especially when the circuit is to be
simulated under several initial conditions or for multi-step applications.

In line with the relevant literature on bisimulations for dynamical systems,
constrained bisimulations introduce loss of information due to their underly-
ing projection onto a smaller dimensional state space; the information that is
preserved, however, is exact. A relevant issue for future work is to consider ap-
proximate variants of bisimulation for quantum circuits, in order to find more ag-
gressive reductions or to capture quantum-specific phenomena such as quantum
noise. Another line of research considers the combination with complementary
circuit simulation approaches, in particular those based on decision diagrams.
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A Parallel and Distributed Quantum SAT Solver
Based on Entanglement and Teleportation

Abstract. Boolean satisfiability (SAT) solving is a fundamental prob-
lem in computer science. Finding efficient algorithms for SAT solving
has broad implications in many areas of computer science and beyond.
Quantum SAT solvers have been proposed in the literature based on
Grover’s algorithm. Although existing quantum SAT solvers can con-
sider all possible inputs at once, they evaluate each clause in the formula
one by one sequentially, making the time complexity O(m), linear to the
number of clauses m, per Grover iteration. In this work, we develop a
parallel quantum SAT solver, which reduces the time complexity in each
iteration to constant time O(1) by utilising extra entangled qubits. To
further improve the scalability of our solution in case of extremely large
problems, we develop a distributed version of the proposed parallel SAT
solver based on quantum teleportation such that the total qubits required
are shared and distributed among a set of quantum computers (nodes),
and the quantum SAT solving is accomplished collaboratively by all the
nodes. We prove the correctness of our approaches and evaluate them in
simulations and real quantum computers.

1 Introduction

Boolean satisfiability (SAT) solving is a fundamental problem in classical com-
puting. Given a propositional formula, SAT determines whether there are truth
assignments for propositional variables making the formula true. SAT has many
applications: theorem proving, model checking, software/hardware verification,
optimization, scheduling, etc. In addition, SAT is central in the computation and
complexity theories as it is NP-complete. Finding efficient algorithms for SAT
solving has broad implications for many areas of computer science and beyond.

Quantum computing generalizes classical computing from binary bits to
quantum bits (qubits), which could represent both 0’s and 1’s simultaneously in
superpositions. Another advantage of quantum computers is their innate ability
to execute all the possible computational paths simultaneously, known as quan-
tum parallelism. Qubits can become entangled with each other, which is a strictly
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Ω

C1 C2 C3 ∧ P

Ω−1

|a⟩:|+⟩ X X X X
|C1⟩:|0⟩ X X
|b⟩:|+⟩ X X X X
|C2⟩:|0⟩ X X
|c⟩:|+⟩ X X X X
|C3⟩:|0⟩ X X
|F ⟩:|0⟩ Z

(a) Conventional (sequential) oracle

Ω

Ce
1 ∧ P

Ω−1

Ce
2

Ce
3

∣∣a[e1]〉 X X
|Ce

1⟩:|0⟩ X X∣∣a[e2]〉
|b⟩:|+⟩ X X
|Ce

2⟩:|0⟩ X X∣∣a[e3]〉
|c⟩:|+⟩ X X
|Ce

3⟩:|0⟩ X X
|F e⟩:|0⟩ Z

(b) Parallel oracle

Fig. 1: Different oracles for formula F .

quantum mechanical phenomenon with no classical analogue, and is also a com-
puting resource enabling quantum computers to achieve quantum supremacy
over their classical counterparts. These properties of quantum computing lead
to substantial speed-up compared to certain classical computing algorithms.

In quantum computing, Grover’s algorithm [23] is able to search for targets
(e.g., satisfying assignments in SAT) in a huge search space with a quadratic
speed-up compared to classical searching algorithms. Applying it to SAT prob-
lems has significant theoretical and practical implications. Although the quadratic
speedup still yields an exponential time complexity for SAT solving, it is a more
systematic improvement than heuristics. The real-world benefit compared to
modern algorithms such as CDCL [28] is hard to measure now. Grover’s al-
gorithm has two essential components: (1) an oracle, and (2) the diffuser. The
oracle answers the “yes/no” question about whether an object in the search space
is the target we are looking for. The diffuser tries to maximize the probability of
obtaining the targets in the search when measuring the qubits. In a nutshell, if
one wants to use Grover’s algorithm for a search problem, the key is to provide
the oracle. As long as the oracle can correctly identify the targets in the search
space, the diffuser, which is standard and independent from the search problem,
can help to “extract” the targets. Example 1 gives a running example:

Example 1. Consider the following Boolean formula F over three Boolean vari-
ables, where a = 1, b = 1, c = 1 is the only assignment that makes F true.

F : (a) ∧ (a ∨ b) ∧ (a ∨ c)

To solve the SAT problem of formula F by Grover’s algorithm, Fernandes
et al. [21] proposed an oracle, as shown in Fig. 1a, where the C1 (cyan) block
processes the first clause (a), the C2 block processes the second clause (a ∨ b),
and C3 processes the third clause (a∨ c). Even though the three variables a, b, c
are put, respectively, in the |+⟩ superposition state, i.e., 1√

2
(|0⟩+|1⟩), to consider

all possible inputs at once, the oracle still needs to process each clause one by
one sequentially because variable a appears in all the three clauses, and thus the
clauses have data dependency. Theoretically, this sequential oracle takes O(m)
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time complexity, where m is the number of clauses. The readers need not worry
about the technical detail here, as it will be briefly introduced in Section 2.2.

