Eccentric graph of trees and their Cartesian products

Anita Arora ${ }^{\text {a }}$, Rajiv Mishra ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Department of Mathematics, Indian Institute of Science, Bangalore, India
${ }^{\text {b }}$ Department of Mathematics and Statistics, IISER Kolkata, Kolkata, India

ARTICLE INFO

Article history:

Received 6 December 2023
Received in revised form 19 April 2024
Accepted 23 April 2024
Available online xxxx

Keywords:

Eccentric graph
Eccentric girth
Cartesian product
Trees

Abstract

Let G be an undirected simple connected graph. We say a vertex u is eccentric to a vertex v in G if $d(u, v)=\max \{d(v, w): w \in V(G)\}$. The eccentric graph of G, say $E c(G)$, is a graph defined on the same vertex set as of G and two vertices are adjacent if one is eccentric to the other. We find the structure and the girth of the eccentric graph of trees and see that the girth of the eccentric graph of a tree can either be zero, three, or four. Further, we study the structure of the eccentric graph of the Cartesian product of graphs and prove that the girth of the eccentric graph of the Cartesian product of trees can only be zero, three, four or six. Furthermore, we provide a comprehensive classification when the eccentric girth assumes these values. We also give the structure of the eccentric graph of the grid graphs and the Cartesian product of two cycles. Finally, we determine the conditions under which the eccentricity matrix of the Cartesian product of trees becomes invertible.

(c) 2024 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a simple undirected graph on n vertices with m edges and $V(G)$ denote the set of vertices in G. If two vertices $v, w \in V(G)$ are adjacent, we will write $v \sim_{G} w$. The neighbourhood of a vertex v in G is defined as $N_{G}(v)=\left\{w: v \sim_{G} w\right\}$. If the graph G is connected, the distance $d_{G}(v, w)$, between two vertices v and w is the length of the shortest path in G connecting them. The distance matrix of a connected graph G, denoted as $D(G)$, is the $n \times n$ matrix indexed by $V(G)$ whose (v, w)th-entry is equal to $d_{G}(v, w)$. We will only consider simple, undirected graphs on at least two vertices in this paper.

The eccentricity, $e_{G}(v)$, of a vertex $v \in V(G)$ is defined as

$$
e_{G}(v)=\max \{d(u, v): u \in V(G)\}
$$

we will use $e(v)$ instead of $e_{G}(v)$ whenever there is no confusion about the underlying graph. If $d(u, v)=e(v)$, then we will say u is eccentric to v and a shortest path between u and v is called an eccentric path (starting from v). The diameter of G, $\operatorname{diam}(G)$, is the maximum of eccentricities of the vertices in G. A diametrical path is a longest path among all eccentric paths in the graph G.

The eccentricity matrix of a connected graph G, denoted by \mathcal{E}_{G}, is constructed from the distance matrix $D(G)$, retaining the largest distances in each row and each column, while other elements of the distance matrix are set to zero. In other words,

[^0]\[

\left(\mathcal{E}_{G}\right)_{i j}= $$
\begin{cases}d\left(u_{i}, u_{j}\right) & \text { if } d\left(u_{i}, u_{j}\right)=\min \left\{e\left(u_{i}\right), e\left(u_{j}\right)\right\} \\ 0 & \text { otherwise }\end{cases}
$$
\]

Definition 1. The eccentric graph [1] of a connected graph G is the simple graph with the vertex set same as that of G and $u v$ is an edge in $E c(G)$ if either v is eccentric to u or u is eccentric to v. In that case, we call u and v are adjacent in $E c(G)$ and denote it as $u \sim_{E C(G)} v$.

Note that the adjacency matrix of the eccentric graph $\operatorname{Ec}(G)$ is obtained by replacing the non-zero entries in the eccentricity matrix \mathcal{E}_{G}, by 1 .

Recall the girth of a graph G is the length of the shortest cycle present in G. If a graph G has no cycles, we will say that G has girth 0 . We will call the girth of the eccentric graph as eccentric girth and denote it as $g(E c(G))$. Girth is the dual concept to edge connectivity, in the sense that the girth of a planar graph is the edge connectivity of its dual graph, and vice versa. Calculating the girth of a graph is an important task in graph theory, as it helps us understand the graph's structure and properties.

The notion of eccentricity matrix was first introduced by Randic as the $D_{\max }$-matrix in 2013 [6] and subsequently, Wang et al. renamed it as the eccentricity matrix in 2018 [8]. The eccentricity matrix of a graph is also called as antiadjacency matrix in the following sense. The eccentricity matrix is obtained from the distance matrix by preserving only the largest distances in each row and column; on the other hand, the adjacency matrix is obtained from the distance matrix by preserving only the smallest non-zero distances in each row and column. Unlike the adjacency matrix and the distance matrix, the eccentricity matrix of a connected graph need not be irreducible. The eccentricity matrix of a complete bipartite graph is reducible and the eccentricity matrix of a tree is irreducible [8,4].

Spectra of the eccentricity matrix for some graphs are studied by Mahato et al. [4] and Wang et al. [8], the lower and upper bounds for the \mathcal{E}-spectral radius of graphs are also discussed in [8]. J. Wang et al. studied the non-isomorphic co-spectral graphs with respect to the eccentricity matrix [9]. Eccentricity matrix has interesting applications, its main application is in the field of chemical graph theory [6,7]. In other direction, some eccentricity based indices have also been studied. Xu et al. [11] has obtained bounds on the non-self-centrality number (NSC number) of a graph G. The bounds for the difference of the eccentric connectivity index (ECI) and the connective eccentricity index (CEI) of a tree have been studied and the corresponding extremal trees have also been classified [10].

A necessary and sufficient condition for $E c(G)$ to be isomorphic to G or the complement of G is given by Akiyama et al. [1]. Kaspar et al. gave complete structure of the eccentric graph for some well-known graphs like paths and cycles [2]. A star graph S_{n} on $(n+1)$ vertices is a graph with n vertices of degree 1 and one vertex, called the center, of degree n. A double star $S_{s, t}$ is a graph obtained by adding an edge between the center vertices of two stars S_{s} and S_{t}. Let P_{n} denote the path graph on n vertices with the natural labelling $1,2, \ldots, n$. Then,

$$
E c\left(P_{n}\right)= \begin{cases}K_{n}, \text { the complete graph } & \text { if } n \leq 3 \\ S_{\frac{n-2}{2}, \frac{n-2}{2}}, \text { a double star } & \text { if } n>3 \text { is even } \\ H_{\frac{n-3}{2}} & \text { if } n>3 \text { is odd }\end{cases}
$$

where K_{t} denotes the complete graph on t vertices and H_{t} is a graph obtained by adding t pendant vertices to each of any two of the vertices of a triangle (see Fig. 1).

