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ABSTRACT We present a method to differentiate organisms solely by their motion based on the generalized Langevin equa-
tion (GLE) and use it to distinguish two different swimming modes of strongly confined unicellular microalgae Chlamydomonas
reinhardtii. The GLE is a general model for active or passive motion of organisms and particles that can be derived from a time-
dependent general many-body Hamiltonian and in particular includes non-Markovian effects (i.e., the trajectory memory of its
past). We extract all GLE parameters from individual cell trajectories and perform an unbiased cluster analysis to group them
into different classes. For the specific cell population employed in the experiments, the GLE-based assignment into the two
different swimming modes works perfectly, as checked by control experiments. The classification and sorting of single cells
and organisms is important in different areas; our method, which is based on motion trajectories, offers wide-ranging applica-
tions in biology and medicine.
SIGNIFICANCE Classification of cells is a common task in biology and medicine. We introduce the framework to
accomplish such classification based on cell-center trajectories. Our method is based on the systematic theory for the
dynamics of coarse-grained variables and extracts the underlying parameters describing active and passive cell motion.
We apply our methodology to confined unicellular microalgae that exhibit two different swimming modes and show that we
can accurately distinguish the two populations solely based on their motion pattern. Our method can be applied to time-
series data of general observables from unicellular and multicellular organisms. We anticipate numerous applications in
biology and medicine that require the label-free distinction and analysis of individual cells and organisms.
INTRODUCTION

Classifying individual cells or organisms is a challenging
task that has been approached in many different ways and
has ample applications. Distinguishing different types of
cancer cells (1,2), foodborne pathogens (3), sperm cells (4),
or types of neurons (5) are just a few examples. Different
techniques have been introduced to distinguish and classify
organisms on the multi-cell down to the single-cell level.
One approach involves markers that bind cell specifically
(2,6,7). Since individual cells contain unique genetic and
epigenetic information, it is also possible to distinguish cells
by their specificDNAorRNAcontent. Indeed, biotechnolog-
ical advances enable single-cell RNA sequencing (8,9),
which can be used in combination with machine-learning ap-
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proaches (10,11), to efficiently distinguish single cells. How-
ever, RNA sequencing, as well as usage of markers, requires
cell perturbation or even destruction for data acquisition. In
many cases, it is desirable to classify cells without perturbing
them, which requires label-free techniques such as spectro-
scopic approaches (3,12) or microscopy (13). In this way,
cell information can be extracted almost instantaneously
(14) from living organisms (1). Spectroscopic and micro-
scopic images can be processed using machine learning to
classify cells; however, the outcomes can be hard to interpret
and require massive training data. One way to simplify the
processing of cell-image data is to reduce the parameter
space. This can be achieved by feature selection (15) or by
projection onto important parameters, such as by principal-
component analysis (11). A prime feature of mobile cells is
their positional trajectory, which is relatively easy to obtain
in experiments and contains hidden information on the mo-
tion-generating processes within the cell (16–20). Ma-
chine-learning algorithms have been proposed to classify
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FIGURE 1 Unicellular microalgae microscopy. Sequences of phase-contrast microscopy images of CR algae exhibiting (a) synchro and (b) wobbler-type

flagellar motion. The white halo around the cells is typical for phase-contrast microscopy (46). (c) Sketch of a CR cell: the distal striated fiber (DSF) connects

the two basal bodies (47), which anchor the flagella and are connected to the nucleus by nuclear basal-body connectors (NBBCs) (45,48). To see this figure in

color, go online.
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trajectories (21) and some have been applied to single-cell
trajectories (15). These approaches mostly focus on classifi-
cation and not on the interpretation of themotion patterns. To
yield a mechanistic interpretation, some specific model is
usually assumed (22–27), which makes the interpretation
model dependent. A general model that describes the motion
of a particle in a complex environment, captures the stochas-
ticity of its motion and can be derived from first principles is
the GLE, which has been shown to accurately describe the
motion of different cell types (28–32). In fact, the GLE is
not an ad hoc model but can be derived from the underlying
general many-body Hamiltonian (33–35). Living cells are
intrinsically out of equilibrium (36), a fact that can be prop-
erly accounted for by the GLE used to describe the cell mo-
tion (37). In fact, there are many other models besides the
GLE that have been successfully used to describe active
and passive stochastic motion (38–42). The advantage of
the GLE is that it makes minimal assumptions on the type
of motion and encompasses many previously introduced
models, such as the run-and-tumble model used to describe
bacterial motion (43), as has been shown recently (44).

