
Nearly Equitable Allocations beyond Additivity and Monotonicity

Siddharth Barman1, Umang Bhaskar2, Yeshwant Pandit2, Soumyajit Pyne2

1 Indian Institute of Science, Bangalore
2 Tata Institute of Fundamental Research, Mumbai

barman@iisc.ac.in, umang@tifr.res.in, soumyajit.pyne@tifr.res.in, yeshwant.pandit@tifr.res.in

Abstract

Equitability (EQ) in fair division requires that items be al-
located such that all agents value the bundle they receive
equally. With indivisible items, an equitable allocation may
not exist, and hence we instead consider a meaningful ana-
log, EQx, that requires equitability up to any item. EQx al-
locations exist for monotone, additive valuations. However,
if (1) the agents’ valuations are not additive or (2) the set of
indivisible items includes both goods and chores (positively
and negatively valued items), then prior to the current work it
was not known whether EQx allocations exist or not.
We study both the existence and efficient computation of EQx
allocations. (1) For monotone valuations (not necessarily ad-
ditive), we show that EQx allocations always exist. Also, for
the large class of weakly well-layered valuations, EQx alloca-
tions can be found in polynomial time. Further, we prove that
approximately EQx allocations can be computed efficiently
under general monotone valuations. (2) For non-monotone
valuations, we show that an EQx allocation may not exist,
even for two agents with additive valuations. Under some
special cases, however, we show existence and efficient com-
putability of EQx allocations. This includes the case of two
agents with additive valuations where each item is either a
good or a chore, and there are no mixed items.

1 Introduction
In the problem of fair division, a central planner (principal)
is tasked with fairly partitioning a set of items among inter-
ested agents. If the items are indivisible, which is our focus,
each item must be allocated integrally to an agent. Every
agent i has a valuation function vi that specifies agent i’s
value for each subset of items. Here, an item x could be a
‘good’, if every agent always values it positively, a ‘chore’, if
every agent always values it negatively, or ‘mixed’, if across
agents the value for item x can be both positive and negative.

What constitutes a fair allocation of items has no single
answer. Over the years, various notions have been studied in
depth (Moulin 2004). Possibly the most prominent among
them are envy-freeness and equitability. An allocation is said
to be envy-free if each agent prefers her own bundle of items
to the bundle allocated to anyone else (Foley 1966). An allo-
cation is said to be equitable if agents’ values for their own

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

bundles are the same and, hence, the agents are equally con-
tent (Dubins and Spanier 1961). If the agents have identical
valuations, then the two notions coincide.

Envy-freeness has received significant attention in clas-
sic fair division literature. It is known, for example, that
for additive valuations over divisible goods, an allocation
that maximizes the Nash social welfare (the product of the
agents’ values for their allocated bundles) is also envy-free
(Varian 1974).

The widely used platform Spliddit.org implements mul-
tiple methods to provide solutions for common fair division
problems (Goldman and Procaccia 2015). The platform uses
envy-freeness, in particular, as a fairness criterion for rele-
vant applications.

Notably, equitability is a simpler construct to reason
about, since it requires fewer comparisons. To test an alloca-
tion for equitability, we only need each agent’s value for her
own bundle, rather than every agent’s value for every bundle.

Perhaps for this reason, equitable solutions are important
in practical applications of fair division. Experimental stud-
ies have noted that, in specific fair-division settings, users
tend to prefer equitable allocations over other notions of fair-
ness (Herreiner and Puppe 2009).1 Further, in bargaining
experiments, equitability often plays a significant role in de-
termining the outcome (Herreiner and Puppe 2010). Also in
Spliddit.org, for fairly dividing rent among housemates, eq-
uitability was noted to be important as a refining criterion,
following envy-freeness. The latest rent-division algorithm
used in Spliddit.org computes solutions that satisfy this sup-
porting objective (Gal et al. 2017).2

The real-world significance of equitability is further high-
lighted by the case of divorce settlements. The two legal
means of dividing property in the United States are com-
munity property and equitable distribution (Kagan 2021). In
the community property rule, holdings are divided equally
among the divorcing couple and, hence, the rule induces an
envy-free division. Equitable distribution, on the other hand,
takes into account various factors (such as the employabil-
ity and financial needs of each party) for dividing the as-

1These prior works refer to equitability as inequality aversion.
2Specifically, rent divisions that maximize the minimum value,

called maximin solutions, are nearly equitable. The latest algorithm
implemented in Spliddit.org finds rent divisions that satisfy envy-
freeness and are also maximin.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9494

Existence Polynomial-Time Algorithm
Monotone, Beyond ✓ Theorem 2 ✓ Well-Layered: Theorem 3
Additive (Section 3) ✓ Approximate EQx: Theorem 5
Nonmonotone Additive ✗ Subjective Valuations: Theorem 6 ✓ Two agents, objective valuations: Theorem 7
(Section 4) ✓ Identical Chores: Theorem 9

✓ Single Chore: Theorem 10

Table 1: Our Results

sets, and, in particular, makes inter-personal comparisons of
value. Most states in the US follow equitable distribution,
i.e., the courts divide assets and liabilities based on equitabil-
ity. The definition of equitability in this situation is some-
what intuitive. However, the evidence clearly suggests that
equitability is an important concept in practical situations.