In this work, we propose a quantum oracle that processes each clause in
parallel, as shown in Fig. 1b, which brings a significant improvement in time
complexity from linear time O(m) to constant time O(1). One can observe that
the circuit depth in Fig. 1b is much shorter than that in Fig. 1a, which implies
a shorter execution time [14]. The idea behind our approach is the strategy of
“trade space for time”. We use two additional qubits for variables a so that each
clause Ci has its own variable a[ei] for i ∈ {1, 2, 3}, which makes each clause able
to be processed independently in parallel, as the three cyan blocks Ce

1 , Ce
2 , Ce

3

in Fig. 1b. However, the values of the three variables a[e1], a[e2], a[e3] cannot be
arbitrary. They must have the same value as they represent the (single) value
of variable a in the formula F . Here comes an interesting question: how do we
make sure that the three variables always have the same value? The answer is
entanglement! If we prepare for the three variables the following entangled state∣∣a[e1]〉 ∣∣a[e2]〉 ∣∣a[e3]〉 =

1√
2
(|000⟩+ |111⟩),

then their values will be all 1 with 1
2 probability or all 0 with 1

2 probability,
which captures the exact semantics when solving formula F . The technical details
about the proposed parallel oracle and its corresponding diffuser are introduced
in Section 3. To the best of our knowledge, this is the first work that proposes a
parallel quantum SAT solving technique based on entanglement.

The proposed parallel SAT solver gains the improvement in time complexity
by paying more (entangled) qubits. What if the SAT problem is extremely com-
plex and requires substantial resources? In such a scenario, distributed quantum
computing [17, 18, 24], adopting the strategy of “divide and conquer”, emerges
as a sub-branch of quantum computing. Analogously, we develop a distributed
version of our parallel SAT solver. In this distributed version, the total qubits
required are shared and distributed among a set of quantum computers (nodes),
and the quantum SAT solving is accomplished collaboratively by all the nodes
involved based on quantum teleportation [9, 11, 33, 36]. The technical details of
the proposed distributed quantum SAT solver is introduced in Section 4. To the
best of our knowledge, this is also the first work that proposes a distributed
quantum SAT solving technique based on quantum teleportation.

2 Preliminaries

We assume that the readers have basic knowledge in quantum computing, e.g.,
the tensor product operation, primitive quantum gates (e.g., X, Z, H, etc), and
quantum entanglement. We use the ket notation |·⟩ to denote the (column) vector
representing a quantum state. Given two vectors |v1⟩ and |v2⟩, we use |v1⟩⊗ |v2⟩
to denote their tensor product, which may be abbreviated as |v1⟩ |v2⟩, or even
|v1v2⟩ for simplicity. When applying an operation on a vector |v⟩, we use |v′⟩ to
denote the state of |v⟩ after the operation, or |v⟩t to denote the state of |v⟩ at
step t during the operation, where t ∈ N.
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2.1 Grover’s algorithm

Grover’s algorithm [23] is one of the most well-known quantum algorithms. It is
used to solve the search problem for finding M target elements in an unsorted
database with N elements (M < N). Grover’s algorithm is widely used in many
applications, such as cryptography [22], pattern matching [38], etc.

The two main operations of it are phase inversion and inversion about the
average, which are handled by the oracle and diffuser, respectively. Initially, the
input will be placed in superposition (|x⟩) to evaluate all elements in the database
at once. Next, the oracle function Uf considers all the possible inputs and marks
the target element by applying phase inversion, i.e., Uf |x⟩ = (−1)f(x)|x⟩, in
which f(x) = 1 for the target element and f(x) = 0 for the others. After the
target element is marked, the diffuser applies the inversion about the average
operation to amplify the probability of the target element so that one can obtain
the result by measurement. In order to achieve the optimal/maximum probability
for the target element to be measured, the two operations (called a Grover
iteration) need to be repeated for (π/4)

√
N/M iterations. The oracle is problem-

dependent, while the diffuser is not. Thus, designing the correct oracle is the
key to applying Grover’s algorithm. Usually, the number of target elements is
unknown before the search, but there are several ways to resolve this issue. The
most common one is to apply quantum counting [12] to obtain the (approximate)
number of target elements before using Grover’s algorithm. It is a quadratic
speed-up compared with classical methods requiring O(N) operations.

2.2 Conventional Quantum SAT Solving

Consider the following syntax for SAT formulas in conjunctive normal form
(CNF) over a set of Boolean variables V :

F ≃ C1 ∧ C2 ∧ · · · ∧ Cm C ≃ l1 ∨ l2 ∨ · · · ∨ ln l ≃ v | v

A formula F is a conjunction of m clauses C1, C2, . . . , Cm, and each clause
Ci is a disjunction of n literals l1, l2, . . . , ln, where m,n ∈ N. A literal lj could be
a Boolean variable v and called a positive literal, or the negation of a Boolean
variable v and called a negative literal. A formula can be viewed as a function
F : {0, 1}|V | 7→ {0, 1} mapping an input vector v ∈ {0, 1}|V | to true/false (0/1),
where |V | denotes the cardinality of V . A formula F is satisfiable if there exists
some v ∈ {0, 1}|V | such that F (v) = 1, and we call such v a solution to F . A
formula F is unsatisfiable if it does not have any solution. We do not include
Boolean constants true/false in the syntax as they can be rewritten as (v ∨ v)
and (v ∧ v), respectively, and are usually eliminated before SAT solving.

Given a formula F : C1∧C2∧ . . .∧Cm, to apply Grover’s algorithm, an oracle
for F is required. The construction of the quantum circuit for the conventional
oracle follows the bottom-up approach [21,26]. The circuit for each clause Ci is
constructed first, and then all the clauses are conjuncted together. Fig. 2a shows
how to construct the circuit for each clause Ci : l1 ∨ l2 ∨ . . . ∨ ln, where the Mj
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Cj

...
...

...
...

