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Multiple Estimation Models for Discrete-time

Adaptive Iterative Learning Control

Ram Padmanabhan∗, Rajini Makam†, and Koshy George‡

Abstract

This article focuses on making discrete-time Adaptive Iterative Learning Control
more effective using multiple estimation models. Existing strategies use the tracking
error to adjust the parametric estimates. Our strategy uses the last component of
the identification error to tune these estimates of the model parameters. We prove
that this strategy results in bounded estimates of the parameters, and bounded and
convergent identification and tracking errors. We emphasize that the proof does not
use the Key Technical Lemma. Rather, it uses the properties of square-summable
sequences. We extend this strategy to include multiple estimation models and show
that all the signals are bounded, and the errors converge. It is also shown that this
works whether we switch between the models at every instant and every iteration or at
the end of every iteration. Simulation results demonstrate the efficacy of the proposed
method with a faster convergence using multiple estimation models.

1 Introduction

Many practical, modern engineering systems require that a reference trajectory be tracked
for a specific finite interval, and this task is then repeated for multiple iterations. Extensive
research has been dedicated to using Iterative Learning Control (ILC) for such tasks. In the
last two decades, ILC has evolved into a highly popular strategy to achieve requirements
of finite-interval, high precision tracking control, yet simultaneously maintaining accept-
able levels of control energy [1–5]. These requirements cannot be achieved satisfactorily by
standard feedback control techniques. In particular, feedback control laws do not update
over iterations, and the error profile is identical in every iteration. Further, feedback con-
trol guarantees only asymptotic convergence of error, which is unsuitable when considering
finite-interval tracking. High-precision tracking using feedback control requires prohibitively
significant control energy. Each of these issues is addressed by ILC.
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The primary notion in ILC is that performance of a system can be improved by learning
from error and control signals of previous iterations. Such a notion led to the design of
numerous laws that constructed the control input in iteration (k + 1) based directly on the
control input and error signal in iteration k. This eventually developed into a contraction-
mapping (CM), operator-theoretic framework for ILC [3]. Many popular ILC strategies
were designed based on this framework [4–9], and it continues to be popular, with numerous
applications in large-scale industrial manufacturing [10,11], chemical batch processes [12,13],
hybrid actuation systems [14] and robotics [15–18]. This framework has also been extensively
analyzed, with established convergence and robustness results [19–23].

An alternative framework for ILC is based on Composite Energy Functions (CEFs),
which are Lyapunov-like energy functions over iterations. This framework is particularly
useful when system parameters are unknown, and ILC design must incorporate parameter
estimation. The approach closely follows adaptive control strategies, with minor differ-
ences in parameter update laws [24, 25]. CEF-based ILC has numerous advantages over the
contraction-mapping approach to ILC. First, the restrictive requirement of globally Lipschitz
nonlinearities can be relaxed. French and Rogers [26] proposed one of the earliest CEF-based
techniques to achieve this in continuous-time Adaptive ILC. Further, it provides a unified
method to address nonlinear systems, systems subjected to disturbances, and systems with
time-varying parameters. This framework can also handle iteration-varying reference trajec-
tories and random initial conditions on system states. The CEF approach to continuous-time
Adaptive ILC was formalized in a series of papers [24, 25, 27–29] in the early 2000s. In con-
trast to adaptive control, a prominent feature of the proposed strategies was the discrete

update of parameter estimates over iterations. Further, monotonicity of energy functions
was demonstrated, resulting in pointwise convergence of tracking error. Continuous-time
Adaptive ILC has also been extensively applied to robot manipulators [5,30–33], high-speed
trains [34–36] and vibration control [37, 38].

Using the analogy between the iteration axis and discrete-time axis, Chi et al. [39] pro-
posed a discrete-time Adaptive ILC strategy using Composite Energy Functions for a non-
linear system subjected to disturbances. The primary features of this strategy included
the ability to deal with iteration-varying reference trajectories, random initial conditions on
the system state and time-varying system parameters. Applying the Key Technical Lemma
(KTL) [40] over iterations, the convergence of tracking error was demonstrated. This tech-
nique was further formalized in [41–43]. In [44–46], the problem that arises when the sign
of the input coefficient is unknown was addressed. In [47, 48] time- and iteration-varying
parameters were both in the problem setup, and a novel dead-zone approach was proposed
to tackle the additional complexity. Learning control for a system with binary-valued ob-
servations was achieved in [49]. A dynamic linearization framework was used in [50] for
Adaptive ILC on MIMO systems. In [51], a predictive ILC scheme was used for learning
control of nonaffine, nonlinear systems.

The design and analysis of discrete-time Adaptive ILC closely follow discrete-time adap-
tive control. Poor transient response is a significant issue in adaptive control and arises from
using a single model for parameter estimation. (In what follows, a model is a mathematical
representation of the given dynamical system.) A poor initial estimate can contribute to
large initial tracking and identification errors. (In this paper, the tracking error is the devi-
ation of the system’s state from the reference model state and the identification error is the
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deviation of the system’s state from the state of the estimation model. The latter is defined
explicitly in Section 3.) The Multiple Models, Switching and Tuning (MMST) methodol-
ogy [52–54] was proposed to combat this problem. By initializing many estimation models in
the parameter space, one of these models is likely sufficiently close to the actual parameter,
resulting in improved identification and tracking performance. Most Adaptive ILC schemes
use the tracking error to update parameter estimates, similar to certain discrete-time adap-
tive control strategies. However, such an estimation law does not lend itself well to the
extension to multiple estimation models. Adaptive control strategies which use the identifi-
cation error in place of tracking error for updating parameters have been explored [55, 56],
and these strategies result in improved convergence with multiple models. The objective of
this article is to present the MMST methodology in the context of discrete-time Adaptive
ILC, by modifying the control and identification laws.

There is very little existing research on using multiple models for Adaptive ILC, partic-
ularly in the CEF framework. In [57, 58], Li et al. present a strategy with multiple fuzzy
neural networks estimating part of the system’s parameters. In [59], Freeman and French
use multiple estimation models in the contraction-mapping setting to present robust stability
and performance-bounds results. In [60,61], the authors present MMST for Adaptive ILC in
a contraction-mapping framework and Multiple Models with Second-Level Adaptation (MM-
SLA) (see [62, 63]) for Adaptive ILC to achieve lower computational complexity. In all the
above cases, however, iteration-varying references cannot be tracked, and the standard esti-
mation and certainty-equivalent control procedure in Adaptive ILC are not used. Further,
systems subjected to disturbances are not addressed, and convergence is not demonstrated
based on composite energy functions.