Motivated by such considerations, the current work stud-
ies equitability (EQ), with the focus on allocating indivisible
items. In the discrete fair division context, simple examples
(with two agents and a single indivisible item) demonstrate
that exactly equitable allocations may not exist. Hence, re-
cent works have focused on relaxations. A compellingly
strong relaxation is obtained by requiring that any existing
inequality in agents’ values is switched by the (hypothetical)
removal of any good or chore in an appropriate manner. This
relaxation is called equitability up to any item, EQx. Specif-
ically, an allocation is said to be EQx if, whenever agent i
has a lower value for her bundle, say Ai, than some other
agent j for her bundle, say Aj (i.e., vi(Ai) < vj(Aj)), the
removal of any positively-valued item (good) from Aj or the
removal of any negatively-valued item (chore) from Ai en-
sures that the inequality is (weakly) reversed. Similarly, an
allocation is EFx if, whenever agent i has higher value for
agent j’s bundle than her own (i.e., vi(Ai) < vi(Aj)), this
preference can be weakly reversed by removing a good from
Aj or a chore from Ai.

Given the relevance of equitability, a fundamental ques-
tion in discrete fair division is whether EQx allocations
always exist. For the specific case of additively valued
goods, EQx allocations are known to exist; this result is
obtained via a greedy algorithm (Gourvès, Monnot, and
Tlilane 2014).3 Beyond this setting, however, this question
has not been addressed in the literature. Our work addresses
this notable gap. In particular, moving beyond monotone
additive valuations, the current work establishes novel
existential and algorithmic guarantees for EQx allocations.
For general monotone valuations, for example, our work
shows the universal existence of EQx allocations.

Our Results and Techniques. Under monotone, nonde-
creasing valuations, we establish (in Section 3):
• EQx allocations always exist, and can be computed in
pseudo-polynomial time (Theorem 2). Our algorithm is
based on a modification of an Add-and-Fix algorithm, pro-
posed earlier for EFx under identical monotone nonincreas-
ing valuations (Barman, Narayan, and Verma 2023).

3EQx is termed as near jealousy-freeness in (Gourvès, Monnot,
and Tlilane 2014).

• Under weakly well-layered (WWL) valuations, EQx allo-
cations can be computed in polynomial time (Theorem 3).
WWL functions are an encompassing and natural class of
valuations that include gross substitutes, weighted matroid-
rank functions, budget-additive, well-layered, and cance-
lable valuations (Goldberg, Høgh, and Hollender 2023).
• For any ε ∈ (0, 1), a (1−ε)-approximately EQx allocation
can be computed in time polynomial in 1/ε and the input
size (Theorem 5).

Finding an EFx allocation is known to be hard (Plaut and
Roughgarden 2020a). Since the negative result holds even
for two agents, with identical submodular valuations, the
hardness also applies to EQx. This observation signifies that
our polynomial-time algorithm for WWL valuations is the
best possible, in the sense that such a positive result is un-
likely for submodular valuations in general.

We then address nonmonotone additive valuations (Sec-
tion 4). In comparison to monotone valuations, the results
here are mixed and highlight a complicated landscape.
• For agents with subjective valuations—when mixed items
are allowed—EQx allocations may not exist, even for just
two agents with normalized valuations (Theorem 6).4 This
negative result necessitates focusing on objective valuations,
wherein each item is exclusively a good or a chore.

For agents with identical additive valuations, Aziz and
Rey (2020) develop an efficient algorithm for finding EFx
(and, hence, EQx) allocations. By the well-known cut-and-
choose protocol, this gives an EFx algorithm for two non-
identical agents. However, cut-and-choose does not work for
EQx and, hence, there was no known EQx algorithm for two
nonidentical agents. Our next result addresses this gap.
• For two agents with additive objective valuations, we de-
velop a polynomial-time algorithm for finding EQx alloca-
tions (Theorem 7).

Many instances of fair division, in fact, consist of just two
agents (such as in divorce settlement, or in the experiments
of Gal et al. 2017), hence our result for two agents is of
practical significance.
• For n agents with additive objective valuations where each
chore c has the same value for the agents (i.e., vi(c) = vj(c)
for all agents i and j), we show—using the leximin++
ordering—that EQx allocations always exist (Theorem 9).
• For n agents with additive objective valuations and a single
chore, we show that EQx allocations exist (Theorem 10).

The last result is technically challenging. It is obtained
via a local search algorithm, that resolves EQx violations,

4Valuations are normalised if, for the set M of all the goods,
vi(M) is equal for all agents i.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9495

whenever they arise, in a specific order. The analysis is sub-
tle and needs to keep track of multiple progress measures,
including the leximin++ value. Table 1 summarizes our re-
sults. Due to lack of space, all missing proofs are given in
the full version of the paper (Barman et al. 2023).

The existence of EQx allocation under objective, additive
valuations stands as an interesting, open question.

Additional Related Work. Equitability was first studied
in the divisible setting of cake cutting. Here, equitable al-
locations for n agents exist (Dubins and Spanier 1961;
Cechlárová, Doboš, and Pillárová 2013; Chèze 2017) and,
in particular, do not require additivity (Aumann and Dombb
2015). However, no finite algorithm can find an exactly equi-
table allocation (Procaccia and Wang 2017), though approx-
imately equitable allocations can be computed in near-linear
time (Cechlárová and Pillárová 2012).

For indivisible items, EQx allocations were first shown
to exist for monotone additive valuations (Gourvès, Mon-
not, and Tlilane 2014; Freeman et al. 2020). This existen-
tial guarantee was obtained via an efficient greedy algo-
rithm. For additive valuations that are strictly positive, al-
locations that are both EQx and Pareto optimal are known to
exist (Freeman et al. 2019).