...

|v1⟩ M1 M1

|vn⟩ Mn Mn

|Ci⟩:|0⟩ X

Mj :

{
X, if lj is vj
I, if lj is vj

(a) Clause Ci : l1 ∨ · · · ∨ ln

...
...

...

|C1⟩

|C2⟩

|Cm⟩

|F ⟩: |0⟩

(b) Formula F

Fig. 2: The quantum circuit construction scheme for classic oracle.

... ... ... ... ... ... ...

|v1⟩ H X X H

|v2⟩ H X X H∣∣v|V |−1

〉
H X X H∣∣v|V |

〉
H X Z X H

(a) General diffuser scheme.

|a⟩ H X X H

|b⟩ H X X H

|c⟩ H X Z X H

(b) A diffuser for F .

∣∣a[e1]〉 H X X H∣∣a[e2]〉 H X X H∣∣a[e3]〉 H X X H

|b⟩ H X X H

|c⟩ H X Z X H

(c) Wrong Diffuser

Fig. 3: Classic Diffuser.

gate depends on literal lj for j ∈ {1, 2, . . . , n}. If lj is positive, Mj is the X gate,
while if lj is negative, Mj is the I gate. The qubit |Ci⟩ represents the truth value
of clause Ci. Once the quantum circuits for all the m clauses are constructed,
they are conjuncted by a CNOT gate (m-qubit Toffoli gate, to be more precise)
to form the circuit for F , as shown in Fig. 2b, where |F ⟩ represents the truth
value of formula F , which is controlled by |Ci⟩ for all i ∈ {1, 2, . . . ,m}. Fig. 1a
shows the conventional oracle for formula F : (a)∧ (a∨ b)∧ (a∨ c). The Ω block
is constructed as mentioned previously to identify the solutions of formula F .
The P gate is used to give a “−1” phase to those solutions, and the Ω−1 block
is the inverse operation of Ω to restore each input vector to its initial value for
the following diffusion process.

The purpose of the diffuser is to amplify the amplitude of the solution vectors
to increase/maximize the probability of them being measured. Fortunately, the
diffusion process is independent of the input problems, i.e., different problems
can share a general-purpose diffuser design. Fig. 3a shows a commonly used
diffuser [23]. Fig. 3b shows the diffuser for formula F : (a) ∧ (a ∨ b) ∧ (a ∨ c),
which has a same overall structure of the general scheme.

3 Parallel Quantum SAT Solver

In this section, we introduce how to parallelize a quantum SAT solver to speed up
the SAT solving process. Section 3.1 introduces the proposed parallel oracle using
entanglement, and Section 3.2 introduces the corresponding parallel diffuser.
Note that, due to the page limit, we give all the proofs in the author version [27].
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3.1 Parallel Oracle

Let V be a set of Boolean variables and F : C1 ∧ C2 ∧ · · · ∧ Cm be a Boolean
CNF formula over V with m clauses, where m ∈ N. If a variable v ∈ V is shared
by k clauses in F where k ∈ N, we call it a shared variable. For formula F ,
we define its expanded formula with respect to v, denoted by F e

v , obtained by
replacing each occurrence of variable v with a (fresh) expanded variable v[ei]
where i ∈ {1, 2, . . . , k} and v[e1] = v. Since v[e1] = v, we may use these two
symbols interchangeably, and we use JvK to denote the set of expanded vari-
ables {v, v[e2], . . . , v[ek]}. We generalize the definition of expanded formulas to the
whole set V , and the expanded formula is denoted by F e

V or even F e, in which
every shared variable is treated in the above manner. We use V e =

⋃
v∈V JvK to

denote the set of Boolean variables of F e
V , and each clause in F e

V is denoted by
Ce

j where j ∈ {1, 2, . . . ,m}. Example 2 illustrates our definitions.

Example 2. Consider formula F over V = {a, b, c} in Example 1. The variable
a appears in three clauses, so we can obtain the following expanded formula,
where a = a[e1]:

Fe
a : (a[e1]) ∧ (a[e2] ∨ b) ∧ (a[e3] ∨ c)

As a is the only shared variable, the expanded formula F e
V would be F e

a , where
Ce

1 = (a[e1]), C
e
2 = (a[e2] ∨ b), Ce

3 = (a[e3] ∨ c), and V e = {a[e1], a[e2], a[e3], b, c}.

It is obvious that a Boolean formula F may not be logically equivalent to its
expanded formula F e

V . However, if F e
V is equivalently expanded, i.e., it satisfies

the following condition:

v[e1] ⇔ v[e2] ⇔ · · · ⇔ v[ek] for all v ∈ V

then an input vector v ∈ {0, 1}|V | for formula F uniquely determines an input
vector ve ∈ {0, 1}|V e| for formula F e

V , and vice versa. In such cases, Lemma 1
proves that v is a solution to F if and only if ve is a solution to F e

V . Let us
consider F in Example 1 again. If a[e1] ⇔ a[e2] ⇔ a[e3], then Fe

V ⇔ F .

Lemma 1. Given a formula F over V , if F is equivalently expanded to F e
V ,

then v is a solution to F iff ve is a solution to F e
V .

From Lemma 1, given a CNF formula F over V , our parallel oracle operates
on its equivalently expanded formula F e. But how can we ensure that those
expanded variables are logically equivalent? The answer is entanglement! For
each variable v ∈ V shared among k clauses, we prepare the following entangled
state initially for v and its expanded variables:∣∣v[e1]〉 ∣∣v[e2]〉 · · · ∣∣v[ek]〉 =

1√
2
(|0⟩⊗k + |1⟩⊗k)

In this setting, each shared variable and its expanded variables will be all |0⟩
with 1

2 probability or be all |1⟩ with 1
2 probability. This state is actually the GHZ
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(c) Inverse Circuit

Fig. 4: Quantum circuit construction scheme for clauses and formula.

state for k qubits and can be generated by a quantum circuit efficiently [19] with
depth O(log2 k).

