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Abstract
We establish sharp Adams type inequalities on Sobolev spaces Wα,n/α(X) of any
fractional order α < n on Riemannian symmetric space X of noncompact type with
dimension n and of arbitrary rank. We also establish sharp Hardy–Adams inequalities
on the Sobolev spaces Wn/2,2(X). We use Fourier analysis on the symmetric spaces
to obtain these results.
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1 Introduction

The study and understanding of various kinds of sharp Sobolev inequalities which
describe the embedding of Sobolev spaces into L p spaces or Hölder spaces have been
a matter of intensive research. They play an important role in calculus of variations,
differential geometry, harmonic analysis, partial differential equations and other areas
of modern mathematics. It is well-known that the Sobolev embedding holds for the
case of compact Riemannian manifolds. To be precise, let (M, g) be a compact Rie-
mannianmanifold then the Sobolev embedding states that the Sobolev spaceWk,p(M)

is continuously embedded into L p∗
(M)where p∗ = np

n−kp provided 1 ≤ p < n
k . How-

ever, when M is a complete noncompact manifold then the Sobolev embedding is a
non-trivial issue. In fact, there exists a complete noncompact Riemannian manifold
M for which the Sobolev embedding Wk,p(M) ↪→ L p∗

(M) does not hold for any p
satisfying kp < n. We refer to [14] for a detailed discussion on the topic.
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When M is compact and p = n/k, the space Wk,p(M) is continuously embedded
into Lq(M) for all q < ∞ but not for q = ∞. When M is a bounded domain
in R

n with smooth boundary, Trudinger [34] established in the borderline case that
W 1,n

0 (�) ⊂ Lφn (�), where Lφn (�) is the Orlicz space associated with the Young
function φn(t) = exp

(
β|t |n/(n−1)

) − 1 for some β > 0. In 1971, Moser sharpened
the Trudinger inequality in [27] by finding the optimal β. He showed that there exists
a positive constant C depending only on n such that

sup
u∈C∞

c (�),
∫
� |∇u|n≤1

∫

�

eβ|u(x)|n/(n−1)
dx ≤ C |�|,

holds for every β ≤ βn = n[ωn−1]1/(n−1), where � is a bounded domain in R
n , |�|

denotes the volume of � and ωn−1 is the surface measure of the unit sphere in R
n .

Moreover, when β > βn , the above supremum is infinite.
In 1988, D. Adams extended such an inequality on finite domain to higher order

Sobolev spaces as follows.

Theorem 1.1 [1] Let � be a domain in R
n with finite Lebesgue measure and m be

a positive integer less than n. There is a constant c0 = c0(n,m) such that for all
u ∈ Cm(Rn) with support contained in � and ‖∇mu‖n/m ≤ 1, the following uniform
inequality holds

1

|�|
∫

�

exp
(
β(n,m)|u(x)|n/(n−m)

)
dx ≤ c0, (1.1)

where

β(n,m) = n

ωn−1

[
πn/22m	 ((m + 1)/2)

	 ((n − m + 1)/2)

]n/(n−m)

, m is odd;

= n

ωn−1

[
πn/22m	 (m/2)

	 ((n − m)/2)

]n/(n−m)

, m is even.

Furthermore, the constant β(n,m) in (1.1) is sharp in the sense that if β(n,m) is
replaced by any larger number, then the integral in (1.1) cannot be bounded uniformly
by any constant.

For m = 1, it recovers the Trudinger–Moser inequality. In [1], Theorem 1.1 was
proved by representing functions by Riesz kernels and establishing inequalities for
integral operators governed by these kernels.

There have been many extensions and generalizations of this result to different
settings. For instance, L. Fontana in [10] obtained a sharp version of the inequality
(1.1) on compact Riemannian manifolds. When � is a Euclidean ball, more refined
results have been established. In dimension two, Wang and Ye [35] proved a Hardy–
Trudinger–Moser inequality on a planar disk B

2 by combining the Trudinger–Moser
inequality with the Hardy inequality. Several variants of Trudinger–Moser and Adams
type inequalities has been established in unbounded domains of Euclidean spaces. In
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[21], N. Lam and G. Lu developed a new approach to establish these types of sharp
inequalities in unbounded domains of Euclidean spaces without using the standard
symmetrization. This approach can be applied in the context of Riemannian and sub-
Riemannianmanifoldswhere the symmetrization argument does notwork (see e.g. [22,
37]). Theyproved the followingAdams type inequalities onSobolev spaceWα,n/α(Rn)

of fractional order α for 0 < α < n:

Theorem 1.2 Let 0 < α < n be an arbitrary real positive number, p = n/α and
τ > 0. There holds

sup
u∈Wα,p(Rn),‖(τ I−�)α/2u‖p≤1

∫

Rn
�p

(
β0(n, α)|u(x)|p′)

dx ≤ C < ∞,

where β0(n, α) = n
ωn−1

[
πn/22α	(α/2)
	((n−α)/2)

]p′
, 1/p + 1/p′ = 1 and

�p(t) = et −
jp−2∑

j=0

t j

j ! , jp = min{ j ∈ N : j ≥ p}.

Furthermore, this inequality is sharp in the sense that if β0(n, α) is replaced by any
β > β0(n, α), then the supremum is infinite.

In the case of real hyperbolic spacesB
n , Trudinger–Moser, Adams inequalities have

been investigated in details. From a conformal point of view, an Adams inequality in
the hyperbolic space was proved by Karmakar and Sandeep [18]. On the other hand,
in a series of papers [23–25], using the Riesz kernel estimates and Fourier analysis
on B

n , Lu and Yang (also J. Li) proved sharp Adams and Hardy–Adams inequalities
on B

n . Precisely, in [24] they proved the results for any fractional order α < n on
B
n in all dimension n. Recently, in [9, 26], Lu and Yang (also in collaboration with

Joshua Flynn), have established similar results on complex hyperbolic spaces and
more generally on all rank one symmetric spaces of noncompact type. To prove their
results, the authors derived the optimal bounds for the Green functions of the fractional
Laplacians when the hyperbolic distance is small. To get these optimal bounds, they
heavily used the explicit expression of the heat kernel available for the hyperbolic
spaces. For the bounds corresponding to large hyperbolic distance, they used the
results due to J. Anker and L. Ji [5].

Bertrand and Sandeep [6] established a Trudinger–Moser–Adams inequality on
Cartan-Hadamard manifold with strictly negative sectional curvature. For other
Trudinger–Moser–Adams inequalities on Riemannian manifolds, we refer to [20, 30,
32, 36, 37].

Our concern in this article is to establish these inequalities on Riemannian sym-
metric spaces X of noncompact type of all dimension n ≥ 3 and of arbitrary rank.
Precisely, we prove sharp local and global Adams inequalities (Theorems 1.3, 1.4)
on the fractional order Sobolev spaces Wα,n/α(X), 0 < α < n and Hardy–Adams
inequalities (Theorem 1.8) onWn/2,2(X). Let� denote the Laplace-Beltrami operator
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on X and let ρ denote the half-sum of all positive roots counted with their multiplici-
ties (see (2.2) for the definition). We begin with the following sharp local and global
Adams inequalities of fractional order on X .

Theorem 1.3 Let n ≥ 3, 0 < α < n be an arbitrary positive number, p = n/α and ζ

satisfies ζ > 0 if 1 < p < 2 and ζ > 2|ρ|(1/2−1/p) if p ≥ 2. Then for a measurable
set E with finite volume in X, there exists C = C(ζ, n, α, |E |) such that

1

|E |
∫

E
exp

(
β0(n, α)|u(x)|p′)

dx ≤ C,

for any u ∈ Wα,p(X) with
∫
X |(−�−|ρ|2 + ζ 2)α/2u(x)|p dx ≤ 1. Furthermore, this

inequality is sharp in the sense that if β0(n, α) is replaced by any β > β0(n, α), then
the inequality can no longer hold with some C independent of u.

Theorem 1.4 Let n ≥ 3, 0 < α < n be an arbitrary positive number, p = n/α and ζ

satisfies ζ > 2|ρ||1/2 − 1/p|. Then there exists C = C(ζ, n, α) such that

∫

X
�p

(
β0(n, α)|u(x)|p′)

dx ≤ C,

for any u ∈ Wα,p(X) with
∫
X |(−�−|ρ|2 + ζ 2)α/2u(x)|p dx ≤ 1. Furthermore, this

inequality is sharp in the sense that stated in Theorem 1.3.

We notice that 2|ρ||1/2 − 1/p| < |ρ| provided p > 1. Choosing ζ = |ρ| in
Theorem 1.4, we have the following Adams inequality.

Theorem 1.5 Let n ≥ 3, 0 < α < n be an arbitrary positive number and p = n/α.
Then there exists C = C(ζ, n, α) such that

∫

X
�p

(
β0(n, α)|u(x)|p′)

dx ≤ C,

for any u ∈ Wα,p(X) with
∫
X |(−�)α/2u(x)|p dx ≤ 1.

In [7], the author in collaboration with S. Pusti have established a fractional
Poincaré-Sobolev inequality on X (see Theorem 2.5). Using this we prove the fol-
lowing result in the special case p = 2.