When the agents have identical valuations, EFx and EQx
allocations coincide. Hence, under identical valuations, ex-
istential guarantees obtained for EFx allocations extend to
EQx as well. In particular, for identical monotone (nonde-
creasing) valuations, EFx allocations were shown to exist
using the leximin++ construct (Plaut and Roughgarden
2020a). This work also showed that even for two agents with
identical submodular valuations, finding an EFx allocation
requires an exponential number of queries. This problem is
also PLS-complete (Goldberg, Høgh, and Hollender 2023).
For objective identical valuations, the existence of EFx al-
locations was shown through a modification of the leximin
construct (Chen and Liu 2020). For additive identical valu-
ations, EFx existence, as well as efficient computation, was
obtained by Aziz and Rey 2020.

Finally, a number of recent papers have also studied the
loss of efficiency for (near) equitable and near equitable allo-
cations (Caragiannis et al. 2012; Aumann and Dombb 2015;
Freeman et al. 2019, 2020; Sun, Chen, and Doan 2023;
Bhaskar et al. 2023).

2 Notation and Preliminaries
A fair division instance (N,M, V) consists of a set N =
{1, 2, . . . , n} of agents, a set M of indivisible items, with
m = |M |, and a valuation function vi ∈ V for each agent
i ∈ N . The valuation vi : 2

M → Z specifies agent i’s value
for every subset of the items. We will assume, throughout,
that vi(∅) = 0, and all the agents’ values are integral.5

For notational convenience, for single items x ∈ M , we
use vi(x) and vi(S ∪ x) to denote vi({x}) and vi(S ∪ {x}),
respectively. Let Vmax := maxi∈[n] vi(M).

5The integrality assumption holds without loss of generality for
rational values, since we can multiply the rational numbers by the
product of their denominators to get integral ones. Note that under
such a scaling, the size of the input only increases polynomially.

A valuation v is monotone nondecreasing if v(S ∪ x) ≥
v(S) for all subsets S ⊆M and all items x ∈M . Similarly,
valuation v is monotone nonincreasing if v(S ∪ x) ≤ v(S)
for all S ⊆ M and x ∈ M . Function v is additive if
v(S) =

∑
x∈S v(x), for all subsets S ⊆ M . We will say

that a fair division instance has objective valuations if for
each item x ∈M (i) either vi(S ∪ x) ≥ vi(S) for all agents
i and subsets S ⊆M , (ii) or vi(S∪x) ≤ vi(S) for all agents
i and subsets S ⊆ M . Under (i), the item x is referred to as
a good, and when case (ii) holds (and the inequality is strict
for some agent i and subset S), we say that x is a chore. We
will mainly address objective valuations and, hence, every
item is unequivocally either a good or a chore.6 We will typ-
ically use g to denote a good and c to denote a chore. Under
objective valuations vi, for each good g the value vi(g) ≥ 0
and for each chore c we have vi(c) ≤ 0.

An allocation A := (A1, . . . , An) is a partition of items
M into n pairwise disjoint subsets. Here, subset of items
Ai ⊆ M is assigned to agent i (also called agent i’s bun-
dle). At times (such as when analyzing the interim alloca-
tions obtained by our algorithms), we may also consider
partial allocations wherein not all items are assigned among
the agents, i.e., for the pairwise disjoint bundles we have
∪ni=1Ai ⊊ M . Given an allocation A, we say an agent p is
poorest if vp(Ap) = mini∈N vi(Ai), and agent r is richest
if vr(Ar) = maxi∈N vi(Ai).
Equitability and Envy-Freeness. An allocationA is equitable
if vi(Ai) = vj(Aj) for all agents i, j ∈ N . An allocation
is said to be envy-free if vi(Ai) ≥ vi(Aj) for all agents
i, j ∈ N . Hence, equity requires that all agents have equal
value, while envy-freeness requires that each agent values
her bundle more than that of any other agent. As mentioned,
even in simple examples of a single good and two agents
both equitable and envy-free allocations do not exist. Hence,
we consider relaxations of these notions.

Specifically, an allocationA = (A1, . . . , An) is said to be
equitable up to any item (EQx) if
(1) For every pair of agents i, j and for each good g ∈ Aj ,
we have vj(Aj \ {g}) ≤ vi(Ai), and
(2) For every pair of agents i, j and for each chore c ∈ Ai,
we have vi(Ai \ {c}) ≥ vj(Aj).

That is, in an EQx allocation, for each agent, the removal
of any good assigned to her makes her a poorest agent, and
the removal of any chore assigned to her must make her a
richest agent.

Our results for monotone nondecreasing valuations (when
all items are goods) are detailed in Section 3. Section 4
presents our results for nonmonotone additive valuations.

3 Monotone Valuations
In this section, all items have nonnegative marginal values.
That is, vi(S ∪ x) ≥ vi(S) for all items x ∈ M , agents
i ∈ N , and subsets S ⊆ M . Hence, all items are goods in
this section. We assume a standard value-oracle access to the

6The main exception here is the example given in Theorem 6,
which shows that if the valuations are not objective, then EQx al-
locations may fail to exist.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9496

valuations, that given any agent i ∈ N and subset S ⊆ M ,
returns vi(S) ∈ Z≥0.

For monotone valuations, we establish strong positive re-
sults towards the existence of EQx allocations. Our primary
result shows that, for general monotone valuations, EQx al-
locations always exist, and for a broad class of valuations—
termed weakly well-layered (WWL) valuations—such fair
allocations can be found in polynomial time.

Definition 1 ((Goldberg, Høgh, and Hollender 2023)). A
valuation function v : 2M → Z≥0 is said to be weakly
well-layered if for any set M ′ ⊆ M the sets S0, S1, . . . ob-
tained by the greedy algorithm (that is, S0 = ∅ and Si =
Si−1 ∪ {xi}, where xi ∈ argmaxx∈M ′\Si−1

v(Si−1 ∪ x),
for i ≤ |M ′|) are optimal, in the sense that v(Si) =
maxS⊆M ′:|S|=i v(S) for all i ≤ |M ′|.