In this article, we present a complete framework for using multiple estimation models in
Adaptive ILC, addressing the above drawbacks. The primary contributions of this article
are as follows:

• A new control with a single model identification scheme are presented for discrete-
time Adaptive ILC, and the identification error (rather than tracking error) is used to
update parameter estimates.

• Convergence is proved using CEFs and the properties of square-summable sequences
rather than using the KTL.

• Next, a strategy with multiple estimation models based on MMST is proposed. A
complete overview of the control and identification laws is provided, two switching
schemes are outlined, and convergence is proved in a unified manner for both schemes,
using the properties of square-summable sequences.

• Simulation results indicate that both the single model and multiple model estima-
tion schemes demonstrate satisfactory tracking performance. The multiple model
scheme results in faster convergence of tracking errors for linear time-invariant and
time-varying systems, as well as nonlinear, discrete-time systems subjected to distur-
bances.

The remainder of this article is organized as follows. In Section 2, the general discrete-
time Adaptive ILC problem is introduced, with standard assumptions and remarks. Section
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3 presents a new single estimation model solution to this problem. This is extended to a
strategy with multiple estimation models in Section 4. We present simulation results for the
proposed strategies in Section 5, and concluding remarks in Section 6.

Throughout this article, N denotes the set of natural numbers {1, 2, . . .}, and R
n denotes

the vector space of all n-tuples of real numbers. For a vector y = [y1, . . . , yn]
T ∈ R

n, ‖y‖
denotes the Euclidean norm, defined as

‖y‖ ∆
=

√
√
√
√

n∑

i=1

y2i .

ℓ2 denotes the Hilbert space of all square-summable sequences, i.e. all sequences {xn}n∈N
such that ∑

n

|xn|2 <∞,

and ℓ∞ denotes the Banach space of all bounded sequences, i.e. all sequences {xn}n∈N such
that

sup
n

|xn| <∞.

2 Problem Formulation

In this section, we formulate the general discrete-time Adaptive ILC problem. Consider the
following discrete-time, nonlinear, uncertain nth order system with matched, time-varying
uncertainty:

xi,k(t+ 1) = xi+1,k(t), i = 1, . . . , (n− 1),

xn,k(t+ 1) = θT1 (t)ξ(xk(t)) + b(t)uk(t) + d(t), (1)

where k ∈ N denotes the index for iterations and each iteration consists of samples indexed
{0, 1, . . . , T}. The time index t is within the set IT = {0, 1, . . . , T − 1}. Note that this
set does not include the final sample T . xi,k(t) denotes state i in iteration k at sample t.

xk(t) = [x1,k(t), . . . , xn,k(t)]
T ∈ R

n is the measurable state vector. θ1(t) ∈ R
p is an unknown

parameter vector, b(t) ∈ R is the unknown input coefficient, and d(t) ∈ R is an unknown
exogenous disturbance. Each of these quantities is iteration invariant. ξ(xk(t)) ≡ ξk(t) ∈ R

p,
called the regression vector, is a known, bounded nonlinear vector function of the state xk(t),
and uk(t) ∈ R is the input to the system in iteration k and at sample t. Equation (1) can
be rewritten as follows:

xi,k(t + 1) = xi+1,k(t), i = 1, . . . , (n− 1),

xn,k(t + 1) = θT (t)φk(t), (2)

where θ(t)
∆
=
[
θT1 (t), b(t), d(t)

]T ∈ R
p+2 is the overall unknown parameter vector, and φk(t)

∆
=

[
ξTk (t), uk(t), 1

]T ∈ R
p+2 is the overall known regression vector.
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The objective of the Adaptive ILC problem is to design an appropriate control input uk(t)
such that the system state xk(t) tracks the state xm,k(t) of the following stable, iteration-
varying reference model:

xi,m,k(t + 1) = xi+1,m,k(t) i = 1, . . . , (n− 1),

xn,m,k(t + 1) = ρk(t), (3)

for some known ρk(t), with asymptotic tracking over iterations k. Defining the state tracking

error ek(t)
∆
= xk(t)−xm,k(t) = [e1,k(t), . . . , en,k(t)]

T ∈ R
n, asymptotic tracking over iterations

implies:
lim

k−→∞
ek(t) = 0 (4)

for each sample t ∈ IT .
The following assumptions are made:

Assumption 1. The unknown quantities θ1(t), b(t) and d(t) are bounded, and hence the
parameter vector θ(t) is bounded.

Assumption 2. The sign of b(t) is known and invariant, i.e. b(t) is either positive or negative
for all time t, and b(t) is non-singular. Without loss of generality, assume b(t) ≥ bmin > 0.
This assumption implies that the control direction is known.

Remark 1. Throughout this article, the case with iteration invariant parameters θ1(t), b(t)
and d(t), and hence iteration invariant θ(t) is considered. This can be extended to the case
with time- and iteration-varying parameters, which was addressed in [48] using a novel dead-
zone approach. Applying this to the proposed techniques is an interesting avenue for future
work on this topic.

Remark 2. Throughout this article, we do not assume identical initial conditions on the
plant and reference model. However, it has been observed in [39] that with random, non-
zero initial conditions on the plant (2), random non-zero initial errors will propagate, and
the state errors ei,k(t) for i = 1, . . . , (n − 1) and t = 0, . . . , (n − i) cannot be ‘learned’, as
these errors are not affected by the input uk(t). The remaining errors are dependent on
uk(t) and hence can be driven to zero. If the plant and reference model have identical initial
conditions, it can be shown that each component of the identification and tracking error
vectors converge to zero.

Remark 3. Assumption 2 can be relaxed by employing the technique of discrete Nussbaum
gain [64], as explored in [44, 45, 65]. An alternative approach without using the Nussbaum
gain was also explored in [46] by fully exploiting the convergence properties of parameter
estimates and incorporating two modifications in the control and parameter update laws.
Extending the techniques proposed here by incorporating these approaches when the control
direction is unknown is a promising avenue for future work.

Remark 4. In numerous works on discrete-time Adaptive ILC, an additional assumption —
usually called the linear growth rate or sector-bounded condition — is made. This assump-
tion states that the nonlinearity ξk(t) satisfies:

‖ξk(t)‖ ≤ c1 + c2 ‖xk(t)‖ ,
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for some positive constants c1 and c2. This assumption plays a key role in analyzing the
convergence of the tracking error over iterations as part of the assumptions for the KTL
[40]. In contrast, our analysis does not involve the KTL, and hence we do not make this
assumption.