Theorem 1.6 Let n ≥ 3, ζ > 0 and s satisfies 0 < 2 s < min{l + 2|�+
0 |, n}. Then

there exists C = C(ζ, n) such that

∫

X

[
exp

(
β0(n, n/2)|u(x)|2

)
− 1 − β0(n, n/2)|u(x)|2

]
dx ≤ C,

for any u ∈ Wn/2,2(X) with

∫

X

∣
∣
(
−� − |ρ|2

)s/2 (−� − |ρ|2 + ζ 2
)(n−2s)/4

u(x)
∣
∣2 dx ≤ 1. (1.2)
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Furthermore, this inequality is sharp in the sense stated above.

Remark 1.7 The number ν = l+2|�+
0 | is called ‘pseudo-dimension’ (see (2.1) for the

definition). In the case of rank one symmetric spaces, in particular, for real hyperbolic
space B

n of dimension n, the pseudo-dimension ν = 3.

Theorem 1.6 implies the following Hardy–Adams inequality.

Theorem 1.8 Let n ≥ 3, ζ > 0 and s satisfies 2 ≤ 2 s < min{l + 2|�+
0 |, n}. Then

there exists C = C(ζ, n) such that

∫

X

[
exp

(
β0(n, n/2)|u(x)|2

)
− 1 − β0(n, n/2)|u(x)|2

]
dx ≤ C,

for any u ∈ Wn/2,2(X) with

∫

X

∣∣(−�)s/2(−� − |ρ|2 + ζ 2)(n−2s)/4u(x)
∣∣2 dx − |ρ|2sζ n−2s

∫

X
|u(x)|2 dx ≤ 1.

Remark 1.9 For the real hyperbolic spaces, in contrast with [24, Theorem 1.14], our
result improves the range of s with 1 ≤ s < 3/2 for all dimension n.

The article is organized as follows. In Sect. 2, we review some preliminaries of
Riemannian symmetric spaces and Fourier analysis on them. Using Anker’s multiplier
theorem on X , we derive a Sobolev embedding theorem on fractional Sobolev spaces
(Corollary 2.4). Section3 focuses on the optimal Bessel-Green-Riesz kernel estimates
near the origin for the fractional operators. We also need to establish sharp estimates
for the convolution of the fractional kernels. Section4 devotes to the preparation of
the proof of the important local Adams inequality (Theorem 1.3). In Sect. 5, we prove
all the results using Fourier analysis on X .

2 Riemannian Symmetric Spaces of Noncompact Type

In this section, we describe the necessary preliminaries regarding semisimple Lie
groups and harmonic analysis on Riemannian symmetric spaces. These are standard
and can be found, for example, in [12, 15–17]. To make the article self-contained, we
shall gather only those results which will be used throughout this paper.

2.1 Notations

Let G be a connected, noncompact, real semisimple Lie group with finite center and g
its Lie algebra. We fix a Cartan involution θ of g and write g = k⊕pwhere k and p are
+1 and −1 eigenspaces of θ respectively. Then k is a maximal compact subalgebra of
g and p is a linear subspace of g. The Cartan involution θ induces an automorphism �

of the group G and K = {g ∈ G | �(g) = g} is a maximal compact subgroup of G.
Let B denote the Cartan Killing form of g. It is known that B |p×p is positive definite
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and hence induces an inner product and a norm | · | on p. The homogeneous space X
= G/K is a Riemannian symmetric space of noncompact type. The tangent space of X
at the point o = eK can be naturally identified to p and the restriction of B on p then
induces a G-invariant Riemannian metric d on X . For x ∈ X , we denote |x | is the
distance of x from the origin o. For a given x ∈ X and a positive number r we define

B(x, r) = {y ∈ X : d(x, y) < r},

to be the open ball with center x and radius r .
We fix a maximal abelian subspace a in p. The rank of X is the dimension l of a.

We shall identify a endowed with the inner product induced from p with R
l and let a∗

be the real dual of a. The set of restricted roots of the pair (g, a) is denoted by �. It
consists of all α ∈ a∗ such that

gα = {X ∈ g | [Y , X ] = α(Y )X , for all Y ∈ a} ,

is non-zero with mα = dim(gα). We choose a system of positive roots �+ and with
respect to�+, the positiveWeyl chambera+ = {X ∈ a | α(X) > 0, for all α ∈ �+}.
We also let �+

0 be the set of positive indivisible roots, that is, �+
0 = {α ∈ �+ | 2α /∈

�}. Let n be the dimension of X and ν be the pseudo-dimension:

n = l +
∑

α∈�+
mα, and ν = l + 2|�+

0 |. (2.1)

We notice that one cannot compare n and ν without specifying the geometric structure
of X . For example, when G is complex, we have n = ν; but when X has normal real
form, we have n = l + |�+

0 | which is strictly smaller than ν. Let ρ ∈ a∗ denote the
half-sum of all positive roots counted with their multiplicities

ρ = 1

2

∑

α∈�+
mαα. (2.2)

It is known that the L2-spectrum of the Laplace-Beltrami operator � on X is the half-
line (−∞,−|ρ|2]. Let n be the nilpotent Lie subalgebra of g associated to �+, that is,
n = ⊕α∈�+ gα . If N = exp n and A = exp a then N is a nilpotent Lie subgroup and A
normalizes N . For the groupG, we now have the Iwasawa decompositionG = K AN ,
that is, every g ∈ G can be uniquely written as

g = κ(g) exp H(g)η(g), κ(g) ∈ K , H(g) ∈ a, η(g) ∈ N ,

and the map (k, a, n) → kan is a global diffeomorphism of K × A × N onto G.
Let M ′ and M be the normalizer and centralizer of a in K respectively. Then M is a
normal subgroup of M ′ and normalizes N . The quotientW = M ′/M is a finite group,
called the Weyl group of the pair (g, k). W acts on a by the adjoint action. It is known
that W acts as a group of orthogonal transformations (preserving the Cartan-Killing
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form) on a. Each w ∈ W permutes the Weyl chambers and the action of W on the
Weyl chambers is simply transitive. Let A+ = exp a+. Since exp : a → A is an
isomorphism we can identify A with R

l . Let A+ denote the closure of A+ in G. One
has the polar decomposition G = K AK , that is, each g ∈ G can be written as

g = k1(exp Y )k2, k1, k2 ∈ K ,Y ∈ a.

In the above decomposition, the A component of g is uniquely determined moduloW .
In particular, it is well defined in A+. The map (k1, a, k2) → k1ak2 of K × A × K
into G induces a diffeomorphism of K/M × A+ × K onto an open dense subset of
G. It follows that if gK = k1(exp Y )K ∈ X then

|gK | = d(o, gK ) = |Y |.

We recall the following property of the Iwasawa projection map H [16, Lemma 1.14,
p. 217]:

|H(exp Yk)| ≤ |Y |, for Y ∈ a, k ∈ K . (2.3)

We extend the inner product on a induced by B to a∗ by duality, that is, set

〈λ,μ〉 = B(Yλ,Yμ), λ, μ ∈ a∗, Yλ,Yμ ∈ a,

where Yλ is the unique element in a such that

λ(Y ) = B(Yλ,Y ), for all Y ∈ a.

This inner product induces a norm, again denoted by | · |, on a∗,

|λ| = 〈λ, λ〉 1
2 , λ ∈ a∗.

The elements of the Weyl group W act on a∗ by the formula

sYλ = Ysλ, s ∈ W , λ ∈ a∗.

Let a∗
C
denote the complexification of a∗, that is, the set of all complex-valued real

linear functionals on a. The inner products have complex bilinear extensions to the
complexifications aC and a∗

C
. All these bilinear forms are denoted by the same symbol

〈·, ·〉.
Through the identification of A with R

l , we use the Lebesgue measure on R
l as

the Haar measure da on A. As usual on the compact group K , we fix the normal-
ized Haar measure dk and dn denotes a Haar measure on N . The following integral
formulae describe the Haar measure of G corresponding to the Iwasawa and polar
decompositions respectively.

∫

G
f (g)g =

∫

K

∫

a

∫

N
f (k exp Yn) e2ρ(Y ) dn dY dk, f ∈ Cc(G);
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=
∫

K

∫

A+

∫

K
f (k1ak2) J (a) dk1 da dk2,

where dY is the Lebesgue measure on R
l and for Y ∈ a+

J (exp Y ) = c
∏

α∈�+
(sinh α(Y ))mα �

⎧
⎨

⎩

∏

α∈�+

(
α(Y )

1 + α(Y )

)mα

⎫
⎬

⎭
e2ρ(Y ), (2.4)

where c (in the equality above) is a normalizing constant. If f is a function on X =
G/K then f can be thought of as a function on G which is right invariant under the
action of K . It follows that on X we have a G invariant measure dx such that

∫

X
f (x) dx =

∫

K/M

∫

a+
f (k exp Y ) J (exp Y ) dY dkM , (2.5)

where dkM is the K -invariant measure on K/M .