The proposed parallel oracle construction is a bottom-up approach. Suppose
the expanded formula is F e

V : Ce
1 ∧ Ce

2 ∧ · · · ∧ Ce
m. The quantum circuit of each

clause Ce
i is constructed first for all i ∈ {1, 2, . . . ,m}, and all the m clause

circuits are then conjuncted. Fig. 4a shows how to construct the circuit for each
clause Ce

i : l1 ∨ l2 ∨ . . . ∨ ln, where the qubit |Ce
i ⟩ represents the truth value

(initially |0⟩) of clause Ce
i . Notice that the Mj gate here depends on literal lj

for j ∈ {1, 2, . . . , n}, exactly the same as in Fig. 2a, i.e., if lj is negative, Mj

would be the I gate ; otherwise, Mj would be the X gate. Lemma 2 proves the
correctness of the clause construction, where

∣∣Ce
i
′〉 gives the result of the clause

after the computation in Fig. 4a.

Lemma 2 (Clause Correctness).
∣∣Ce

i
′〉 = |1⟩ ⇔ clause Ce

i is true.

Once all the m clauses are constructed, they are conjuncted by a m-qubit
Toffoli gate, as shown in Fig. 4b, in which |F e⟩ is the qubit (initially 0) rep-
resenting the truth value of formula F e controlled by the m qubits |Ce

i ⟩ for
i ∈ {1, 2, . . . ,m}. Lemma 3 proves the correctness of the formula construction.

Lemma 3 (Formula Correctness).
∣∣F e′〉= |1⟩ ⇔ formula F e is true.

Fig. 5 shows the construction for the whole parallel oracle O = Ω−1(P (Ω)),
where the Ω block is constructed by composing the building blocks of clause
circuits and their conjunction; the P block applies a Z gate on the |F e⟩ qubit
to give a “−1” phase to the input vector when |F e⟩ is |1⟩, i.e., when formula
F e evaluates to true; the Ω−1 block is the inverse operation of Ω to restore the
input vector back to its initial value for the following diffusion process. The Ce−1

i

circuit is the inverse operation of Ce
i . Its construction is shown in Fig. 4c. The

correctness of the proposed parallel oracle O is proved in Theorem 1.

Theorem 1 (Parallel Oracle Correctness). Let ve be the input vector of
formula F e. Our parallel oracle O ensures the following:

O(|ve⟩) =

{
|ve⟩ , if F e(ve) = 0

− |ve⟩ , if F e(ve) = 1
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Fig. 5: The parallel oracle construction scheme.

Let us get back to our running example F : (a) ∧ (a ∨ b) ∧ (a ∨ c). After the
conventional oracle O, the state of |v⟩ : |a⟩ |b⟩ |c⟩ becomes

1√
8
(|000⟩+ |001⟩+ |010⟩+ |011⟩+ |100⟩+ |101⟩+ |110⟩ − |111⟩),

where |111⟩ has a “−1” phase as it is the solution to formula F . In our approach,
the input vector |v⟩ is equivalently expanded into |ve⟩ :

∣∣a[e1]〉 ∣∣a[e2]〉 ∣∣a[e3]〉 |b⟩ |c⟩.
After applying our parallel oracle O, the state of the input vector |ve⟩ becomes

1√
8
(
∣∣0̃00〉+ ∣∣0̃01〉+ ∣∣0̃10〉+ ∣∣0̃11〉+ ∣∣1̃00〉+ ∣∣1̃01〉+ ∣∣1̃10〉− ∣∣1̃11〉),

where 0̃ denotes 000, 1̃ denotes 111, and
∣∣1̃11〉 is the solution to the expanded

formula Fe : (a[e1]) ∧ (a[e2] ∨ b) ∧ (a[e3] ∨ c).

3.2 Parallel Diffuser

The purpose of the diffuser is to amplify the amplitude of the solution vec-
tors to increase/maximize the probability of the solution being measured. The
classic diffuser used in Grover’s algorithm adopts the so-called inversion about
the average approach to achieve this goal. However, the classic diffuser does
not work directly in our parallel setting. Let us use the running example F :
(a)∧ (a∨ b)∧ (a∨ c) again for illustration. Fig. 3c shows the case when the clas-
sic diffuser is directly applied to Fe on all qubits (including the expanded ones∣∣a[e2]〉 and

∣∣a[e3]〉), which generates the wrong result. This is because the classic
diffuser assumes all the combinations of the input values have an equal proba-
bility of occurring, i.e.,

∣∣a[e1]〉 ∣∣a[e2]〉 ∣∣a[e3]〉 could be |000⟩, |001⟩, |010⟩, . . . , |111⟩
with equal probability 1

8 . This violates the invariant we want to preserve at
all times, i.e.,

∣∣a[e1]〉 ∣∣a[e2]〉 ∣∣a[e3]〉 can only be either |000⟩ or |111⟩. The correct
parallel diffuser for F is the one shown in Fig. 6b.

Now, let us see what adjustments have to be made to utilize the classic
diffuser in our parallel setting. Here, we omit the details of the classic diffuser,
which is out of scope. Instead, let us assume that |v⟩ in F is amplified as

(α0 |000⟩+α1 |001⟩+α2 |010⟩+α3 |011⟩+α4 |100⟩+α5 |101⟩+α6 |110⟩+α7 |111⟩),

where αi ∈ C, i ∈ {0, 1, . . . , 7}, and
∑7

i=0 |αi|2 = 1. Our parallel diffuser is
designed to achieve the same effect, i.e., to amplify |ve⟩ in formula Fe as

(α0

∣∣0̃00〉+α1

∣∣0̃01〉+α2

∣∣0̃10〉+α3

∣∣0̃11〉+α4

∣∣1̃00〉+α5

∣∣1̃01〉+α6

∣∣1̃10〉+α7

∣∣1̃11〉),
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〉
H X X H∣∣vd−1[ ̸=]
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〉
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(a) General diffuser scheme.