Fig. 1. Eccentric graphs of the path graphs P_{8} and $P_{9}\left(S_{3,3}\right.$ and $\left.H_{3}\right)$.
Let C_{n} denote the cycle graph on n vertices and the vertices are labeled as $1,2, \ldots, n$. Then,

$$
E c\left(C_{n}\right)= \begin{cases}\frac{n}{2} K_{2} & \text { if } n \text { is even } \tag{1}\\ C_{n} & \text { if } n \text { is odd }\end{cases}
$$

Also, $E c\left(K_{n}\right)=K_{n}$ and $E c\left(K_{s, t}\right)=K_{s} \cup K_{t}$ for $s, t>1$ [2]. Throughout the paper, we will use the notation P_{n} and C_{n} to denote the path graph and the cycle graph on n vertices.

Numerous interesting properties of the eccentricity matrix of a tree have been established so far. For instance, Mahato showed that the eccentricity matrix of a tree is invertible only if the tree is a star [3]. Additionally, the diameter of the tree is odd if and only if eigenvalues of its eccentricity matrix are symmetric about the origin [5].

In Section 2, we will give a complete structure of the eccentric graph of a general tree and point out one more structural information in Proposition 1. In Section 3, we will prove that the eccentric girth of a tree can either be zero, three or four. In Section 4, we will present some structural properties of the eccentric graph of the Cartesian product of graphs and classify all the possible values of the eccentric girth of the Cartesian product of trees.

Lastly, in section 5, generalising the result of Mahato [3, Theorem 2.1], we will analyze and classify the conditions under which the eccentricity matrix of the Cartesian product of trees becomes invertible.

2. Structure of eccentric graph of a tree

In this section, we will focus on the structure of the eccentric graph of a tree. Recall that a tree is a connected graph with no cycles and the degree of a vertex v in a simple graph G is the number of vertices adjacent to it. A vertex of degree 1 is called a leaf or a pendant vertex. The union of two graphs G_{1} and G_{2} is the simple graph whose vertex set and edge set are formed by taking the union of the vertex sets of G_{1} and G_{2} and the edge sets of G_{1} and G_{2}, respectively.

Definition 2. Let T be a tree and v be a leaf in T. We define the path from v to the nearest vertex of degree greater than two as the stem at v and the branching vertex is an endpoint of the stem which has degree greater than two in T .

Fig. 2. A tree T on 12 vertices with different coloured stems at vertices 9,11 and 12.
Note that a path graph P_{n} has no stems.
Definition 3. Let P be a diametrical path in a tree T. We define the tree induced from the path P as the subtree of T obtained by removing stems except branching vertices at those leaves (except endpoints of P), which are an endpoint of some diametrical path other than P.

Consider the tree T shown in Fig. 2. T has three diametrical paths and the subtrees induced by these are shown in Fig. 3.

Fig. 3. Subtrees induced by different diametrical paths (dashed) of the tree in Fig. 2.

Note that the structure of the eccentric graph of a subtree induced from a diametrical path in T depends on the diameter of T. In case of an even diameter, it looks as shown in the left of Fig. 4 and in case of odd diameter, it looks as shown in the right of Fig. 4.

Fig. 4. Eccentric graphs of subtrees induced by diametrical paths.
For example, the eccentric graphs of the subtrees in Fig. 3 have been shown in Fig. 5.
The following result shows that the graphs shown in Fig. 4 are the building blocks for the eccentric graph of a tree.

Fig. 5. Eccentric graphs of the three subtrees in Fig. 3 of the tree in Fig. 2.
Theorem 1. Let Q_{1}, \cdots, Q_{k} be possible diametrical paths in T with starting point $v_{0}^{1}, \ldots, v_{0}^{k}$ and ending point $v_{n}^{1}, \ldots, v_{n}^{k}$, respectively. Let T_{1}, \ldots, T_{k} be induced trees from Q_{1}, \ldots, Q_{k}, respectively. Then, $\operatorname{Ec}(T)=\cup_{i=1}^{k} E c\left(T_{i}\right)$.

Proof. It is clear that each vertex of T lies in at least one tree induced from a diametrical path.
For $i \in[k]$, let e be an edge in the eccentric graph $E c\left(T_{i}\right)$. As Q_{i} is the unique diametrical path in T_{i}, it follows that one of the endpoints of e is either v_{0}^{i} or v_{n}^{i}, assume that $e=v v_{n}^{i}$. Thus, $e_{T_{i}}(v)=d_{T_{i}}\left(v, v_{n}^{i}\right)=d_{T}\left(v, v_{n}^{i}\right)=e_{T}(v)$. Thus, Ec $\left(T_{i}\right)$ is a subgraph of $E c(T)$.

Now, let $v \sim_{E c(T)} w$ which implies that one of v or $w\left(\right.$ say v) is an endpoint of a diametrical path say $Q_{j}(1 \leq j \leq k)$ in T. It is enough to show that v and w both lie on the same tree T_{s} for some $s \in[k]$. If $w \notin \operatorname{Ec}\left(T_{j}\right)$, eccentric graph of the tree induced from Q_{j}, then w lies on a stem at some leaf z in T. In that case, the path joining from v to z is a diametrical path and the tree induced by this diametrical path T_{S} contains both v and w.

The following example illustrates Theorem 1.
Example 2. Let T be the tree shown in Fig. 2. The eccentric graph of T (see Fig. 6) is the union of the eccentric graphs (shown in Fig. 5) of the subtrees (shown in Fig. 3) induced from the three diametrical paths of T.

Fig. 6. Eccentric graph of the tree in Fig. 2 which is the union of the graphs in Fig. 5.
In the remaining part of this section, we will highlight more structural information about the eccentric graph of a tree.

Proposition 1. Let T be a tree. There does not exist $v_{1}, v_{2}, v_{3} \in V(T)$ such that $v_{1} \sim_{E c(T)} v_{2}, v_{2} \sim_{E c(T)} v_{3}$ and $e_{T}\left(v_{1}\right)<e_{T}\left(v_{2}\right)<$ $e_{T}\left(v_{3}\right)$.

Proof. On the contrary, assume that such $v_{1}, v_{2}, v_{3} \in V(T)$ exist. Then $d_{T}\left(v_{1}, v_{2}\right)=\min \left\{e_{T}\left(v_{1}\right), e_{T}\left(v_{2}\right)\right\}=e_{T}\left(v_{1}\right)$, i.e., v_{2} is eccentric to v_{1}. Therefore, v_{2} is an endpoint of a diametrical path. Again, $d_{T}\left(v_{2}, v_{3}\right)=\min \left\{e_{T}\left(v_{2}\right), e_{T}\left(v_{3}\right)\right\}=e_{T}\left(v_{2}\right)$, which implies that the path from v_{2} to v_{3} is a diametrical path and therefore $e_{T}\left(v_{2}\right)=e_{T}\left(v_{3}\right)$, a contradiction.

The essence of Proposition 1 can be summarized as the eccentricity of a vertex $v \in V(T)$ is either the smallest or the largest among the eccentricities of its neighbours in the eccentric graph of T.