Here, we present a method to classify individual organ-
isms based on the GLE parameters extracted from their mo-
tion trajectories. We apply our methods to experimental
trajectories of individual unicellular biflagellate algae Chla-
mydomonas reinhardtii (CR) (45) and find two distinct
groups of swimmers, which are illustrated in Fig. 1 a and
b. In contrast to other existing methods for cell sorting
and classification, our method requires only trajectories as
input, does not need any training of a network, and avoids
human bias in the selection of relevant features. Addition-
ally, our approach allows us to interpret motion characteris-
tics in terms of simple mechanistic models derived from the
GLE parameters. In the case of CR cells, the data suggest
some type of elastic coupling that presumably involves the
anchoring of the flagella (45,47,48), as schematically de-
picted in Fig. 1 c, or a chemical feedback loop. Our
approach is applicable to any kind of cell or organism
motility data with sufficiently long trajectories and suffi-
2 Biophysical Journal 123, 1–11, May 7, 2024
ciently fine temporal discretization if the coordinate
describing the motion corresponds to a Gaussian process,
as will be explained in detail further below.
MATERIALS AND METHODS

Cell growth and sample preparation

Wild-type CR cell cultures (strain, CC-1690) are grown in tris-acetate-

phosphate (TAP þ P) medium by alternating light:dark (12:12 h) cycles

for 3 days. We collect the cell suspension in their actively growing phase

(between third and sixth day of culture) 2–3 h after the beginning of the

light cycle and re-suspend it in fresh TAP þ P medium. After 30 to

40 min of equilibration to recover from the mechanosensitive shock dur-

ing re-suspension (49), we inject the cells inside a rectangular quasi-2D

microfluidic chamber of height 10 mm and area 18� 6 mm. This cham-

ber is assembled by using a glass slide and coverslip sandwiched with a

10 � mm double-sided tape (Nitto Denko corporation) as spacer. The

glass surfaces are pre-cleaned and coated with a polyacrylamide brush

to suppress nonspecific adhesion of cell body and flagella (50). The

chamber height is determined as 10:8850:68 mm across different sam-

ples (51).
Recording of trajectories

The cells in the chamber are placed under red light illumination (> 610 nm)
to prevent phototaxis (52) and flagellar adhesion (53) of CR (51). We use

high-speed video microscopy (Olympus IX83/IX73) at 500 frames per sec-

ond with a 40� phase-contrast objective (Olympus, 0.65 NA, Plan N, PH2)

connected to a metal oxide semiconductor (CMOS) camera (PhantomMiro

C110, Vision Research, pixel size¼ 5:6 mm) for imaging the mid-plane be-

tween the confining glass plates. This setup enables us to simultaneously

image cell position and flagellar shape. To capture very long trajectories

to probe the long-time diffusive behavior in the supporting material, we

use a 10� bright-field objective (Olympus, 0.25 NA, PlanC N) connected

to a high-speed CMOS camera of higher pixel length (pco.1200hs, pixel

size ¼ 12 mm) at 50 frames per second. We determine cell trajectories by

binarizing the image sequences with appropriate threshold parameters

and tracking their centers using standard MATLAB routines (54).
Velocity autocorrelation function

Fourier transformation of Eqs. 23 and 24 leads to
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~vðuÞ ¼
~FRðuÞ

~Gþ
v ðuÞ þ iu

(Equation 1)

with the single-sided Fourier transform defined as ~Gþ
v ðuÞ ¼ RN

0
e� iutGvðtÞdt

and

C~FRðuÞ~FRðu0ÞD ¼ 2pBdðuþu0Þ~GRðu0Þ : (Equation 2)

From the Fourier transform of the velocity autocorrelation function

(VACF)

~CvvðuÞ ¼
Z N

�N

dte� iutCvð0ÞvðtÞD

¼
Z N

�N

e� iutdt

Z N

N

eiut
du

2p

Z N

�N

du

2p
C~vðuÞ~vðu0ÞD
(Equation 3)

we obtain by inserting Eqs. 1 and 2
~CvvðuÞ ¼ B~GRðuÞ�
~Gþ
v ðuÞ þ iu

��
~Gþ
v ð�uÞ � iu

� :

(Equation 4)

Equating the nonequilibrium and the surrogate VACF in Eqs. 26 and 27

leads to

~GRðuÞ�
~Gþ
v ðuÞ þ iu

��
~Gþ
v ð�uÞ � iu

� ¼
~GðuÞ

j~GþðuÞ þ iur2
:

(Equation 5)

In the supporting material, we show that, for every correlation function

CvvðtÞ, we can determine a unique GðtÞ.
Memory kernel extraction

Multiplying the GLE Eq. 23 by _xðt0Þ, averaging over the random force and

integrating from t0 to t leads to

ðCvvðtÞ � Cvvð0ÞÞ ¼ �
Z t

0

CvvðsÞGðt � sÞds;
(Equation 6)

where we used that C _xðt0ÞFRðtÞD ¼ 0 (33–35), set t0 ¼ 0, and introduced

the integral kernel
GðtÞ ¼
Z t

0

GðsÞds : (Equation 7)

To invert Eq. 6, we discretize it. Since CvvðtÞ is even but GðtÞ is odd, we
discretize GðtÞ on half steps and CvvðtÞ on full steps and obtain (30)

Giþ1=2 ¼ 2
�
C0

vv � Ciþ1
vv

�
D
�
C1

vv þ C0
vv

� �
Xi

j ¼ 1

Gi� jþ1=2

Cjþ1
vv þ Cj

vv

C1
vv þ C0

vv

:

(Equation 8)

