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Abstract—Wildlife conservation using continuous monitoring
of environmental factors and biomedical classification, which gen-
erate a vast amount of sensor data, is a challenge due to limited
bandwidth in the case of remote monitoring. It becomes critical
to have classification where data is generated. We present a novel
multiplierless framework for in-filter acoustic classification using
Margin Propagation (MP) approximation used in low-power edge
devices deployable in remote areas with limited connectivity.
The entire design of this classification framework is based
on template-based kernel machine, which uses basic primitives
like addition/subtraction, shift, and comparator operations, for
hardware implementation. Unlike full precision training methods
for traditional classification, we use MP-based approximation
for training, including backpropagation mitigating approxima-
tion errors. The proposed framework is general enough for
acoustic classification. However, we demonstrate the hardware
friendliness of this framework by implementing a parallel Finite
Impulse Response (FIR) filter bank in a kernel machine classifier
optimized for a Field Programmable Gate Array (FPGA). The
FIR filter acts as the feature extractor and non-linear kernel
for the kernel machine implemented using MP approximation.
The FPGA implementation on Spartan 7 shows that the MP-
approximated in-filter kernel machine is more efficient than
traditional classification frameworks with just less than 1K slices.

Index Terms—IoT, FPGA, Filtering, Edge Computing.

I. INTRODUCTION

One of the biggest challenges in biomedical classification

is capturing data from different biosensors and providing

interpretable information to improve diagnosis [1]. On the

other hand, in the case of wildlife conservation, identifying and

localizing the threatened species is a challenge [2]. Emerging

technologies in edge computing devices like low-power wire-

less sensor networks are currently being used in agriculture

[3] and healthcare, [4] in combination with Machine Learning

(ML) techniques, known as tinyML. Most of the edge-based

sensor data are time-series, and it has been proven that

such data can be efficiently used for tinyML classification

[5]. This type of classification can be applied to healthcare

with Electrocardiogram (ECG), Electroencephalogram (EEG),

Electromyography (EMG), and other time-series biomedical

sensor data [1]. These sensors may generate a high amount

of data, but the relevant training data will be sparse, like in

the case of rare or near-extinct species detection [6]. Hence,

classification at the sensor node becomes even more critical as

Fig. 1: Ecological Conservation and Corrective System.

large data transmission over the network will require higher

bandwidth.

Despite performing well for a high volume of data, Deep

Neural Networks (DNNs) do not generalize well in IoT

applications, as training data is rare [7]. Moreover, training a

DNN requires high-powered systems to generate appropriate

learned parameters. Machine learning techniques like Support

Vector Machines (SVMs), K-Nearest Neighbour (KNN), and

kernel machines have proven to be robust and interpretable

for rare event classification [8]. However, these techniques

have traditionally been computationally intensive for train-

ing and inference. As most of the computation is based

on Matrix-Vector Multiplication (MVM) operation, replac-

ing multipliers with more fundamental basic primitives like

addition/subtraction will enable designing an energy-efficient

classification framework. [9]. We can exploit the computa-

tional primitives and approximations inherent in digital units

like counters, underflow/overflow, and additions/subtraction. In

literature, there have been ways to tackle precision explosion

due to multiplication for multiply-accumulate operations like

quantization [10].

Traditionally, IoT-based machine learning and neural net-

works train offline with full precision and deploy the inference

at lower precision fixed point [11]. Even with quantization-

aware training, the backpropagation in training is done in full

precision, and only the forward pass is quantized [12]. This

may be an efficient training technique, but it still is expensive

for re-training on the IoT platform. There have been instances

where the gradients in backpropagation have been quantized

[13]. However, these systems fail to achieve convergence
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during backpropagation [10], or they work well only when

training data is available in large numbers. Moreover, the front-

end, like filters and feature extractors in most edge devices,

are implemented at higher precision with only the classifier

quantized.
This paper leverages the energy-efficient bird density detec-

tion tinyML system [14] which uses the in-filter computing [5]

with template-based SVM architecture [15]. Here we apply the

Margin Propagation (MP) principle [16] to this architecture to

develop a multiplierless in-filter computing framework, which

exploits the computing and nonlinear primitives in the feature

extraction process. The multiplierless MP-based kernel ma-

chine has been proven to provide energy-efficient classification

[17]. In our design, we implement an FIR filter bank, used as a

feature extractor and kernel function, arranged in a multi-rate

frequency model [18] using a multiplierless approach based on

MP. We believe that our proposed framework has the following

key advantages:

• End-to-end multiplierless framework for acoustic clas-

sification using only basic primitives like addi-

tion/subtraction, underflow/overflow, shift, and compar-

ison operations.