3 A New Solution for Discrete-time Adaptive ILC

In this section, we formulate a new control law and parameter update law for the problem
formulated in Section 2. Existing solutions mainly incorporate the principle of certainty
equivalence for control design and use the tracking error for estimating and updating param-
eters. The disadvantage of using the tracking error is that this strategy cannot be extended to
the use of multiple estimation models. Using the identification error in place of tracking error
has been explored for discrete-time adaptive control in [55, 56], with results demonstrating
improved convergence with multiple estimation models. Further, the stability proofs do not
invoke the KTL and instead use Lyapunov theory and the properties of square-summable,
or ℓ2 sequences. Here, we use the analogy between the discrete-time and iteration axes to
formulate a corresponding Adaptive ILC strategy.

3.1 Control and Identification Laws

Construct an identification model with state x̂k(t):

x̂i,k(t+ 1) = x̂i+1,k(t), i = 1, . . . (n− 1),

x̂n,k(t+ 1) = θ̂T1,k(t)ξ(xk(t)) + b̂k(t)uk(t) + d̂k(t)

= θ̂Tk (t)φk(t). (5)

The purpose of establishing this identification model is to construct an identification error
that is used to estimate the unknown parameter vector θ(t). θ̂1,k(t), b̂k(t) and d̂k(t) denote the
estimates of the quantities θ1(t), b(t) and d(t) in iteration k and sample t. Correspondingly,

θ̂k(t) denotes the estimate of the parameter vector θ(t). Define θ̃k(t)
∆
= θ(t)− θ̂k(t). Further,

define the state identification error êk(t)
∆
= xk(t)− x̂k(t). Then, from (2) and (5),

êi,k(t + 1) = êi+1,k(t), i = 1, . . . , (n− 1),

ên,k(t + 1) = θ̃Tk (t)φk(t). (6)

Finally, the tracking error ek(t) = xk(t)− xm,k(t) can be described by:

ei,k(t+ 1) = ei+1,k(t), i = 1, . . . , (n− 1),

en,k(t+ 1) = θT1 (t)ξk(t) + b(t)uk(t) + d(t)− ρk(t). (7)

Using (7), the following control law is generated:

uk(t) =
1

b̂k(t)

[

βen,k−1(t + 1) + ρk(t)− θ̂T1,k(t)ξk(t)− d̂k(t)
]

, (8)
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where 0 < β < 1. Add and subtract b̂k(t)uk(t) in (7), substitute (8) in (7) and use (6):

en,k(t + 1) = θ̃Tk (t)φk(t) + βen,k−1(t + 1)

= ên,k(t+ 1) + βen,k−1(t+ 1). (9)

The presence of β in the control law is to provide some damping by incorporating previous
iteration errors. Existing Adaptive ILC schemes set β = 0, with no previous iteration
tracking error term, resulting in a deadbeat-like law.

The parameter vector estimate is updated according to the following adaptive law:

θ̂k+1(t) = Proj

[

θ̂k(t) +
φk(t)

1 + ‖φk(t)‖2
ên,k(t + 1)

]

. (10)

Note that this law uses the identification error, in contrast to existing Adaptive ILC strategies
that use the tracking error for updating parameters. This law is similar to the projection
algorithm widely used in adaptive control [40], except with the update over iterations rather
than time. The error ên,k(t+ 1) is available as the update is performed offline at the end of
iteration k. The operator Proj[.] is defined below. Define a vector m as follows:

m
∆
=

[

θ̂k(t) +
φk(t)

1 + ‖φk(t)‖2
ên,k(t+ 1)

]

=
[
mT

1 , m2, m3

]T
,

where m1 ∈ R
p, m2 ∈ R and m3 ∈ R denote the estimates of θ1(t), b(t) and d(t) prior to

projection. Then,

Proj[m]
∆
=

{[
mT

1 , m2, m3

]T
if m2 ≥ bmin

[
mT

1 , bmin, m3

]T
if m2 < bmin

. (11)

The use of the projection operator defined above ensures that division by zero is avoided in
the control law (8).

Remark 5. Throughout this article, the time index t is always in the set IT . The control
(8) and adaptive (10) laws are defined on this time horizon. However, note that all state
variables and errors are formulated on the time horizon {1, . . . , T}, apart from their initial
conditions. Hence, state variables and errors use the index (t + 1) throughout, as evident
from the control and adaptive laws above. Further, note that neither the control law nor the
adaptive law is defined at the final sample T . However, they affect the state variables and
errors corresponding to this sample.

3.2 Convergence Analysis

We have the following result for convergence of the proposed Adaptive ILC law:

Theorem 1. For the system (2) with the objective of tracking the reference model (3), the
control law (8) along with the adaptive law (10) guarantees the following:

1. θ̃(t), θ̂(t) ∈ ℓ∞ for each t ∈ IT , i.e. the sequence of parametric errors θ̃k(t) over

iterations — and hence the sequence of parameter estimates θ̂k(t) over iterations — is

bounded for each sample t.
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2. ên(t + 1) ∈ ℓ2 ∩ ℓ∞ for each t ∈ IT , i.e. the sequence of the nth component of the

identification error over iterations is square-summable and bounded for each sample t.

3. With identical initial conditions on the plant and reference model, limk−→∞ êk(t+1) = 0
for each t ∈ IT , i.e. each component of the identification error vector tends to zero

with iterations, for each sample t.

4. With identical initial conditions on the plant and reference model, limk−→∞ ek(t+1) = 0
for each t ∈ IT , i.e. each component of the tracking error vector tends to zero with

iterations, for each sample t.

5. limk−→∞

∥
∥
∥θ̂k(t)− θ̂k−p(t)

∥
∥
∥

2

= 0, for each t ∈ IT , for any p ∈ N, i.e. the parameter

vector estimates converge over iterations for each sample t.

Proof. The proof is organized into three parts. Part 1 derives the boundedness of θ̃(t),
Part 2 demonstrates that all errors converge to zero over iterations, and Part 3 shows that
parameter vector estimates converge over iterations. Thus, statement 1 of the theorem is
proved in Part 1, statements 2, 3 and 4 are proved in Part 2, and statement 5 is proved in
Part 3.

Part 1: Boundedness of Parametric Error:

Define a composite energy function (CEF) Vk(t):

Vk(t)
∆
= θ̃Tk (t)θ̃k(t) =

∥
∥
∥θ̃k(t)

∥
∥
∥

2

. (12)

Let ∆Vk(t)
∆
= Vk+1(t)− Vk(t). Then, from (10),

∆Vk(t) =
∥
∥
∥θ(t)− Proj[m]

∥
∥
∥

2

−
∥
∥
∥θ̃k(t)

∥
∥
∥

2

. (13)

Consider the scalar |b(t)− Proj[m2]|, and note that b(t) ≥ bmin.