The kernel Gi is obtained by the discrete derivative Gi ¼ Giþ1=2þGi� 1=2

D

with the initial value G0 ¼ 2G1=2=D.
Two-point velocity distribution

A stationary Gaussian process is completely described by its two-point

probability distribution as shown in the supporting material. Here we

show that the joint and conditional velocity distributions only depend on

the VACF. The joint probability to observe v2 at time t2 and v1 at time t1
can be written in terms of the velocity vector~v ¼ ðv1; v2ÞT as

pðv2; t2; v1; t1Þ ¼ exp ð�~vTS� 1ðt2 � t1Þ~v=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjSðt2 � t1Þj

p (Equation 9)

with jSðt2 � t1Þj denoting the determinant of the covariance matrix0 1

S ¼ @ Cvðt1Þvðt1ÞD Cvðt1Þvðt2ÞD

Cvðt1Þvðt2ÞD Cvðt2Þvðt2ÞD
A

¼
0
@ Cvvð0Þ Cvvðt2 � t1Þ

Cvvðt2 � t1Þ Cvvð0Þ

1
A:

(Equation 10)

Using the normal velocity distribution

pðvÞ ¼
exp

� � v2

2Cvvð0Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pCvvð0Þ

p ; (Equation 11)

we obtain the conditional probability that vðt2Þ ¼ v2 given vðt1Þ ¼ v1, as
pðv2; t2jv1; t1Þ ¼ pðv2; t2; v1; t1Þ
pðv1; t1Þ

¼
exp

 
� ½v2 � v1ðCvvðt2 � t1ÞÞ=Cvvð0Þ�2�

Cvvð0Þ � C2
vvðt2 � t1Þ

�
Cvvð0Þ

�
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p
�
Cvvð0Þ � C2

vvðt2 � t1Þ
�
Cvvð0Þ

�q :

(Equation 12)

Thus, the joint and conditional distributions only depend on the VACF

CvvðtÞ.
Fitting of friction kernel

The extracted friction kernel of each individual cell is fitted to Eq. 29 by

least-square minimization (using the curve fit function of python’s scipy)

of the first 0:2 s of the data, which allows to estimate the parameter standard

deviation by the diagonal of the parameter covariance. The d-peak in Eq. 29

leads to the initial kernel value G0 ¼ 2a=Dþ b where D denotes the dis-

cretization time (see section ‘‘memory kernel extraction’’). Since single

cells exhibit large variations of the friction kernels, we constrain a and b

in Eq. 29 to be between 0:1 % and 99:9 % of G0. The decay time t is con-

strained to be between 0:05 and 3 s and the frequency U is constrained be-

tween 20 and 250 s� 1.
Discretized VACF including localization noise

To test whether the cell motion is actually described by the friction kernel

(Eq. 29) and does not originate from the experimental finite time step or

noise, we fit the experimental VACF of individual cells with an analytical

model that accounts for finite time discretization and noise (30).

Here, we explain the fitting procedure; the analytical expression for the
Biophysical Journal 123, 1–11, May 7, 2024 3
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mean-squared displacement (MSD) using a friction kernel in the form of

Eq. 29 is derived in the supporting material.

We denote discrete values of a function f ðtÞ as f ðiDÞ ¼ fi ¼ f i and the

discretization time step as D. After smoothing the data by averaging over

consecutive positions to reduce the localization noise, as discussed in detail

in the supporting material, the velocities at half time steps follow as

viþ1
2
¼ xiþ1 � xi

D
: (Equation 13)

From the velocities, the VACF defined by Eq. 25 is calculated according to
Ci
vv ¼ 1

N þ 1 � i

XN� i

j ¼ 0

vjþ1
2
vjþiþ1

2
; (Equation 14)

with N being the number of trajectory steps. To account for localization

noise, we assume Gaussian uncorrelated noise of width sloc at every time
step, which gives the noisy MSD as (30)

Cnoise
MSDðtÞ ¼ Ctheo

MSDðtÞ þ 2ð1 � dt0Þs2
loc; (Equation 15)

where Ctheo
MSDðtÞ is the theoretical expression for the model MSD given in the

supporting material, Eq. S51, and dt0 is the Kronecker delta reflecting the
uncorrelated nature of the localization noise. Since the observed trajectories

are sampled with a finite time step D, we discretize the relation

CvvðtÞ ¼ 1

2

d2

dt2
CMSDðtÞ; (Equation 16)

which leads to

noise noise noise
Cfit
vvðiDÞ¼

CMSDððiþ1ÞDÞ � 2CMSDðiDÞþCMSDðði� 1ÞDÞ
2D2

:

(Equation 17)

Finally, fits are performed by minimizing the cost function

Ecost ¼
Xn
i ¼ 0

�
Cexp

vv ðiDÞ � Cfit
vvðiDÞ

�2
(Equation 18)

with SciPy’s least squares function in python and using Eq. 17 to determine

Cfit
vvðtÞ at discrete time points. As the MSD and VACF follow from the GLE
Eq. 23 and the friction kernel (Eq. 29), the parameters to optimize are the

kernel parameters a, b, t, U, the mean-squared velocity B, and the localiza-

tion noise width sloc. The data is fitted up to 0:2 s to disregard the noisy part

of the VACF (see the supporting material for details). The cluster analysis is

performed on the reduced parameter sets a, b, t, U, B, which are obtained

from the direct fit of Eq. 29 to the extracted kernel from the data.
Cluster analysis

