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Novel turbulence and coarsening arrest
in active-scalar fluids

Nadia Bihari Padhan, * Kolluru Venkata Kiran and Rahul Pandit

We uncover a new type of turbulence – activity-induced homogeneous and isotropic turbulence – in a

model that has been employed to investigate motility-induced phase separation (MIPS) in a system of

microswimmers. The active Cahn–Hilliard–Navier–Stokes (CHNS) equations, also called active model H,

provide a natural theoretical framework for our study. In this CHNS model, a single scalar order para-

meter f, positive (negative) in regions of high (low) microswimmer density, is coupled with the velocity

field u. The activity of the microswimmers is governed by an activity parameter z that is positive for

extensile swimmers and negative for contractile swimmers. With extensile swimmers, this system under-

goes complete phase separation, which is similar to that in binary-fluid mixtures. By carrying out

pseudospectral direct numerical simulations (DNSs), we show, for the first time, that (a) this model

develops an emergent nonequilibrium, but statistically steady, state (NESS) of active turbulence, for the

case of contractile swimmers, if z is sufficiently large and negative, and (b) this turbulence arrests the

phase separation. We quantify this suppression by showing how the coarsening-arrest length scale does

not grow indefinitely, with time t, but saturates at a finite value at large times. We characterise the

statistical properties of this active-scalar turbulence by employing energy spectra and fluxes and the

spectrum of f. For sufficiently high Reynolds numbers, the energy spectrum E(k) displays an inertial

range, with a power-law dependence on the wavenumber k. We demonstrate that, in this range, the flux

P(k) assumes a nearly constant, negative value, which indicates that the system shows an inverse

cascade of energy, even though energy injection occurs over a wide range of wavenumbers in our

active-CHNS model.

1 Introduction

Active turbulence, spatiotemporal chaos in active-matter systems
[see, e.g., ref. 1–4], has garnered considerable attention over
the past decade. This intriguing form of turbulence manifests
itself in various experimental systems, including bacterial
suspensions,1,5–11 suspensions of microtubules, and molecular
motors.12,13 In classical-fluid turbulence, a nonequilibrium
statistically steady state (NESS) is reached when the fluid is
driven by an external force; by contrast, in active fluids, the
microscopic constituents drive the system by converting
chemical sources of energy into kinetic energy.5,14 Many studies
have focused on understanding emergent turbulence-type pat-
terns by using continuum hydrodynamical models, in which
phenomenological parameters depend on the microscopic
details of the active fluid. An overview of the various models
can be found in ref. 3. In certain models, the energy spectrum
of such turbulence exhibits universal power-law behaviors.4,15

In contrast, there are instances in which power-law exponents

for these energy spectra depend on parameters in the
model.7,11,16 The elucidation of the statistical properties of
these types of emergent turbulent states continues to be an
important challenge in active-matter research. Recent studies
have shown the importance of fluid inertia in some systems
that display active turbulence such as active polar and nematic
fluids [see, e.g., ref. 17–20]. In addition, considerable attention
has been directed towards the study of scalar active fluids, in
which the intricate spatiotemporal evolution of an active fluid
arises from the interaction of a scalar order parameter f with
the fluid velocity u. Scalar active fluids are simpler than their
polar or nematic counterparts, yet they are rich enough to yield
intriguing emergent NESSs,21–23 and they have been used in
studying active droplets24 and active stratified turbulence.25

We uncover a new type of turbulence – activity-induced
homogeneous and isotropic turbulence in a model that has
been employed to investigate motility-induced phase separa-
tion (MIPS)22,24 in a system of microswimmers. MIPS is a
fascinating emergent phenomenon, in which an initially uni-
form state of active swimmers undergoes spontaneous separa-
tion into dense and dilute phases due to persistent motion and
repulsion. The active Cahn–Hilliard–Navier–Stokes (CHNS)
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equations, also known as the active model H,22 provide a
natural theoretical framework for our study.

