
Knowledge Guided Semi-supervised Learning for Quality Assessment of User
Generated Videos

Shankhanil Mitra, Rajiv Soundararajan
Visual Information Processing Lab, Indian Institute of Science, Bengaluru

{shankhanilm, rajivs}@iisc.ac.in

Abstract

Perceptual quality assessment of user generated content
(UGC) videos is challenging due to the requirement of
large scale human annotated videos for training. In this
work, we address this challenge by first designing a self-
supervised Spatio-Temporal Visual Quality Representation
Learning (ST-VQRL) framework to generate robust quality
aware features for videos. Then, we propose a dual-model
based Semi Supervised Learning (SSL) method specifically
designed for the Video Quality Assessment (SSL-VQA) task,
through a novel knowledge transfer of quality predictions
between the two models. Our SSL-VQA method uses the
ST-VQRL backbone to produce robust performances across
various VQA datasets including cross-database settings, de-
spite being learned with limited human annotated videos.
Our model improves the state-of-the-art performance when
trained only with limited data by around 10%, and by around
15% when unlabelled data is also used in SSL. Source
codes and checkpoints are available at https://github.com/
Shankhanil006/SSL-VQA.

Introduction
The emergence of video capturing devices such as smart-
phones, DSLRs, and GoPro has led to millions of users up-
loading or accessing videos via various sharing platforms
such as YouTube, Instagram, Facebook and so on. This ne-
cessitates the quality assessment (QA) of videos to monitor
and control the user experience. However, a reference video
is often not available for user generated content (UGC), mo-
tivating the study of no reference (NR) video QA (VQA).
Further, the videos also suffer from complex camera cap-
tured distortions which makes the task of NR VQA ex-
tremely challenging.

The recent decade has seen significant progress in NR
VQA, based on classical or handcrafted features (Saad,
Bovik, and Charrier 2014; Xu et al. 2014; Ghadiyaram and
Bovik 2017; Tu et al. 2021a,b) and deep learning based ap-
proaches (Li, Jiang, and Jiang 2019, 2021; Wu et al. 2022;
Chen et al. 2020a; Shen et al. 2022). The deep learning based
approaches particularly require training on large amount of
labelled data, which is cumbersome and expensive to ac-
quire. This leads to us to the question of how we can design
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NR VQA models which can be trained with very limited la-
belled training data, yet achieve excellent generalisation per-
formance on multiple datasets in terms of correlation with
human perception.

Our focus in this work is on designing semi-supervised
NR VQA method with limited labelled along with unla-
belled data. Since UGC videos have diverse quality char-
acteristics, we believe that pretraining a robust video quality
feature backbone is extremely important to transfer knowl-
edge during semi-supervised learning. With this motiva-
tion, we approach the problem using a combination of
contrastive self-supervised pretraining followed by semi-
supervised finetuning. A few self-supervised contrastive
learning based methods have been designed for NR VQA re-
cently (Mitra and Soundararajan 2022; Madhusudana et al.
2022; Chen et al. 2022) to learn rich video quality features.
However, none of these methods yet exploit the performance
benefit offered by the attention mechanism in transformer
based models. One of the major challenges in training such
transformer based architectures for VQA is the difficulty in
training such networks end-to-end. We leverage recent lit-
erature on end-to-end training of Swin-transformers for su-
pervised VQA (Wu et al. 2022) to overcome this difficulty
in self-supervised video quality representation learning. Fur-
ther, we employ a novel statistical contrastive learning loss
instead of a point-wise similarity loss to make the learn-
ing more robust. Thus, in the first stage of our approach,
we learn rich quality aware spatio-temporal features without
requiring any human annotations.

In the second stage of our approach, we leverage the lim-
ited number of quality labels in a semi-supervised learn-
ing (SSL) framework. While several SSL based methods on
pseudo-labelling and consistency regularisation have been
explored in video action recognition (Xu et al. 2022; Singh
et al. 2021; Kumar and Rawat 2022), they need to adapted
for the specific task of VQA. In this direction, we employ
knowledge transfer between two measures of video qual-
ity evaluated on the unlabelled videos. The first measure is
based only on human annotations, while the second mea-
sure uses a distance between features of the distorted video
and a corpus of pristine videos along with human labels.
Such knowledge transfer helps overcome the drawback of
limited human annotations, while simultaneously trying to
help determine a perceptually relevant distance to a corpus
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of pristine videos. We show that the above semi-supervised
learning helps design an effective VQA method with limited
labels.

We conduct several experiments on multiple cross and
intra datasets to validate the performance of our proposed
framework. To summarize, our main contributions consist
of:
1. Self-supervised statistical contrastive learning of spatio-

temporal video quality representations with a transformer
based architecture.

2. Semi-supervised learning of video quality by knowledge
transfer between models based on limited human labels
and feature distances to a corpus of pristine videos.