3. Eccentric girth of a tree

In this section, we will determine the eccentric girth of a tree and its potential values. In addition, we will classify the instances in which these possible values of the eccentric girth can be achieved. It is well-known that two paths of maximum
length must pass through a common point. Thus, it is evident that two diametrical paths in a tree must intersect. But this is not true in general, the graph in Fig. 7 has two diametrical paths (dashed) but they do not intersect.

Fig. 7. A graph having two non-intersecting diametrical paths.

Now, we will present the main result of this section which classifies the eccentric girth of a tree.

Theorem 3. Let T be a tree. Then the girth of the eccentric graph of T is either zero, three, or four. Moreover,

$$
g(E c(T))= \begin{cases}3 & \text { if the diameter of } T \text { is even } \\ 0 & \text { if the diameter of } T \text { is odd with unique diametrical path } \\ 4 & \text { otherwise } .\end{cases}
$$

Proof. The proof is divided into the following cases depending on the parity of the diameter of T.
First, let the diameter of T be even and $P=v_{0} v_{1} \ldots v_{k} v_{k+1} \ldots v_{2 k}$ be a diametrical path. Note that $e\left(v_{0}\right)=2 k=e\left(v_{2 k}\right)$ and $d\left(v_{0}, v_{2 k}\right)=2 k$, therefore $v_{0} \sim_{E c(T)} v_{2 k}$. If $e\left(v_{k}\right)>k$, then one of $e\left(v_{0}\right)$ or $e\left(v_{2 k}\right)$ will be greater than $2 k$, which is not possible. Also, $d\left(v_{0}, v_{k}\right)=k=d\left(v_{k}, v_{2 k}\right)$, therefore $e\left(v_{k}\right)=k$ and $v_{k} \sim_{E c(T)} v_{0}, v_{k} \sim_{E c(T)} v_{2 k}$. Thus, v_{0}, v_{k}, and $v_{2 k}$ form a triangle in $E c(T)$.

Second, if the diameter of T is odd and $P=v_{0} v_{1} \ldots v_{k} v_{k+1} \ldots v_{2 k+1}$ is the unique diametrical path in T. It is sufficient to show that for any vertex $i \in V(T)$ exactly one of v_{0} or $v_{2 k+1}$ is eccentric to i and no other vertex is eccentric to i. Note that, in a tree, if a vertex j is eccentric to some vertex, then j must be a pendant vertex.

Let $i \in V(P)$, if possible, there exists a vertex $j \in V(T)$ other than v_{0} and $v_{2 k+1}$ which is eccentric to i, that is, $d(i, j)=$ $e(i)$, then j is a leaf of a branch emerging from some vertex $p \in V(P)$. Assume that p is on the left of i in P, then $d(i, j) \geq d\left(i, v_{0}\right)$, which implies $d\left(v_{2 k+1}, j\right)=d\left(v_{2 k+1}, i\right)+d(i, j) \geq d\left(v_{2 k+1}, i\right)+d\left(i, v_{0}\right)=2 k+1$, which contradicts the fact that P is the only diametrical path. A similar argument can be given when p is on the right of i.

Now suppose that $i \in V(T) \backslash V(P)$ lies on some branch emerging from a vertex $i^{\prime} \in V(P)$. Again let there exists $j \in V(T)$ other than v_{0} and $v_{2 k+1}$ which is eccentric to i. Note that j cannot lie on the same branch; otherwise, the eccentricity of one of v_{0} or $v_{2 k+1}$ will increase. Thus, j must be eccentric to i^{\prime} which cannot happen as proved in the preceding paragraph. Moreover, because of odd diameter, exactly one of v_{0} or $v_{2 k+1}$ can be eccentric to i. For illustration, $\operatorname{Ec}(T)$ in this scenario is shown in Fig. 8.

Fig. 8. Eccentric graph of a tree (of odd diameter) with unique diametrical path.

Third, let the diameter of T be odd and $P=v_{0} v_{1} \ldots v_{k} v_{k+1} \ldots v_{2 k+1}, P^{\prime}=w_{0} w_{1} \ldots w_{k} w_{k+1} \ldots w_{2 k+1}$ be two diametrical paths in T. As mentioned at the start of Section 3, they must intersect. Therefore, it is reasonable to assume that P and P^{\prime} have one common endpoint say $v_{0}=w_{0}$, otherwise one of the paths joining from v_{0} to w_{0} or $w_{2 k+1}$ (say $\left.w_{2 k+1}\right)$ is a diametrical path and we can create two such diametrical paths by replacing P^{\prime} with the diametrical path from v_{0} to $w_{2 k+1}$. Hence, $\left(v_{0}, v_{2 k+1}, v_{1}, w_{2 k+1}\right)$ forms a 4 -cycle in $\operatorname{Ec}(T)$. Now, if there is a triangle $\left(z_{1}, z_{2}, z_{3}\right)$ in $\operatorname{Ec}(T)$ and $e\left(z_{1}\right) \leq e\left(z_{2}\right) \leq e\left(z_{3}\right)$. Without loss of generality, assume that z_{1} is a vertex on some branch emerging from $w_{p}, 1 \leq p \leq k$ (Note that z_{1} can be w_{0}). If z is any vertex eccentric to z_{1}, then z must be a vertex on some branch emerging from w_{i}, for some $k+1 \leq i \leq 2 k$; if not, then $d\left(z, w_{2 k+1}\right)$ is greater than the diameter $2 k+1$. Now z_{2} being eccentric to z_{1} must lie on some branch emerging from $w_{q}, k+1 \leq q \leq 2 k$ (Note that z_{2} can be $w_{2 k+1}$). Again, as z_{3} is eccentric to z_{2}, z_{3} is a vertex on some branch emerging from $w_{r}, 1 \leq r \leq k$, but then z_{3} cannot be eccentric to z_{1}. Hence $E c(T)$ cannot have a triangle.

4. Eccentric graph of the Cartesian product of graphs

In this section, we will examine some properties of the eccentric graph of the Cartesian product of general graphs and calculate the eccentric girth of the Cartesian product of trees in Section 4.1. We begin by recalling the definition of the Cartesian product and the Kronecker product of two graphs.

Definition 4. Let G_{1} and G_{2} be two simple connected graphs. The Cartesian product of G_{1} and G_{2} denoted as $G_{1} \square G_{2}$ is a graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$, and two vertices (u_{1}, u_{2}) and (v_{1}, v_{2}) are adjacent if and only if either $u_{1}=v_{1}$ and $u_{2} \sim_{G_{2}} v_{2}$ or $u_{1} \sim_{G_{1}} v_{1}$ and $u_{2}=v_{2}$.

The following equations follow directly from Definition 4.

$$
\begin{equation*}
d_{G_{1} \square G_{2}}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)=d_{G_{1}}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right), \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{G_{1} \square G_{2}}\left(\left(u_{1}, u_{2}\right)\right)=e_{G_{1}}\left(u_{1}\right)+e_{G_{2}}\left(u_{2}\right) . \tag{3}
\end{equation*}
$$

The above definition and the equations can be generalised to the Cartesian product of k graphs G_{1}, \ldots, G_{k} denoted as G_{1} $\cdots \square G_{k}$

Definition 5. Let G_{1} and G_{2} be two simple connected graphs. The Kronecker product of G_{1} and G_{2} denoted as $G_{1} \times G_{2}$ is a graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$, and two vertices $\left(u_{1}, u_{2}\right)$ and (v_{1}, v_{2}) are adjacent if and only if $u_{1} \sim_{G_{1}} v_{1}$ and $u_{2} \sim_{G_{2}} v_{2}$.