The active model H describes MIPS, in wet or momentum-
conserving fluids, an emergent phenomenon that is relevant for
spherical colloidal swimmers;22,26,27 MIPS does not rely on
alignment interactions, so it can be described by a scalar field
without the direct use of polar or nematic fields. In this CHNS
model, a single scalar order parameter f [which is positive
(negative) in regions where the microswimmer density is high
(low)] is coupled with the velocity field u. The activity of the
microswimmers is governed by an activity parameter z that is
positive for extensile swimmers and negative for contractile
swimmers. With extensile swimmers, this system undergoes
complete phase separation, which is similar to that in binary-fluid
mixtures.22 By carrying out pseudospectral direct numerical simu-
lations (DNSs), we show, for the first time, that this model develops
an emergent nonequilibrium, but statistically steady, state (NESS)
of active turbulence, for the case of contractile swimmers, if z is
sufficiently large and negative. This turbulence arrests the phase
separation into regions with positive and negative values of f, in
much the same way as conventional fluid turbulence leads to the
suppression of phase separation in a binary-fluid mixture.28–30

We quantify this suppression by showing how the coarsening-
arrest length scale does not grow indefinitely, with time t, but
saturates at a finite value at large times. We then characterise the
statistical properties of this active-scalar turbulence by employing
the energy spectrum and fluxes, which are familiar from classical
fluid turbulence, and also the spectrum of f, which is used in
studies of phase separation. For sufficiently high Reynolds num-
bers, the energy spectrum E(k) displays an inertial range, with a
power-law dependence on the wavenumber k. We demonstrate
that, in this range, the flux P(k) assumes a nearly constant,
negative value, which indicates that the system shows an inverse
cascade of energy that is similar to its counterpart in 2D homo-
geneous and isotropic fluid turbulence, even though energy injec-
tion occurs over a wide range of wavenumbers in our active-
CHNS model.

The remaining part of this paper is organised as follows.
Section 2 introduces the active CHNS model, summarises the
numerical methods we employ to study it, and defines the
statistical measures we use to characterise active turbulence in
this model. In Section 3 we present the results of our study. We
discuss the significance of our results in Section 4.

2 Model, methods, and statistical
measures

We introduce the active-CHNS model in Section 2.1. In Section
2.2, we describe the statistical measures we use to characterise
active turbulence in this model. Finally, in Section 2.3 we give
the details of our pseudospectral DNS.

2.1 The active Cahn–Hilliard–Navier–Stokes model

We consider the incompressible active CHNS equations (also
called active model H) to study active turbulence in systems of

contractile swimmers22,24 in two spatial dimensions (2D):

@tfþ ðu � rÞf ¼Mr2 dF
df

� �
; (1)

@toþ ðu � rÞo ¼ nr2oþ 3

2
er� ðr � RAÞ � ao; (2)

r�u = 0; (3)

where o = [r � u]�êz is the vorticity field; n, a, and M are the
kinematic viscosity, bottom friction, and mobility, respectively.

We write eqn (2) in the vorticity-streamfunction formulation
by introducing the stream function c(x,t) such that u = (qyc,
�qxc) and o = �r2c. This formulation, which has been used
extensively for studying two-dimensional fluid turbulence and
the fluid dynamics of binary- and ternary-fluid mixtures,24,29,31–33

offers a distinct advantage in two dimensions because the vorticity
is a (pseudo)scalar. F is the Landau–Ginzburg variational free-
energy functional given by

F½f;rf� ¼
ð
O

3

16

s
e
f2 � 1
� �2þ3

4
sejrfj2

� �
; (4)

in which the first term is a double-well potential with minima at
f = �1. The scalar order parameter f is positive (negative) in
regions where the microswimmer density is high (low); in the
interfaces between these regions, f varies smoothly, over a width e.
The free-energy penalty for an interface is given by the bare surface
tension s. In the inherently nonequilibrium active model H, all
terms in the stress tensor do not follow from F. In particular, we
must include the stress tensor RA, which has the form of a
nonlinear Burnett term and has the components:22,24,25,34

RA
ij ¼ �z @if@jf�

dij
2
jrfj2

� �
; (5)

where z, the activity coefficient,† can take both positive and nega-
tive values: z o 0 (z 4 0) for contractile (extensile) swimmers.22

The tensor RA, which is symmetric and traceless, resembles the
stress tensor, used in the passive model H where z = s.22,35,36 The
microswimmers exhibiting contractile behavior are prone to
orienting perpendicular to an interface rather than parallel to it.
When z o 0, the active force r�RA acts as an effective negative
surface force in the Navier–Stokes equations and yields
arrested MIPS.