∣∣a[e1]〉 H X X H∣∣a[e2]〉∣∣a[e3]〉
|b⟩ H X X H

|c⟩ H X Z X H

(b) Diffuser for formula F

Fig. 6: The parallel diffuser scheme.

where 0̃ denotes 000, 1̃ denotes 111. Fig. 6a shows the quantum circuit con-
struction for the proposed parallel diffuser. Suppose a CNF formula F is over
V , where |V | = d. For each variable vj ∈ V for j ∈ {1, 2, . . . , d}, if vj appears in
kj clauses in F , we use the following notation

∣∣vj[ ̸=]

〉
=

∣∣vj[e2]〉 ∣∣vj[e3]〉 · · · ∣∣∣vj[ekj
]

〉
to denote the tensor product of all expanded variables except vj[e1]. In Step 1 of
Fig. 6a, each shared variable |vj⟩1 is entangled with its expanded variables, i.e.,
|vj⟩1

∣∣vj[ ̸=]

〉
1
= αj |0⟩⊗kj + βj |1⟩⊗kj , where αj , βj ∈ C.

In Step 2, each expanded variable is disentangled with |vj⟩ by a CNOT gate
with one control (i.e, |vj⟩) and (kj−1) targets (i.e.,

∣∣vj[ ̸=]

〉
). Thus, |vj⟩2

∣∣vj[ ̸=]

〉
2
=

(αj |0⟩ + βj |1⟩) ⊗ |0⟩⊗kj−1 , i.e.,
∣∣vj[eq ]〉2 becomes |0⟩ and is independent from∣∣vj[e1]〉 for q ∈ {2, 3, . . . , kj}.

In Step 3, only
∣∣vj[e1]〉2 is selected as the representative for the diffusion

process for all j ∈ {1, 2, . . . , d}, and the classic diffuser can be utilized. Actually,
the selected representatives

∣∣v1[e1]〉2 ∣∣v2[e1]〉2 · · · ∣∣vd[e1]〉2 are exactly the input of
the classic diffuser |v1⟩ |v2⟩ · · · |vd⟩, as shown in Fig. 3.

Assume
∣∣vj[e1]〉3 is amplified as α′

j |0⟩ + β′
j |1⟩ after the diffusion process.

In Step 4, the expanded variables
∣∣vj[ ̸=]

〉
are entangled back with |vj⟩ by a

CNOT gate with one control (i.e, |vj⟩) and (kj − 1) targets (i.e.,
∣∣vj[ ̸=]

〉
). Thus,

|vj⟩4
∣∣vj[ ̸=]

〉
4
= α′

j |0⟩
⊗kj + β′

j |1⟩
⊗kj . Theorem 2 shows the details step by step

and proves that our parallel diffuser has the same effect as the classic diffuser.

Theorem 2 (Parallel Diffuser Correctness). Let |v⟩ : |v1⟩ |v2⟩ · · · |vd⟩ be the
input vector of F and D be the classic diffuser such that

D(|v⟩) =
2d−1∑
i=0

α′
i (|b1⟩ |b2⟩ · · · |bd⟩) ,
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where the index i is represented as the binary string |b1⟩ |b2⟩ · · · |bd⟩ ∈ {0, 1}d. If
the input vector of F e is |ve⟩, our parallel diffuser D ensures the following:

D(|ve⟩) =
2d−1∑
i=0

α′
i

(
|b1⟩⊗k1 |b2⟩⊗k2 · · · |bd⟩⊗kd

)
.

4 Distributed Quantum SAT Solver

In this section, we consider the scenario where one quantum computer has insuf-
ficient qubits to handle the whole SAT problem. To overcome this issue, we follow
the “divide and conquer” strategy and develop a distributed quantum SAT solver,
including a distributed oracle (Sect. 4.1) and a distributed diffuser (Sect. 4.2).

4.1 Distributed Oracle

Let us recall the proposed parallel oracle in Fig. 5. The circuit for processing
each clause Ce

i is independent of each other for i ∈ {1, 2, . . . ,m} and thus can
be naturally handled by one dedicated quantum computer. The critical question
here is “how to handle the conjunction distributedly”, i.e., how to distributedly
perform the CNOT gate with m control qubits and one target qubit.

Sarvaghad-Moghaddam et al. proposed a protocol for distributed quantum
gates [30] based on quantum teleportation [9,11,33,36]. However, the correctness
of the protocol was not proved in their paper. We generalise their work to a
distributed controlled-U gate with any number of nodes and further prove the
correctness of our design. Fig. 7 shows the design of the protocol. Suppose we
want to perform a controlled U gate with m control qubits, as shown in the
right side of Fig. 7, where |Ci⟩ is the control qubit for i ∈ {1, 2, . . . ,m} and
|t⟩ is the target qubit. The proposed distributed protocol is designed in a way
that the m control qubits need not be in the same quantum computer (node)
where the target qubit |t⟩ is located. Let us assume that the control qubit |Ci⟩
is located on node i where i ∈ {1, 2, . . . ,m}, and the target qubit |t⟩ is located
on a master node, as shown in the left side of Fig. 7. To perform the controlled
U gate remotely, initially, each node i shares, with the master node, a pair of
the following entangled qubits:

|ei⟩ |êi⟩ =
1√
2
(|00⟩+ |11⟩), for all i ∈ {1, 2, . . . ,m},

where node i holds qubit |ei⟩ and the master node holds qubit |êi⟩.
In step 1, each node i performs a CNOT gate on |Ci⟩ |ei⟩, measures qubit |ei⟩

in the standard (|0⟩ and |1⟩) basis and then sends the measurement outcome to
node master via a non-quantum channel (e.g., TCP/IP, etc.). After receiving the
measurement outcome, the node master applies an X gate on qubit |êi⟩ if the
measurement outcome is |1⟩; otherwise, nothing is performed. After this step,
the qubit |ei⟩ collapses, and the two qubits |Ci⟩ |êi⟩ become entangled in the
same state, i.e., they are either in state |00⟩ or |11⟩.
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Fig. 7: The distributed m-controlled-U gate scheme.