Lemma 1. Let G_{1}, \ldots, G_{k} be simple connected graphs and $G=G_{1} \square \ldots \square G_{k}$ be their Cartesian product. Let $u=\left(u_{1}, \ldots, u_{k}\right), v=$ $\left(v_{1}, \ldots, v_{k}\right) \in V(G)$ where $u_{i}, v_{i} \in V\left(G_{i}\right)$ for $i \in[k]$. Then, v is eccentric to u if and only if v_{i} is eccentric to u_{i} for all $i \in[k]$.

Proof. Let v be eccentric to u, i.e., $d_{G}(u, v)=\max \left\{d_{G}(u, x): x \in V(G)\right\}$. Then by (2) we can express this as:

$$
\sum_{i=1}^{k} d_{G_{i}}\left(u_{i}, v_{i}\right)=\max \left\{\sum_{i=1}^{k} d_{G_{i}}\left(u_{i}, x_{i}\right): x_{i} \in V\left(G_{i}\right)\right\} .
$$

Which holds only if

$$
\left.d_{G_{i}}\left(u_{i}, v_{i}\right)=\max \left\{d_{G_{i}}\left(u_{i}, x_{i}\right): x_{i} \in V\left(G_{i}\right)\right\} \text { for all } i \in[k]\right\} .
$$

Thus, v_{i} is eccentric to u_{i} for all $i \in[k]$. Furthermore, we can reverse the steps of this argument to establish the converse part.

Note that if $\left(u_{1}, \ldots, u_{k}\right) \sim_{E c\left(G_{1} \square \ldots \square G_{k}\right)}\left(v_{1}, \ldots, v_{k}\right)$, then $u_{i} \neq v_{i}$ for all $i \in[k]$. Also, it is clear from Lemma 1 that if $u \sim_{E c(G)} v$, then $u_{i} \sim_{E c\left(G_{i}\right)} v_{i}$ for all $i \in[k]$, but the converse is not true. For example, $1 \sim_{E c\left(P_{4}\right)} 3$ and $2 \sim_{E c\left(P_{4}\right)} 4$, but $(1,2) \nsim_{E c\left(P_{4} \square P_{4}\right)}(3,4)$ (see Fig. 9).

Fig. 9. Eccentric graphs of naturally labelled P_{4} and $P_{4} \square P_{4}$.

Corollary 1. Let G_{1} and G_{2} be simple connected graphs such that all the vertices in both G_{1} and G_{2} have the same eccentricities. Then $\operatorname{Ec}\left(G_{1} \square G_{2}\right)$ is isomorphic to $\operatorname{Ec}\left(G_{1}\right) \times \operatorname{Ec}\left(G_{2}\right)$, the Kronecker product of $\operatorname{Ec}\left(G_{1}\right)$ and $\operatorname{Ec}\left(G_{2}\right)$.

Lemma 2. Let G_{1}, \ldots, G_{k} be simple connected graphs and $G=G_{1} \square \ldots \square G_{k}$. If for some $s, t \in[k]$ there exists $u_{s}, v_{s}, w_{s} \in V\left(G_{s}\right)$ such that $u_{s} \sim_{E c\left(G_{s}\right)} v_{s}, v_{s} \sim_{E c\left(G_{s}\right)} w_{s}$ and $e_{G_{s}}\left(v_{s}\right) \geq \max \left\{e_{G_{s}}\left(u_{s}\right), e_{G_{s}}\left(w_{s}\right)\right\}$, and there exists $u_{t}, v_{t}, w_{t} \in V\left(G_{t}\right)$ such that $u_{t} \sim_{E c\left(G_{t}\right)} v_{t}$, $v_{t} \sim_{E c\left(G_{t}\right)} w_{t}$ and $e_{G_{t}}\left(v_{t}\right) \leq \min \left\{e_{G_{t}}\left(u_{t}\right), e_{G_{t}}\left(w_{t}\right)\right\}$, then there exists a 4-cycle in $\operatorname{Ec}(G)$.

Proof. Without loss of generality, assume that $s=1$ and $t=2$ and for $i=3, \ldots, k$, let $\left\{u_{i}, v_{i}\right\}$ be an edge in $\operatorname{Ec}\left(G_{i}\right)$ such that $e_{G_{i}}\left(u_{i}\right) \geq e_{G_{i}}\left(v_{i}\right)$, i.e., u_{i} is eccentric to v_{i} for $i=3, \ldots, k$. By the inequalities in the hypothesis, v_{1} is eccentric to both u_{1} and w_{1}, u_{2} is eccentric to v_{2} and w_{2} is eccentric to v_{2}. Thus by Lemma $1, a=\left(u_{1}, v_{2}, v_{3}, \ldots v_{k}\right), b=\left(v_{1}, w_{2}, u_{3}, \ldots\right.$, $\left.u_{k}\right), c=\left(w_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$ and $d=\left(v_{1}, u_{2}, u_{3}, \ldots, u_{k}\right)$ form a 4-cycle in $E c(G)$ (see Fig. 10).

Fig. 10. Formation of 4-cycle in $E c(G)$.

We will now prove that there is a triangle in the eccentric graph of the Cartesian product of k graphs if and only if there is a triangle in the eccentric graph of each of the individual graphs.

Theorem 4. Let G_{1}, \ldots, G_{k} be simple connected graphs and G be their Cartesian product. Then the girth of $E c(G)$ is 3 if and only if the girth of $\operatorname{Ec}\left(G_{i}\right)$ is 3 for all $i \in[k]$.

Proof. First, suppose that there is a triangle in $\operatorname{Ec}\left(G_{i}\right)$ for all $i \in[k]$. Let $\left\{u_{i}, v_{i}, w_{i}\right\}$ be a triangle in $E c\left(G_{i}\right)$ such that $e_{G_{i}}\left(u_{i}\right) \leq e_{G_{i}}\left(v_{i}\right) \leq e_{G_{i}}\left(w_{i}\right)$ for all $i \in[k]$. In other words, v_{i} is eccentric to u_{i} and w_{i} is eccentric to both u_{i} and v_{i} for all i. Therefore by Lemma $1,\left(u_{1}, \ldots, u_{k}\right),\left(v_{1}, \ldots, v_{k}\right)$ and $\left(w_{1}, \ldots, w_{k}\right)$ form a triangle in $E c(G)$. Conversely, suppose $\left(u_{1}, \ldots, u_{k}\right),\left(v_{1}, \ldots, v_{k}\right)$ and $\left(w_{1}, \ldots, w_{k}\right)$ form a triangle in $\operatorname{Ec}(G)$, then again by Lemma $1,\left\{u_{i}, v_{i}, w_{i}\right\}$ forms a triangle in $\operatorname{Ec}\left(G_{i}\right)$ for all $i \in[k]$.