2.2 Statistical characterisation

To characterise the statistical properties of active-scalar turbu-
lence, we employ energy spectra and fluxes, which are familiar
from classical fluid turbulence, and the spectrum of f. These
quantities not only help us to understand, via DNS, the emer-
gent turbulent like behaviour (characterized by spatiotemporal
fluctuations) in eqn (1)–(3), but they also aid us in differentiat-
ing active scalar turbulence from classical 2D incompressible

† The activity coefficient is an effective contribution to the stress tensor in eqn (5)
and can be written as z = s + z0, where z0 and s are the active and passive
contributions to the stress term in eqn (5).22
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fluid turbulence [see, e.g., ref. 31 and 37–39] and also turbulent
patterns found in other active systems [see, e.g., ref. 17–20]. We
define the shell-averaged energy and phase-field spectra,
respectively, both at time t and averaged over time [the time
average is denoted by h�it]:

Eðk; tÞ �
X

k�k0o kþ1
jûðk0; tÞj2; Fðk; tÞ �

X
k�k0o kþ1

jf̂ðk0; tÞj2;

EðkÞ � hEðk; tÞit; FðkÞ � hFðk; tÞit;
(6)

the caret denotes a spatial Fourier transform. Our CHNS study
of active scalar turbulence uses the Reynolds, Péclet, Weber,
Cahn, and the non-dimensional friction numbers that are,
respectively:

Re ¼ LIurms

n
; Pe ¼ eLIurms

Ms
;

We ¼ LIurms
2

s
; Cn ¼ e=L; a0 ¼ aLI

urms
;

(7)

where urms and LI are, respectively, the root-mean-squared
velocity and the fluid integral length scale; L is the length of
the side of the simulation domain; and L(t) and Lc are the
time-dependent and mean coarsening length scales; these are
defined as follows:

urms ¼
X
k

EðkÞ
" #1=2

; LI ¼ 2p

P
k

EðkÞP
k

kEðkÞ;

LðtÞ ¼

P
k

Fðk; tÞP
k

kFðk; tÞ; Lc ¼ hLðtÞit:

(8)

In Table 1, we provide the non-dimensional parameters from
our direct numerical simulations (DNSs) for various values of
the activity parameter |z|. Furthermore, E(k,t) satisfies the
following energy-budget equation:30,40,41

qtE(k,t) = T(k,t) + Da(k,t) + Dn(k,t) + Sf(k,t), (9)

where

Tðk; tÞ ¼ � <
X

k�jk0 jokþ1
½ûð�k0; tÞ � Pðk0Þ �bðu � ruÞðk0; tÞ�

24 35;

Daðk; tÞ ¼ � 2aEðk; tÞ; Dnðk; tÞ ¼ �2nk2Eðk; tÞ;

Sfðk; tÞ ¼ <
X

k�jk0 jo kþ1
½ûð�k0; tÞ � Pðk0Þ �bðr � RAÞðk0; tÞ�

24 35
(10)

are, respectively, the energy transfer because of the inertial
term, the energy dissipations arising from friction and the
viscosity, and the energy transfer via the active-stress term;
the transverse projector P(k), which enforces the incompressi-
bility condition, has the components Pij � (dij � kikj/k

2). We also
use the following mean energy transfers from the inertial,
friction, viscous, and active-stress terms, and the associated
kinetic-energy and active-stress fluxes:41

TðkÞ ¼ hTðk; tÞit; SfðkÞ ¼ Sfðk; tÞ
� 	

t
;

DaðkÞ ¼ Daðk; tÞh it; DnðkÞ ¼ Dnðk; tÞh it;

PðkÞ ¼ �
ðk0
0

Tðk0Þdk0; PfðkÞ ¼ �
ðk0
0

Sfðk0Þdk0:

(11)

2.3 Direct numerical simulations

We carry out DNSs of the active-CHNS partial differential equa-
tions [eqn (1)–(5)] by using the pseudospectral method24,29,32,42

in a 2D periodic square domain, D � [0,L]2, with L being the
length of the side of the square. We evaluate spatial derivatives
in the Fourier space and the nonlinear terms in the physical
space. For time integration, we use the semi-implicit exponential-
time-difference Runge–Kutta 2 (ETDRK2) method.43 We employ
the 1/2-dealiasing scheme to remove the Fourier aliasing
errors.24,29,32,42 To resolve the interface of width e, we ensure that
there are three grid points across the interface. We use a CUDA-C
code that we have developed and optimised for an NVIDIA A100
processor.

2.4 Initial conditions

We use the following initial conditions for the o and f fields:

o(x,y,0) = 0; f(x,y,0) = f0 + x(x,y); (12)

where x(x,y), a random number distributed uniformly on
the interval [�0.1,0.1], provides a random perturbation to the
f = f0 = 0 state.