• Feature extraction and kernel function are combined to

form an efficient computational system.

• Scalable system with user-defined memory footprint

based on IoT hardware constraints.

• Integrated training using MP-based approximation mit-

igates approximation errors introduced in filtering and

classifier.

• Since our framework uses basic computational primitives

(no multipliers), it enables the implementation to push

for much higher clock frequency (in this case 166MHz).

We have implemented the inference framework on an FPGA as

proof of concept IoT implementation. We have validated our

architecture on the environmental sound dataset [19], which

showcases the capabilities of potential deployment to identify

wildlife sounds or even sounds that may indicate possible

poaching or timber smuggling.

II. IN-FILTER COMPUTATION USING MARGIN

PROPAGATION KERNEL MACHINE

In-filter computation described in [5] and [14], combines

the feature extraction and non-linear SVM kernel into a single

function [15] as opposed to a traditional SVM. We leverage

this principle, use an FIR filter as the kernel function, and

implement this framework using MP-based approximation.

MP-based kernel machine has proven to be an energy-efficient

system for implementing a classification framework for edge

devices [17].

A. Multiplierless Kernel Machine using MP
We develop a classification framework based on multi-

plierless kernel machine using the MP approximation [17].

Consider a vector x ∈ R
d, the decision function for kernel

machines [20] is given as,

f(x) = wTK+ b. (1)

Here, K is a function of x. Following the derivations in [17],

we can rewrite eq.(1) in MP domain as,

fMP (x) = z+ − z−. (2)

where,

z+ = MP ([w+ +K+,w− +K−,b+], γ1). (3)

z− = MP ([w+ +K−,w− +K+,b−], γ1). (4)

γ1 is a hyper-parameter that is learned using gamma annealing.

Here K+ = K and K− = −K. K is the kernel which we

derive using in-filter computation described in Section II-B.

We normalize the values for z+ and z− for better stability of

the system using MP,

z = MP ([z+, z−], γn). (5)

Here, γn is the hyper-parameter used for normalization. In this

case, γn = 1. The output of the system can be expressed in

differential form,

p = p+ − p−. (6)

Here, p ∈ R, p+ + p− = 1 and p+, p− ≥ 0. As z is the

normalizing factor for z+ and z−, we can estimate the output

using reverse water filling algorithm [21], which is generated

by the MP function for each class,

p+ = [z+ − z]+.

p− = [z− − z]+. (7)

As shown in the Fig.2, the kernel function forms a vector

(p × 1) defined as K. Using the principle of template based

classification described in [15] and [5], we use the parallel

FIR filterbank as the kernel as well as the feature extractor.

B. FIR Filter Bank as Kernel

Filter banks are commonly used for feature extraction in

acoustic classification [22]. We use FIR filter bank due to it’s

stability and ease of implementation especially in approximate

computing [23]. Each filter in the filter bank has resonators

with center frequencies based on the Greenwood function [24].

Fig.2 shows the detailed block architecture of the filter bank.

The input x(n) ∈ x is an acoustic instance sampled at 16 kHz

frequency, i.e, N = 16000. Bp denotes the pth bandpass FIR

filter and p ∈ P , i.e., P is the total number of filters in the

filter bank.

Bp(n) =

M−1∑

k=0

hp(k)x(n− k). (8)

Here, hp is the filter coefficient based on pth filter cut off

frequency. M is the order of the filter. The output of the band

pass filter is Half Wave Rectified using HWR block, which is

then accumulated over N samples and then standardized (STD

block) to get the kernel function Φp ∈ R. The STD block is

used for standardizing the values based on the inputs.

The filter bank has been divided into multiple octaves with

a bank size of 5 filters per octave. Octaves are defined based
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Fig. 2: FIR parallel filter bank framework for MP based classification for p× 1 Kernel. Here, the input xn is provided to the

parallel FIR filter bank to generate a p× 1 kernel. This kernel is used as input for a single layer classification network formed

using MP modules. The parallel filter bank and the downsampling low pass filter blocks also use MP modules for computation.

Fig. 3: MP Filter bank output (Gain Response) for chirp signal.