Theorem 5. Let G_{1}, \ldots, G_{k} be simple connected graphs such that the eccentric girths of at least two of them are greater than two. Let $G=G_{1} \square \cdots \square G_{k}$, then the girth of $\operatorname{Ec}(G)$ is four except when the girth of $\operatorname{Ec}\left(G_{i}\right)$ is exactly three for all $i \in[k]$.

Proof. Suppose that $\operatorname{Ec}\left(G_{1}\right)$ and $\operatorname{Ec}\left(G_{2}\right)$ have girths greater than two and C_{1} and C_{2} are cycles in $E c\left(G_{1}\right)$ and $E c\left(G_{2}\right)$, respectively. Let v_{1} be a vertex of the largest eccentricity on C_{1} and v_{2} be a vertex of the smallest eccentricity on C_{2}. In particular, if u_{1}, w_{1} are neighbours of v_{1} in C_{1} and u_{2}, w_{2} are neighbours of v_{2} in C_{2}, then

$$
e_{G_{1}}\left(v_{1}\right) \geq \max \left\{e_{G_{1}}\left(u_{1}\right), e_{G_{1}}\left(w_{1}\right)\right\} \text { and } e_{G_{2}}\left(v_{2}\right) \leq \min \left\{e_{G_{2}}\left(u_{2}\right), e_{G_{2}}\left(w_{2}\right)\right\} .
$$

Hence, the result follows from Theorem 4 and Lemma 2.

Based on the above-stated theorems, it can be concluded that the eccentric girth of the Cartesian product of graphs in which at least two have non-zero eccentric girth is either three or four.

4.1. Eccentric girth of the Cartesian product of trees

Recall that in section 3, we observed that the eccentric girth of a tree could either be zero, three or four. Now, we will prove that for the Cartesian product of trees, it can also be six in addition to the above values. We will now characterize completely the eccentric girth of the Cartesian product of trees and present an analogous result to Theorem 3.

Theorem 6. Let T_{1}, \ldots, T_{k} be trees and $G=T_{1} \square \cdots \square T_{k}$. Then,

$$
g(E c(G))= \begin{cases}0 & \text { if the girth of } E c\left(T_{i}\right)=0 \text { for all } i \in[k] \\ 3 & \text { if the girth of } E c\left(T_{i}\right)=3 \text { for all } i \in[k], \\ 6 & \text { if } G=T_{1} \square P_{2} \square \cdots \square P_{2} \text { and } E c\left(T_{1}\right) \text { is } C_{4} \text {-free with girth three, } \\ 4 & \text { otherwise. }\end{cases}
$$

Proof. First, assume that T_{1}, \ldots, T_{k} are trees with eccentric girth 0 . By Theorem 3, there exists a unique diametrical path of odd length in T_{i} with endpoints u_{i} and v_{i} for all $i \in[k]$. Consider the set of vertices $S=\left\{\left(x_{1}, \ldots, x_{k}\right): x_{i} \in\left\{u_{i}, v_{i}\right\}, i \in[k]\right\}$ in $V(G)$. Any vertex $u \in V(G) \backslash S$ cannot be eccentric to anyone in G and the vertices eccentric to u lie in S. Moreover, exactly one vertex in S is eccentric to u because each of the $T_{i}^{\prime} S$ has a unique diametrical path. Consequently, u is adjacent to exactly one vertex in the eccentric graph $\operatorname{Ec}(G)$. Also, note that any two vertices in S are adjacent if and only if they differ at each component, therefore $E c(G)$ is an acyclic graph with 2^{k-1} connected components.

Second, only one of $T_{i}^{\prime} s$ say T_{1} has non-zero eccentric girth. Now there are two cases, one is when at least one of T_{i}, $i=2, \ldots, k$, is not P_{2} and the other is $T_{i}=P_{2}$ for all $i=2, \ldots, k$.

If suppose that $T_{2} \neq P_{2}$, and since $E c\left(T_{2}\right)$ has girth zero, by Theorem 3 there exists a unique diametrical path with endpoints u_{2} and v_{2} and $u_{2} \sim_{E c\left(T_{2}\right)} v_{2}$. Now, as $T_{2} \neq P_{2}$ and $E c\left(T_{2}\right)$ is connected [8], there is a vertex w_{2}, adjacent to either u_{2} or v_{2}, let's say $v_{2} \sim_{E c\left(T_{2}\right)} w_{2}$. Clearly, $e_{T_{2}}\left(v_{2}\right) \geq \max \left\{e_{T_{2}}\left(u_{2}\right), e_{T_{2}}\left(w_{2}\right)\right\}$. Additionally, as the girth of $E c\left(T_{1}\right)$ is nonzero (it is either 3 or 4 by Theorem 3), it is possible to choose $u_{1}, v_{1}, w_{1} \in V\left(T_{1}\right)$ such that $u_{1} \sim_{E c\left(T_{1}\right)} v_{1}, v_{1} \sim_{E c\left(T_{1}\right)} w_{1}$ and $e_{T_{1}}\left(v_{1}\right) \leq \min \left\{e_{T_{1}}\left(u_{1}\right), e_{T_{1}}\left(w_{1}\right)\right\}$. Therefore by Lemma 2 and Theorem 4, the girth of $E c(G)$ is four.

Let $T_{i}=P_{2}$ with endpoints $\left\{u_{i}, v_{i}\right\}$ for $i=2, \ldots, k$. If $E c\left(T_{1}\right)$ contains a 4-cycle, $\left\{u_{1}, v_{1}, w_{1}, x_{1}\right\}$, then $\left\{\left(u_{1}, u_{2}, \ldots, u_{k}\right)\right.$, $\left.\left(v_{1}, v_{2}, \ldots, v_{k}\right),\left(w_{1}, u_{2}, \ldots, u_{k}\right),\left(x_{1}, v_{2}, \ldots, v_{k}\right)\right\}$ forms a 4-cycle in $\operatorname{Ec}(G)$. Therefore the girth of $E c(G)$ is four as $E c(G)$ can not contain any odd cycle (because $T_{2}=P_{2}$). If $E c\left(T_{1}\right)$ doesn't contain a 4-cycle, then by Theorem 3, girth of $E c\left(T_{1}\right)$ is 3 . Let $\left\{u_{1}, v_{1}, w_{1}\right\}$ be a 3 -cycle in $\operatorname{Ec}\left(T_{1}\right)$ then $\left\{\left(u_{1}, u_{2}, \ldots, u_{k}\right),\left(v_{1}, v_{2}, \ldots, v_{k}\right),\left(w_{1}, u_{2}, \ldots, u_{k}\right),\left(u_{1}, v_{2}, \ldots, v_{k}\right),\left(v_{1}, u_{2}, \ldots, u_{k}\right)\right.$, ($w_{1}, v_{2}, \ldots, v_{k}$) \} forms a 6-cycle in $E c(G)$. If $E c(G)$ contains a 4-cycle, then so is $E c\left(T_{1}\right)$ as $T_{i}=P_{2}$ for all $i=2, \ldots, k$.