3 Results

In this section, we present a series of DNSs that we have
designed to demonstrate how the activity of contractile swimmers
[z o 0 in eqn (5)] leads to active turbulence that is strong enough
to suppress motility-induced phase separation. Our results are the

Table 1 The values of various parameters in our DNS runs R1–R9. The
following parameters are fixed in all these runs: N = 1024, grid size dx = 2p/
N, e = 3dx, L = 2p, Cn = 3dx/L, M = e2/2, s = 1, n = 5 � 10�3, and a = 0.01

Run |z| ReLI
a0 Pe We

R1 0 0 — 0 0
R2 0.001 1.1 � 100 5.6 � 10�2 2.8 � 10�1 1.6 � 10�4

R3 0.01 3.2 � 100 7.9 � 10�3 8.5 � 10�1 2.3 � 10�3

R4 0.03 1.3 � 101 6.6 � 10�3 3.5 � 100 2 � 10�2

R5 0.05 4.3 � 101 7.8 � 10�3 1.2 � 101 1.1 � 10�1

R6 0.1 6.9 � 101 7.0 � 10�3 1.9 � 101 2.3 � 10�1

R7 0.5 1.1 � 102 5.8 � 10�3 3.2 � 101 5.3 � 10�1

R8 1 1.2 � 102 6.8 � 10�3 3.3 � 101 5.8 � 10�1

R9 1.5 1.3 � 102 5.7 � 10�3 3.4 � 101 6.1 � 10�1
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active-turbulence counterparts of the suppression of phase separa-
tion (also called coarsening arrest) by fluid turbulence [see,
e.g., ref. 28 and 29].

We note that, if the activity z = 0, the stress tensor (5)
vanishes, so the coupled equations [eqn (1)–(5)] decouple into
Cahn–Hilliard equations or model B35,44 and the Navier–Stokes
equations45–47 for a Newtonian fluid; the advection term for the
f field is set to zero by virtue of the initial conditions. There-
fore, the domain growth or coarsening takes place solely via
diffusion, without hydrodynamical effects, and it follows the
well-established Lifshitz–Slyozov domain-growth form L(t) B
t1/3 [see, e.g., ref. 44, 48 and 49]; complete phase separation also
occurs for extensile swimmers22 that lead to z 4 0. When z = s,
the active model H presented in eqn (1)–(5) converges to the
passive model H, which has been utilized for studying spinodal
decomposition in binary fluid mixtures.28,29

We concentrate on active-turbulence-induced suppression
of phase separation and the diffusive Lifshitz–Slyozov coarsen-
ing in our model [eqn (1)–(5)] with contractile swimmers, for
which the activity parameter z o 0.‡ Active turbulence and
coarsening arrest in the active-CHNS model [eqn (1)–(5)] can be
visualized qualitatively by using pseudo-gray-scale plots of the
f field as we show in Fig. 1(a) and (b) for |z| = 0.01 and |z| = 1.5,
respectively, at representative times in the nonequilibrium
statistically steady state (NESS). We illustrate the kinetic energy
density E tð Þ ¼

P
k

E k; tð Þ in Fig. 2(c) to demonstrate that the

system has reached the NESS. In Fig. 1(c) and (d), we present
the pseudocolor plots of the vorticity field, normalized by the
maximum of |o|, for the parameters in Fig. 1(a) and (b),

respectively. These plots show clearly that the typical size of a
single-phase domain decreases as activity-induced turbulence
is enhanced by an increase in the value of |z|.

We quantify active-turbulence-induced suppression of phase
separation by plotting the coarsening length scale L(t) versus
time t in Fig. 2(a) for various values of |z|; the plot for z = 0
shows growth that is consistent with the Lifshitz–Slyozov form
L(t) B t1/3 (dashed line§). As t increases, L(t) saturates to a
finite value for |z| 4 0, i.e., eqn (1)–(5) lead to coarsening-arrest
because of active turbulence. In Fig. 2(b) we show how the
mean coarsening-arrest scale Lc = hL(t)it decreases as |z|
increases (red curve); the attendant growth of the integral-
scale Reynolds number ReLI

(blue curve) signals the enhance-
ment of activity-induced turbulence.