• When m2 ≥ bmin, Proj[m2] = m2. Then, |b(t)− Proj[m2]| = |b(t)−m2|.

• When m2 < bmin ≤ b(t), Proj[m2] = bmin. Then, |b(t)− Proj[m2]| = |b(t)− bmin| <
|b(t)−m2|.

Thus, the relation |b(t)− Proj[m2]| ≤ |b(t)−m2| always holds. As b(t) is simply part of the
parameter vector θ(t), the relation ‖θ(t)− Proj[m]‖ ≤ ‖θ(t)−m‖ always holds. Hence, the
parametric error magnitude does not increase using the projection operator. Using this in
(13),

∆Vk(t) ≤
∥
∥
∥θ(t)−m

∥
∥
∥

2

−
∥
∥
∥θ̃k(t)

∥
∥
∥

2

. (14)

Substitute m =

[

θ̂k(t) +
φk(t)

1 + ‖φk(t)‖2
ên,k(t + 1)

]

. Then,

∆Vk(t) ≤
∥
∥
∥
∥
θ̃k(t)−

φk(t)

1 + ‖φk(t)‖2
ên,k(t+ 1)

∥
∥
∥
∥

2

−
∥
∥
∥θ̃k(t)

∥
∥
∥

2

. (15)
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On simplification by expanding the norm and using (6), this reduces to:

∆Vk(t) ≤ −
(

2 + ‖φk(t)‖2
(
1 + ‖φk(t)‖2

)2

)

ê2n,k(t + 1), (16)

or,
∆Vk(t) ≤ −α2

k(t)ê
2
n,k(t+ 1) ≤ 0, (17)

where α2
k(t) denotes the positive quantity in parentheses in (16). Thus, the function Vk(t)

is non-increasing. From this and the construction of Vk(t) (12), it is evident that θ̃k(t) is
a bounded sequence over iterations k, for every t ∈ IT , i.e. θ̃(t) ∈ ℓ∞. Subsequently, as
θ(t) is bounded, the sequence of parameter estimates θ̂k(t) over iterations k is bounded, i.e.
θ̂(t) ∈ ℓ∞. This concludes Part 1 of the proof.

Part 2: Convergence of Errors:

From (17), note that limN−→∞ |VN+1(t)− V1(t)| < ∞ for each t ∈ IT . This can be written
as:

lim
N−→∞

∣
∣
∣
∣
∣

N∑

k=1

∆Vk(t)

∣
∣
∣
∣
∣
≤ lim

N−→∞

N∑

k=1

α2
k(t)ê

2
n,k(t+ 1) <∞.

Then, the sequence αk(t)ên,k(t+1) is square-summable over iterations k, for each t ∈ IT . By
the properties of ℓ2 sequences, α(t)ên(t+ 1) ∈ ℓ2 ∩ ℓ∞. Next, note that since ξk(t) and uk(t)
are bounded, so is ‖φk(t)‖ by definition. Hence, αk(t) can never converge to 0. Further,
0 < αk(t) <

√
2 and we have ên(t+ 1) ∈ ℓ2 ∩ ℓ∞, and hence,

lim
k−→∞

ên,k(t+ 1) = 0 (18)

for each t ∈ IT . Further, consider eq. (9). This is an iteration-domain difference equation,
with a forcing function ên,k(t + 1) −→ 0 as k −→∞. As 0 < β < 1, it is evident that:

lim
k−→∞

en,k(t+ 1) = 0 (19)

for each t ∈ IT . Finally, under the assumption of identical initial conditions, (18) and (19)
imply that:

lim
k−→∞

êk(t+ 1) = 0 (20)

and
lim

k−→∞
ek(t+ 1) = 0 (21)

for each t ∈ IT , i.e. the identification and tracking error vectors converge to 0 as k −→ ∞.
This concludes Part 2 of the proof.

Part 3: Convergence of Parameter Estimates:

Consider the update law (10), and consider the scalar
∣
∣
∣Proj[m2]− b̂k(t)

∣
∣
∣. From the preceding

update of parameter estimates, b̂k(t) ≥ bmin, by the use of projection.

• When m2 ≥ bmin, Proj[m2] = m2, and
∣
∣
∣Proj[m2]− b̂k(t)

∣
∣
∣ =

∣
∣
∣m2 − b̂k(t)

∣
∣
∣.
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• When m2 < bmin ≤ b̂k(t), Proj[m2] = bmin. Then,
∣
∣
∣Proj[m2]− b̂k(t)

∣
∣
∣ =

∣
∣
∣bmin − b̂k(t)

∣
∣
∣ <

∣
∣
∣m2 − b̂k(t)

∣
∣
∣.

Thus, the relation
∣
∣
∣Proj[m2]− b̂k(t)

∣
∣
∣ ≤

∣
∣
∣m2 − b̂k(t)

∣
∣
∣ always holds. By extension, the relation

∥
∥
∥Proj[m]− θ̂k(t)

∥
∥
∥ ≤

∥
∥
∥m− θ̂k(t)

∥
∥
∥

always holds. Using (10) and substituting m,

∥
∥
∥θ̂k+1(t)− θ̂k(t)

∥
∥
∥

2

≤
∥
∥
∥
∥

φk(t)

1 + ‖φk(t)‖2
ên,k(t+ 1)

∥
∥
∥
∥

2

≤ ê2n,k(t+ 1).

Thus,

lim
N−→∞

N∑

k=1

∥
∥
∥θ̂k+1(t)− θ̂k(t)

∥
∥
∥

2

≤ lim
N−→∞

N∑

k=1

ê2n,k(t + 1) <∞,

or,

lim
k−→∞

∥
∥
∥θ̂k+1(t)− θ̂k(t)

∥
∥
∥ = 0 (22)

for each t ∈ IT . Thus, parameter estimates one iteration apart converge. This result
can easily be extended to the difference between parameter estimates p iterations apart, as
follows:

∥
∥
∥θ̂k(t)− θ̂k−p(t)

∥
∥
∥

=
∥
∥
∥θ̂k(t)− θ̂k−1(t) + θ̂k−1(t)− θ̂k−2(t) + . . .+ θ̂k−p+1(t)− θ̂k−p(t)

∥
∥
∥

≤
∥
∥
∥θ̂k(t)− θ̂k−1(t)

∥
∥
∥+

∥
∥
∥θ̂k−1(t)− θ̂k−2(t)

∥
∥
∥+ . . .+

∥
∥
∥θ̂k−p+1(t)− θ̂k−p(t)

∥
∥
∥ .