This response shows distortion due to MP approximation

errors.

on the sampling frequencies in decreasing order. The cut-

off frequencies is equally spaced within the octaves. The

coefficients (hp(n)) are precomputed and provided as inputs

to each filter. We use the technique of downsampling input

sampling frequency and segregating the cut-off frequencies

into separate octaves, as shown in Fig.2. The cut-off fre-

quencies are arranged in descending order which helps to

reduce input sampling frequency. This is a proven efficient

way of implementing a filter bank, as shown in [18]. The

downsampling employs a low pass filter (L) used for anti-

aliasing at the input for each octave. Downsampling of input

ensures usage of lower order FIR filter to obtain the desired

output. The additional low pass filter required the same order

as the bandpass filter of the filter bank. This down-sampling

technique provides an efficient way of implementing an FIR

filter bank for low-powered devices.

C. Filtering operation in MP domain

We use two types of filtering operation in our filter bank,

i.e., a low pass filter for downsampling and a bandpass

filter. These filtering operations result in an inner product

computation between the filter coefficients (hp(n) ∈ h) and

input samples (x(n)) as per eq.(8). Following the derivations

in [17], we can express this filtering operation in MP domain

as below,

y = MP
([
h+ + x+,h− + x−] , γf

)

−MP
([
h+ + x−,h− + x+

]
, γf

)
. (9)

For this implementation, we have h+ = h, h− = −h, x+ =

x and x− = −x. γf is the MP parameter for the filtering

operation. Since the property of MP inherently exhibits low

pass filtering, based on the reverse water filling algorithm

described in [21], we require a lower-ordered low pass filter

implementation in the case of the MP domain. We can see

the frequency response of the filter bank in the MP domain in

Fig.3.

We observe some amount of distortion in the gain response

of the chirp signal output. This is due to the MP approximation

of the inner product for filtering operation. The learning

algorithm can mitigate this approximation error, where the

weights will be adjusted, considering the approximation error.

MP approximation technique minimizes the error rather than

mitigating the approximation itself, improving the system’s

overall accuracy. This technique requires basic primitives like

comparators, shift operators, counters, and adders to imple-

ment the system, making it hardware-friendly.

III. FPGA IMPLEMENTATION

The proposed design shown in Fig.2 is modeled by Verilog

HDL and implemented in Spartan 7 series FPGA, as this
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TABLE I: Comparison of architecture and resource utilization of related work.

Related Work Mahmoodi, et al.
[25]

Cutajar, et al.
[26]

Boujelben, et. al.
[27]

Ramos-Lara et al.
[28]

Nair et al.
[5] This work

Year 2011 2013 2018 2009 2021 2022

FPGA Virtex4
xc4vsx35

Virtex-II
xc2v3000

Artix-7
xc7a100T

Spartan 3
xcs2000

Spartan 7
xc7s6cpga196

Spartan 7
xc7s6cpga196

Operating Frequency 151.286 MHz 42.012 MHz 101.74 MHz 50 MHz 25 MHz 50 MHz2

Input Sampling Frequency NA1 16 kHz 6 kHz 8 kHz 16 kHz 16 kHz
Flip Flop 11589 1576 17074 5351 2864 2376
LUTs 9141 11943 16563 6785 1517 1503

RAM (18 Kb) 99 NA1 4 NA1 0 0
DSP 81 64 87 21 4 0

Power (mW/MHz) NA1 NA1 1.12 NA1 0.32 0.34

Techniques SVM
DWT and

SVM
MFCC and

SVM
FFT and

SVM
CAR-IHC IIR

and SVM
FIR and

Kernel Machine

Datasets Persian
Digits [29]

TIMIT
Corpus [30]

Respiratory
Sound [27]

Speaker
Verification [28]

ESC-10 and
FSDD [19]

ESC-10 and
FSDD [19]

Average Accuracy (%) 98 61 94 95 88 88
1 These works did not report this entity for their designs. 2 Maximum operating frequency of the proposed design is 166 MHz.