WWL valuations intuitively capture valuations where op-
timal sets can be obtained via a greedy algorithm. Sev-
eral interesting and widely-studied classes of valuations are
weakly well-layered, including gross substitutes (which in-
clude weighted matroid rank functions), budget-additive,
well-layered, and cancelable valuations; Figure 1 in (Gold-
berg, Høgh, and Hollender 2023) is helpful in visualizing the
relation between these classes. Notably, submodular func-
tions are not weakly well-layered. This is an affirming obser-
vation, since it is known that, even for two agents with iden-
tical submodular valuations, obtaining an EFx (and, hence,
EQx) allocation is PLS-complete and requires exponentially
many value queries.

Our results are obtained through a modification and care-
ful analysis of the Add-and-Fix algorithm, earlier used for
obtaining EFx under identical cost functions (i.e., when all
items are chores) (Barman, Narayan, and Verma 2023).

The modified version of Add-and-Fix uses a greedy se-
lection criterion; see Algorithm 1. In each iteration, the al-
gorithm identifies a poorest agent p ∈ N in the current allo-
cation. Then, agent p selects goods greedily from the unas-
signed ones. That is, from among the unassigned goods, p
iteratively selects goods with maximum marginal value, un-
til it is no longer the poorest agent. This is the Add phase
in the algorithm (Lines 4 to 6). If after adding these goods,
the allocation obtained is not EQx, this must be because of
the goods assigned to agent p. In the Fix phase (Lines 7 and
8), violating goods are iteratively removed from agent p’s
bundle, until the allocation is EQx.

After each iteration, either the value of agent p increases,
or the algorithm terminates (Claim 1). We differ from the
original Add-and-Fix in two aspects: the original algorithm
chose a richest agent in each iteration, since it dealt with
chores, whereas we select a poorest agent. Secondly, and
crucially for our results for efficient computation, the orig-
inal algorithm assigned an arbitrary chore to the richest
agent, while we select goods with maximum marginal con-
tribution to the poorest agent. Also, note that the EFx guar-
antee in (Barman, Narayan, and Verma 2023) is obtained for
identical costs functions, whereas the EQx result here holds
for (monotone) non-identical valuations.

In our proofs, an iteration of the outer while-loop is called
an outer iteration. Note that in every outer iteration, the allo-

Algorithm 1: Greedy Add-and-Fix
Input: Fair division instance (N,M, V) with value-oracle
access to monotone, nondecreasing valuations.
Output: EQx allocation A.

1: Initialize bundles Ai = ∅ for all agents i, and initialize
U = M as the set of unassigned goods.

2: while U ̸= ∅ do
3: Let p ∈ argmin

i∈N
vi(Ai) and p′ ∈ argmin

i∈N\{p}
vi(Ai).

{p and p′ are a ‘poorest’ and ’second poorest’ agent.}
{Add Phase: Lines 4 to 6}

4: while vp(Ap) ≤ vp′(Ap′) and U ̸= ∅ do
5: Let g∗ ∈ argmaxg∈U (vp(Ap ∪ g)− vp(Ap)).
6: Update Ap ← Ap ∪ {g∗} and U ← U \ {g∗}.

{Fix Phase: Lines 7 and 8}
7: while there exists ĝ ∈ Ap such that vp(Ap \ {ĝ}) >

vp′(Ap′) do
8: Update Ap ← Ap \ {ĝ} and U ← U ∪ {ĝ}.
9: return Allocation A = (A1, . . . , An).

cation to every agent, other than p, remains unchanged. We
will use the following claim.

Claim 1. After each outer iteration, (i) either the value of
the selected agent p strictly increases such that p is no longer
the poorest agent (and the values of the other agents remain
unchanged), or (ii) all the remaining unassigned goods are
allocated to agent p and the algorithm terminates.

Theorem 2. Given any fair division instance with mono-
tone valuations, Algorithm 1 computes an EQx allocation in
pseudo-polynomial time.

Proof. We first show that the algorithm terminates in
pseudo-polynomial time. Claim 1 implies that the number
of outer iterations is at most

∑
i∈N vi(M) ≤ nVmax, where

Vmax := maxi vi(M). Each outer iteration consists of an
Add phase (in which at most m goods are included in agent
p’s bundle) and a Fix phase (in which at most m goods are
removed from agent p’s bundle). Each execution of these
phases requires at most m calls to the value oracle to find
the required goods g∗ and ĝ. Hence, it follows that the algo-
rithm terminates in O(m2nVmax) time.

Next, we show that the allocation computed by the al-
gorithm is indeed EQx; our proof is via induction on the
number of outer iterations. Initially, the allocation is empty,
which is trivially EQx.

For the inductive step, fix any outer iteration and let p
be the poorest agent selected in that iteration. Write A =
(A1, . . . , An) for the allocation at the beginning of the outer
iteration and B = (B1, . . . , Bn) for the allocation obtained
after the outer iteration. Note that Bi = Ai for all agents i ̸=
p. This observation and the induction hypothesis imply that
any EQx violation must involve agent p. Further, Claim 1
gives us vp(Bp) ≥ vp(Ap).

To show that allocation B is EQx, we need to show that
for any agent i ∈ N , the removal of any good g ∈ Bi makes
i a poorest agent. This condition holds—via the induction

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9497

hypothesis—for all agents i ̸= p; recall that Bi = Ai for all
i ̸= p, and vp(Bp) ≥ vp(Ap).