Thus, taking the limit as k −→ ∞ on both sides,

lim
k−→∞

∥
∥
∥θ̂k(t)− θ̂k−p(t)

∥
∥
∥ ≤ lim

k−→∞

∥
∥
∥θ̂k(t)− θ̂k−1(t)

∥
∥
∥+ . . .+ lim

k−→∞

∥
∥
∥θ̂k−p+1(t)− θ̂k−p(t)

∥
∥
∥ .

As each limit on the right is zero from (22), and the norm is always non-negative,

lim
k−→∞

∥
∥
∥θ̂k(t)− θ̂k−p(t)

∥
∥
∥ = 0, (23)

for each t ∈ IT , i.e. parameter estimates converge over iterations. This concludes the proof
of Theorem 1. �

In summary, this section has presented a new approach to solving the discrete-time
Adaptive ILC problem. A new control law with an additional scaled tracking error term
is formulated, and parameter estimates are updated using the identification error rather
than the tracking error. It is then proved that each component of the identification and
tracking error vectors converges to 0 with iterations k. The proof of convergence does not
involve the KTL. Instead, simple inferences from the non-increasing nature of Vk(t) are used
concurrently with properties of ℓ2 sequences. The approach presented in this section also
enables the extension to the multiple estimation models case, as described in the following
section.
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4 Multiple Estimation Models for Adaptive ILC

Adaptive control strategies can suffer from the poor transient performance of identification,
tracking and parametric errors when a single model is used for parameter estimation. In
particular, the initial parametric uncertainty is likely large, contributing significantly to poor
transient response. The methodology of Multiple Models, Switching and Tuning (MMST)
was proposed to address this issue [52–54]. The methodology in discrete-time adaptive
control is as follows. A number of models (say M) are initialized in the parameter space
with different initial conditions. Each of these is updated according to standard parameter
estimation algorithms [40] every sample. At each sample, one model is chosen according to
a criterion, and the parameter estimates corresponding to that model are used for control
design. The most common criterion used is a minimum identification error criterion, stated
as follows. At each sample, pick the model j∗ that satisfies j∗ = argminj=1,...,M |êj(t)|, where
êj(t) denotes the identification error corresponding to model j at time instant t.

As mentioned in Section 1, there is very little existing research on the use of the MMST
methodology in Adaptive ILC. This section presents the main results of this article, designing
a general approach to using multiple models in Adaptive ILC, proposing two strategies for
switching between models and proving convergence in both cases. Section 4.1 describes the
formulation of control and identification laws for the proposed strategies, and Section 4.2
presents the proof of convergence of the identification and tracking errors.

4.1 Control and Identification Laws

The basic formulation of the problem remains the same as described in Section 2. However,
instead of a single identification model (5) as in Section 3, we construct M identification
models. LetM = {1, . . . ,M} denote the set of model indices. Then, each model has a state
x̂j,k(t), j ∈ M, that evolves as follows:

x̂i,j,k(t+ 1) = x̂i+1,j,k(t), i = 1, . . . (n− 1),

x̂n,j,k(t+ 1) = θ̂T1,j,k(t)ξ(xk(t)) + b̂j,k(t)uk(t) + d̂j,k(t)

= θ̂Tj,k(t)φk(t). (24)

x̂i,j,k(t) denotes state i of identification model j in iteration k and sample t, and θ̂j,k(t) denotes
the parameter estimate of model j in iteration k and sample t. Define the M parametric

errors θ̃j,k(t)
∆
= θ(t)− θ̂j,k(t), and the M identification errors êj,k(t)

∆
= xk(t)− x̂j,k(t). Using

(2) and (24),

êi,j,k(t + 1) = êi+1,j,k(t), i = 1, . . . , (n− 1),

ên,j,k(t + 1) = θ̃Tj,k(t)φk(t). (25)

As before, the tracking error is described by eq. (7).
We are now presented with two options:

11



4.1.1 Case 1

Continue using the analogy between the discrete-time axis in adaptive control and the itera-
tion axis in Adaptive ILC, and switch between models only once every iteration, at the end.
The criterion for switching is then chosen as:

j∗k = argmin
j∈M

[
∑

t∈IT

|ên,j,k−1(t+ 1)|2
]

, (26)

i.e. the model producing minimum energy in the nth component of the identification error
(and hence minimum energy in the identification error vector) in iteration (k − 1) is chosen
for control design in iteration k.

4.1.2 Case 2

Switch between models at every sample t in every iteration k. The criterion for switching is
then chosen as:

j∗k(t) = argmin
j∈M
|ên,j,k(t)| , (27)

i.e. at every sample, a new model is chosen based on the minimum identification error at
that sample, and is used for control design at that sample.

Remark 6. In Case 2, as identification error is on the time horizon {1, . . . , T}, so is the
sequence of models j∗k(t). However, the control design is on the horizon t ∈ IT . Hence, the
final model chosen, j∗k(T ), is used for designing uk+1(0), the initial control input of the next
iteration.

Note how the best model j∗ depends only on iteration k in Case 1, but depends on both
iteration k and time t in Case 2. The control law can then be formulated as follows:

uk(t) =
1

b̂j∗,k(t)

[

βen,k−1(t + 1) + ρk(t)− θ̂T1,j∗,k(t)ξk(t)− d̂j∗,k(t)
]

, (28)

where 0 < β < 1, and j∗ denotes either j∗k or j∗k(t), depending on whether criterion (26)
or (27) is being used. Evidently, the control law uses parameter estimates corresponding to
the model with minimum identification error in the sense of either criterion. In iteration 1,
model 1 is chosen for control design without loss of generality. Note that all models continue
to be updated irrespective of which model is chosen in (28). Substituting (28) in (7), and
using (25),

en,k(t + 1) = θ̃Tj∗,k(t)φk(t) + βen,k−1(t + 1)

= ên,j∗,k(t+ 1) + βen,k−1(t+ 1). (29)

Each model j ∈M is updated according to the following law, similar to (10):

θ̂j,k+1(t) = Proj[m] = Proj

[

θ̂j,k(t) +
φk(t)

1 + ‖φk(t)‖2
ên,j,k(t+ 1)

]

, (30)

where Proj[.] is defined in (11). The algorithms 1 and 2 summarize the above procedure for
both Case 1 and 2.
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Algorithm 1 Computational flow with Multiple Models Case 1.

Initialisation: θ̂j,0(t)← random, j ∈M, t ∈ IT ; j∗1 = 1.
for k = 1, 2, . . . do
for t = 0, 1, . . . do
Determine x̂j,k(t + 1) with φk(t) and θ̂j,k(t). {(24)}
Determine ên,j,k(t), j ∈M with xn,k(t), x̂n,j,k(t). {(25)}
Determine en,k(t), with xn,k(t), xm,n,k(t). {(7)}
Compute uk(t) with ρk(t), θ̂j∗,k(t) and en,k−1(t+ 1). {(28)}

end for

Compute θ̂j,k+1(t) with θ̂j,k(t), φk(t) and ên,j,k(t+ 1). {(30)}
Determine j∗k+1 using ên,j,k(t+ 1). {(26)}

end for

Algorithm 2 Computational flow with Multiple Models Case 2.