The friction kernel in Eq. 29 contains four parameters; together with the

mean-squared velocity B, each individual cell is characterized by five pa-

rameters. We perform an X-means cluster analysis (55), which is a gener-

alization of the k-means algorithm (56). The k-means algorithm assigns

unlabeled data to a predetermined number of k clusters by minimizing dis-

tances to the cluster centers. In the X-means algorithm, the number of clus-

ters is not predetermined; we allow cluster numbers from 2 to 20. The

algorithm starts with the minimal number of clusters and finds the cluster

centers using k-means. It then splits every cluster into two subclusters

whose centers are again determined by k-means. New subclusters are

accepted if they improve the clustering quality accounting for the increased

number of parameters. For this, we use the minimal noiseless description

length criterion (57,58). We use an implementation of the X-means algo-

rithm in Python (59) and use individual cell parameters as initial cluster

centers (60). The X-means algorithm can converge to different final results
4 Biophysical Journal 123, 1–11, May 7, 2024
depending on the initial cluster centers. Thus, we use all 59$58=2 possible

combinations of initial cluster centers and use the result that occurs most

often. We rescale each parameter by the median of its distribution.
Markovian embedding

A similar kernel to Eq. 29, namely

GðtÞ ¼ 2adðtÞ þ be� t=t

�
cosðUtÞþ 1

tU
sinðUtÞ

�
;

(Equation 19)

can be derived from a system of harmonically coupled degrees of freedom.

In fact, Eq. 19 becomes equivalent to Eq. 29 if the oscillation period 1=U is
much smaller than the decay time t, which is the case for the extracted algae

kernels. The Hamiltonian describing the coupled degrees of freedom takes

the form

H ¼ m

2
v2 þ my

2
v2y þ

K

2
ðx � yÞ2; (Equation 20)

where mi are the effective masses of the two degrees of freedom and

K ¼ bm is the harmonic coupling strength. In the presence of friction,
quantified by friction coefficients gi, and coupling the degrees of freedom

to a heat bath at temperature T, the coupled equations of motion are given by

_xðtÞ ¼ vðtÞ
m _vðtÞ ¼ �gxvþ bmðyðtÞ � xðtÞÞ þ FRxðtÞ
_yðtÞ ¼ vyðtÞ
my _vyðtÞ ¼ �gyvy þ bmðxðtÞ � yðtÞÞ þ FRyðtÞ;

(Equation 21)

where FRxðtÞ and FRyðtÞ are random forces with zero mean and second

moment CFRið0ÞFRjðtÞD ¼ dij2gikBTdðtÞ. In the supporting material, it is
shown that the coupled equations of motion Eq. 21 are equivalent to a

GLE in the form of Eq. 23 for the coordinate xðtÞ with a memory kernel

GðtÞ given by Eq. 19 (61). The friction of the first degree of freedom leads

to the d-contribution of GðtÞ and the harmonic coupling to the second de-

gree of freedom leads to the oscillating exponentially decaying contribu-

tion. The parameters of Eq. 21 translate into the parameters of Eq. 19 as

a ¼ gx

m

t ¼ 2
my

gy

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bm

my

� 1

t2

s
:

(Equation 22)

RESULTS

Experimental trajectories

Our analysis is based on videos of 59 CR cells that are
strongly confined between two glass plates separated by a
distance similar to the cell diameter � 10 mm, which resem-
bles the natural habitat of CR in soil (45) and simplifies
the recording of long two-dimensional trajectories, as
the cells cannot move out of the image plane of the micro-
scope objective (see sections ‘‘cell growth and sample prep-
aration’’ and ‘‘recording of trajectories’’ for experimental



Data-driven single-cell classification

Please cite this article in press as: Klimek et al., Data-driven classification of individual cells by their non-Markovian motion, Biophysical Journal (2024), https://
doi.org/10.1016/j.bpj.2024.03.023
details). Videos that resolve the flagella motion are shown in
the supporting material and reveal two different types of
flagellar motion (51). In one type, the flagella move syn-
chronously as in a breaststroke called ‘‘synchro’’ (Fig. 1 a
and Video S1); in the other type, the flagella move asynchro-
nously, which results in a wobbling cell motion called
‘‘wobbler’’ (Fig. 1 b and Video S2). The emergence of
two different swimming modes reflects cell-size variation
and constitutes the tactile cell response to the confining sur-
faces (51), where the synchros tend to exhibit slightly larger
cell bodies and therefore are more strongly confined. The
confining surfaces are coated with an anti-adhesive polymer
brush to prevent sticking of cells to the surfaces. The strong
confinement leads to cell-surface friction, which is fully ac-
counted for by the GLE analysis. In fact, unconfined CR
cells do not exhibit distinct synchro and wobbler swimming
modes (51,52). Switching events between synchronous and
asynchronous flagella motion are never observed and thus
are negligible. We use the classification into synchros and
wobblers based on the flagella motion in the high-resolution
video data as a test of our classification method that is based
on the cell-center trajectories.
Theoretical trajectory model