For agent p, note that after the completion of the Fix
phase, the removal of any good from p’s bundle reduces
its value to at most vp′(Ap′) = vp′(Bp′). Since p was
the poorest and p′ was the second poorest agent in allo-
cation A, this implies that the removal of any good from
Bp would make agent p the poorest agent in B as well:
vp(Bp\{g}) ≤ vj(Bj) for all j ∈ N and each good g ∈ Bp.

The theorem stands proved.

3.1 Weakly Well-Layered Valuations
The following theorem asserts that for WWL valuations, Al-
gorithm 1 computes an EQx allocation in polynomial time.

Theorem 3. Given any fair division instance in which all
the agents have monotone, weakly well-layered valuations,
Algorithm 1 computes an EQx allocation in polynomial time.

Proof. The monotonicity of agents’s valuations ensures that
the allocation returned by Algorithm 1 is EQx (Theorem 2).
Hence, it remains to prove that, under weakly well-layered
(WWL) valuations, the algorithm terminates in polynomial
time. Towards this, we will show that, in fact, the Fix phase
never executes when all the valuations are WWL. Hence,
in every outer iteration of Algorithm 1 the number of unas-
signed goods strictly decreases, and the algorithm terminates
in polynomial time.

We will show that the Fix phase never executes via an in-
ductive argument. In the base case (i.e., in the very first outer
iteration) we have Ai = ∅ for all agents i. Now, for the first
iteration, write S to denote the subset of goods assigned to
the selected agent p in the Add phase. Further, let g∗ denote
the last good assigned in the Add phase. Then, by the loop-
execution condition in Line 4, we have vp(S \ {g∗}) = 0,
since all other agents have value 0. Further, given that vp is
WWL and the set S \ {g∗} is populated greedily, any set of
goods of cardinality |S| − 1 has value 0. Hence, upon the
removal of any good g from S, agent p has value 0 for the
remaining subset, since it has size |S|−1. Therefore, the Fix
phase (Line 7) will not execute in the first outer iteration.

For the inductive step, fix an outer iteration. Let A =
(A1, . . . , An) be the allocation at the beginning of the iter-
ation and U = M \ (∪iAi) be the set of unassigned goods.
For the poorest agent p selected in the iteration, consider the
bundle Ap and write S ⊆ U to denote the subset of goods
assigned to p in the Add phase of the iteration. In addition,
let g ∈ S be the last good assigned in the Add phase. The
following Claim asserts that all strict subsets T ⊊

(
Ap ∪ S

)
have value vp(T) ≤ vp

((
Ap ∪ S

)
\ {g}

)
.

Claim 4. For weakly well-layered valuation vp we have(
Ap ∪ S

)
\ {g} ∈ argmax

X⊊Ap∪S

vp(X).

We use Claim 4 to complete the inductive step. The exe-
cution criterion of the Add phase (Line 4) implies that be-
fore good g was included in the agent p’s bundle its value
was at most vp′(Ap′), i.e., vp

((
Ap ∪ S

)
\ {g}

)
≤ vp′(Ap′).

Hence, via Claim 4, for every strict subset T ⊊ Ap ∪ S we

have vp(T) ≤ vp′(Ap′). The execution condition for the Fix
phase will hence not be satisfied. This completes the proof
of the theorem.

3.2 Approximate EQx Allocations
As mentioned previously, for general monotone valuations,
computing an EQx allocation is a PLS-hard problem. Com-
plementing this hardness result, this section establishes that
an approximately EQx allocation can be computed effi-
ciently. In particular, for parameter ε ∈ [0, 1], an alloca-
tion A is said to be an (1 − ε)-EQx allocation if for every
pair of agents i, j ∈ N and for each good g ∈ Ai we have
(1−ε) vi(Ai\{g}) ≤ vj(Aj). Hence, in an (1−ε)-EQx allo-
cation, removing any good from any agent i’s bundle brings
down i’s value to below 1

1−ε times the minimum. Also, note
that ε = 0 corresponds to an exact EQx allocation.

We modify Algorithm 1 to obtain an approximately EQx
allocation. We replace Lines 4 and 7 in Algorithm 1 with
their approximate versions as follows:7

4: while (1− ε) vp(Ap) ≤ vp′(Ap′) and U ̸= ∅ do...
7: while there exists ĝ ∈ Ap such that (1−ε)vp(Ap\{ĝ}) >
vp′(Ap′) do...

The following theorem provides our main approximation
guarantee under monotone valuations. The proof of this re-
sult is similar to that of Theorem 2 and is omitted.

Theorem 5. Given parameter ε ∈ (0, 1) and any fair di-
vision instance with monotone valuations, a (1 − ε)-EQx

allocation can be computed in O
(

m2n
ε log Vmax

)
time.

4 Nonmonotone Valuations
We now present our results for nonmonotone valuations. We
will focus primarily on additive valuations, and will show
that even in this case, EQx allocations may not exist. Fur-
thermore, EQx allocations can be hard to compute even if
they do exist.

It is known that an EQx allocation can be computed in
polynomial time if all the agents have identical, additive val-
uations (Aziz and Rey 2020). Complementing this positive
result, we next show that an EQx allocation may not ex-
ist among agents that have nonidentical (and nonmonotone)
valuations. Our negative result holds even for two agents
with additive, normalized valuations. The fair division in-
stance demonstrating this nonexistence of EQx allocations
is given in Table 2. In particular, the instance highlights that
if there are items with positive value for one agent and neg-
ative value for another—i.e., the valuations are subjective
rather than objective—then an EQx allocation may not ex-
ist. Further, in such instances, it is NP-hard to determine if
an EQx allocation exists.