2.2 Fourier Analysis on X

For a sufficiently nice function f on X , its Fourier transform f̃ is defined on a∗
C

× K
by the formula

f̃ (λ, k) =
∫

G
f (g)e(iλ−ρ)H(g−1k)dg, λ ∈ a∗

C
, k ∈ K , (2.6)

whenever the integral exists [16, P. 199].AsM normalizes N the function k → f̃ (λ, k)
is right M-invariant. It is known that if f ∈ L1(X) then f̃ (λ, k) is a continuous
function of λ ∈ a∗, for almost every k ∈ K (in fact, holomorphic in λ on a domain
containing a∗). If in addition, f̃ ∈ L1(a∗ × K , |c(λ)|−2 dλ dk) then the following
Fourier inversion holds,

f (gK ) = |W |−1
∫

a∗×K
f̃ (λ, k) e−(iλ+ρ)H(g−1k) |c(λ)|−2dλ dk, (2.7)

for almost every gK ∈ X [16, Chapter III, Theorems 1.8, 1.9]. Here c(λ) denotes
Harish Chandra’s c-function. Moreover, f → f̃ extends to an isometry of L2(X)

onto L2(a∗+ × K , |c(λ)|−2 dλ dk) [16, Chapter III, Theorem 1.5], that is,

∫

X
| f (x)|2dx = cG

∫

a∗+×K
| f̃ (λ, k)|2 |c(λ)|−2 dλ dk, (2.8)

where cG is a positive number that depends only on G.
We now specialize to the case of K -biinvariant functions f , that is, f satisfies

f (k1gk2) = f (g), for all k1, k2 ∈ K and g ∈ G. Using the polar decomposition of G
wemay view an integrable or a continuous K -biinvariant function f onG as a function
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on A+, or by using the inverse exponential map we may also view f as a function
on a solely determined by its values on a+. Henceforth, we shall denote the set of
K -biinvariant functions in L p(G) by L p(G//K ), for 1 ≤ p ≤ ∞; and K -biinvariant
compactly supported smooth functions by C∞

c (G//K ). If f ∈ L1(G//K ) then the
Fourier transform f̃ can also be written as

f̃ (λ, k) = f̂ (λ) =
∫

G
f (g)φ−λ(g) dg, (2.9)

where φλ is Harish Chandra’s elementary spherical function defined by

φλ(g) =
∫

K
e−(iλ+ρ)

(
H(g−1k)

)
dk, λ ∈ a∗

C
. (2.10)

We now list down some well-known properties of the elementary spherical functions
which are important for us ( [12, Prop 3.1.4], [5, Prop. 2.2.12], [16, Thm 1.1, p. 200;
Lemma 1.18, p. 221]).

Theorem 2.1 (1) φλ(g) is K -biinvariant in g ∈ G and W-invariant in λ ∈ a∗
C
.

(2) φλ(g) is C∞ in g ∈ G and holomorphic in λ ∈ a∗
C
.

(3) For all λ ∈ a∗+ and g ∈ G we have |φλ(g)| ≤ φ0(g) ≤ 1.
(4) The elementary spherical function φ0 satisfies the following estimate:

φ0(exp Y ) �

⎧
⎪⎨

⎪⎩

∏

α∈�+
0

(1 + α(Y ))

⎫
⎪⎬

⎪⎭
e−ρ(Y ), for all Y ∈ a+. (2.11)

(5) For λ ∈ a∗, there holds �φλ = −(|λ|2 + |ρ|2)φλ.
6) For λ ∈ a∗, the function φλ satisfies the following

φ−λ(hg) =
∫

K
e(iλ−ρ)

(
H(g−1k)

)
e−(iλ+ρ)

(
H(hk)

)
dk, g, h ∈ G. (2.12)

We now recall the following asymptotic estimates of the heat kernel ht (x) on X
established by Anker and Ji [5, Theorem 3.7].

Theorem 2.2 Let κ be an arbitrary positive number. Then there exist positive constants
C1,C2 (depending on κ) such that

C1 ≤ ht (exp Y )

t− n
2 (1 + t)

n−l
2 −|�+

0 |
{∏

α∈�+
0
(1 + α(Y )

}
e−|ρ|2t−ρ(Y )− |Y |2

4t

≤ C2,

for all t > 0, and Y ∈ a+, with |Y | ≤ κ(1 + t).
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Let α > 0 and 1 < p < ∞. We recall that the Sobolev spaceWα,p(X) is the image
of L p(X) under the operator (−�)−α/2, equipped with the norm

‖ f ‖Wα,p(X) = ‖(−�)α/2 f ‖L p(X).

If α = N is a non-negative integer, thenWα,p(X) coincides with the classical Sobolev
space

WN ,p(X) = { f ∈ L p(X) : ∇ j f ∈ L p(X),∀1 ≤ j ≤ N },
defined by means of covariant derivatives. We refer to [33] for more details about
function spaces on Riemannian manifolds. For p = 2, the Sobolev space of order α

on X is equivalently defined by

Wα,2(X) = {
f ∈ L2(X) | ‖ f ‖2Wα,2(X)

:=
∫

a∗×K
| f̃ (λ, k)|2 (|λ|2 + |ρ|2)σ |c(λ)|−2 dλ dk < ∞}

.

In [2], J.-P. Anker proved the following Hörmander-Mikhlin type multiplier theorem
in the context of Riemannian symmetric spaces of the noncompact type. Let k be a
K -biinvariant tempered distribution on G and letm be its spherical Fourier transform.

Theorem 2.3 Let 1 < p < ∞, v = |1/p−1/2| and N = [vn]+1. Then T f = f ∗ k
is a bounded operator on L p(X), provided that

(a) m extends to a holomorphic function inside the tube Iv = a∗ + i co(W .2vρ),
(b) ∇ im (for i = 0, · · · , N ) extends continuously to the whole of Iv , with

sup
λ∈Iv

(1 + |λ|)−i |∇ im(λ)| < ∞.

Themultiplier of the operator (−�−|ρ|2+ζ 2)−α/2 is givenby (〈λ, λ〉+ζ 2)−α/2 and
this can be extended to a holomorphic function inside the tube {λ ∈ a∗

C
: |�λ| < ζ }.

Therefore, by using the theorem above we have the following Sobolev embedding
theorem on the fractional order Sobolev spaces Wα,p(X).

Corollary 2.4 Let 1 < p < ∞, α > 0 and ζ > 2|ρ||1/p − 1/2|. Then there exists a
positive constant Sp > 0 such that for all f ∈ Wα,p(X)

‖ f ‖p ≤ Sp‖(−� − |ρ|2 + ζ 2)
α
2 f ‖p.

We recall the following analogue of the Poincaré-Sobolev inequality for the frac-
tional Laplace-Beltrami operator on X . For proof, we refer the reader to [7, Theorem
1.11].

Theorem 2.5 Let dim X = n ≥ 3 and 0 < σ < min{l +2|�+
0 |, n}. Then for 2 < p ≤

2n
n−σ

there exists S = S(n, σ, p) such that for all u ∈ W
σ
2 ,2(X),

‖(−� − |ρ|2)σ/4u‖22 ≥ S‖u‖2p.
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3 Optimal Asymptotic Estimates of Bessel–Green–Riesz Kernels

In what follows, a � b or a = O(b) will stand for a ≤ Cb with a positive constant C
and a ∼ b stand for C−1b ≤ a ≤ Cb.

We first set

γ (α) = 2α πn/2 	(α/2)

	 ((n − α)/2)
, for 0 < α < n. (3.1)

It is well-known that, on the Euclidean spaces, the following identity of convolution
holds [31, Chapter V]: for α, β > 0 with α + β < n

∫

Rn
‖t‖α−n‖t − s‖β−n dt = γ (α)γ (β)

γ (α + β)
‖s‖α+β−n, s ∈ R

n; (3.2)

where the function γ (η) is defined in (3.1) and ‖ · ‖ is the Euclidean norm. In order to
prove Adams inequality on compact Riemannian manifold (M), L. Fontana proved an
analogue of this formula on M [10, Lemma 2.1]. In this section, we need the following
version of this formula valid on a compact subset of X . This is essentially proved in
[10], but for the sake of completeness we sketch the proof.

Lemma 3.1 Suppose α, β > 0 satisfying α + β < n and r > 0. Then there exists ε

satisfying 0 < ε < min{1, n − α − β} such that for x ∈ B(o, r)

∫

B(o,r)
|y|α−n |y−1x |β−n dy ≤ γ (α)γ (β)

γ (α + β)
|x |α+β−n (1 + O(|x |ε)) .

Proof For Riemannian symmetric spaces of noncompact type, it is well-known that
the sectional curvature is everywhere less than or equals zero [15, Theorem 3.1, p.
241]. On the other hand, on a compact subset of a Riemannian manifold, the sectional
curvature is bounded [8, Corollary, p. 167]. Therefore, for r > 0 there exists Kr > 0
such that for any plane section P at any point x ∈ B(o, r) the sectional curvature
K(P) satisfies −Kr ≤ K(P) ≤ 0.

Let B
n be the n-dimensional hyperbolic space of constant curvature −Kr and exp′

be the corresponding exponential map. Let o′ ∈ B
n and B(o′, r) be the geodesic ball

centred at o′ and of radius r inB
n .We consider normal geodesic coordinates onB(o, r)

and on B(o′, r) in X and B
n respectively. It is a feature of these coordinates that the

tangent space at the center is isometric to the standard n-dimensional Euclidean space.
So, by choosing orthonormal basis in ToX = p and To′Bn , we can identify both the
tangent spaces with standard R

n .
If x and y are two points in B(o, r) ⊂ X , we consider their normal geodesic

coordinates s and t points in p ∼= R
n , uniquely determined by x = exp(s) and

y = exp(t).We nowconstruct two points x ′, y′ inB
n by x ′ = exp′(s) and y′ = exp′(t).