3. Impressive cross-database performance despite the
model being trained with very few human annotated
videos.

Related Work
Classical Feature based VQA. Historically, handcrafted
heuristics based features have been shown to produce robust
performance across various VQA datasets. Among them,
VBLIINDS (Saad, Bovik, and Charrier 2014) and VCOR-
NIA (Xu et al. 2014) learn natural scene statistics of video
frames by modelling the discrete cosine transform (DCT)
or 3D-DCT. In recent years, TLVQM (Korhonen 2019) has
shown considerable improvement in VQA performance by
modelling temporal low complexity features with spatial
high complexity features. VIDEVAL (Tu et al. 2021a) is an
ensemble of various handcrafted features designed to cap-
ture diverse quality attributes in a video. Nevertheless, au-
thentically distorted videos in UGC have mixed distortions,
which are very hard to model using the above statistical
methods.

Supervised pretraining based VQA. Existing deep
learning methods mostly regress fixed quality aware fea-
tures against human opinion scores due to the computational
complexity of training large models. VSFA (Li, Jiang, and
Jiang 2019) and MDTVSFA (Li, Jiang, and Jiang 2021)
learn a gated recurrent unit on top of features generated by
ResNet50 (He et al. 2016). PVQ (Ying et al. 2021) extracts
2D and 3D pretrained features from image quality assess-
ment (IQA) and action recognition tasks. Recently, FAST-
VQA (Wu et al. 2022) learns an end-to-end model by spa-
tially fragmenting the video clips thus reducing the com-
plexity. TCSVT-BVQA (Li et al. 2022) on the other hand
learns a VQA model by transferring spatial knowledge from
pretrained IQA, and temporal knowledge from a pretrained
action recognition model.

Unsupervised pretraining based VQA. VISION (Mi-
tra and Soundararajan 2022), and CONVIQT (Madhusudana
et al. 2022) present self-supervised learning based quality
aware feature extractors. The fixed features from these self-
supervised models can be further regressed against opinion
scores to develop an end-to-end quality model. In our work,
we first train a self-supervised quality feature extractor and
use it to build an end-to-end SSL framework.

Unsupervised VQA. VQA methods such as STEM
(Kancharla and Channappayya 2022), VISION (Mitra and

Soundararajan 2022), and NVQE (Liao et al. 2022) do not
require any human labelled videos in their design and give
reasonable quality estimates for UGC videos. Nevertheless,
their performance with respect to the methods trained with
human opinion scores is under par.

Semi-Supervised Learning. To the best of our knowl-
edge, there exist no end-to-end SSL algorithms designed for
the VQA task. SSL methods for classification can be broadly
classified into pseudo-labelling, consistency regularisation,
and hybrid methods. While pseudo-labelling as such is un-
suitable for regression, consistency regularisation and its hy-
brid versions such as Mean Teacher (Tarvainen and Valpola
2017), FixMatch (Sohn et al. 2020), MixMatch (Berthelot
et al. 2019), and Meta Pseudo-Label (Pham et al. 2021) are
better suited for regression tasks. In the case of QA, these
algorithms can not be directly applied as augmentations for
image/video classification are quality variant.

We remark that SSL has not been explored much even in
the IQA literature. While Conde et al.(Conde, Burchi, and
Timofte 2022) study SSL methods for full reference IQA,
some other methods (Wang, Li, and Ma 2021; Yue et al.
2022) train an NR IQA model with a large number of la-
belled images and generate pseudo-labels on the unlabelled
data.

Spatio-Temporal VQ Representation Learning
Overview. First, we learn a self-supervised spatio-temporal
backbone to capture Video Quality (VQ) aware features
from unlabelled videos. The VQ representation based fea-
ture extractor is used as a backbone in our semi-supervised
model to get robust performance despite learning on limited
data.

We embark on solving multiple key challenges in learn-
ing a 3D self-supervised representation learning for VQA.
It is computationally hard and even infeasible to train a
video transformer using contrastive learning with videos
of high resolution. Inspired by recent works on VQA (Wu
et al. 2022, 2023), we propose a quality invariant sampling
strategy that preserves the global context and local quality
of videos to overcome the computational challenges while
training such models. In addition, a 3D vision transformer
such as video swin transformer (Liu et al. 2022) captures
both short and long duration temporal distortions such as
shakiness, motion blur, and flicker in videos on account of
its design. Finally, in traditional contrastive learning (Chen
et al. 2020b; Tian, Krishnan, and Isola 2020; Tao, Wang, and
Yamasaki 2020), a point-wise similarity between the global
representation of features is optimized, which ignores the lo-
cal variations in video space-time. To address this problem,
we propose a statistical contrastive loss where both global
and local information are shared between a contrasting pair
of video features.