Theorem 6. An EQx allocation may not exist for two agents
with nonmonotone, additive, normalised valuations. Fur-
ther, in such instances, it is NP-hard to determine whether
an EQx allocation exists or not.

7Recall that Lines 4 and 7 in Algorithm 1 check the execution
condition for the Add and Fix phases, respectively.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9498

x1 x2 x3

Agent 1 +1 −1 +100
Agent 2 −1 +1 +100

Table 2: Example showing nonexistence of EQx allocations
in Theorem 6.

Algorithm 2: Two-Way Greedy Algorithm
Input: Instance (N,M,V) with two agents and additive ob-
jective valuations.
Output: EQx allocation A.

1: Initialize A = (∅, . . . , ∅) and item set U := M .
2: while U ̸= ∅ do
3: Write r ∈ argmax

i∈N
vi(Ai) and let p be the other agent

(p ̸= r).
4: Set item g∗ ∈ arg max

g∈U∩G
vp(g) and item

c∗ ∈ arg min
c∈U∩C

vr(c). {g∗ is most valuable good for

p and c∗ is least valuable chore for r.}
5: if |vp(g∗)| > |vr(c∗)| then
6: Update Ap ← Ap ∪ {g∗} and U ← U \ {g∗}.
7: else
8: Update Ar ← Ar ∪ {c∗} and U ← U \ {c∗}.
9: return Allocation A = (A1, . . . , An).

The example for nonexistence is given in Table 2. The
computational hardness is established (in the full version of
the paper) via a reduction from PARTITION.

Given that under subjective valuations EQx allocations
are not guaranteed to exist, we will focus on objective ad-
ditive valuations in the remainder of this section. We will
use C to denote the set of chores and G to denote the set of
goods. Since valuations are objective, M = G∪C. Further,
given an allocation A, we say agent i has a goods viola-
tion if, for some good g ∈ Ai, we have vi(Ai \ {g}) >
mink vk(Ak). Similarly, agent i has a chores violation if
vi(Ai \ {c}) < maxk vk(Ak) for some chore c ∈ Ai.

4.1 Two Agents
Theorem 7. Given any fair division instance (N,M, V)
with two agents that have additive objective valuations, Al-
gorithm 2 computes an EQx allocation in polynomial time.
Proof Sketch. The theorem is established via an inductive
argument. A key property utilized in the analysis is that, if,
in the iteration, item g∗ is assigned to agent p, then any chore
c assigned previously (i.e., in an earlier iteration) to the other
agent r must have greater absolute value. Similarly, if c∗ is
assigned to agent r in the considered iteration, any good g
assigned previously to the other agent p must have greater
absolute value. Using these bounds we show that the EQx
criterion is maintained as an invariant.

4.2 Identical Chore Valuations
We now show that EQx allocations exist when the agents
have additive, objective valuations and they value the chores
c identically, i.e., vi(c) = vj(c) for all agents i, j ∈ N .

As noted, C denotes the set of chores, and G is the set of
goods. For each chore c ∈ C, we will write vc < 0 to denote
the common value of the chore among the agents.

For intuition for the proof, consider an allocation A =
(A1, . . . , An) that is not EQx. There are two possibilities.
There could be a chores violation – there exist agents i and
j and a chore c ∈ Ai such that vi(Ai \ {c}) < vj(Aj). Here
c is called the violating chore. Or, there could be a goods
violation – there exist agents i and j and a good g ∈ Aj

such that vi(Ai) < vj(Aj \ {g}). Here g a violating good.
Our proof is based on the observation that transferring c

to Aj in case of a chores violation and g to Ai under a goods
violation leads to a lexicographic improvement in the tuple
of values. The lexicographic order here additionally incor-
porates the sizes of the assigned bundles and the agents’ in-
dices for tie-breaking.

Specifically, for any allocation X = (X1, . . . , Xn), we
define permutation (ordering) σX ∈ Sn over the n agents
such that
(i) Agents i with lower values, vi(Xi), receive lower indices
in σX .
(ii) Among agents with equal values, agents i with lower
bundle sizes, |Ai|, receive lower indices in σX , and
(iii) Then, among agents with equal values and equal number
of items, we order by index i.

Plaut and Roughgarden 2020b used a similar idea in their
proof of the existence of EFx allocations for identical val-
uations. They introduced the ⪯++ comparison operator,
which we detail in Algorithm 3. Unlike their work, we use
the ⪯++ operator to obtain existential guarantees for EQx
allocations even when the valuations are nonidentical over
the goods (but identical for chores).

If two agents have the same value and the same number
of items, then Plaut and Roughgarden’s results hold for any
arbitrary but consistent tie-breaking between agents. In the
definition of ⪯++ (see Algorithm 3), we use the index of
each agent i ∈ [n] as a tie-breaker to compare two agents
that are otherwise identical (have the same value for their
own bundles and the same number of items).

Algorithm 3: ⪯++ comparison operator
Input: Allocations A and B.
Output: True if A ⪯++ B, else return False.

1: Let σA and σB be the defined permutations of the agents
associated with allocations A and B, respectively.

2: for all ℓ ∈ [n] do
3: Set i = σA(ℓ) and set j = σB(ℓ). {i and j are the ℓth

agents in the permutations.}
4: if vi(Ai) ̸= vj(Bj) then
5: return vi(Ai) < vj(Bj).
6: else if |Ai| ̸= |Bj | then
7: return |Ai| < |Bj |.
8: else if i ̸= j then
9: return i < j.