The Rauch Comparison Theorem [10, Theorem 2.3] implies that

‖s‖ ≤ |x | ≤ dBn (o′, x ′), ‖t‖ ≤ |y| ≤ dBn (o′, y′), and ‖s− t‖ ≤ |y−1x | ≤ dBn (x ′, y′), (3.3)
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211 Page 12 of 31 M. Bhowmik

where dBn is the hyperbolic metric on B
n . As in [10, eqn.(15)], we have that

dBn (x ′, y′) ≤ ‖s − t‖
{
1 + O

(
(‖s‖ + ‖t‖)2

)}
, (3.4)

where the quantity O ((‖s‖ + ‖t‖|2) ≤ Cr ,Kr (‖s‖ + ‖t‖|2, for some Cr ,Kr > 0
depends only on the radius r and curvature Kr . Also, we have dy = (1 + O(‖t‖)) dt
on the compact set B(o, r) [10, Prop. 2.2]. We now choose a small number ε such that
0 < ε < min{1, n − α − β}. Then, in normal geodesic coordinates around the origin
o, using the notations introduced above, we obtain by (3.3) that

∫

B(o,r)
|y|α−n |y−1x |β−n dy ≤

∫

B(0,r)
‖t‖α−n ‖s − t‖β−n (1 + O(‖t‖)) dt

≤
∫

B(0,r)
‖t‖α−n ‖s − t‖β−n (1 + O(‖t‖ε)

)
dt .

Therefore, using the Euclidean relation (3.2), the estimates (3.3) and (3.4) we have

∫

B(o,r)
|y|α−n |y−1x |β−n dy

≤ γ (α)γ (β)

γ (α + β)
‖s‖α+β−n (1 + O(‖s‖ε)

)

≤ γ (α)γ (β)

γ (α + β)
dBn (o′, x ′)α+β−n (1 + O(dBn (o′, x ′)ε)

) (
1 + O(‖s‖2)

)η

≤ γ (α)γ (β)

γ (α + β)
|x |α+β−n (1 + O(|x |ε)) ,

where η is a positive number and the quantity O(‖s‖2) is bounded on B(0, r). ��
Let kζ,α be the Schwartz kernel of the operator (−� − |ρ|2 + ζ 2)−α/2, for α ∈ R

and ζ > 0. Also, let kα be the kernel of (−�−|ρ|2)−α/2, for 0 < α < l+2|�+
0 |. The

following asymptotic estimates of the Bessel-Green-Riesz kernels at infinity is due to
Anker and Ji [5, Theorem 4.2.2].

Theorem 3.2 (i) For ζ > 0 and β > 0 there holds

kζ,β(x) ∼ |x |(β−l−1)/2−|�+
0 | φ0(x) e

−ζ |x |, |x | ≥ 1.

(ii) For ζ = 0 and for 0 < α < l + 2|�+
0 | there holds

kα(x) ∼ |x |α−l−2|�+
0 | φ0(x), |x | ≥ 1.

In the remaining part of this section we first derive the optimal bounds for the
kernels kα , for 0 < α < l + 2|�+

0 | and kζ,β , for ζ > 0, β < n near the origin
(Propositions 3.3 and 3.4). Then we establish sharp estimates for the convolutions
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kα ∗ kζ,β , for 0 < α + β < n near the origin and away from the origin using Fourier
analysis on symmetric spaces (Propositions 3.5 and 3.6).

Proposition 3.3 Let 0 < α < min{n, l + 2|�+
0 |}. There holds

kα(x) ≤ 1

γ (α)

1

|x |n−α
+ O

(
1

|x |n−α−1

)
, 0 < |x | < 1;

where γ (α) is defined in (3.1)

Proof By the Mellin type expression

(−� − |ρ|2)−α/2 = 1

	(α/2)

∫ ∞

0
tα/2−1e−t(−�−|ρ|2) dt . (3.5)

We will now use the following local expansion of the heat kernel ht (x)

ht (x) = e−|x |2/4t t−n/2v0(x) + O
(
e−c|x |2/t t−n/2+1

)
,

where v0(x) = (4π)−n/2 + O(|x |2) and 0 < c < 1/4 [3, eqn.(3.9), p. 278]. Using
this it follows from (3.5) that on the kernel level

kα(x) = 1

	(α/2)

∫ ∞

0
tα/2−1 ht (x) e

|ρ|2t dt

= 1

	(α/2)

∫ 1

0
tα/2−1

(
e−|x |2/4t t−n/2v0(x) + O

(
e−c|x |2/t t−n/2+1

))
e|ρ|2t dt

+ 1

	(α/2)

∫ ∞

1
tα/2−1 ht (x) e

|ρ|2t dt

= 1

	(α/2)

∫ 1

0
tα/2−1

(
e−|x |2/4t t−n/2 v0(x) + O

(
e−c|x |2/t t−n/2+1

))
(1 + O(t)) dt

+ 1

	(α/2)

∫ ∞

1
tα/2−1 ht (x) e

|ρ|2t dt

≤ 1

	(α/2)
v0(x)

∫ 1

0
e−|x |2/4t tα/2−1−n/2 dt +

∫ 1

0
O
(
e−c|x |2/t tα/2−n/2

)
dt

+ 1

	(α/2)

∫ ∞

1
tα/2−1 ht (x) e

|ρ|2t dt . (3.6)

Now, we have that

∫ 1

0
e−|x |2/4t tα/2−1−n/2 dt =

(
2

|x |
)n−α ∫ ∞

|x |2/4
e−s s(n−α)/2−1 ds

≤
(

2

|x |
)n−α

	

(
n − α

2

)
. (3.7)

123
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Similarly, the second integral is ofO(|x |α−n+1). For the third term,we use the estimate
on ht [3, Theorem 3.1, ii)] that there exists C > 0 such that

ht (x) ≤ Ct−l/2−|�+
0 | (1 + |x |2)|�+

0 |/2 e−|ρ|2t−ρ(log x)−|x |2/(4t), t ≥ 1, |x | ≤ √
t .

Using this estimate it follows that for all 0 < |x | < 1 and 0 < α < l + 2|�+
0 |

1

	(α/2)

∫ ∞

1
tα/2−1 ht (x) e

|ρ|2t dt ≤ C
∫ ∞

1
tα/2−1−l/2−|�+

0 | dt < ∞. (3.8)

Using v0(x) = (4π)−n/2 + O(|x |2) and the estimates (3.7) and (3.8), it follows from
the equation (3.6) that for 0 < |x | < 1

kα(x) ≤ 1

	(α/2)
(4π)−n/2 	 ((n − α)/2) 2n−α |x |α−n + O(|x |α−n+1) + O(1)

≤ 1

γ (α)
|x |α−n + O(|x |α−n+1).

This completes the proof. ��
The following three results, that is, Propositions 3.4, 3.5 and Proposition 3.6 are

extension of Lemmas 3.4, 3.5 and 3.6 proved in [24] respectively in the context of
hyperbolic spaces.

Proposition 3.4 Let ζ > 0 and 0 < β < n. Then there exists ε̃ satisfying 0 < ε̃ <

min{1, n − β} such that

kζ,β(x) = 1

γ (β)

1

|x |n−β
+ O

(
1

|x |n−β−ε̃

)
, 0 < |x | < 1.

Proof We first prove the result when β = m is an integer satisfying 1 ≤ m < n − 1.
Precisely, we prove that there exists ε0 satisfying 0 < ε0 < min{1, n − m} = 1 such
that

kζ,m(x) ≤ 1

γ (m)

1

|x |n−m
+ O

(
1

|x |n−m−ε0

)
, 0 < |x | < 1. (3.9)

This will be done by induction. It follows by the Mellin type expressions that on the
kernel level

kζ,1(x) = 1

	(1/2)

∫ ∞

0
t−1/2 ht (x) e

ρ2t−ζ 2t dt

≤ 1

	(1/2)

∫ ∞

0
t−1/2 ht (x) e

ρ2t dt

= k1(x).

Thus, by Proposition 3.3, the estimate (3.9) holds form = 1. In fact, this is true as long
as m < min{n, l + 2|�+

0 |} by Proposition 3.3. Now, suppose that the estimate (3.9) is
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valid form ∈ Z satisfying 1 ≤ m < n−2with 0 < ε0 < min{1, n−m} = 1.We prove
this is also true for m + 1, that is, there exists ε̃ satisfying 0 < ε̃ < min{1, n −m − 1}
such that

kζ,m+1(x) ≤ 1

γ (m + 1)

1

|x |n−m−1 + O
(

1

|x |n−m−1−ε̃

)
, 0 < |x | < 1. (3.10)

Let x ∈ X with 0 < |x | < 1. Then

k1∗kζ,m(x) =
∫

B(o,2)
k1(y) kζ,m(y−1x)dy+

∫

X\B(o,2)
k1(y) kζ,m(y−1x)dy := I1+I2.

(3.11)
We first prove that the second integral I2 on the right-hand side is uniformly bounded
independent of x . Indeed, by Hölder’s inequality, Theorem 3.2, integral formula (2.5)
with (2.4) and the estimate (2.11) of φ0, it follows that for |x | < 1

I2 =
∫

X\B(o,2)
k1(y) kζ,m(y−1x) dy

≤
(∫

X\B(o,2)
|k1(y)|2 dy

)1/2 (∫

X\B(o,1)
|kζ,m(z)|2 dz

)1/2

�
(∫

X\B(o,2)
|y|2−2l−4|�+

0 | φ0(y)
2 dy

)1/2

(∫

X\B(o,1)
|z|m−l−1−2|�+

0 | φ0(z)
2 e−2ζ |z| dz

)1/2

�
(∫

{Y∈a+:|Y |≥2}
|Y |2−2l−4|�+

0 | |Y |2|�+
0 |e−2ρ(Y ) e2ρ(Y ) dY

)1/2

(∫

{Y∈a+:|Y |≥1}
|Y |m−l−1−2|�+

0 | |Y |2|�+
0 |e−2ρ(Y ) e−2ζ |Y | e2ρ(Y ) dY

)1/2

�
(∫ ∞

2
r2−2l−2|�+

0 | rl−1 dr

)1/2 (∫ ∞

1
rm−l−1 e−2ζr r l−1 dr

)1/2

< ∞.