Finally, the rest of the cases follow from Theorems 4 and 5.

As an illustration, we will now discuss the structure and the girth of the eccentric graph of the graphs obtained as the Cartesian product of two path graphs and two cycle graphs.

4.2. Cartesian product of two path graphs

An $m \times n$ grid graph is the Cartesian product of the path graphs P_{m} and P_{n}, denoted as $P_{m} \square P_{n}$. Let the vertices of $P_{m} \square P_{n}$ be $\{(i, j): 1 \leq i \leq m, 1 \leq j \leq n\}$. For the sake of simplicity in figures, we label a vertex (i, j) by $(i-1) n+j$. Fig. 11 shows the mentioned labelling for the grid graph $P_{3} \square P_{5}$.

Fig. 11. The grid graph, $P_{3} \square P_{5}$.

Let $G=P_{m} \square P_{n}$ be a grid. Then the eccentricity of each vertex is given by

$$
e((i, j))= \begin{cases}d((i, j),(m, n)) & \text { if } 1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil \\ d((i, j),(1,1)) & \text { if }\left\lfloor\frac{m}{2}\right\rfloor<i \leq m,\left\lfloor\frac{n}{2}\right\rfloor<j \leq n \\ d((i, j),(m, 1)) & \text { if } 1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil,\left\lfloor\frac{n}{2}\right\rfloor<j \leq n \\ d((i, j),(1, n)) & \text { if }\left\lfloor\frac{m}{2}\right\rfloor<i \leq m, 1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil\end{cases}
$$

Note that $(1,1),(1, n),(m, 1)$ and (m, n) have the maximum eccentricity, which is $m+n$. Therefore,

$$
(i, j) \sim_{E c(G)} \begin{cases}(m, n) & \text { if } 1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil, 1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil \\ (1,1) & \text { if }\left\lfloor\frac{m}{2}\right\rfloor<i \leq m,\left\lfloor\frac{n}{2}\right\rfloor<j \leq n \\ (m, 1) & \text { if } 1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil,\left\lfloor\frac{n}{2}\right\rfloor<j \leq n \\ (1, n) & \text { if }\left\lfloor\frac{m}{2}\right\rfloor<i \leq m, 1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil\end{cases}
$$

From the above adjacency relations, it is clear that the eccentric graph of $P_{m} \square P_{n}$ has a specific structure depending on the parity of m and n. Example for each of the three cases, depending on whether both m and n are even, both are odd, or one is even and the other is odd, are presented in Fig. 12. Further, note that the girth of the eccentric graph $E c\left(P_{m} \square P_{n}\right)$ is zero if both m and n are even, four if exactly one of m and n is even and greater than two, six if exactly one of m and n is two and the other is odd, and three if both m and n are odd.

(c) $\operatorname{Ec}\left(P_{5} \square P_{7}\right)$

Fig. 12. Eccentric graphs of different grid graphs.

Moreover, if n is odd and $m>2$ is even, then

$$
\left((1,1)\left(\frac{n+1}{2}, m-1\right)(n, 1)\left(\frac{n+1}{2}, m\right)\right)
$$

form a 4-cycle in $\operatorname{Ec}\left(P_{n} \square P_{m}\right)$. If n is odd and $m=2$, then

$$
\left((1,1)\left(\frac{n+1}{2}, 2\right)(n, 1)(1,2)\left(\frac{n+1}{2}, 1\right)(n, 2)\right)
$$

form a 6-cycle in $\operatorname{Ec}\left(P_{n} \square P_{m}\right)$. If both n and m are odd, then

$$
\left((1,1)\left(\frac{n+1}{2}, \frac{m+1}{2}\right)(n, m)\right)
$$

form a 3-cycle in $\operatorname{Ec}\left(P_{n} \square P_{m}\right)$.

4.3. Cartesian product of two cycle graphs

As discussed in Section 1, $\operatorname{Ec}\left(C_{n}\right)$ is isomorphic to the $\frac{n}{2}$ copies of K_{2} for an even n. Thus when n and m both are even, each vertex in $E c\left(C_{n} \square C_{m}\right)$ has degree 1. In other words, $E c\left(C_{n} \square C_{m}\right)$ is isomorphic to a graph containing $\frac{n m}{2}$ copies of K_{2}.

For an even n and an odd m, each vertex in $E c\left(C_{n}\right)$ and $E c\left(C_{m}\right)$ has degree 1 and 2 respectively. Therefore, $E c\left(C_{n} \square C_{m}\right)$ is a 2 -regular graph. Consequently, $E c\left(C_{n} \square C_{m}\right)$ is either a cycle or a union of cycles. Moreover, $E c\left(C_{n} \square C_{m}\right)$ consists $\frac{n}{2}$ cycles of length $2 m$, namely

$$
\left((i, 1)\left(\frac{n}{2}+i, 2\right) \ldots(i, m)\left(\frac{n}{2}+i, 1\right)(i, 2) \ldots\left(\frac{n}{2}+i, m\right)\right)
$$

for $i \in\left[\frac{n}{2}\right]$. Fig. 13 shows the eccentric graph of the Cartesian product of C_{4} and C_{3}.

Fig. 13. Eccentric graph of the Cartesian product of C_{4} and C_{3}.
When m and n both are 3, the eccentric graph of $C_{n} \square C_{m}$ is shown in Fig. 14 and its girth is 3 by Theorem 4, which can be seen in the figure as well.

Fig. 14. Eccentric graph of the Cartesian product of a 3-cycle with itself.

Finally, for the remaining case, it follows from Theorem 5 that the eccentric girth of $E c\left(C_{n} \square C_{m}\right)$ is four and

$$
\left(\left(1, \frac{m+3}{2}\right)\left(\frac{n+1}{2}, 1\right)\left(1, \frac{m+1}{2}\right)\left(\frac{n+3}{2}, 1\right)\right)
$$

form a 4-cycle in $E c\left(C_{n} \square C_{m}\right)$.
The following statement summarizes the above discussion: The eccentric girth of the Cartesian product of two cycle graphs is even except when both cycles are triangles. Moreover,

$$
g\left(E c\left(C_{n} \square C_{m}\right)\right)= \begin{cases}0 & \text { if both } n \text { and } m \text { are even } \\ 3 & \text { if } n=m=3 \\ 2 m & \text { if } n \text { is even and } m \text { is odd } \\ 4 & \text { otherwise }\end{cases}
$$

We will end this section with the following observation.

Proposition 2. For odd $n, E c\left(C_{n} \square C_{n}\right)$ is isomorphic to $C_{n} \square C_{n}$.