Theorem 8 (Theorem 4.1, (Plaut and Roughgarden 2020b)).
The comparison operator ⪯++ induces a total order on the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9499

set of all allocations.

We say an allocation A is a leximin++ allocation if
B ⪯++ A for all allocations B. Theorem 8 ensures that
a leximin++ allocation is guaranteed to exist.

The following theorem then establishes the existential
guarantee for EQx allocations in the case of identically-
valued chores.

Theorem 9. In a fair division instance if the agents have ad-
ditive, objective valuations and they value the chores identi-
cally, then the leximin++ allocation is EQx.

4.3 Additive Goods and a Single Chore
We now show that in instances with additive objective valu-
ations and a single chore c, EQx allocations exist. Note first
that in the presence of even a single non-identical chore, the
leximin++ allocation may no longer be EQx. Instead, our
proof of existence is based on a careful analysis of a version
of local search, and keeping track of the movement of the
single chore.

The local search algorithm (Algorithm 4) proceeds as fol-
lows. Write A to denote the current allocation. Further, let
p be the agent that appears first in the permutation σA (as
defined in the previous subsection) and r be the agent that
appears last. Note that p and r are a poorest and a richest
agent, respectively. If A is not EQx, then there must be ei-
ther a goods violation or a chores violation.

If there is a goods violation inA, then there exists an agent
i and good g ∈ Ai with the property that vi(Ai \ {g}) >
vp(Ap). In our algorithm, we resolve the goods violation
by transferring good g to agent p. The algorithm resolves
all goods violations, before addressing the chores violation.
Now, if there is a chores violation, then for some some agent
i and the chore c ∈ Ai it holds that vi(Ai \ {c}) < vr(Ar).
The algorithm resolves the chores violation by transferring
chore c to agent richest agent r. The algorithm repeats these
steps—resolving all goods violations and then the chores
violation—until there are no more violations.

By design, the algorithm terminates only when the main-
tained allocation is EQx. To prove that the algorithm in-
deed terminates, we need the following notation. For an al-
location A, we denote by κ(A) as the agent holding the
unique chore c, i.e., c ∈ Aκ(A). We call the value v+(A) :=
vκ(A)(Aκ(A) \ c) as the cutoff value of the allocation A and
of the agent κ(A).

In case of a chores violation we have vκ(A)(Aκ(A) \ c) <
vr(Ar). Write B to denote the allocation after transferring
chore c to agent r. Note that such a chore transfer increases
the cutoff value: under allocation A, the cutoff value is
v+(A) = vκ(A)(Aκ(A)\c) and, under the updated allocation
B, it is v+(B) = vr(Ar). In particular, v+(A) < v+(B). In
our analysis, we will keep track of two progress measures
separately: the lexicographic value of the allocation (accord-
ing to the order ⪯++ defined in Section 4.2) and the cutoff
value of the allocation. We will show, in particular, that the
cutoff value of the allocation is nondecreasing between suc-
cessive chores violations, and strictly increases whenever a
chores violation is resolved. Whenever a goods violation is

Algorithm 4: Algorithm to compute an EQx allocation
Input: Fair division instance (N,M,V) with additive, ob-
jective valuations and a single chore c
Output: EQx allocation A

1: Initialize A1 = M and Ai = ∅ for all agents i ̸= 1.
2: while A = (A1, . . . , An) is not EQx do
3: p = σA(1). {p is the first agent according to σA.}
4: while there exists agent i ∈ N and good g ∈ Ai such

that vi(Ai \ {g}) > vp(Ap) do
5: Update Ap ← Ap ∪ {g} and Ai ← Ai \ {g}.
6: Update p = σA(1).

{After resolving all goods violations, check for
chores violation.}

7: r ← σA(n). {r is the last agent according to σA.}
8: if v+(A) < vr(Ar) then
9: Update Aκ(A) ← Aκ(A) \{c} and Ar ← Ar∪{c}.

10: return A

resolved, we obtain a lexicographic improvement in the al-
location; a chores violation may however result in a lexico-
graphic decrease. Since both the cutoff value and the lexico-
graphic value can only increase a finite number of times, the
local search algorithm must terminate in finite time.
Theorem 10. Given any fair division instance with additive
objective valuations and a single chore, Algorithm 4 termi-
nates in finite time and returns an EQx allocation.

5 Conclusion and Future Work
Our work resolves fundamental questions regarding the ex-
istence of EQx allocations. We present sweeping positive
results when all the indivisible items are goods; this in-
cludes universal existence of EQx allocations under gen-
eral, monotone valuations and an accompanying pseudo-
polynomial time algorithm. For monotone valuations, we
also provide a fully polynomial-time approximation scheme
(FPTAS) for finding approximately EQx allocations. In ad-
dition, we show that under weakly well-layered valuations
EQx allocations can be computed efficiently.

For mixed items (goods and chores), we show that EQx
allocations may not exist. For additively-valued goods and
chores, our results present a mixed picture: existence and
efficient computation for two agents, and existence either
when each chore has the same value among the agents, or if
there is a single chore.

In fact, all our positive results hold if we interchange
goods and chores. For instance, the results in Section 3 hold
for monotone nonincreasing valuations (i.e., when all items
are chores) as well, with suitably modified definitions. For-
mal statements are given in the full version of the paper (Bar-
man et al. 2023).

A number of significant open questions remain. First, the
existence of EQx allocations under objective, additive valu-
ations remains unresolved. Second, efficient algorithms for
computing EQx allocations in this case (or even for goods
and a single chore, or identical chores) appear challenging.
Lastly, given the practical significance, truthful mechanisms
for obtaining EQx allocations may prove useful.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9500

Acknowledgments
Siddharth Barman’s research is supported by a SERB Core
research grant (CRG/2021/006165). We thank Rohit Vaish
for useful discussions regarding the problem, and sugges-
tions for the paper.