The experiments yield two-dimensional trajectories
xðtÞ; yðtÞ for the cell center position, which we describe by
the GLE

€xðtÞ ¼ �
Z t

t0

Gvðt � t0Þ _xðt0Þdt0 þ FRðtÞ (Equation 23)

with an identical equation for yðtÞ. Here, €xðtÞ ¼ _vðtÞ de-
notes the acceleration of the cell position, GvðtÞ is a mem-

ory kernel that describes how the acceleration at time t
depends on the cell velocity _xðt0Þ ¼ vðt0Þ at previous
times and therefore accounts for non-Markovian friction
effects, and FRðtÞ is a random force that describes interac-
tions with the surrounding and within the interior of the
cell. Since the experimental system is isotropic and homo-
geneous in space, no deterministic force term appears in
the GLE. In fact, the GLE in Eq. 23 can be derived by pro-
jection at time t0 from the underlying many-body Hamil-
tonian even in the presence of nonequilibrium effects,
which obviously are present for living organisms (33–
35,37).

If the cell motion can be described as a Gaussian process,
which for CR cells is suggested by the fact that the single-
cell velocity distributions are perfectly Gaussian, as will
be demonstrated further below, the random force is a
Gaussian process with correlations given by

CFRðtÞFRð0ÞD ¼ BGRðtÞ; (Equation 24)

where B ¼ Cv2D denotes the mean-squared cell velocity and
the symmetric random-force kernel is denoted as GRðtÞ. In
this case, the equation of motion is linear and there is no
coupling between the motion in x and y direction, and we
thus average all cell-trajectory data over the two directions.

For an equilibrium system, the fluctuation dissipation the-
orem (FDT) predicts GRðtÞ ¼ GvðjtjÞ with the mean-
squared velocity given by B ¼ kBT=m according to the
equipartition theorem, where m is the mass of the moving
object and kBT denotes the thermal energy (33,34). For
living cells, both FDT and equipartition theorem do not
hold in general and thus there is no a priori reason why
GvðjtjÞ and GRðtÞ should be equal (36,62). Nevertheless,
one can construct a surrogate model with an effective kernel
GðjtjÞ ¼ GRðtÞ ¼ GvðjtjÞ that exactly reproduces the dy-
namics described by the nonequilibrium GLE with
GRðtÞsGvðjtjÞ. This can be most easily seen by considering
the VACF defined by

CvvðtÞ ¼ Cvð0ÞvðtÞD; (Equation 25)

whose Fourier transform ~CvvðuÞ ¼ RN
�N e� iutCvvðtÞdt fol-

lows from Eqs. 23 and 24 as (30)
~CvvðuÞ ¼ B~GRðuÞ�
~Gþ
v ðuÞ þ iu

��
~Gþ
v ð�uÞ � iu

� ;
(Equation 26)

where ~Gþ
v ðuÞ denotes the single-sided Fourier transform of

GvðtÞ (see section Velocity autocorrelation function for the

derivation). The VACF of the surrogate model with
GðjtjÞ ¼ GRðtÞ ¼ GvðjtjÞ follows from Eq. 26 as

~Csur
vv ðuÞ ¼ B~GðuÞ

ð~GþðuÞ þ iuÞð~Gþð�uÞ � iuÞ :

(Equation 27)

For each combination ofGRðtÞ and GvðtÞ, there is a unique
GðtÞ that produces the same VACF; i.e., for which
~Csur
vv ðuÞ ¼ ~CvvðuÞ holds (see the supporting material for

the derivation) and which can be uniquely extracted from
trajectories via the VACF (as shown in section ‘‘memory
kernel extraction’’). Since the VACF completely determines
the dynamics of a Gaussian system, as shown in section
‘‘two-point velocity distribution’’ and in more detail in the
supporting material, this implies that the extracted effective
kernel GðtÞ not only describes the VACF exactly but also
characterizes the system completely (63). In fact, recent
work, where the nonequilibrium GLE is derived from a suit-
ably chosen time-dependent Hamiltonian, shows that, for
Gaussian nonequilibrium observables, the condition
GRðtÞ ¼ GvðjtjÞ is actually satisfied (37), in line with our
method that is based on extracting an effective kernel GðtÞ.
Trajectories and velocity distributions

Due to the asynchronous flagella motion of the wobblers,
the cells turn in the flagella-beating rhythm and exhibit
Biophysical Journal 123, 1–11, May 7, 2024 5
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FIGURE 2 Cell-center trajectories. Exemplary cell-center trajectory (54) (a) of a wobbler of duration 2:2 s and (b) of a synchro of duration 8:2 s. The insets

show trajectory fragments of duration 0:2 s each. Velocity distributions of (c) wobblers and (d) synchros, individual cells are distinguished by color. (e) Ve-

locity distributions of individual cells rescaled by subtracting the mean velocity of individual cells vind and dividing by their standard deviation sind for wob-

blers (cyan crosses) and synchros (red stars). The dashed line is the normal distribution. (f) Mean velocity distribution averaged over all cells (wobblers and

synchros). For the green circles, the cell velocities are rescaled by subtracting the ensemble mean velocity v and dividing by the ensemble standard deviation

s; for the black circles, the cell velocities are rescaled by subtracting the mean velocity of individual cells vind and dividing by their standard deviation sind as

in (e). The normal distribution is indicated by a dashed line. (g) Individually rescaled velocity distributions of all cells for three different time windows. (h)