Now, we estimate the first integral I1 in (3.11). Since m < n − 2 and ε0 < 1,
we can choose a ε1 ∈ (0, 1) such that m + ε0 + ε1 < n − 1. We first observe
that |y|−(n−2) ≤ |y|−(n−1−ε1), for small |y|. Using this fact, the estimate of kα in
Proposition 3.3 and the estimate (3.9) of kζ,m we get that

I1 =
∫

B(o,2)
k1(y) kζ,m(y−1x) dy

≤
∫

B(o,2)

(
1

γ (1)

1

|y|n−1 + C1

|y|n−1−ε1

) (
1

γ (m)

1

|y−1x |n−m
+ C2

|y−1x |n−m−ε0

)
dy

= 1

γ (1)γ (m)

∫

B(o,2)

1

|y|n−1

1

|y−1x |n−m
dy + C2

γ (1)

∫

B(o,2)

1

|y|n−1

1

|y−1x |n−m−ε0
dy
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+ C1

γ (m)

∫

B(o,2)

1

|y|n−1−ε1

1

|y−1x |n−m
dy + C1C2

∫

B(o,2)

1

|y|n−1−ε1

1

|y−1x |n−m−ε0
dy.

Since m + 1 + ε1 + ε0 < n, using Lemma 3.1 we get that there exists 0 < ε̃ <

min{1, n − (m + 1 + ε0 + ε1)} such that for |x | < 1

I1 ≤ 1

γ (m + 1)

1

|x |n−m−1 + O
(

1

|x |n−m−1−ε̃

)
.

Putting this in (3.11) we finally have for |x | < 1

kζ,m+1(x) = kζ,1 ∗ kζ,m(x) ≤ k1 ∗ kζ,m(x) ≤ 1

γ (m + 1)

1

|x |n−m−1 + O
(

1

|x |n−m−1−ε̃

)
.

By induction this completes the proof of the lemma when β = m ∈ Z with
1 ≤ m < n − 1.

Now, we prove the required estimate for arbitrary β (not necessarily integer) with
0 < β < n. We choose 0 < β̃ < 3 and an integer m with 0 ≤ m < n − 1 such that
β = β̃ + m < n. Without loss of generality, we can assume m ≥ 1. Thus

kζ,β(x) = kζ,β̃ ∗ kζ,m ≤ kβ̃ ∗ kζ,m

=
∫

B(o,2)
kβ̃ (y) kζ,m(y−1x) dy +

∫

X\B(o,2)
kβ̃ (y) kζ,m(y−1x) dy. (3.12)

The second integral is bounded as in the case of I2 in (3.11). The first integral can
be estimated as I1 in (3.11). To see this, we first notice that we may choose ε0 small
enough satisfying 0 < ε0 < min{1, n − β} such that (3.9) holds. Let us choose ε2
such that 0 < ε2 < min{1, n − β − ε0}. By Proposition 3.3 it follows that

∫

B(o,2)
kβ̃ (y) kζ,m(y−1x) dy

≤
∫

B(o,2)

(
1

γ (β̃)

1

|y|n−β̃
+ C1

|y|n−β̃−ε2

) (
1

γ (m)

1

|y−1x |n−m
+ C2

|y−1x |n−m−ε0

)
dy.

Therefore, by Lemma 3.1 there exists ε̃ satisfying 0 < ε̃ < min{1, n − β − ε0 − ε2}
such that

∫

B(o,2)
kβ̃ (y) kζ,m(y−1x) dy ≤ 1

γ (β)

1

|x |n−β
+ O

(
1

|x |n−β−ε̃

)
.

Putting this in (3.12) we complete the proof. ��
Proposition 3.5 Let ζ > 0, 0 < α < l+2|�+

0 | and 0 < β < n such that 0 < α+β <

n. There exists ε′ satisfying 0 < ε′ < min{1, n − α − β} such that

kα ∗ kζ,β(x) ≤ 1

γ (α + β)

1

|x |n−α−β
+ O

(
1

|x |n−α−β−ε′

)
, 0 < |x | < 1.
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Proof The proof is exactly the same as that of Proposition 3.4. ��
Proposition 3.6 Let ζ > 0, 0 < α < l+2|�+

0 | and 0 < β < n such that 0 < α+β <

n. For ζ ′ ∈ (0, ζ ) we have

kα ∗ kζ,β(x) � e−ζ ′|x | φ0(x) +
(
χ1/2| · |α−l−2|�+

0 | φ0(·)
)

∗ kζ,β(x), for |x | ≥ 1,

where χ1/2 is the cutoff function vanishing in B(o, 1/2) and identically equals 1
otherwise.

Proof By Theorem 3.2 (ii) we have

kα ∗ kζ,β(x) =
∫

B(o,1/2)
kα(y)kζ,β(y−1x) dy +

∫

X\B(o,1/2)
kα(y)kζ,β(y−1x) dy

�
∫

B(o,1/2)
kα(y)kζ,β(y−1x) dy

+
∫

X\B(o,1/2)
|y|α−l−2|�+

0 |φ0(y) kζ,β(y−1x) dy

=
∫

B(o,1/2)
kα(y)kζ,β(y−1x) dy

+
(
χ1/2| · |α−l−2|�+

0 | φ0(·)
)

∗ kζ,β(x). (3.13)

We notice that, if |y| < 1/2 and |x | ≥ 1, then |y−1x | ≥ |x |−|y| ≥ 1/2. Therefore, by
the estimates of kα (Proposition 3.3) and kζ,β (Theorem 3.2 (i)) we have for |y| < 1/2
and |x | ≥ 1 that

kα(y) � |y|α−n, and kζ,β(y−1x) � e−ζ ′|y−1x |φ0(y
−1x),

where ζ ′ ∈ (0, ζ ) and the constant depends on ζ ′. Using the above estimates, the
property (2.12), the fact |H(y−1k)| ≤ |y| (see equation (2.3)) and the integral formula
(2.5), it follows that

∫

B(o,1/2)
kα(y)kζ,β(y−1x) dy

�
∫

B(o,1/2)

1

|y|n−α
e−ζ ′|y−1x | φ0(y

−1x) dy

≤ e−ζ ′|x |
∫

B(o,1/2)

1

|y|n−α
eζ ′|y|

∫

K
e−ρ

(
H(y−1k)

)
e−ρ(H(x−1k)) dk dy

≤ e−ζ ′|x |
∫

K
e−ρH(x−1k) dk

∫

B(o,1/2)

1

|y|n−α
eζ ′|y| e|ρ||y| dy

� e−ζ ′|x | φ0(x)
∫

{Y∈a:|Y |<1/2}
1

|Y |n−α
J (exp Y ) dY

� e−ζ ′|x | φ0(x).

Putting this in (3.13) we get the required result. ��
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Remark 3.7 There exists C > 0 such that kα ∗ kζ,β(x) ≤ C , for all |x | ≥ 1. Indeed, by

Proposition 3.6 it is enough to show that
(
χ1/2| · |α−l−2|�+

0 | φ0(·)
)

∗ kζ,β(x) ≤ C , for

|x | ≥ 1. To see this we first observe that if |x | ≥ 1 and |y| < 1/2, then |y−1x | ≥ 1/2.
Using this, the property (2.12), the estimate of kζ,β (Theorem 3.2 and Proposition 3.4)
it follows by Cauchy-Schwarz inequality that

(
χ1/2| · |α−l−2|�+

0 | φ0(·)
)

∗ kζ,β(x)

�
∫

X\B(o,1/2)
|y|α−l−2|�+

0 |φ0(y)kζ,β(y−1x) dy

�
∫

{y∈X\B(o,1/2): |y−1x |<1/2}
|y|α−l−2|�+

0 |φ0(y)|y−1x |β−n dy

+
∫

{y∈X\B(o,1/2): |y−1x |≥1/2}
|y|α−l−2|�+

0 |φ0(y)kζ,β(y−1x) dy

�
∫

{y∈X : |y−1x |<1/2}
|y−1x |β−n dy

+
∫

{y∈X\B(o,1/2): |y−1x |≥1/2}
|y|α−l−2|�+

0 |φ0(y) kζ,β(y−1x) dy

� C +
(∫

X\B(o,1/2)
|y|2α−2l−4|�+

0 | (φ0(y))
2 dy

)1/2

(∫

X\B(o,1/2)
e−2ζ ′|z| (φ0(z))

2 dz

)1/2

< ∞.

4 Asymptotic Estimates of Non-increasing Rearrangement of the
Bessel–Green–Riesz Kernels

For a real valued function f on X , the non-increasing rearrangement of f is defined
by

f ∗(t) = inf{s > 0 : λ f (s) ≤ t},
where the distribution function λ f of f is given by

λ f (s) = |{x ∈ X : | f (x)| > s}| =
∫

{x∈X :| f (x)|>s}
dx .