References
Aumann, Y.; and Dombb, Y. 2015. The efficiency of fair
division with connected pieces. ACM Transactions on Eco-
nomics and Computation (TEAC), 3(4): 1–16.
Aziz, H.; and Rey, S. 2020. Almost Group Envy-free Allo-
cation of Indivisible Goods and Chores. In Bessiere, C., ed.,
Proceedings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2020, 39–45. ijcai.org.
Barman, S.; Bhaskar, U.; Pandit, Y.; and Pyne, S. 2023.
Nearly Equitable Allocations Beyond Additivity and Mono-
tonicity. arXiv:2312.07195.
Barman, S.; Narayan, V. V.; and Verma, P. 2023. Fair Chore
Division under Binary Supermodular Costs. In Agmon, N.;
An, B.; Ricci, A.; and Yeoh, W., eds., Proceedings of the
2023 International Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2023, London, United King-
dom, 29 May 2023 - 2 June 2023, 2863–2865. ACM.
Bhaskar, U.; Misra, N.; Sethia, A.; and Vaish, R. 2023.
The Price of Equity with Binary Valuations and Few Agent
Types. CoRR, abs/2307.06726.
Caragiannis, I.; Kaklamanis, C.; Kanellopoulos, P.; and Ky-
ropoulou, M. 2012. The Efficiency of Fair Division. Theory
of Computing Systems, 50(4): 589–610.
Cechlárová, K.; Doboš, J.; and Pillárová, E. 2013. On the
existence of equitable cake divisions. Information Sciences,
228: 239–245.
Cechlárová, K.; and Pillárová, E. 2012. On the computabil-
ity of equitable divisions. Discrete Optimization, 9(4): 249–
257.
Chen, X.; and Liu, Z. 2020. The Fairness of Leximin in
Allocation of Indivisible Chores. CoRR, abs/2005.04864.
Chèze, G. 2017. Existence of a simple and equitable fair
division: A short proof. Mathematical Social Sciences, 87:
92–93.
Dubins, L. E.; and Spanier, E. H. 1961. How to cut a cake
fairly. The American Mathematical Monthly, 68(1P1): 1–17.
Foley, D. K. 1966. Resource allocation and the public sec-
tor. Yale University.
Freeman, R.; Sikdar, S.; Vaish, R.; and Xia, L. 2019. Eq-
uitable Allocations of Indivisible Goods. In Proceedings of
the 28th International Joint Conference on Artificial Intelli-
gence, 280–286.
Freeman, R.; Sikdar, S.; Vaish, R.; and Xia, L. 2020. Eq-
uitable Allocations of Indivisible Chores. In Proceedings
of the 19th International Conference on Autonomous Agents
and MultiAgent Systems, 384–392.
Gal, Y. K.; Mash, M.; Procaccia, A. D.; and Zick, Y. 2017.
Which Is the Fairest (Rent Division) of Them All? J. ACM,
64(6): 39:1–39:22.

Goldberg, P. W.; Høgh, K.; and Hollender, A. 2023. The
Frontier of Intractability for EFX with Two Agents. In
Deligkas, A.; and Filos-Ratsikas, A., eds., SAGT 2023, vol-
ume 14238 of Lecture Notes in Computer Science, 290–307.
Springer.
Goldman, J.; and Procaccia, A. D. 2015. Spliddit: Unleash-
ing Fair Division Algorithms. ACM SIGecom Exchanges,
13(2): 41–46.
Gourvès, L.; Monnot, J.; and Tlilane, L. 2014. Near Fairness
in Matroids. In Proceedings of the 21st European Confer-
ence on Artificial Intelligence, 393–398.
Gourvès, L.; Monnot, J.; and Tlilane, L. 2014. Near Fairness
in Matroids. In Schaub, T.; Friedrich, G.; and O’Sullivan,
B., eds., ECAI 2014, volume 263 of Frontiers in Artificial
Intelligence and Applications, 393–398. IOS Press.
Herreiner, D. K.; and Puppe, C. 2010. Inequality aver-
sion and efficiency with ordinal and cardinal social prefer-
ences—An experimental study. Journal of Economic Be-
havior & Organization, 76(2): 238–253.
Herreiner, D. K.; and Puppe, C. D. 2009. Envy freeness in
experimental fair division problems. Theory and decision,
67: 65–100.
Kagan, J. 2021. Equitable Distribution: Definition, State
Laws, Exempt Property. https://www.investopedia.com/
terms/e/equitable-division.asp. Accessed: 2023-08-12.
Moulin, H. 2004. Fair division and collective welfare. MIT
press.
Plaut, B.; and Roughgarden, T. 2020a. Almost Envy-
Freeness with General Valuations. SIAM Journal on Dis-
crete Mathematics, 34(2): 1039–1068.
Plaut, B.; and Roughgarden, T. 2020b. Almost Envy-
Freeness with General Valuations. SIAM J. Discret. Math.,
34(2): 1039–1068.
Procaccia, A. D.; and Wang, J. 2017. A lower bound for
equitable cake cutting. In Proceedings of the 2017 ACM
Conference on Economics and Computation, 479–495.
Sun, A.; Chen, B.; and Doan, X. V. 2023. Equitability and
welfare maximization for allocating indivisible items. Au-
tonomous Agents and Multi-Agent Systems, 37(1): 8.
Varian, H. R. 1974. Equity, Envy, and Efficiency. Journal of
Economic Theory, 9(1): 63–91.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9501