In step 2, since |Ci⟩ and |êi⟩ have the same state, applying the controlled U
gate with |êi⟩ as the m control qubits is equivalent to that with |Ci⟩ as the m
control qubits for i ∈ {1, 2, . . . ,m}.

Step 3 disentangles |Ci⟩ from |êi⟩. To do so, the node master measures the
qubit |êi⟩ in the |+⟩ and |−⟩ basis and then sends the measurement outcome to
node i via a non-quantum channel. After receiving the measurement outcome,
node i performs a Z gate on qubit |Ci⟩ if the outcome is |−⟩; otherwise, nothing is
performed. Once node i finishes this step for each i ∈ {1, 2, . . . ,m}, the operation
of the controlled U gate is accomplished distributedly among the m + 1 nodes.
Theorem 3 proves the correctness of the distributed protocol.

Theorem 3 (Distributed Protocol Correctness of Fig. 7).
Let |Ci⟩ = xi |0⟩ + yi |1⟩, where xi, yi ∈ C and i ∈ {1, , 2, . . . ,m}. The following
three conditions hold:
(1) In Step 1, |êi⟩ |Ci⟩ = xi |00⟩+ yi |11⟩ for all i ∈ {1, 2, . . . ,m}.
(2) In Step 2, |t′⟩ = U(|t⟩) iff |Ci⟩ = |1⟩ for all i ∈ {1, 2, . . . ,m}.
(3) In Step 3, |Ci⟩ = xi |0⟩+ yi |1⟩ for all i ∈ {1, 2, . . . ,m}.

With this developed protocol, we can perform the conjunction of m clauses
distributedly. The design of the distributed oracle is shown in Fig. 8a, where
each clause Ce

i is handled by node i, and the node master interacts with node
i on qubit |Ce

i ⟩ for all i ∈ {1, 2, . . . ,m} as the m control qubits to accomplish
the conjunction based on the distributed protocol. Notice that there are two
conjunction operations to be performed distributedly: one is in the Ω block, and
the other is in the Ω−1 block. The correctness of the proposed distributed oracle
follows from Theorem 1 and Theorem 3.

Let us use the running example for illustration. Fig. 8b shows6 the distributed
oracle for the formula F : (a)∧ (a∨ b)∧ (a∨ c). Since there are three clauses, we
need four nodes involved (one for each clause and one for the master node). Each
6 Due to the space limit, this figure is shrunk to show the structure only. The full-size

version can be found in the author version [27].
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(b) Oracle for formula F .

Fig. 8: The parallel and distributed oracle construction scheme.

node i shares the pair |ei⟩ |êi⟩ with the node master for i ∈ {1, 2, 3} such that
node i holds qubit |ei⟩, while the node master holds qubit |êi⟩. The conjunction
is performed based on the proposed distributed protocol, as shown in the ∧-block
in cyan color. The other conjunction operation in the Ω−1 is identical, which is
omitted here due to the space limit.

4.2 Distributed Diffuser

Let us recall the design of our parallel diffuser in Fig. 6a. Since only variables∣∣vj[e1]〉 for j ∈ {1, 2, . . . , d} are selected as the representative for the diffusion
process, it is natural to host each of

∣∣vj[e1]〉 on a different node for the distributed
diffusion. Fig. 9a shows the design of our distributed diffuser. The critical op-
eration is the controlled Z gate (the center block in cyan color), which can be
accomplished based on the proposed distributed protocol, as introduced in Sec-
tion 4.1. Except for the controlled Z gate, there are two other types of operations
needed to be performed distributedly:

1.
∣∣vj[e1]〉 disentangles with

∣∣vj[ ̸=]

〉
for all j ∈ {1, 2, . . . , d}, and

2.
∣∣vj[e1]〉 entangles back with

∣∣vj[ ̸=]

〉
for all j ∈ {1, 2, . . . , d},

as shown in the leftmost and rightmost cyan blocks of Fig. 9a, respectively. These
operations can be accomplished based on the proposed distributed protocol as
well. Notice that we do not unfold the distributed protocol for each operation to
be performed distributedly in Fig. 9a due to the space limit. Instead, we mark
those operations that can be accomplished by the proposed distributed protocol
in cyan color to highlight the high-level structure of our design. The correctness
of our distributed diffuser follows from Theorem 2 and Theorem 3.

We illustrate our approach using the running example. Fig. 9b shows the
distributed diffuser for formula F : (a) ∧ (a ∨ b) ∧ (a ∨ c). Generally, we create
a node for each variable in the formula. Since there are three variables in F ,
we need three nodes, where the first node holds

∣∣a[e1]〉, the second holds qubits
|b⟩ and

∣∣a[e2]〉, and the third holds qubits |c⟩ and
∣∣a[e3]〉. For the controlled Z
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(a) General diffuser scheme.

∣∣a[e1]〉 H X X H∣∣a[e2]〉
|b⟩ H X X H∣∣a[e3]〉
|c⟩ H X Z X H

(b) Diffuser for formula F .