Initialisation: θ̂j,0(t)← random, j ∈M; j∗1(t) = 1, t ∈ IT
for k = 1, 2, . . . do
for t = 0, 1, . . . do
Determine x̂j,k(t + 1) with φk(t) and θ̂j,k(t). {(24)}
Determine ên,j,k(t), j ∈M with xn,k(t), x̂n,j,k(t). {(25)}
Determine en,k(t), with xn,k(t), xm,n,k(t). {(7)}
Determine j∗k(t) using ên,j,k(t). {(27)}
Compute uk(t) with ρk(t), θ̂j∗,k(t) and en,k−1(t+ 1). {(28)}

end for

Compute θ̂j,k+1(t) with θ̂j,k(t), φk(t) and ên,j,k(t+ 1). {(30)}
end for

4.2 Convergence Analysis

We now present the primary result of this article for convergence of Adaptive ILC using
multiple models:

Theorem 2. For the system (2) with to track the reference model (3), the control law (28)
along with the adaptive law (30) guarantees the following:

1. θ̃j(t), θ̂j(t) ∈ ℓ∞ for each t ∈ IT , for each j ∈ M, i.e. the sequence of parametric

errors θ̃j,k(t) over iterations — and hence the sequence of parameter estimates θ̂j,k(t)
over iterations — is bounded for each sample t and model j.

2. ên,j(t + 1) ∈ ℓ2 ∩ ℓ∞ for each t ∈ IT , for each j ∈ M, i.e. the sequence of the nth
component of the identification error over iterations is square-summable and bounded

for each sample t and model j.

3. With identical initial conditions on the plant and reference model, limk−→∞ êj,k(t+1) =
0 for each t ∈ IT , for each j ∈M, i.e. each component of the identification error vector
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tends to zero with iterations, for each sample t and model j.

4. With identical initial conditions on the plant and reference model, limk−→∞ ek(t+1) = 0
for each t ∈ IT , i.e. each component of the tracking error vector tends to zero with

iterations, for each sample t.

5. limk−→∞

∥
∥
∥θ̂j,k(t)− θ̂j,k−p(t)

∥
∥
∥

2

= 0 for each t ∈ IT , for each j ∈M, for any p ∈ N, i.e.

the parameter vector estimates converge over iterations for each sample t and model j.

Proof. As with the proof of Theorem 1, the proof of Theorem 2 is organized in three parts,
with the statement 1 proved in Part 1, statements 2, 3 and 4 proved in Part 2 and statement
5 proved in Part 3.

Part 1: Boundedness of Parametric Error:

Define a composite energy function (CEF) Vk(t) as:

Vk(t)
∆
=
∑

j∈M

Vj,k(t), (31a)

Vj,k(t)
∆
= θ̃Tj,k(t)θ̃j,k(t) =

∥
∥
∥θ̃j,k(t)

∥
∥
∥

2

, (31b)

and let ∆Vj,k(t)
∆
= Vj,k+1(t)− Vj,k(t). By arguments similar to the ones made in the proof of

Theorem 1,

∆Vj,k(t) ≤ −
(

2 + ‖φk(t)‖2
(
1 + ‖φk(t)‖2

)2

)

ê2n,j,k(t + 1), (32)

or,
∆Vj,k(t) ≤ −α2

k(t)ê
2
n,j,k(t+ 1) ≤ 0, (33)

where, as before, α2
k(t) denotes the positive quantity within parentheses in (32). Hence,

Vj,k(t) is non-increasing for each j, and thus,

∆Vk(t)
∆
= Vk+1(t)− Vk(t) =

∑

j∈M

∆Vj,k(t) ≤ 0, (34)

or, Vk(t) is a non-increasing function. From the construction of Vj,k(t), it is evident that
the sequence of parametric errors θ̃j,k(t) is a bounded sequence over iterations k, for each

t ∈ IT , i.e. θ̃j(t) ∈ ℓ∞. As θ(t) is bounded, we conclude that θ̂j(t) ∈ ℓ∞, i.e. the sequence of

parameter estimates θ̂j,k(t) is bounded over iterations k, for each t ∈ IT .
Part 2: Convergence of Errors:

From (33), limN−→∞ |Vj,N+1(t)− Vj,1(t)| <∞ for each t ∈ IT . Rewriting this,

lim
N−→∞

∣
∣
∣
∣
∣

N∑

k=1

∆Vj,k(t)

∣
∣
∣
∣
∣
≤ lim

N−→∞

N∑

k=1

α2
k(t)ê

2
n,j,k(t+ 1) <∞.

Using the same arguments as earlier, ên,j(t + 1) ∈ ℓ2 ∩ ℓ∞, and

lim
k−→∞

ên,j,k(t+ 1) = 0 (35)
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for each t ∈ IT , for each model j ∈M. Under the assumption of identical initial conditions,
this implies that:

lim
k−→∞

êj,k(t+ 1) = 0. (36)

Now consider eq. (29). While we know that ên,j,k(t + 1) −→ 0 as k −→ ∞, the actual
sequence ên,j∗,k(t+1) that acts as a forcing function here depends on the switching criterion
considered, either (26) or (27). We now show that ên,j∗,k(t + 1) −→ 0 as k −→ ∞, where
j∗ denotes j∗k or j∗k(t), depending on whether criterion (26) or (27) is used. For notational
simplicity, let êj,k denote ên,j,k(t+ 1). Construct the following sequence at each sample t:

S = ê1,1, . . . , êM,1
︸ ︷︷ ︸

j∈M,k=1

, ê1,2, . . . , êM,2
︸ ︷︷ ︸

j∈M,k=2

, . . . , ê1,k, . . . , êM,k
︸ ︷︷ ︸

j∈M,k=k

, . . . (37)

This is a sequence of identification errors of each model, considered one iteration after an-
other. Since êj,k −→ 0 as k −→ ∞, the above sequence S −→ 0 as k −→ ∞. Then, if
S∗ denotes any subsequence of S, S∗ −→ 0 as k −→ ∞. We exploit this fact to show that
using either criterion (26) or (27), the forcing function ên,j∗,k(t+1) in (29) converges to 0 as
k −→∞.