Proof. By Corollary 1, it is enough to show that $C_{n} \square C_{n}$ is isomorphic to $C_{n} \times C_{n}$ for an odd n. We assume the natural labelling on the vertices of C_{n}. Now, we define an isomorphism f from $C_{n} \square C_{n}$ to $C_{n} \times C_{n}$ as follows

$$
\begin{aligned}
f((1,1)) & =(1,1) \\
f((i, 1)) & =(n+2-i, n+2-i) \text { for } i=2, \ldots, n, \\
f((i, j)) & =[f((i, 1))+(j-1,1-j)](\bmod n) .
\end{aligned}
$$

We will write 0 as n in the computation of f. To see f is a bijection, first note that $f((i, 1)) \neq f((j, 1))$ for $i \neq j$. Now assume that $(i, j) \neq(k, l)$, this happens in either of three cases, (a) $i \neq k$ and $j=l$, (b) $i=k$ and $j \neq l$, or $(c) i \neq k$ and $j \neq l$.

Consider the first case $i \neq k$ and $j=l$ and let $f((i, 1))=(s, s)$ and $f((k, 1))=(t, t)$, clearly $s \neq t$. Now, if $f((i, j))=$ $f((k, l))$, then $s+j-1 \equiv t+j-1(\bmod n)$, which leads to $s=t$, a contradiction. Therefore $f((i, j)) \neq f((k, l))$. Similarly, we can show for the second case. Now consider the third case $i \neq k$ and $j \neq l$, and again let $f(i, 1))=(s, s)$ and $f((k, 1))=$ (t, t), clearly $s \neq t$. Now, if $f((i, j))=f((k, l))$, then $s+j-1 \equiv t+l-1(\bmod n)$ and $s+1-j \equiv t+1-l(\bmod n)$, compatibility with addition of congruence leads to again $s=t$ (because n is odd), a contradiction. Therefore, f is a bijection.

Now, let $(i, j) \in V\left(C_{n} \square C_{n}\right)$ and $f((i, j))=(s, t)$. Then $f((i \pm 1, j))=(s \pm 1, t \pm 1)(\bmod n)$ and $f((i, j \pm 1))=(s \pm 1, t \mp$ $1)(\bmod n)$. This proves that f preserves the adjacency.

5. Invertibilty of eccentricity matrix of the Cartesian product of trees

In this section, we will focus on the invertibility of the eccentricity matrix for the Cartesian product of trees. First, recall the definition of the Kronecker product of two matrices.

Definition 6. Let $A=\left(a_{i, j}\right)$ be an $m \times n$ matrix and $B=\left(b_{i, j}\right)$ be a $p \times q$ matrix, then the Kronecker product, $A \otimes B$, is an $m p \times n q$ block matrix defined as

$$
\left(\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & \ddots & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right)
$$

Kronecker product of two matrices is non-commutative in general. If A and B are square matrices of order n and p, respectively, then

$$
\operatorname{det} A \otimes B=(\operatorname{det} A)^{p}(\operatorname{det} B)^{n}
$$

Lemma 3. Let T_{1} be a tree which is not a star or P_{4}, then the eccentricity matrix of $T_{1} \square \underbrace{P_{2} \square \cdots \square P_{2}}_{k-1}$ is not invertible.

Proof. Let $G=T_{1} \square P_{2} \square \cdots \square P_{2}$ and the $i^{\text {th }}$ graph in this product be the path P_{2} with endpoints $\left\{u_{i}, v_{i}\right\}$ for $i=2, \ldots, k$. Note that a vertex $\left(x_{1}, x_{2} \ldots, x_{k}\right)$ is adjacent to $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ in $\operatorname{Ec}(G)$ if and only if $x_{i}=v_{i}$ for $i=2, \ldots, k$ and either x_{1} is
eccentric to u_{1} in T_{1} or u_{1} is eccentric to x_{1} in T_{1}. In other words, adjacency with ($u_{1}, u_{2}, \ldots, u_{k}$) in $E c(G)$ solely depends on the adjacency of u_{1} in $\operatorname{Ec}\left(T_{1}\right)$. Now we consider three cases.

Case 1: $\operatorname{diam}\left(T_{1}\right)=3$.
Let $P=a_{1} b_{1} c_{1} d_{1}$ be a diametrical path in T_{1}. As $T_{1} \neq P_{4}$, there must be a leaf vertex, say e_{1}, adjacent to either b_{1} or c_{1}. Let us assume that e_{1} is adjacent to b_{1}. Now we claim that $N_{E c(G)}\left(\left(a_{1}, u_{2}, \ldots, u_{k}\right)\right)=N_{E c(G)}\left(\left(e_{1}, u_{2}, \ldots, u_{k}\right)\right)$. If a vertex f_{1} is eccentric to a_{1} then f_{1} is also eccentric to e_{1} because $d_{T_{1}}\left(a_{1}, f_{1}\right)=d_{T_{1}}\left(e_{1}, f_{1}\right)$, and if a_{1} is eccentric to some vertex f_{1} then so is e_{1} because $d_{T_{1}}\left(a_{1}, f_{1}\right)=d_{T_{1}}\left(e_{1}, f_{1}\right)$. This proves our claim and hence the rows corresponding to these two vertices in \mathcal{E}_{G} are exactly the same and therefore $\operatorname{det}\left(\mathcal{E}_{G}\right)=0$.

Case 2: $\operatorname{diam}\left(T_{1}\right)=4$.
Let $P=a_{1} b_{1} c_{1} d_{1} e_{1}$ be a diametrical path in T_{1}. Let $\left\{b_{1}, d_{1}, p_{1}, \ldots, p_{\ell}\right\}$ be the set of neighbours of c_{1}. Note that if a vertex x is eccentric to a neighbour of c_{1} then it is also eccentric to c_{1}. Further, note that none of c_{1} or its neighbours can be eccentric to any vertex in T_{1}. Therefore, the row corresponding to $\left(c_{1}, u_{2}, \ldots, u_{k}\right)$ in the matrix \mathcal{E}_{G} is a constant multiple of the sum of the rows corresponding to $\left(b_{1}, u_{2}, \ldots, u_{k}\right),\left(d_{1}, u_{2}, \ldots, u_{k}\right),\left(p_{1}, u_{2}, \ldots, u_{k}\right), \ldots\left(p_{\ell}, u_{2}, \ldots, u_{k}\right)$.

Case 3: $\operatorname{diam}\left(T_{1}\right)>4$.
Let $P=a_{1} b_{1} c_{1} d_{1} \ldots z_{1}$ be a diametrical path in T_{1}. A vertex eccentric to b_{1} in T_{1} is also eccentric to c_{1} in T_{1} and vice versa. Also, b_{1} and c_{1} cannot be eccentric to any vertex in T_{1} as they are not leaves. Therefore, b_{1} and c_{1} have same neighbourhood in $E c\left(T_{1}\right)$. As a result, the rows corresponding to ($b_{1}, u_{2}, \ldots, u_{k}$) and ($c_{1}, u_{2}, \ldots, u_{k}$) in \mathcal{E}_{G} are constant multiple of each other and hence $\operatorname{det}\left(\mathcal{E}_{G}\right)=0$.