We now characterise the statistical properties of activity-
induced turbulence in eqn (1)–(5). We begin with the log–log
plots of compensated energy and scalar-f spectra, k5/3E(k) and
k�dF(k), versus k, in Fig. 3(a) and (b), respectively, for various
values of |z|, with a fit d C 1.17 C 7/6 [the error bars on the
exponents are comparable to the symbol sizes (see the insets of
Fig. 3)]. These plots suggest that, as z increases, the activity-
induced turbulence in this system leads to a nonequilibrium
statistically steady state (NESS) with an inertial range of scales
in which the energy spectrum has a power-law form that is
consistent with E(k) B k�5/3. We show below that this power-
law spectrum arises because of an inverse cascade of energy.
Its power-law form can then be surmised as in statistically
steady homogeneous and isotropic 2D-fluid turbulence with an
inverse energy cascade.31,37–39 Note that this power-law region
extends over nearly one-and-a-half decades of k at the largest
value |z|(= 1.5) that we consider.

We examine the energy-transfer mechanisms in the NESS of
activity-induced turbulence in eqn (1)–(5) by using the energy-
budget equation [eqn (9)] and evaluating the relevant scale-by-
scale energy contributions.30,40,41 In Fig. 4(a) and (b), we pre-
sent, for the illustrative values |z| = 0.001 and |z| = 1.5,
respectively, plots versus k (log scale) of the inertial, friction,
viscous, and active-stress contributions T(k) (red), Da(k) (pur-
ple), Dn(k) (yellow) and Sf(k) (blue), which we have defined in
eqn (11). Such plots indicate that, for low values of |z|, the
contributions of T(k) and Da(k) are negligible [Fig. 4(a)], so, in
the NESS with hqtE(k,t)it = 0, dominant balance yields Dn(k) +
Sf(k) = 0. As |z| increases, both T(k) and Da(k) increase in
magnitude [Fig. 4(b)], so a four-term balance is required in
the NESS.

To show that activity-induced turbulence exhibits a bona fide
inertial range, we present plots for |z| = 0.001, 0.01, 0.1, and 1.5
of the energy flux P(k) [eqn (11)] versus k (log scale) [Fig. 5(a)].
We also present log–log plots versus k of |P(k)| [Fig. 5(b)] and
Pf(k) [Fig. 5(c)]. These plots show constant fluxes over at
least one decade of the wavenumber k, so we have a well-
defined inertial range that has a remarkable similarity to fluid
turbulence.50 The sign of P(k) in this range of scale indicates

Fig. 1 Pseudo-grayscale plots of the f field [at representative times in the
nonequilibrium statistically steady state (NESS)] for the activity parameter
(a) |z| = 0.01 and (b) |z| = 1.5. Pseudocolor plots of the vorticity field,
normalized by the maximum of |o|, are shown in (c) and (d) for the
parameters in (a) and (b), respectively.

‡ At low inertia, motility-induced phase separation is also suppressed in this
model.22

§ In any DNS in a finite domain, L(t) approaches a finite value that is compar-
able to the linear size of the domain.
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Fig. 2 (a) Plot of the coarsening length scale L(t) [eqn (8)] versus time t for various values of |z|; the plot for z = 0 shows growth that is consistent with
the Lifshitz–Slyozov form L(t) B t1/3 (dashed line); (t) saturates to a finite value for |z| 4 0. (b) log-linear plots of the mean coarsening-arrest scale
Lc = hL(t)it (red curve) and the integral-scale Reynolds number ReLI

(blue curve) versus |z|. (c) Plots of the kinetic energy density E(t) versus time t for
various values of |z|. The plots are displaced vertically for ease of visualization.

Fig. 3 log–log plots versus the wavenumber k of spectra for |z| = 0.001, 0.01, 0.1, 1.5: (a) the compensated energy spectrum k5/3E(k). For |z| = 0.1, 1.5,
the exponent is �5/3 (black dotted line in the compensated spectrum). (b) The compensated phase-field spectrum k�dF(k) for |z| = 0.001, 0.01, 0.1, 1.5.
These spectra show the power-law behaviour F(k) B kd (black dotted line in the compensated spectrum), where d C 1.17 C 7/6. The insets in (a) and (b)
indicate that the error bars on the exponents �5/3 and 7/6 are comparable to the symbol sizes.