With criterion (26), switching takes place only once every iteration, at the end. The
optimal model j∗k does not depend on the sample t. Then, the forcing function sequence in
(29) can be written as S∗ = êj∗

1
,1, êj∗

2
,2, . . ., with each j∗k ∈M. S∗ is evidently a subsequence

of S, and as S −→ 0 as k −→ ∞, S∗ −→ 0 as k −→ ∞, and hence ên,j∗,k(t + 1) −→ 0 as
k −→∞, for each t.

The arguments for criterion (27) are very similar. The optimal model j∗k(t) is now depen-
dent on the sample t. For a given t, the forcing function sequence in (29) can be written as
S∗(t) = êj∗

1
(t),1, êj∗

2
(t),2, . . ., with each j∗k(t) ∈ M. S∗(t) is a subsequence of S for each t, and

by the above arguments, S∗(t) −→ 0 as k −→∞, and hence ên,j∗,k(t+1) −→ 0 as k −→∞,
for each t.

The minor difference between the two arguments lies in the fact that the subsequence
constructed depends on the sample t in the second case. For both criteria (26) and (27),

lim
k−→∞

ên,j∗,k(t+ 1) = 0 (38)

for each t ∈ IT . Then, eq. (29) is an iteration-domain difference equation with a forcing
function that converges to 0. As 0 < β < 1, it is evident that:

lim
k−→∞

en,k(t+ 1) = 0 (39)

for each t ∈ IT . Under the assumption of identical initial conditions,

lim
k−→∞

ek(t+ 1) = 0. (40)

Part 3: Convergence of Parameter Estimates:

The final part of the proof is straightforward and simply extends the arguments made in
the corresponding part of the proof of Theorem 1 to the multiple model case. It can first
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be shown that the relation
∥
∥
∥Proj[m]− θ̂j,k(t)

∥
∥
∥ ≤

∥
∥
∥m− θ̂j,k(t)

∥
∥
∥ always holds, for each model

j ∈M. Then, using (30),

∥
∥
∥θ̂j,k+1(t)− θ̂j,k(t)

∥
∥
∥

2

≤ ê2n,j,k(t + 1).

Then, summing the above inequality over iterations k and using the properties of the ℓ2
sequence ên,j(t + 1),

lim
k−→∞

∥
∥
∥θ̂j,k+1(t)− θ̂j,k(t)

∥
∥
∥ = 0 (41)

for each t ∈ IT . Thus, for each model j ∈ M, parameter estimates one iteration apart

converge for each sample t. For parameter estimates p iterations apart,
∥
∥
∥θ̂j,k(t)− θ̂j,k−p(t)

∥
∥
∥

is written as a telescoping series, as shown earlier. By the same arguments,

lim
k−→∞

∥
∥
∥θ̂j,k(t)− θ̂j,k−p(t)

∥
∥
∥ = 0 (42)

for each t ∈ IT , for each model j ∈M. This concludes the proof of Theorem 2. �

Summarizing the results of this section, we have presented an approach using multiple
estimation models to solve the discrete-time Adaptive ILC problem. This approach is enabled
by using each model’s identification error in updating the corresponding parameter estimates.
The control law is formulated based on the optimal model at sample t, in iteration k. We
provide two options for switching between models — either once in an iteration or once every
sample — and each option has its own criterion. Using either criterion, we prove that each
component of the identification and tracking error vectors converge to 0 with iterations k.
A key step in this proof is to show that the sequence of identification errors corresponding
to the best model — ên,j∗,k(t + 1) — converges to 0 as k −→ ∞, using either criterion. As
with the strategy in Section 3, the proof of convergence does not involve the KTL and the
properties of Vk(t) and ℓ2 sequences are used instead.

5 Simulation Examples

In this section, we present simulation examples to demonstrate the efficacy of the single-
model strategy proposed in Section 3, and the two switching strategies with multiple models
in Section 4. Four different first-order systems are considered: a linear, time-invariant system
not subjected to disturbances (LTI), a linear, time-varying system subjected to disturbances
(LTV-D), a nonlinear system not subjected to disturbances (NL) and a nonlinear system
subjected to disturbances (NL-D). In each example, the time interval for each iteration is
{0, 1, . . . , 100}, and hence the time index t is in the set IT = {0, 1, . . . , 99}. The parameter
β in the control laws (8) and (28) is set to 0.2. Zero initial conditions on the plant and
reference are assumed in all examples. For the multiple-model cases, the number of models
is set to M = 10, and parameters are initialized randomly in the parameter space. The
strategy that applies the single model control law (8) is designated “SM”, and the strategies
that use the multiple-model control law (28) with criterion (26) or (27) are designated “MM
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(a) Maximum Identification Error over itera-
tions. (b) Maximum Tracking Error over iterations.

Figure 1: Example 1: Error profiles over iterations for an LTI system without disturbances.

- Case 1” and “MM - Case 2” respectively. For each example, the objective is to track the
following iteration-invariant reference:

xm(t) = π2
(
2− 3 sin3(2πt/100)

)
sin(2πt/100)/10, (43)

which is similar to the trajectory considered in [39]. The efficacy of each strategy is measured
based on the peak identification and tracking errors over iterations, which ideally converge
to zero. This is the same as considering the ∞-norm of both errors, defined below for the
identification error:

‖êk‖∞ = max
t
|xk(t+ 1)− x̂k(t+ 1)| = max

t
|êk(t + 1)| , (44)

and defined similarly for the tracking error. An iteration-invariant trajectory is considered
for simplicity, to highlight the advantages of faster convergence in multiple models. The final
example in this section presents results for tracking an iteration-varying trajectory.

5.1 Example 1: LTI System without Disturbances

Consider the system:
xk(t + 1) = 0.5xk(t) + uk(t), (45)

a simple, stable LTI system without disturbances. The objective is for xk(t) to track the
reference xm(t) in (43). The results for identification and tracking performance are shown in
Fig. 1, in terms of the peak amplitude of errors over iterations for each strategy. It is evident
that both multiple-model strategies converge faster than the single-model strategy, mainly
because the initialization of multiple estimation models leads to better estimates in earlier
iterations, hence improving transient performance. Further, the multiple model strategy
with criterion (27), i.e. MM - Case 2 converges marginally faster than MM - Case 1, due to
models switching more frequently.
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(a) Maximum Identification Error over itera-
tions. (b) Maximum Tracking Error over iterations.

Figure 2: Example 2: Error profiles over iterations for an LTV system with disturbances.

(a) Maximum Identification Error over itera-
tions. (b) Maximum Tracking Error over iterations.

Figure 3: Example 3: Error profiles over iterations for a nonlinear system without distur-
bances.