FPGA caters to edge applications. The target frequency of the

proposed design is set to 50 MHz, and the input sampling rate

is set to 16 KHz. The number of clock cycles available in be-

tween two samples are 3125. The architecture is designed such

a way that processing of a new sample is completed within

this time limit. There are two sections, kernel computation and

inference, in the proposed design. Here, 3 MP modules (MP0-

2) work simultaneously to compute kernel value and meet the

time limit of 3125 clock cycles. The MP0 is used to implement

4 low pass (LP) filters and other two MP modules (MP1-2)

are responsible for Band Pass (BP) filtering operation. The

internal architecture and working principle of a MP module is

described in [17]. The window size of LP filter is 6 and the

samples are stored in a register bank of dimension 6-bit. In

LP filter section, four register banks are used to store inputs

for four LP filters. The multiplexers are used to select one

of the registers. The coefficients for the LP filter are stored

in ROM (ROM0). The precision of the data path is set to

10 bits for the proposed design. Initially, the input samples

(x(n)) are stored in a register bank and fed to the MP0 for

implementing LP filter L1, and the output of L1 is down-

sampled by 2 and passed to the corresponding parallel BP filter

bank (for generating octave 2) (as discussed in Section. II-B).

Here, MP0 implements 4 LP filters in time multiplexed fashion

and generates desired outputs for Octave 1, 2, 3 and 4. The

outputs are stored in same register banks for the next iteration.

The contents of the register banks are used for parallel BP

filtering operation and generates kernel function Φ5 to Φ30.

One single MP module (MP1) is used repeatedly to generate

outputs for octave 1. The window size of the BP filter is 16.

The coefficients are stored in another ROM (ROM1). The

MP2 is used for BP filter outputs of octaves 2,3,4 and 5.

Here also, a single MP module is used repeatedly to generate

desired outputs. The down sampling of the LP filter outputs

provides more time span between two outputs which are the

inputs to the BP filters generating octaves 2,3,4 and 5. Hence

a single MP (MP2) is sufficient to produce Φ5 to Φ30 in time

multiplexed fashion. The output of the BP filters is stored in

a Register bank which is the kernel function Φ1 to Φ30 of the

proposed design. The coefficients of BP filters for octaves 2,

3, 4, and 5 are stored in another ROM (ROM3).

The inference engine starts working after the completion

of kernel computation. The three MP blocks MP3, MP4 and

MP5 are used in the inference engine to generate the output p.

The architecture and working principle of the inference engine

are discussed in Section II-A. The w+ and w− are the weight

matrix and are stored in a ROM (ROM4). The kernel function

Φ and weight matrix w+ and w− are the inputs to the inference

engine. The high-level block diagram of an MP module and

the implementation details of the inference engine have been

discussed in [17].

Table I shows the resource utilization and power consump-

tion of our design compared with similar ML-based FPGA

implementations. We clearly see advantages of our design in

terms of resource and power over other designs. We were able

to implement our design with 903 FPGA slices (less than 1K)

and the dynamic power consumption is limited to 17 mW for a

50 MHz operating frequency. Table I compares similar designs

using varied edge datasets for resource utilization and power

consumption. We see a better resource utilization of our design

in comparison to these systems with lower power consumption

in mW/MHz. The proposed study consumes almost the same

amount of LUTs and 488 fewer FFs than the similar design

presented in [5]. Due to multiplierless design, the proposed

architecture does not consume any DSPs, whereas the design

reported in [5] consumes 4 DSPs. We computed the number

of LUTs required to replace 4 DSPs for fair comparisons. We

have implemented 4×4, and 8×8 signed multipliers (Baugh

Wooley) in FPGA and found that they have consumed 19

and 72 ( 4× more) LUTs, respectively. The design reported

in [5] uses 4 signed multipliers and the dimensions are

20×12, 20×12, 12×12, 16×8 respectively. The approximation

calculation shows that all 4 multipliers consume at least 890

LUTs. Hence the proposed multiplierless design can save at

least 25% hardware resources (LUTs + FFs) compared to the

design presented in [5]. The power consumption (mW/MHz) is
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TABLE II: ESC-10 dataset classification accuracy results in percent. Number of filters for our work is fixed at 30. We used

8-bit fixed point for our design

Classes
Normal SVM CARIHC SVM MP In-Filter Compute
Floating Point Floating Point Floating Point Fixed Point (8-bit)

SVs Train Test Train Test Train Test Train Test
Dog (129/33) 42 90 94 89 90 91 94 91 94
Rain (119/40) 44 86 90 89 87 90 90 88 88

Sea Waves (200/50) 80 87 90 84 78 89 88 88 88
Crying Baby (144/49) 37 93 84 91 87 92 87 89 88
Clock Tick (114/50) 54 81 76 92 85 85 86 85 84