Fig. 9: The parallel and distributed diffuser scheme.

gate in the diffusion process, the third node can serve as the node master in the
distributed protocol. Before (resp. after) the diffusion process,

∣∣a[e1]〉 needs to
disentangle (resp. entangle back) with

∣∣a[e2]〉 and
∣∣a[e3]〉. These operations can

be accomplished by our distributed protocol as well. Note that our distributed
protocol works only when there is one target qubit, while the structure of the
disentangling/entangling operations here has one control qubit with multiple
target qubits. Thus, instead of performing the disentangling/entangling in one
shot, we need to perform them sequentially, e.g.,

∣∣a[e1]〉 first disentangles (entan-
gles back) with

∣∣a[e2]〉 then with
∣∣a[e3]〉, as the leftmost (rightmost) cyan blocks

in Fig. 9b. Interestingly, the order does not matter. One can easily check that
different orders give the same result.

5 Complexity Analysis and Evaluation

Now, we theoretically compare the time complexity of our quantum SAT solvers
with the conventional (sequential) quantum SAT solver w.r.t. the circuit depth,
as longer circuit depth corresponds to longer execution time. Notice that different
types of quantum computers have different ways to realize quantum mechanisms
and thus have different complexities. For superconducting quantum computers,
each operation has to be decomposed and implemented based on basic (one or
two inputs) quantum gates, e.g., X, CNOT, etc. In this setting, the m-qubit tof-
foli gate has to be implemented using O(log2 m) basic gates [31], i.e., it requires
O(log2 m) depth. However, for non-superconducting quantum computers, e.g.,
trapped ion quantum computers [29,35], the m-qubit Toffoli gate can be imple-
mented as one single gate and only requires O(1) depth. In the following, we dis-
cuss the complexity in two settings: superconducting and non-superconducting.
The comparisons are summarized in Table 1.

Superconducting. Given a formula F with m clauses, the conventional or-
acle requires O(m) time complexity to process each clause and O(log2 m) time
complexity to perform the conjunction by the m-qubit Toffoli gate, which sug-
gests an overall O(m) time complexity. Our parallel oracle, as well as our dis-
tributed oracle, require O(1) time complexity to process all clauses and O(log2 m)
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superconducting non-superconducting
Oracle Diffuser Oracle Diffuser

Conventional O(m) +O(log2 m) O(log2 n) O(m) O(1)
Parallel O(1) +O(log2 m) O(log2 kmax) +O(log2 n) O(1) O(1)

Distributed O(1) +O(log2 m) O(kmax) +O(log2 n) O(1) O(kmax)

Table 1: Time (depth) complexity comparisons

time complexity to perform the conjunction, which suggests an overall O(log2 m)
depth. For the diffusion process, the conventional diffuser requires O(log2 n) time
complexity [31] because of the n-qubit controlled-Z gate, where n is the number
of variables. Our parallel diffuser, as well as our distributed diffuser, have a small
extra overhead because they need to disentangle or entangle a variable with each
of its expended variables. Assume that variable vj ∈ V is shared by kj clauses
for j ∈ {1, 2, . . . , d} and |V | = d. Let kmax be the maximum value among kj for
all the shared variables. This extra overhead would be bounded by O(log2 kmax)
for our parallel diffuser [31], and bounded by O(kmax) for our distributed dif-
fuser. Notice that the disentangling/entangling process for each variable vj is
independent and can be performed in parallel. In practice, this extra overhead
would be negligible as kmax would be much smaller than n, the total number of
variables, as well as m, the totoal number of clauses. Also notice that we safely
omit the time complexity of preparing the initial GHZ states for all variables
because the initialization for each variable [19] can be performed in parallel and
is thus bounded by O(log2 kmax) in overall, which is subsumed by other factors.

Non-superconducting. In non-superconducting quantum computers, the
m-qubit Toffoli gate for clause conjunction and the n-qubit controlled Z gate in
all the diffusers can be done in one operation (gate) and thus reduced to O(1)
time complexity [29, 35]. However, our distributed diffuser still requires O(kmax)
time complexity because the operation to disentangle or entangle a variable with
each of its expended variables is distributed and has to be done sequentially based
on the proposed distributed protocol (Fig. 7). Notice that this operation in our
parallel diffuser only takes O(1) time complexity because it can be done by one
single operation in a (centralized) quantum computer [29, 35]. The complexity
of preparing initial GHZ states is safely omitted here because the initialization
for each variable takes O(1) and can be performed in parallel, which makes the
overall complexity in depth still O(1).

#Iterations. How many iterations are required for our parallel and dis-
tributed solvers to obtain the solutions? The answer is O(

√
N/M), the same

as that of the conventional one, where N is the size of the search space and
M is the number of solutions (c.f. Section 2.1). Notice that although additional
expanded variables are introduced, they have the same values and are entangled
with the original variables. Furthermore, only original variables are involved in
the diffusion process, i.e., the size of the search space remains the same.

Simulation. We have implemented the proposed parallel and distributed
SAT solver for our running example F : (a) ∧ (a ∨ b) ∧ (a ∨ c) in Qiskit [6].
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Fig. 10: Simulation results for formula F .

The implementation can be obtained in [1]. For the parallel SAT solver, a total
of 9 qubits are required (three for variable a, two for variables b and c, three
for all the clauses, and one for formula F). For the distributed SAT solver, a
total of 36 qubits are required (9 for formula F itself and 27 for performing the
proposed distributed quantum protocol). Only one Grover iteration is required
for both solvers. Fig. 10a and Fig. 10b show the simulation results of performing
the two implementations for 8, 192 shots, respectively. The x-axis shows the
measured outcome of |abc⟩, while the y-axis shows the count of each outcome
being measured. One can observe that |111⟩, the solution to formula F , has
an overwhelmingly higher probability over other non-solution inputs that are
almost negligible. Thus, this experiment shows the correct result as expected
from our proofs. We have tried more and larger examples, and they all yielded
correct results through cross-checking with classical SAT answers. Due to the
page limit, we refer the readers to [2] for more details. Given an arbitrary Boolean
formula, we have also developed a tool [3] that can automatically generate its
corresponding quantum circuit of the proposed parallel solver for SAT solving.