Distribution of recorded trajectory lengths for wobblers and synchros. To see this figure in color, go online.
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monotonically forward-moving wiggly trajectories, as
shown in Fig. 2 a. In contrast, the synchronous flagella
beating of synchros leads to fast switching between forward
and backward motion, as shown in Fig. 2 b. As a conse-
quence, synchros exhibit much slower net-forward motion
than wobblers, as seen in Fig. 2 a and b, where trajectories
with total duration 2:2 s (wobbler) and 8:2 s (synchro) are
compared. Synchros also exhibit a somewhat narrower
instantaneous velocity distribution, as seen in Fig. 2 c and
d. However, a differentiation of the two cell types solely
based on their speed does not work, as we will show later.

Even though individual cells exhibit pronounced varia-
tions in their velocity distributions, as seen from the large
spread in Fig. 2 c and d, their velocity distributions are
Gaussian, as demonstrated in Fig. 2 e: When subtracting
from the cell velocities the mean velocity of each individual
cell and dividing by the corresponding velocity standard de-
viation, ðvind � vindÞ=sind, all individual velocity distribu-
tions collapse onto the Gaussian (normal) distribution
(dashed line in Fig. 2 e). In contrast, when subtracting
from the cell velocities the cell-ensemble mean velocity
and dividing by the cell-ensemble standard deviation,
ðvind � vÞ=s, the velocity distribution averaged over all
cells deviates strongly from a Gaussian (green circles in
Fig. 2 f). In contrast, the individually rescaled velocity dis-
tribution averaged over all cells (black dots) perfectly agrees
with the Gaussian normal distribution (dashed line in Fig. 2
6 Biophysical Journal 123, 1–11, May 7, 2024
f). Thus, single cells exhibit perfectly Gaussian velocity dis-
tributions, which suggests that the GLE with Gaussian noise
is appropriate to analyze experimental single-cell trajec-
tories and that the condition GRðtÞ ¼ GvðjtjÞ holds (37).

The GLE in Eq. 23 features time-independent parameters
and thus describes a stationary process. That the cell veloc-
ity distribution does not change over the observational time
is demonstrated in Fig. 2 g, where velocity distributions in
three consecutive time intervals are compared (again sub-
tracting the individual cell mean velocities and dividing
by the corresponding velocity deviations of the entire trajec-
tory). This suggests that the motion of individual CR algae
can indeed be modeled by the GLE in Eq. 23. In this context,
it is to be noted that wobblers are relatively fast and tend to
move out of the camera window more quickly than syn-
chros, leading to slightly shorter wobbler trajectories, as
shown in Fig. 2 h.
Trajectory analysis and friction-kernel extraction

Trajectories are standardly characterized by the VACF or by
the MSD

CMSDðtÞ ¼ Cðxð0Þ � xðtÞÞ2D : (Equation 28)

Although the VACF is simply the curvature of the MSD,

CvvðtÞ ¼ 1
2

d2

dt2CMSDðtÞ, the MSD and the VACF highlight
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FIGURE 3 Results for the MSD, the VACF, and the friction kernel for wobblers and synchros. Results for the MSD, CMSDðtÞ defined in Eq. 28; the VACF,
CvvðtÞ defined in Eq. 24; and the friction kernel GðtÞ, extracted according to Eq. 8, for wobblers in (a)–(c) and synchros in (d)–(f). Different colors represent

results for individual cells; the black lines in (a), (b), (d), and (e) denote the average over all cells. For the friction kernels, the black line is computed from the

average VACF. The dashed lines in (a) and (d) indicate ballistic and diffusive scaling. Insets show the long-time behavior of the average quantities on a lin-log

scale. To see this figure in color, go online.
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different aspects of the trajectories. In fact, the different pro-
pulsion modes of wobblers and synchros lead to drastically
different MSDs: the wobblers exhibit ballistic behavior

CMSDðtÞft2 on both short and long timescales (Fig. 3 a)
with an intermediate crossover at t � 0:02 s. In contrast,
the forward-backward motion of the synchros leads to
short-time diffusive behavior CMSDðtÞft up to t � 0:01 s
followed by a long-time ballistic regime for t > 0:02 s
(Fig. 3 d). The transition to the intermediate ballistic regime
occurs for both synchros and wobblers around the flagella
oscillation period of the order of t � 0:02 s; the MSD for
shorter times is dominated by the flagella motion and for
longer times by the ballistic net-forward motion. The transi-
tion to asymptotic diffusive behavior, expected for long
times, is for the synchros observed for t > 2s in extended
low-resolution microscopy data, whereas wobblers stay in
the ballistic regime for the entire observation time of tens
of seconds (see the supporting material). As wobblers
move faster than synchros, their absolute VACF values are
higher compared to the synchros, as seen in Fig. 3 b and
e. The synchros exhibit less variation of the VACF among
individual cells, which leads to slowly decaying oscillations
in the VACF averaged over all cells (black line in Fig. 3 e
compared to Fig. 3 b). These oscillations reflect the
flagella-beating cycle.