Herewe use the notation |E | for themeasure of a subset E of X .We need the following
two properties of the non-increasing rearrangement [13, Prop. 1.4.5, p. 46]:

(i) By definition λ f ( f ∗(t)) ≤ t . If | f | ≤ |g| almost everywhere, then f ∗ ≤ g∗.
(ii) If there exists c > 0 such that |{x ∈ X : | f (x)| ≥ f ∗(t) − c}| < ∞, then

t ≤ |{x ∈ X : | f (x)| ≥ f ∗(t)}|.
For the convenience of the reader we summarize the results of Sect. 3 here. By Theo-
rem 3.2, Propositions 3.3, 3.4, Propositions 3.5 and 3.6 we have
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a) For ζ = 0 and 0 < α < min{n, l + 2|�+
0 |}

kα(x) ≤ 1

γ (α)

1

|x |n−α
+ O

(
1

|x |n−α−1

)
, 0 < |x | < 1;

� |x |α−l−2|�+
0 | φ0(x), |x | ≥ 1.

b) Let ζ > 0 and 0 < β < n. There exists ε̃ satisfying 0 < ε̃ < min{1, n − β} such
that

kζ,β(x) ≤ 1

γ (β)

1

|x |n−β
+ O

(
1

|x |n−β−ε̃

)
, 0 < |x | < 1;

� |x |(β−l−1)/2−|�+
0 | e−ζ |x | φ0(x), |x | ≥ 1. (4.1)

c) Let ζ > 0, 0 < α < l + 2|�+
0 | and 0 < β < n such that 0 < α + β < n. There

exists ε′ satisfying 0 < ε′ < min{1, n − α − β} such that

kα ∗ kζ,β (x) ≤ 1

γ (α + β)

1

|x |n−α−β
+ O

(
1

|x |n−α−β−ε′

)
, 0 < |x | < 1.

� e−ζ ′ |x | φ0(x) +
(
χ1/2| · |α−l−2|�+

0 | φ0(·)
)

∗ kζ,β(x), for |x | ≥ 1,

(4.2)

where 0 < ζ ′ < ζ .

The behaviour of the volume of a small geodesic ball around the origin in X can be
expressed as follows (see [11, Theorem 3.98], [20, equation (8)]):

|B(o, r)| = ωn−1

n
rn + O(rn+1), 0 < r < 1. (4.3)

Lemma 4.1 Let ζ, α, β, ε′ be as in Proposition 3.5. Then for 0 < t < 2

[kα ∗ kζ,β ]∗(t) ≤ 1

γ (α + β)

(
nt

ωn−1

)(α+β−n)/n

+ O
(
t (α+β+ε′−n)/n

)
.

Proof By (4.2) there exists C > 0 such that for 0 < |x | < 1, kα ∗ kζ,β(x) ≤ h(x),
where the function h is defined by

h(x) = 1

γ (α + β)

1

|x |n−α−β
+ C

|x |n−α−β−ε′ , x ∈ X .

By Remark 3.7 there existsC0 > 0 such that kα ∗kζ,β(x) ≤ C0 for |x | ≥ 1. Therefore,
kα ∗ kζ,β(x) ≤ C0 + h(x) for all x ∈ X and hence it is enough to prove the required
estimate for the function h∗.
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First, we note that if f (t) = At−a(1+Btb), t > 0, for positive constants A, B, a, b
then there exists a C > 0 such that

f −1(t) ≤ [At−1]1/a[1 + Ct−b/a], for t > 1.

Applying this to the function f (|x |) = h(x), we get that

h−1(t) ≤
[

t−1

γ (α + β)

]1/(n−α−β) [
1 + Ct−ε′/(n−α−β)

]
, t > 1.

Using the above inequality and (4.3) we get that for t > 1

|{x ∈ X : h(x) ≥ t}| ≤ |B (o, h−1(t)
) | ≤ ωn−1

n

(
h−1(t)

)n + C(h−1(t))n+1

≤ ωn−1

n

(
t−1

γ (α + β)

)n/(n−α−β) [
1 + C ′t−ε′/(n−α−β)

]
.

Again, if g(t) = At−a[1+ Bt−b], t > 0, for positive constants A, B, a, b, then there
exists a C > 0 such that

g−1(t) ≤ [At−1]1/a[1 + Ctb/a], for 0 < t ≤ 2.

Using this we get that for 0 < t ≤ 2

h∗(t) ≤ 1

γ (α + β)

(ωn−1

nt

)(n−α−β)/n [1 + O(tε
′/n)].

This completes the proof. ��
Lemma 4.2 Let ζ, β, ε̃ be as in Proposition 3.4. Then there holds

[kζ,β ]∗(t) ≤ 1

γ (β)

(
nt

ωn−1

)(β−n)/n

+ O(t (β+ε̃−n)/n), 0 < t < 2.

Proof The proof is similar to that of Lemma 4.1. ��
Lemma 4.3 Let ζ > 0, 0 < β < n and ζ ′ ∈ (0, ζ ). There holds

[kζ,β ]∗(t) � t−1/2−ζ ′/2|ρ| (log t)2|ρ|l/(ζ ′+|ρ|), t ≥ 2.

Proof Let us choose r > 0 such that |B(o, r)| < 1 and set

h(x) = 1

|x |n−β
, 0 < |x | < r;

= 0, |x | ≥ 1,
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and f (x) = e−ρ(log x) e−ζ ′|x |, for x ∈ X . Using the estimate (2.11) of φ0, it follows
form (4.1) that there exists C > 0 such that

kζ,β(x) ≤ C (h(x) + f (x)) , x ∈ X . (4.4)

We now observe that for s > 0

|{x ∈ X : h(x) > s}| ≤ |B(o, r).

This inequality yields

|{x ∈ X : h(x) + f (x) > s}| ≤ |{x ∈ X : h(x) > s/2}| + |{x ∈ X : f (x) > s/2}|
≤ |B(o, r)| + |{x ∈ X : f (x) > s/2}|.

Therefore, for t > |B(o, r)| we have

(h + f )∗ (t) = inf
s

{s > 0 : |{x ∈ X : h(x) + f (x) > s}| ≤ t}
≤ inf

s
{s > 0 : |{x ∈ X : f (x) > s/2}| ≤ t − |B(o, r)|}

= 2 f ∗ (t − |B(o, r)|) . (4.5)

Integral formula (2.5) yields

λ f
(
f ∗(t)

) =
∫

{Y∈a+: f (Y )> f ∗(t)}
c
∏

α∈�+
(sinh α(Y ))mα dY

�
∫
{
Y∈a+: eρ(Y )+ζ ′|Y |< 1

f ∗(t)

} e2ρ(Y ) dY . (4.6)

Let us fix a basis of a∗ as {ε1, · · · , εl−1, ρ/|ρ|}, where ρ⊥ = span{ε1, · · · , εl−1}. If
Y ∈ a, we write Y = (Y1, · · · ,Yl)with its coordinates with respect to the correspond-
ing dual basis. We observe that ρ(Y ) = |ρ|Yl . Since ρ(Y ) ≥ 0 for Y ∈ a+, it follows
that

{
Y ∈ a+ : eρ(Y )+ζ ′ |Y | <

1

f ∗(t)

}
⊂
{
Y ∈ a+ : eρ(Y )+ζ ′Yl <

1

f ∗(t)
, eζ ′ |Y | <

1

f ∗(t)

}

⊂
{
Y ∈ a+ : e|ρ|Yl+ζ ′Yl <

1

f ∗(t)
, |Y | <

1

ζ ′ log
(

1

f ∗(t)

)}
.

Therefore, by (4.6) we get that

λ f
(
f ∗(t)

)
�
∫
{
Y∈a+:e|ρ|Yl+ζ ′Yl < 1

f ∗(t) , |Y |< 1
ζ1

log
(

1
f ∗(t)

)} e2|ρ|Yl dY

�
(

1

f ∗(t)

)2|ρ|/(ζ ′+|ρ|) (
log

(
1

f ∗(t)

))l

.
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Since f ∗(t) is non-zero it follows from the above estimate that λ f ( f ∗(t − c)) < ∞
for c ∈ (0, f ∗(t)). Therefore,

t = λ f ( f
∗(t)) �

(
1

f ∗(t)

)2|ρ|/(ζ ′+|ρ|) (
log

(
1

f ∗(t)

))l

.

Using the lemma below (Lemma 4.4) we get that for all t ≥ 1

f ∗(t) � t−(ζ ′+|ρ|)/2|ρ| (log t)l(ζ
′+|ρ|)/2|ρ|.

This fact together with (4.4) and (4.5) completes the proof. ��
Lemma 4.4 Let h be a non-increasing function on the positive real axis. Suppose there
exist two positive numbers a, b such that for t ≥ 1

t ≤
(

1

h(t)

)a

log

(
1

h(t)

)b

.

Then there holds
h(t) ≤ t−1/a (log t)b/a, for t ≥ 1.

Proof Let h(t) = s. By the hypothesis we have for all t ≥ 1

h−1(s) = t � 1

sa

(
log

1

s

)b

.

Therefore, for s ≥ 1

h−1

((
(log s)b

s

)1/a)

� s

(log s)b

(
log

(
s1/a

(log s)b/a

))b

= s

(
log s1/a − log (log s)b/a

log s

)b

Since the term inside the bracket on the right-hand side goes to a finite positive limit
as s goes to infinity, we get that

h−1

((
(log s)b

s

)1/a)

� s, for s ≥ 1.