5.2 Example 2: LTV System with Disturbances

In this example, the following LTV system with disturbances is considered:

xk(t + 1) = θ1(t)xk(t) + b(t)uk(t) + d(t), (46)

where θ1(t) = 1 + 0.5 sin(t), b(t) = 3 + 0.5 sin(2πt) and d(t) = sin3(2πt), an external dis-
turbance. The results for achieving the tracking objective are shown in Fig. 2. As before,
the two multiple-model cases achieve faster convergence due to improved transient response,
whereas the single-model case has very poor transient response due to large initial parametric
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(a) Maximum Identification Error over itera-
tions. (b) Maximum Tracking Error over iterations.

Figure 4: Example 4: Error profiles over iterations for a nonlinear system with disturbances.

errors. This example also demonstrates the first instance of time-varying parameters being
successfully identified over iterations.

5.3 Example 3: Nonlinear System without Disturbances

The following nonlinear system is considered:

xk(t+ 1) = θ1(t) sin
2 (xk(t)) + b(t)uk(t), (47)

where θ1(t) = 1 + 0.5 sin(t) and b(t) = 3 + 0.5 sin(2πt), as before. Note the nonlinearity
in the regression vector, in contrast to the previous examples. Fig. 3 shows the results for
identification and tracking performance for this system, in terms of the peak amplitude of
the errors. The two multiple-model cases are seen to achieve faster convergence, and in
particular, the strategy “MM - Case 2” converges marginally faster due to higher frequency
of switching.

5.4 Example 4: Nonlinear System with Disturbances

Finally, the most general system is considered:

xk(t+ 1) = θ1(t) sin
2 (xk(t)) + b(t)uk(t) + d(t), (48)

where θ1(t) = 1.5 + 0.5 sin(t), b(t) = 3 + 0.5 sin(2πt) and d(t) = sin3(2πt), the same distur-
bance considered in (46). This is very similar to the system considered in [39]. Fig. 4 shows
the performance for tracking the reference (43) over iterations, in terms of peak identifica-
tion and tracking errors. It is evident that the convergence for both multiple-model cases
is significantly faster than the single-model case, with MM - Case 2 providing the fastest
convergence. Interestingly, the errors for this system also converge faster than the errors for
the system (47), which was not affected by disturbances. This is due to the presence of d(t)
and its estimate, resulting in a persistently exciting control law.
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(a) Maximum Identification Error over itera-
tions. (b) Maximum Tracking Error over iterations.

Figure 5: Example 5: Error profiles over iterations for a nonlinear system with disturbances,
with an iteration-varying reference trajectory.

5.5 Example 5: Iteration-varying Reference Trajectory

We also present results for the system (48) tracking an iteration-varying reference trajectory:

xm,k(t) = ϑ(k)π2
(
2− 3 sin3(2πt/100)

)
sin(2πt/100)/10, (49)

where ϑ(k) ∼ U [−0.5, 0.5], i.e. a uniformly distributed random variable between −0.5 and
0.5, in each iteration k. This is similar to the trajectory considered in [39]. The results for
this example are shown in Fig. 5. It is easily seen that all errors are decreasing and are quite
close to 0. Further, the two multiple-model strategies are seen to perform better than the
single-model strategy. To reinforce this, Table 1 presents the root-mean-square value of peak
error amplitudes over iterations for identification and tracking errors for all three strategies.
This metric is defined below for the identification error:

Metric =

√
√
√
√ 1

K

K∑

k=1

‖êk‖2∞, (50)

and defined similarly for the tracking error. K denotes the total number of iterations in the
simulation. Lower values of this metric indicate better performance. From Table 1, it is
evident that both multiple-model strategies have significantly smaller values of this metric,
indicating smaller identification and tracking errors and faster convergence. The smallest
values are in MM - Case 2, indicating that this strategy achieves the best possible perfor-
mance. Further, Table 2 presents the number of iterations k∗ taken for tracking convergence.
In particular, we consider the number of iterations taken for the peak tracking error ‖ek‖∞
to fall below 2% of the first iteration peak tracking error ‖e1‖∞ of the single model strategy.
It is once again evident that both multiple model strategies converge faster, with MM -
Case 2 converging fastest. As mentioned earlier, this is partly because the initialization of
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Table 1: Root Mean-Square Maximum Errors

Strategy Identification Error Tracking Error

Single Model 6.3288 6.2884
Multiple Models – Case 1 3.0544 3.4948
Multiple Models – Case 2 2.0728 3.1338

Table 2: Iterations for Tracking Convergence

Strategy Number of Iterations k∗

Single Model 79
Multiple Models – Case 1 58
Multiple Models – Case 2 47

multiple estimation models leads to better estimates in earlier iterations, leading to faster
convergence.

In conclusion, all simulation examples demonstrate that the proposed strategies result
in convergence of identification and tracking errors to zero. The multiple model strategies
converge much faster than the single model strategy, and the multiple model strategy with
criterion (27) converges faster than that with criterion (26). Note how the initial error
magnitudes were larger for the linear systems compared to the nonlinear systems. This is
due to the presence of the nonlinearity sin2 (xk(t)), which is always bounded between 0 and 1
irrespective of the value of xk(t). The nonlinear system subjected to disturbances also shows
faster error convergence than the system without disturbances.

6 Concluding Remarks

In this article, we have proposed a complete framework for using the Multiple Models,
Switching and Tuning (MMST) methodology in the context of discrete-time Adaptive Iter-
ative Learning Control (ILC). First, the single estimation model case is considered, a new
control and identification scheme is presented, and convergence is proved using the prop-
erties of square-summable, or ℓ2 sequences. The update law for parameter estimates uses
the identification error rather than the tracking error, in contrast to existing Adaptive ILC
schemes. This enables the extension to multiple estimation models. In the case of multiple
models, we have described two criteria for switching between models — either at the end of
each iteration or at each sample. In both options, convergence is proved in a unified manner
using the properties of square-summable sequences. An extensive set of simulation results
are presented for four different types of systems. In all cases, it is seen that the identification
and tracking errors converge to zero. In particular, it is seen that the second switching cri-
terion for multiple-models outperforms the first, which in turn outperforms the single model
case.

A drawback of the strategies presented here is their high computational complexity,
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particularly for the second switching criterion (27) in multiple models. It is known that
the Multiple Models with Second-Level Adaptation (MM-SLA) scheme [62, 63] has lower
computational complexity compared to MMST, as a much smaller number of estimation
models, is required. This was explored for Adaptive ILC in a contraction-mapping setting
in [61], and an interesting avenue for future work is to explore this in the context of CEF-
based Adaptive ILC. Further, as mentioned in Section 1, the techniques proposed here can
be extended to the case with time- and iteration-varying parameters, and also to the case
when the control direction is unknown.
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