We extract effective friction kernels GðtÞ from the VACF
of individual cells, as described in section ‘‘memory kernel
extraction.’’ The results, shown as colored lines in Fig. 3 c
and f, demonstrate that the algal motion deviates strongly
from the simple persistent random walk model, which is
widely used to describe the motion of cells (28,29,32) and
which in the GLE formulation would correspond to GðtÞ ex-
hibiting a delta peak at t ¼ 0 and otherwise being zero. The
extracted memory kernels also reveal a substantially higher
friction for synchros compared to wobblers, in line with the
fact that synchros are larger and thus interact more strongly
with the confining surfaces.

Comparing Fig. 3 b with Fig. 3 c or Fig. 3 e with Fig. 3 f,
one notes that the oscillation period of the friction kernel is
substantially longer than that of the VACF. The complex
relation between the kernel and the VACF is discussed in
the supporting material, where it is shown that the extracted
values of the kernel decay time and oscillation amplitude
achieve high directionality and speed of CR cells.

For both wobblers and synchros, the friction kernels
exhibit an initial sharp peak followed by a decaying oscilla-
tion and are well described by

GðtÞ ¼ 2adðtÞ þ be� t=t cosðUtÞ; (Equation 29)

with d-peak amplitude a, oscillation amplitude b, exponen-
tial decay time t, and oscillation frequency U. This is

demonstrated in Fig. 4 c and f for one exemplary synchro
and wobbler, where we compare the extracted memory ker-
nels with fits according to Eq. 29, see section ‘‘fitting of fric-
tion kernel’’ for details. From these fits, we thus obtain four
memory kernel parameters for each cell.

Before further analysis of the obtained individual cell pa-
rameters, we test whether the GLE Eq. 23 actually describes
the cell motion. We thus compare the experimental MSD of
a single wobbler and synchro in Fig. 4 a and d (orange dots)
with the analytical prediction based on the GLE using the fit
result for the friction kernel and the mean-squared velocity
Biophysical Journal 123, 1–11, May 7, 2024 7
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FIGURE 4 Check the accuracy of the GLE for a single wobbler and synchro. Results for the MSD, CMSDðtÞ; VACF, CvvðtÞ; and friction kernel GðtÞ, of a
single (a–c) wobbler and (d–f) synchro (orange dots). The black dashed lines in (c) and (f) denote fits of Eq. 29 to the extracted friction kernel determining the

individual cell parameters shown in Fig. 5. The black dashed lines in (a) and (d) denote the analytical result Eq. S51 obtained from the friction-kernel fit in (c)

and (f) and the mean-squared velocity B ¼ Cvvð0Þ. Blue crosses in (b) and (e) denote a fit of the discretized expression for the VACF, including localization
noise, (Eq. 17); blue crosses in (a) and (d) denote the corresponding prediction for the MSD, Eq. 15, using the same parameters as in (b) and (e); blue crosses

are connected by blue straight lines. To see this figure in color, go online.
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B ¼ Cvvð0Þ (black broken lines, the derivation of the
analytical MSD expression is given in the supporting mate-
rial). The agreement is very good, meaning that the memory
extraction works well, which demonstrates that the GLE is
an accurate model for the motion of organisms.

The MSD and VACF calculated from the GLE neglect the
finite experimental recording time step of 0:002 s, and they
also neglect the localization noise of the cell position, due to
the finite spatial resolution of the microscopy images and
the projection of a three dimensional object onto a two-dimen-
sional point position (30) (see section ‘‘discretized VACF
including localization noise’’ for details). The blue crosses
in Fig. 4 b and e represent fits of the GLE-based analytical
expression for the VACF, which includes localization noise
and discretization effects, given in Eq. 17, to the experimental
data. The blue crosses inFig. 4a andd show the corresponding
MSD results with the same parameters according to Eq. 15.
The agreement between experimental data and the discretized
model is perfect, and the fitted localization noise strength,
defined in Eq. 15, is of the order of sloc � 0:02 mm, similar
to the pixel size, as expected (see discussion in the supporting
material). This means that temporal and spatial discretization
effects in the experimental data can be straightforwardly
incorporated in the GLE model.
Clustering of single-cell parameters

The GLE Eq. 23 in conjunction with the random-force
strength B defined in Eq. 24 and the effective friction kernel
Eq. 29 has five parameters. This gives rise to 10 distinct two-
8 Biophysical Journal 123, 1–11, May 7, 2024
dimensional projections, which are shown in Fig. 5. Each
data point corresponds to a single cell. The parameters
exhibit substantial spread among individual cells, but an un-
ambiguous separation between wobblers and synchros, here
colored in blue and red, is not obvious. As can already be
seen in Fig. 3 c and f, the friction amplitudes a and b are
larger for the synchros, whereas the mean-squared velocity
B is larger for wobblers, which leads to a separation of the
two populations in Fig. 5 b and c. Each flagellar beating cy-
cle leads to a net forward cell motion, which is reflected by
the positive correlation between memory oscillation fre-
quency U and mean-squared velocity B in Fig. 5 g for
each cell type. The uncertainty of the parameters in Fig. 5,
estimated from the diagonal fit covariances, is rather low
except for the decay time t, as seen in Fig. S5 in the support-
ing material. Since the parameter t contributes only margin-
ally to the clustering confidence, as demonstrated by the
results in Figs. 5 and S4, we conclude that our cluster anal-
ysis is not affected by parameter uncertainties.