Since h is non-increasing, it follows that

h(s) � 1

s1/a
(log s)b/a .

��
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The following result is analogous to Lemma 4.1 in [24].

Lemma 4.5 Let 0 < α < 3/2, ζ > 0 and 0 < β < n − α. Then for each a > 0, we
have

∫∞
a

([kα ∗ kζ,β ]∗(t))2 dt < ∞.

Proof By Lemma 4.1, it is enough to show that there exists c0 > 0 such that the
integral

∫∞
c0

([kα ∗ kζ,β ]∗(t))2 dt < ∞. We set

f1(x) = 1

|x |n−α−β
, |x | < 1;

= 0, |x | ≥ 1,

and f2(x) =
(
χ1/2| · |α−l−2|�+

0 | φ0(·)
)
∗kζ,β(x). Let ζ ′ ∈ (0, ζ ). By (4.2) there exists

C > 0 such that

kα ∗ kζ,β(x) ≤ C
(
f1(x) + e−ζ ′|x | φ0(x) + f2(x)

)
, x ∈ X . (4.7)

Proceeding as before we get by (4.5) that for t > |B(o, 1)|
(
f1 + e−ζ ′|·| φ0 + f2

)∗
(t) = 2

(
e−ζ ′|·| φ0 + f2

)∗
(t − c0),

where c0 = |B(o, 1)|. By (4.7) and equation above it follows that

∫ ∞

c0

[
(kα ∗ kζ,β )∗(t)

]2 dt ≤ 4C2
∫ ∞

c0

[(
e−ζ ′ |·| φ0 + f2

)∗
(t − c0)

]2
dt

= 4C2
∫

X

∣∣
∣e−ζ ′ |x | φ0(x) + f2(x)

∣∣
∣
2
dx

≤ 4C2

{(∫

X
e−2ζ ′ |x | φ0(x)

2 dx

)1/2

+
(∫

X
( f2(x))

2 dx

)1/2
}2

.

The integral formula (2.5) and the estimate (2.11) yield

∫

X
e−2ζ ′|x | φ0(x)

2 dx < ∞.

On the other hand, by Plancherel formula (2.8) for K -biinvariant functions we have
for 0 < α < 3/2 that

∫

X
( f2(x))

2 dx = cG

∫

a∗
|(̂kζ,β)(λ)|2 ∣∣

(
χ1/2| · |α−l−2|�+

0 | φ0

)̂
(λ)
∣
∣2 |c(λ)|−2 dλ

= cG

∫

a∗
(|λ|2 + ζ 2)−β

∣∣
(
χ1/2| · |α−l−2|�+

0 | φ0

)̂
(λ)
∣∣2 |c(λ)|−2 dλ

≤ C
∫

a∗

∣
∣
(
χ1/2| · |α−l−2|�+

0 | φ0

)̂
(λ)
∣
∣2 |c(λ)|−2 dλ
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= C
∫

{x∈X :|x |≥1/2}
|x |2α−2l−4|�+

0 | (φ0(x))
2 dx < ∞.

This completes the proof. ��

5 Proof of the Theorems

Proof of Theorem 1.3 Let u ∈ Wα,p(X) and we write f = (−� − |ρ|2 + ζ 2)α/2u.
Then clearly u = f ∗kζ,α and by the hypothesis ‖ f ‖p ≤ 1. Applying O’Neil’s lemma
[28, Lemma 1.5] for the rearrangement of convolution, we have for t > 0

u∗(t) ≤ 1

t

∫ t

0
f ∗(s) ds

∫ t

0
k∗
ζ,α(s) ds +

∫ ∞

t
f ∗(s)k∗

ζ,α(s) ds.

Therefore,

1

|E |
∫

E
exp

(
β0(n, α)|u(x)|p′)

dx ≤ 1

|E |
∫ |E |

0
exp

(
β0(n, α)|u∗(t)|p′) dt

≤ 1

|E |
∫ |E |

0
exp

(
β0(n, α)

1

t

∫ t

0
f ∗(s) ds

∫ t

0
k∗
ζ,α(s) ds +

∫ ∞

t
f ∗(s)k∗

ζ,α(s) ds p′
)

dt

≤
∫ ∞

0
exp

(
− t + β0(n, α)

1

|E |e−t

∫ |E |e−t

0
f ∗(s) ds

∫ |E |e−t

0
k∗
ζ,α(s) ds

+
∫ ∞

|E |e−t
f ∗(s) k∗

ζ,α(s) ds p′
)
dt . (5.1)

To get the last equation, we use the substitution t → |E |e−t . Next, we change the
variables

φ(t) = (|E |e−t )1/p f ∗(|E |e−t ); (5.2)

ψ(t) = β0(n, α)1/p
′
(|E |e−t )1/p

′
k∗
ζ,α(|E |e−t ). (5.3)

It is now easy to check that

∫ |E |e−t

0
f ∗(s) ds

∫ |E |e−t

0
k∗
ζ,α(s) ds

= |E |
β0(n, α)1/p

′

∫ ∞

t
e−s/p′

φ(s) ds
∫ ∞

t
e−s/p ψ(s) ds;

∫ ∞

|E |e−t
f ∗(s) k∗

ζ,α(s) ds = 1

β0(n, α)1/p
′

∫ t

−∞
φ(s) ψ(s) ds.

Putting the above quantities in (5.1) we get that

1

|E |
∫

E
exp

(
β0(n, α)|u(x)|p′)

dx
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≤
∫ ∞

0
exp

(
− t + et

∫ ∞

t
e−s/p′

φ(s) ds
∫ ∞

t
e−s/p ψ(s) ds +

∫ t

−∞
φ(s) ψ(s) ds p′

)
dt

=
∫ ∞

0
e−F(t) dt, (5.4)

where

F(t) = t −
(
et
∫ ∞

t
e−s/p′

φ(s) ds
∫ ∞

t
e−s/p ψ(s) ds +

∫ t

−∞
φ(s) ψ(s) ds

)p′

.

We now set

a(s, t) = ψ(s), s < t;
= et

(∫ ∞

t
e−r/pψ(r) dr

)
e−s/p′

, s > t . (5.5)

Then, by (5.4) we have

1

|E |
∫

E
exp

(
β0(n, α)|u(x)|p′)

dx ≤
∫ ∞

0
e−F(t) dt,

where

F(t) = t −
(∫

R

a(s, t) φ(s) ds

)p′

. (5.6)

Now, we prove that there exists C independent of u such that
∫∞
0 e−F(t) dt ≤ C . The

proof is inspired by similar ideas used by Adams [1, Lemma 1] and has been carried
out in details in [24]. For the sake of completeness, we sketch the proof. First, notice
that ∫ ∞

0
e−F(t) dt =

∫

R

|Eλ| e−λ dλ,

where Eλ = {t ≥ 0 : F(t) ≤ λ} and |Eλ| is the Lebesgue measure of Eλ. It is enough
to show the following two facts:

(i) There exists a constant c ≥ 0 which is independent of φ such that inf t≥0 F(t) ≥
−c.

(ii) There exist constants B1 and B2 which are both independent of φ and λ such that
|Eλ| ≤ B1|λ| + B2.

We first prove (i). We set L(t) = (∫∞
t φ(s)p ds

)1/p
. By the definition (5.2) of φ, it

follows that

∫ t

−∞
φ(s)p ds =

∫

R

φ(s)p ds − L(t)p = ‖ f ‖p
p − L(t)p ≤ 1 − L(t)p.

By using the above estimate and Hölder’s inequality, it follows from (5.6) that if
t ∈ Eλ,
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t − λ ≤
[∫

R

a(s, t)φ(s) ds

]p′

=
[∫ t

−∞
a(s, t)φ(s) ds +

∫ ∞

t
a(s, t)φ(s) ds

]p′

≤
[(∫ t

−∞
a(s, t)p

′
ds

)1/p′
(
1 − L(t)p

)1/p +
(∫ ∞

t
a(s, t)p

′
ds

)1/p′

L(t)

]p′

=
[(∫ t

−∞
ψ(s)p

′
ds

)1/p′
(
1 − L(t)p

)1/p

+ et
(∫ ∞

t
e−r/pψ(r) dr

) (∫ ∞

t
e−s ds

)1/p′

L(t)

]p′

. (5.7)

By the definition (5.3) ofψ , the estimate given in Lemma 4.2 and the fact that p = n/α

we have

ψ(t) = β0(n, α)1/p
′
(|E |e−t )1/p

′
k∗
ζ,α(|E |e−t ) ≤ 1 + O

(
e− ε̃t

n

)
, for all t > 0.

(5.8)
Let ζ > 0 if 1 < p < 2 and ζ > 2|ρ| ( 12 − 1

p ) if p ≥ 2. We choose ζ ′ ∈ (0, ζ ) with
ζ − ζ ′ small enough such that ζ ′ satisfies the same properties as ζ , that is, ζ ′ > 0 if
1 < p < 2 and ζ ′ > 2|ρ| ( 12 − 1

p ) if p ≥ 2. Then by Lemma 4.3 we have

∫ 0

−∞
ψ(s)p

′
ds = β0(n, α)

∫ ∞

|E |

(
k∗
ζ,α(t)

)p′
dt

�
∫ ∞

|E |

(
t−1/2−ζ ′/2|ρ| (log t)2|ρ|l/(ζ ′+|ρ|))p

′
dt < ∞.