Execution on Real Quantum Computers. We have also tried to imple-
ment the conventional SAT solver and the proposed parallel solver for our run-
ning example F : (a)∧(a∨b)∧(a∨c) on a real quantum computer, “ibm_brisbane”
provided by IBM [25]. This quantum computer is based on superconducting and
offers at most 127 qubits for usage, but it uses a special set of universal ba-
sic gates, which is different from the regular Clifford set. Thus, both designs of
the conventional and our parallel solvers have to be transpiled first to be exe-
cuted on this quantum computer. After the transpilation, the circuit depth of
the conventional solver is 480, while that of our parallel solver is only 328, which
is around 31.7% reduction. The execution time of the conventional solver for
1, 024 shots takes 35 seconds, while that (with the same number of shots) of our
parallel solver takes 30 seconds, which is around 14.3% reduction. This result
also confirms our assumption that shorter circuit depth has a shorter execution
time. Although the 14.3% reduction in execution time does not correspond to
the 31.7% reduction in circuit depth, we found that this could be due to the
fact that the example is small and the initialization time for the quantum com-
puter is included. Comprehensive experiments on large examples are extremely
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costly7. Thus, we defer it to future work. Another reason for not experimenting
more is that the current state-of-the-art quantum computer does not natively
support multiple processing units running in parallel, so it cannot fully reflect
the advantage of our theories.

6 Related Work

Quantum search. Improving the proof search in SAT solving using quantum com-
puting is a promising and broadly discussed direction. Barreto et al.’s method [8]
adopts Shenvi’s quantum random walk search algorithm [37] in a local search
setting and applies it to 3-SAT. Their method enables parallel simulation of
the quantum SAT solving algorithm, though it is different from our notion of
performing and coordinating multiple quantum SAT solving instances in par-
allel. Another prominent example is to use Grover’s algorithm to search for a
satisfiable truth assignment for Boolean variables [20].

Hybrid methods. A straightforward application of Grover’s algorithm in SAT
solving requires a large number of qubits. Consequently, several hybrid ap-
proaches are proposed to reduce the number of qubits by combining quantum
computing with classical computing algorithms. For example, quantum coop-
erative search replaces some qubits with classical bits and solves the classical
bits using traditional SAT solving [15]. Zhang et al.’s approach optimize the
data structures in SAT solving to take advantage of Grover’s algorithm and
DPLL [40]. Another venue is to focus on a parameterized area of the search
space and then Grover’s search [39]. These hybrid approaches achieved varied
theoretical improvements in the time complexity of SAT solving.

Quantum heuristics. Quantum walk [16] could be applied in heuristics to im-
prove SAT solving. Campos et al. [13] presented an algorithm for solving k-SAT,
where each clause has exactly k variables. Their approach leverages continuous
time quantum walk over a hypercube graph with potential barriers for exploiting
the properties of quantum tunnelling to obtain the possibility of getting out of
local minima. Their simulation shows a reasonable success rate, though heuris-
tic methods may not guarantee that a solution is found. Similarly, research on
classical algorithms for quantum SAT solving [5] is also in a different vein.

Quantum annealing. Quantum annealers [7] are another widely used opti-
mization technique that minimizes objective functions over discrete variables
using quantum fluctuation. Bian et al.’s method [10] encodes SAT solving into
a quadratic unconstrained binary optimization (QUBO) problem and applies
quantum annealing to solve it.

Applications. Quantum SAT solving has found numerous applications. For in-
stance, Quantum SAT solving may be applied to speed up integer factorization.
Mosca et al. [32] showed how to design SAT circuits for finding smooth num-
bers, which is an essential step in Number Field Sieve (NFS) — the best-known
classical solution. Assuming that there is a quantum SAT solver that performs

7 IBM’s “Pay-As-You-Go” plan [25] charges USD $1.6 per second for execution.
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better than classical solvers, their method would lead to a factorization method
that outperforms NFS. The maximum satisfiability (MAX-SAT) problem asks
for the maximum number of clauses that are satisfiable in a conjunctive normal
form. Alasow and Perkowski [4] apply Grover’s search with a customized oracle
to perform SAT solving, which also leads to an efficient solution to MAX-SAT.

Qiu et al. proposed a distributed Grover’s algorithm [34], which decomposes
the original SAT formula into a set of 2k subformulas (obtained by instantiating
k Boolean variables). Each of the 2k subformulas is then solved by one quantum
computer running Grover’s algorithm, and the final solution depends on the
subsolutions to the subformulas. Their “divide and conquer” strategy does not
utilize any quantum characteristics, while ours utilizes quantum teleportation.

7 Conclusion and Future Work

This work is the first to propose a parallel quantum SAT solver using entan-
glement. Compared to the sequential quantum SAT solver, our parallel solver
reduces the time complexity of each Grover iteration from linear time O(m) to
constant time O(1) by using more qubits. To scale to complex problems, we also
propose the first distributed quantum SAT solver using quantum teleportation
such that the total qubits required are shared and distributed among a set of
quantum computers (nodes), and the quantum SAT solving is accomplished col-
laboratively by all the nodes. We prove the correctness of our methods. They
are also evaluated in simulations via Qiskit, and the results are correct. In the
future, we plan to extend our parallel and distributed quantum SAT solvers to
handle satisfiability modulo theories (SMT) problems.
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material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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