Person Sneeze (101/44) 49 85 75 87 80 86 80 85 80
Helicopter (197/50) 45 92 88 95 90 88 85 85 86
Chainsaw (99/34) 41 90 85 93 82 92 81 92 80
Rooster (124/54) 40 93 93 93 96 90 94 91 94

Fire Crackling (152/66) 46 93 83 89 87 89 92 90 88

TABLE III: FSDD classification accuracy results in percent. Number of filters for our work is fixed at 30. We used 8-bit fixed

point for our design

Classes
Normal SVM CARIHC SVM MP Kernel
Floating Point Floating Point Floating Point Fixed Point

SVs Train Test Train Test Train Test Train Test
Theo (761/254) 107 96 96 93 91 92 93 92 92

Nicolas(889/297) 15 100 100 98 97 99 99 98 98

almost same for the proposed design and the design presented

in [5], as the design is small and only 4 multipliers are

used. However, for the bigger network such as DNN our

multiplierless approach would give significant benefit. The

proposed design can achieve maximum operation frequency of

166 MHz which can be used to support more input sampling

rate.

Fig. 4: Impact of bit-width on dataset accuracy for Crying

Baby class from ESC-10.

IV. RESULTS AND DISCUSSION

The framework’s classification ability is showcased using

the environmental sounds dataset. Identification of different

environmental sounds shows the versatile nature of the frame-

work that can be put to use in various acoustic applications. As

wildlife conservation would result in rare data event detection,

Environmental Sounds Classification (ESC-10) dataset [19]

would be an ideal dataset to showcase the framework capa-

bilities in case of ecological application. Also, we compared

our system with [5] using ESC-10 and Free Speech Digit

Dataset (FSDD), where we use speaker identification as the

application.

ESC-10 dataset consists of sound clips constructed from

recordings publicly available through the Freesound project.

It consists of 400 environmental recordings with 10 classes,

i.e., 40 clips per class and 5 seconds per clip. Each class

contains 40 wav format audio files. These clips had a lot of

silence, so we trimmed the silence part and further trimmed the

remaining clips into a 1-second version of the same class, thus

increasing the dataset’s number of samples. Table II shows the

results for this dataset, having classes like a dog bark, rain, sea

waves, crying baby, clock ticking, person sneezing, helicopter,

chainsaw, crawing rooster, and fire crackling. The classifica-

tion uses one versus all methodology to identify the classes,

where the data is balanced and randomly arranged for train and

test sets (shown in brackets). We use the in-built MATLAB

library with default command lines for the traditional SVM.

Here, the CARIHC SVM employs a completely different

approach compared to standard SVM for arriving at the

accuracy, which is detailed in [5], [15]. Since the dataset size is

small, the accuracy values differ by a bigger margin for some

classes between the traditional SVM and the other two SVM

implementation, as small variations in positive or negative

classification will lead to a greater impact on accuracy number.

Similarly, we compare the identification of two speakers from

the FSDD dataset. These results show that our framework takes

advantage of template SVM methodology with a fixed number

of templates and the MP approximation technique, delivering

comparable results. We have also compared our system with

similar systems, which is area efficient, as shown in Table I.

We use an 8-bit fixed point for implementing the hardware.

We performed an empirical analysis of the dataset (using the

crying baby class) with different bit widths. As shown in

Fig.4, the training and testing accuracy remains stable till 8-bit

and decreases sharply for bit width lower than 8-bit. We use

Keras implementation for training our system, as this software
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framework is robust and highly optimized. The FIR filter banks

are quantized at 8-bit, and a custom layer for the MP function

is written for the Keras framework. The optimization of the

model is done using Tensorflow libraries for quantization.

V. CONCLUSION

This paper presents a novel multiplierless framework for

acoustic classification using an FIR filterbank as the feature

extraction and kernel function stage simultaneously. This

framework is entirely multiplierless since the FIR filter bank

is implemented using MP approximation along with the in-

ference logic. This makes the system highly efficient for

deployment in battery-powered edge devices. Furthermore, the

framework is tunable to any time series data by tuning the filter

parameters in the FIR filter bank. A network of edge devices

running our proposed classification framework can be used

for continuous monitoring of wildlife species and detecting

anomalies in case of poaching or timber smuggling. This

framework can be extended to other biomedical applications

using edge devices capable of healthcare monitoring with raw

ECG, EMG, and EEG signals. Wearable IMU sensors with

this framework can be used to detect anomalies in posture. To

make our framework more energy efficient, we can fabricate

this system into an Application Specific Integrated Chip.
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