Therefore, using (5.8) and the above estimate we have

∫ t

−∞
ψ(s)p

′
ds =

∫ 0

−∞
ψ(s)p

′
ds +

∫ t

0
ψ(s)p

′
ds

≤ b1 +
∫ t

0

(
1 + O(e−ε̃s/n)

)p′
ds ≤ b2 + t, (5.9)

and

et
(∫ ∞

t
e−r/pψ(r) dr

) (∫ ∞

t
e−s ds

)1/p′

≤ et
∫ ∞

t
e−r/p

(
1 + O(e−ε̃r/n)

)
dr e−t/p′

≤ C
∫ ∞

t
e−(r−t)/p dr = b3 < ∞, (5.10)

where the constants b1, b2 and b3 are independent of φ. Using the estimates (5.9),
(5.10) it follows from (5.7) that
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t − λ ≤
[
(b2 + t)1/p

′ (
1 − L(t)p

)1/p + b3L(t)
]p′

.

The rest of the proof of (a) is similar to that in [1] (see the proof after eqn.(16) in
[1]). Since the proof of (b) is the same as that in [24] we will omit here.

The sharpness of the constant β0(n, α) can be verified by the process similar to that
in [1, 19, 24, 29] and thus the proof of Theorem 1.3 is completed. ��
Proof of Theorem 1.4 Let u ∈ Wα,p with

∫
X |(−� − |ρ|2 + ζ 2)α/2u(x)|p dx ≤ 1. By

Corollary 2.4, we have

∫

X
|u(x)|p dx ≤ Sp

∫

X
|(−� − |ρ|2 + ζ 2)α/2u(x)|p dx ≤ Sp,

provided ζ > 2|ρ||1/2− 1/p|. We now set �(u) = {x ∈ X : |u(x)| ≥ 1}. Then from
the above inequality it follows that

|�(u)| =
∫

�(u)

dx ≤
∫

X
|u(x)|p dx ≤ Sp.

Therefore, we have |�(u)| ≤ Sp, which is independent of u satisfying ‖(−�−|ρ|2 +
ζ 2)α/2u‖p ≤ 1 provided ζ > 2|ρ||1/2 − 1/p|. We now write

∫

X
�p

(
β0(n, α)|u(x)|p′)

dx

=
∫

�(u)

�p

(
β0(n, α)|u(x)|p′)

dx +
∫

X\�(u)

�p

(
β0(n, α)|u(x)|p′)

dx .

We now notice that jp = p if p is an integer and jp = [p] + 1 if p is not an integer.
Therefore, ( jp − 1)p′ ≥ p for all p > 1. We also notice that on the domain X\�(u),
|u(x)| < 1. Thus

∫

X\�(u)

�p

(
β0(n, α)|u(x)|p′)

dx ≤
∞∑

k= jp−1

β0(n, α)k

k!
∫

X\�(u)

|u(x)|p′k dx

≤
∞∑

k= jp−1

β0(n, α)k

k!
∫

X\�(u)

|u(x)|p dx

≤
∞∑

k= jp−1

β0(n, α)k

k! ‖u‖p
p ≤ C1. (5.11)

Since ζ > 2|ρ||1/p − 1/2|, by Theorem 1.3 there exists C2 > 0 independent of u
such that
∫

�(u)

�p

(
β0(n, α)|u(x)|p′)

dx ≤
∫

�(u)

exp
(
β0(n, α)|u(x)|p′)

dx ≤ C2. (5.12)
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Combining equations (5.11) and (5.12) it follows that

∫

X
�p

(
β0(n, α)|u(x)|p′)

dx ≤ C1 + C2 = C,

for all u satisfying ‖(−� − |ρ|2 + ζ 2)α/2‖p ≤ 1 provided ζ > 2|ρ||1/2− 1/p|. The
sharpness of the constant β0(n, α) can be verified by the process similar to that in the
proof of Theorem 1.3. ��
Lemma 5.1 Let n ≥ 3, ζ > 0 and 0 < 2 s < min{l + 2|�+

0 |, n}. Then for 2 < q ≤
2n

n−2s there exists C = C(n, s, q, ζ ) such that for all u ∈ Wn/2,2(X)

∫

X
|(−� − |ρ|2)s/2(−� − |ρ|2 + ζ 2)(n−2s)/4u(x)|2 dx ≥ C‖u‖2q .

Proof By the Plancherel formula (2.8) and the Poincaré-Sobolev inequality (Theo-
rem 2.5), it follows that

∫

X
|(−� − |ρ|2)s/2(−� − |ρ|2 + ζ 2)(n−2s)/4u(x)|2 x

= cG

∫

a∗+×K
|λ|2s (|λ|2 + ζ 2)(n−2s)/2 |̃u(λ, k)|2 |c(λ)|−2 dλ dk

≥ ζ n−2scG

∫

a∗+×K
|λ|2s |̃u(λ, k)|2 |c(λ)|−2 dλ dk

= ζ n−2s
∫

X
|(−� − |ρ|2)s/2u(x)|2 dx ≥ C‖u‖2q , 2 < q ≤ 2n

n − 2s
.

This completes the proof. ��
Proof of Theorem 1.6 Let u ∈ Wn/2,2(X) satisfying (1.2). We choose some q0 satisfy-
ing 2 < q0 ≤ min{2n/(n − 2s), 4}. Then by Lemma 5.1 we have

‖u‖2q0 ≤ C0

∫

X
|(−� − |ρ|2)s/2(−� − |ρ|2 + ζ 2)(n−2s)/4u(x)|2 dx ≤ C .

We now set �(u) = {x ∈ S : |u(x)| ≥ 1}, then

|�(u)| =
∫

�(u)

dx ≤
∫

X
|u(x)|q0 dx ≤ Cq0/2,

where the constant Cq0/2 is independent of u. Since q0 ≤ 4, it follows that

∫

X\�(u)

[
exp

(
β0(n, n/2)u(x)2

)
− 1 − β0(n, n/2)u(x)2

]
dx

=
∞∑

k=2

β0(n, n/2)k

k!
∫

X\�(u)

u(x)2k dx
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≤
∞∑

k=2

β0(n, n/2)k

k!
∫

X\�(u)

|u(x)|q0 dx < ∞. (5.13)

Next, we show that
∫
�(u)

exp
(
β0(n, n/2)u(x)2

)
dx is bounded by some constant

independent of u. We rewrite

v = (−� − |ρ|2)s/2(−� − |ρ|2 + ζ 2)(n−2s)/4 u.

Then ‖v‖2 ≤ 1 and u = v∗(ks∗kζ,(n−2 s)/2). By Lemma 4.1, the kernel ks∗kζ,(n−2 s)/2
satisfies

[ks ∗ kζ,(n−2s)/2]∗(t) ≤ 1

γ (n/2)
·
(

nt

ωn−1

)−1/2

+ O(t−1/2+ε′/n), for 0 < t < 1,

and by Lemma 4.5, for each a > 0

∫ ∞

a
|[ks ∗ kζ,(n−2s)/s]∗(t)|2 dt < ∞.

Following the proof of Theorem 1.3, we can find a constant C independent of u such
that

∫

�(u)

exp
(
β0(n, n/2)u(x)2

)
dx

=
∫

�(u)

exp
(
β0(n, n/2)[v ∗ (ks ∗ ks,(n−2s)/2)]2

)
dx ≤ C .

Combining equation (5.13) with the above inequality we complete the proof.
The sharpness of the constant β0(n, α) can be verified by the process similar to that

in the proof of Theorem 1.3 ��
Proof of Theorem 1.8 Let u ∈ C∞

c (X) with

∫

X
|(−�)s/2(−� − |ρ|2 + ζ 2)(n−2s)/4u(x)|2 dx − |ρ|2sζ n−2s

∫

X
|u(x)|2 dx ≤ 1.

The Plancherel formula (2.8) yields

∫

X
| (−� − |ρ|2)s/2 (−� − |ρ|2 + ζ 2)(n−2s)/4

u(x)|2 dx

= cG

∫

a∗+×K
|λ|2s(|λ|2 + ζ 2)(n−2s)/2 |̃u(λ, k)|2 |c(λ)|−2 dλ dk

≤ cG

∫

a∗+×K

[(|λ|2 + |ρ|2)s (|λ|2 + ζ 2)(n−2s)/2 − ζ n−2s |ρ|2s
]

|̃u(λ, k)|2 |c(λ)|−2 dλ dk

=
∫

X
|(−�)s/2(−� − |ρ|2 + ζ 2)(n−2s)/4u(x)|2 dx − ζ n−2s |ρ|2s

∫

X
|u(x)|2 dx ≤ 1.
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Therefore, by Theorem 1.6 we complete the proof. ��
We conclude the paper with the following remark.

Remark 5.2 We recall that Damek–Ricci spaces are non-symmetric generalization of
rank oneRiemannian symmetric spaces. Though symmetric spaces are themost impor-
tant prototypes, they form a very small subclass of the set of all Damek–Ricci spaces
(see [4]). ADamek-Ricci space is a Riemannianmanifold and a solvable Lie group but
in general not a symmetric space, i.e. cannot be realized as a quotient spaceG/K , for a
semisimple Lie group G. It will be interesting to see whether Adams-type inequalities
can be proved in the context of Damek–Ricci spaces.
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