Now, we will present the main result of this section.
Theorem 7. Let T_{1}, \ldots, T_{k} be trees and $G\left(=T_{1} \square \cdots \square T_{k}\right)$ be their Cartesian product. Then the eccentricity matrix of G, \mathcal{E}_{G}, is invertible if and only if one of them is a star or P_{4} and the rest are P_{2}.

Proof. Let T_{1}, \ldots, T_{k} be trees with at least two vertices and $G=T_{1} \square \cdots \square T_{k}$. Assume that T_{1} is a star on $n+1$ vertices and $T_{2}=\cdots=T_{k}=P_{2}$. Then the eccentricity matrix of G is

$$
\mathcal{E}_{G}=\left(\begin{array}{ccccc}
0 & k & k & \cdots & k \\
k & 0 & k+1 & \cdots & k+1 \\
\vdots & \vdots & \ddots & & \\
k & k+1 & \cdots & 0 & k+1 \\
k & k+1 & \cdots & k+1 & 0
\end{array}\right) \otimes J_{2^{k-1}}
$$

where, J_{s} is a $s \times s$ antidiagonal matrix with all antidiagonal entries as 1 .
Note that $\operatorname{det}\left(\begin{array}{ccccc}0 & k & k & \cdots & k \\ k & 0 & k+1 & \cdots & k+1 \\ \vdots & \vdots & \ddots & & \\ k & k+1 & \cdots & 0 & k+1 \\ k & k+1 & \cdots & k+1 & 0\end{array}\right)$ is $(-1)^{n} n k^{2}(k+1)^{n-1}$, also $\operatorname{det} J_{2^{k-1}} \neq 0$. Therefore $\operatorname{det} \mathcal{E}_{G} \neq 0$.
Now if $T_{1}=P_{4}$, then the eccentricity matrix of G is

$$
\mathcal{E}_{G}=\left(\begin{array}{cccc}
0 & 0 & k+1 & k+2 \\
0 & 0 & 0 & k+1 \\
k+1 & 0 & 0 & 0 \\
k+2 & k+1 & 0 & 0
\end{array}\right) \otimes J_{2^{k-1}}
$$

Again, $\operatorname{det} \mathcal{E}_{G} \neq 0$, as $\operatorname{det}\left(\begin{array}{cccc}0 & 0 & k+1 & k+2 \\ 0 & 0 & 0 & k+1 \\ k+1 & 0 & 0 & 0 \\ k+2 & k+1 & 0 & 0\end{array}\right)=(k+1)^{4}$.
For the converse part, let T_{1} be neither a star nor P_{4}. Thus the diameter of $T_{1}>2$ and let $P=u_{1} u_{2} \ldots u_{s}$ be a diametrical path in T_{1}. If each of T_{2}, \ldots, T_{k} contains only pendant vertices, then the conclusion follows from Lemma 3. Therefore, we can assume without loss of generality that T_{2} has a non-pendant vertex v. Now we want to show that det \mathcal{E}_{G} is zero. This assertion holds if we can show in general $\operatorname{det} \mathcal{E}_{K}$ is zero, where K is the Cartesian product of T_{1}, T_{2} and a simple connected graph H. Let $\left(u_{i}, v, x\right) \in V(K)$. Note that (u_{i}, v, x) cannot be farthest from (and hence, eccentric to) any vertex in K because v is a non-pendant. Consequently, only those vertices are adjacent to (u_{i}, v, x) (in $E c(K)$) which are eccentric to (u_{i}, v, x). Thus by Lemma 1,

$$
\begin{equation*}
N_{E c(K)}\left(u_{i}, v, x\right)=\left\{\left(w_{i}, w, y\right): w_{i}, w, y \text { are eccentric to } u_{i}, v, x \text { respectively }\right\} . \tag{4}
\end{equation*}
$$

Now if any vertex is eccentric to u_{1} in T_{1} then the same vertex is eccentric to u_{2} as well in T_{1} leading to

$$
N_{E c(K)}\left(u_{1}, v, x\right)=N_{E c(K)}\left(u_{2}, v, x\right) .
$$

Thus, the row corresponding to (u_{1}, v, x) in \mathcal{E}_{K} is a constant multiple of that of (u_{2}, v, x), proving the non-invertibility of \mathcal{E}_{K}.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The authors thank Professor Arvind Ayyer for his valuable comments as well as the reviewers for their insightful remarks and suggestions. The first author thanks the Prime Minister Research Fellowship, India (PM-MHRD_19_17579) for the funding. The second author acknowledges the support of the Council of Scientific \& Industrial Research, India (File number: 09/921(0347)/2021-EMR-I).

References

[1] J. Akiyama, K. Ando, D. Avis, Eccentric graphs, Discrete Math. 56 (1985) 1-6.
[2] S. Kaspar, B. Gayathri, M. Kulandaivel, N. Shobhanadevi, Eccentric graphs of some particular classes of graphs, Int. J. Pure Appl. Math. 119 (2018) 145-152.
[3] I. Mahato, R. Gurusamy, M.R. Kannan, S. Arockiaraj, On the spectral radius and the energy of eccentricity matrices of graphs, Linear Multilinear Algebra 71 (2023) 5-15.
[4] I. Mahato, R. Gurusamy, M. Rajesh Kannan, S. Arockiaraj, Spectra of eccentricity matrices of graphs, Discrete Appl. Math. 285 (2020) $252-260$.
[5] I. Mahato, M. Rajesh Kannan, On the eccentricity matrices of trees: inertia and spectral symmetry, Discrete Math. 345 (2022) 113067.
[6] M. Randić, Dmax-matrix of dominant distances in a graph, MATCH Commun. Math. Comput. Chem. 70 (2013) 221-238.
[7] M. Randić, R. Orel, A. Balaban, Dmax matrix invariants as graph descriptors. Graphs having the same balaban index j, MATCH Commun. Math. Comput. Chem. 70 (2013) 239-258.
[8] J. Wang, M. Lu, F. Belardo, M. Randić, The anti-adjacency matrix of a graph: eccentricity matrix, Discrete Appl. Math. 251 (2018) $299-309$.
[9] J. Wang, M. Lu, M. Brunetti, L. Lu, X. Huang, Spectral determinations and eccentricity matrix of graphs, Adv. Appl. Math. 139 (2022) 102358.
[10] K.X. Xu, Y. Alizadeh, K.C. Das, On two eccentricity-based topological indices of graphs, Discrete Appl. Math. 233 (2017) $240-251$.
[11] K.X. Xu, K.C. Das, A.D. Maden, On a novel eccentricity-based invariant of a graph, Acta Math. Sin. Engl. Ser. 32 (2016) 1477-1493.

[^0]: * Corresponding author.

 E-mail addresses: anitaarora@iisc.ac.in (A. Arora), rm20rs017@iiserkol.ac.in (R. Mishra).
 https://doi.org/10.1016/j.disc.2024.114062
 0012-365X/C 2024 Elsevier B.V. All rights reserved.