Fig. 4 Plots versus k (log scale) of the contributions T(k), Da(k), Dn(k), and Sf(k) [eqn (11)], in red, purple, yellow, and blue, respectively, for (a) |z| = 0.001
and (b) |z| = 1.5.
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that activity-induced turbulence in eqn (1)–(5) yields an inverse
cascade of energy that is reminiscent of a similar cascade
in 2D statistically steady homogeneous and isotropic fluid turbu-
lence.31,37–39 By comparing the different plots in Fig. 5(a), we see
that this inverse cascade is suppressed as |z| decreases; this is
reminiscent of similar cascade suppression in instability-driven 2D
turbulence.51

4 Conclusions

We have uncovered activity-induced homogeneous and isotro-
pic turbulence in the active Cahn–Hilliard–Navier–Stokes
(CHNS) equations, which provide a natural theoretical frame-
work for our study, in which a single scalar order parameter
f [positive (negative) in regions where the microswimmer
density is high (low)] is coupled with the velocity field u. The
activity of the microswimmers is governed by an activity para-
meter z that is positive for extensile swimmers and negative
for contractile swimmers [see eqn (1)–(5)]. With extensile
swimmers, this system undergoes complete phase separation,
as in binary-fluid mixtures.22 By carrying out extensive pseu-
dospectral direct numerical simulations (DNSs), we have shown
that this model develops an emergent nonequilibrium, but
statistically steady, state (NESS) of active turbulence, for the
case of contractile swimmers, if z is sufficiently large and
negative. This turbulence arrests the phase separation into
regions with positive and negative values of f, as in conven-
tional fluid turbulence leads to the suppression of phase
separation in a binary-fluid mixture.28–30 Our investigations
provide the first observation and characterization of turbulence
within an active-matter system that is undergoing arrested
motility-induced phase separation.

We have quantified this suppression by showing how the
coarsening-arrest length L(t) scale does not grow indefinitely,
with time t, but saturates at a finite value at large times.
We have then characterised the statistical properties of this
active-scalar turbulence by employing the energy spectrum E(k)
and the fluxes P(k) and Pf(k). We have also obtained the
spectrum of f, which is used in studies of phase separation.
For sufficiently high Reynolds numbers, we have shown
that the energy spectrum E(k) displays an inertial range, with

a power-law dependence on the wavenumber k. We have
demonstrated that, in this range, the flux P(k) assumes a nearly
constant, negative value, which indicates that the system shows
an inverse cascade of energy that is similar to its counterpart in
2D homogeneous and isotropic fluid turbulence, even though
energy injection occurs over a wide range of wavenumbers in
our active-CHNS model.

Our statistical characterization of active-CHNS turbulence
shows that it is fundamentally different from conventional 2D
fluid turbulence,31,37 forced 2D CHNS turbulence,29 and other
types of active-fluid turbulence, discussed, e.g., in ref. 1–11 and
25. For large values of |z|, active-CHNS turbulence has some
similarities to conventional 2D fluid turbulence and 2D forced
CHNS turbulence, inasmuch as it shows an inverse-cascade
region with E(k) B k�5/3. The |z|-dependent, small-k, power-law
regime in E(k) is qualitatively reminiscent of parameter-
dependent small-k power-law regimes in energy-spectra in
some minimal models for bacterial turbulence.3,4,7–9,11,16 The
scalar spectrum F(k) of active-CHNS turbulence shows a sub-
stantial power-law regime which is different from that in
conventional forced 2D CHNS turbulence.29 It might be possi-
ble to develop an EDQNM-type closure for both the energy and
the scalar spectra; such a closure might lead to scaling ranges
in E(k) and F(k) and values for the exponents that characterize
these scaling ranges. The development of such a closure
analysis lies beyond the scope of the current paper. The fluxes
and energy budgets in active-CHNS turbulence are also mark-
edly different from their counterparts in other types of 2D
turbulence. Our study investigates the effects of active-CHNS
turbulence that is distinct from the suppression of motility-
induced phase separation in the active model H22 with
external noise.

We hope, therefore, that our active-CHNS study will lead to
investigations of experimental realisations of this system. Our
results are of potential relevance to systems of contractile
swimmers, e.g., Chlamydomonas reinhardtii52,53 and synthetic
active colloids,54,55 such as Janus particles, with particles that
exhibit dominant propulsion on the front hemisphere and,
therefore, function as pullers.26,27,56,57 We look forward to the
experimental verification of our results, especially in the former
system, where it should be possible to control the activity by
changing the oxygen concentration in low-light conditions.

Fig. 5 Plots for |z| = 0.001, 0.01, 0.1, and 1.5 of the normalized (a) energy flux P(k)LI/urms
3 versus k (log scale) and log–log plots versus k of (b) |P(k)|LI/

urms
3 and (c) Pf(k)LI/urms

3.
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