We perform an unbiased cluster analysis using the
X-means algorithm (55), which is a general version of the
k-means algorithm (56) that self-consistently determines
the optimal number of clusters (details are given in section
‘‘cluster analysis’’). Applying this unbiased cluster analysis
to the single-cell parameters in five-dimensional space, we
obtain two distinct groups, which perfectly coincide with
the assignment into wobblers and synchros from visual anal-
ysis of the flagellar motion in the video data (51). This means
that we can classify the cells by just knowing their center of
mass trajectories with an accuracy of 100 %. In comparison,
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FIGURE 5 Scatter correlation plots of individual CR cell parameters. These consist of the friction-kernel parameters (a, b, t, U) defined in Eq. 29 and the

mean-squared velocity B. All parameters except B are presented on a linear scale. Synchros are shown in red and wobblers in cyan according to our cluster

analysis, which perfectly matches a categorization based on the visual analysis of flagella motion. Error estimates of the extracted parameters are omitted here

for clarity and shown in Fig. S5. To see this figure in color, go online.
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a cluster analysis solely based on the mean-squared velocity
B leads to an accuracy of only 69%, whereas a cluster anal-
ysis using the first two principal-component analysis compo-
nents leads to an accuracy of 90% (see the supporting
material). Using only the four friction-kernel parameters for
a cluster analysis without the mean-squared velocity B still
reaches an accuracy of 92%. This clearly demonstrates
that the GLE model, which parameterizes cell motion based
on friction-kernel parameters in Eq. 29 together with the
mean-squared velocity B, allows for accurate classification
of cells based only on their motion.
DISCUSSION AND CONCLUSIONS

We demonstrate that the rather complex motion of individ-
ual CR algae can be accurately described by the GLE Eq. 23
and extract all GLE model parameters for individual algae
from their cell-center trajectories in a data-driven manner.
Based on the extracted GLE parameters, we detect two
distinct algae classes by an unbiased cluster analysis; this
unsupervised clustering result is confirmed by comparison
with a categorization based on visual inspection of the
flagella beating patterns. Our method is applicable to any
kind of cells and even higher organisms if the motion is a
Gaussian process. Cell and animal motion often exhibits ag-
ing effects (64), which in the GLE framework would show
up as very slowly decaying contributions to the memory
function. To accurately extract slowly decaying memory
functions from data, very long trajectories would be needed.
Since the GLE Eq. 23 is not restricted to positional degrees
of freedom, our approach can be applied to any observable
(for instance, cell extension or deformation). As the only in-
puts needed are trajectories, our method requires minimal
interaction with the organisms and can be easily used as a
stand-alone tool or to improve existing machine-learning al-
gorithms for cell classification.
Additionally, our approach allows for a mechanistic inter-
pretation of cell-motion characteristics. In fact, a friction-
kernel model that is very similar to Eq. 29 and describes
the data equally well can be derived from the equation of
motion of two elastically coupled objects (see section
‘‘markovian embedding’’ and the supporting material for de-
tails). Without further experimental input, our approach
does not reveal what these objects are, so we can only spec-
ulate that the elastic coupling between the cell body and the
flagella, which presumably involves the connection between
the flagellar basal bodies by the distal striated fiber (sche-
matically shown in Fig. 1 c), causes the slowly decaying os-
cillations in the memory kernel. This seems in line with
previous models for CR algae motion and flagella synchro-
nization (65,66). Alternatively, the kernel oscillations could
also be caused by some chemical or hydrodynamic feedback
loop. Clearly, more experiments that resolve the relative
motion of the cell center and the flagella are needed to
resolve these issues.

Our extraction of GLE parameters from cell trajectories
yields a single effective memory kernel and does not allow
detection of the nonequilibrium character of cell motion, in
agreement with recent general arguments (63). Conversely,
based on an explicit nonequilibrium model for cell motion,
it is rather straightforward to derive the GLE Eq. 23 and the
functional form of the extracted kernel (Eq. 29), as shown in
the supporting material. A similar GLE model can also be
derived for motion in a confining potential to describe
confined neurons (5) or bacteria moving in mucus (67)
(see the supporting material for details).

As a final note, we mention that the angular orientation of
CR algae can be accurately extracted from their cell-center
trajectory, as shown in the supporting material. Thus, the
orientational cell dynamics is included in our GLE model.

In summary, our approach allows for cell classification
by positional cell-center trajectories or any other kind of
Biophysical Journal 123, 1–11, May 7, 2024 9
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time-series data and at the same time for interpretation of
the motion pattern in terms of intracellular interactions.
We anticipate numerous applications in biology and medi-
cine that require the label-free distinction of individual cells
and organisms.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2024.03.023.
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