Quality Consistent Sampling and Video Augmenta-
tion. To capture quality-aware representations, we choose
contrastive pairs of video clips from synthetically distorted
UGC videos having similar content but different levels and
types of distortions. We synthetically distort UGC videos
similar to VISION (Mitra and Soundararajan 2022) to model
mixed camera captured and synthetic distortions from which
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Figure 1: Framework of Spatio-Temporal VQ Representa-
tion Learning (ST-VQRL). For two distorted versions of the
same video, Video 1, we sample an augmented pair of clips
from each distorted version using QCS. The quality aware
contrastive loss is used to train the network to attract aug-
mented clips from same video and repel clips from other
distorted versions in the embedding space.

quality aware features can be learned. We then employ spa-
tial fragment sampling (crop multiple patches at original res-
olution and splice them together) of continuous video frames
to capture both local and global video distortions in frames
(Wu et al. 2022). As shown in literature (Wu et al. 2022,
2023), random fragments sampled from a video clip, share
similar quality representations. We refer to the process of
obtaining fragments from video clips as quality consistent
sampling (QCS).

Let T ′(·) and T ′′(·) denote the generators of two in-
stances of random QCS. We apply T ′(·) and T ′′(·) on the
same clip as shown in Figure 1 thus generating augmented
clips having similar local and global quality. Augmented
versions of a clip constitute a positive pair. Fragments sam-
pled from different distorted versions of the same video clip
using T ′(·) and T ′′(·) constitute a negative pair.

Statistical Contrastive Loss for Representation Learn-
ing. We capture spatio-temporal representations from a
video clip using a Video Swin-T (Liu et al. 2022) back-
bone given as fθ(·) with model parameters θ. Consider a
set of K video clips {V1, V2, . . . , VK} of the same scene
content with different distortions. Let, T ′(Vi) and T ′′(Vi)
denote the pair of augmented clips of every video Vi. Let
z′i = fθ(T ′(Vi)), and z′′i = fθ(T ′′(Vi)) be the feature rep-
resentations of the augmented pair of clips of Vi, where z is
of dimension N × C. We propose a statistical constrastive
loss between the spatio-temporal feature representation of
the pairs to capture both the global description and local
variations in the representations of fragments.

Our contrastive loss minimises a distance between the
augmented pair of representations z′i, and z′′i and maximises
the distance between z′i, and z′k, where k ̸= j and k ∈
{1, 2, . . . ,K}. In particular, we are inspired by the work in
NIQE (Mittal, Soundararajan, and Bovik 2013), where it is
shown that a statistical distance between image features is
relevant to perceptual quality. We treat the N × C feature
vector as a set of N spatio-temporal samples of dimension
C drawn from a multivariate Gaussian (MVG) model. Let
the MVG model parameters be (µ′,Σ′), and (µ′′,Σ′′) for
feature representations z′, and z′′. Thus, we obtain a quality
aware distance between any z′, and z′′ as

d(z′, z′′) =

√
(µ′ − µ′′)T

(
Σ′ +Σ′′

2

)−1

(µ′ − µ′′). (1)

Therefore, the quality aware contrastive loss with
T ′(Vi), i ∈ {1, 2, . . . ,K} taken as an anchor view is L′ =
1
K

∑K
i=1 l

′
i, where

l′i = − log
exp(−d(z′i, z

′′
i )/τ)∑K

j=1 exp(−d(z′i, z
′′
j )/τ)

. (2)

Similarly, taking T ′′(Vi), i ∈ {1, 2, . . . ,K} as anchor, we
obtain a loss L′′, and the overall loss is given as,

Lc = L′ + L′′. (3)

Knowledge Transfer based SSL-VQA
Given a set of labelled UGC videos V =
{(v1, y1), · · · (vNl

, yNl
)} (annotated with human opinion

scores), and a set of unlabelled videos U = {u1, · · ·uNu},
our proposed approach learns quality assessment of UGC
videos by utilizing both sets. As shown in Figure 2, we
design a dual-model learning setup, where one model
directly maps the video features to a scalar video quality
score while the other model maps the distance between the
representations of a distorted video and corpus of pristine
videos to video quality. The two models differ in the use
of a corpus of pristine videos to predict quality. While the
use of distance to a corpus imposes more structure in the
quality prediction, it may also limit the quality modelling
capability. Our goal is to transfer quality aware knowledge
learned by the individual models to each other. While the
backbone in both the models is initialised using pretrained
ST-VQRL (with parameter θ), we update their parameter
separately as θ′, and θ′′ respectively during finetuning.

Regressor based Quality Model. We attach a regressor
head on top of the spatio-temporal feature encoder viz. ST-
VQRL and train this model end-to-end as shown in Figure
2. Let gϕ(·) be a non-linear regressor head with parameter
ϕ applied on top of self-supervised ST-VQRL feature ex-
tractor fθ′(·) to predict a scalar quality estimate of videos.
gϕ(·) comprises of two 3d convolutional layers with filter
size 1 × 1 × 1 to preserve the local quality characteristics
of the generated features of fθ′(·). Therefore, the predicted
quality for any video x ∈ (Vv ∪ U), where Vv = {vi}Nl

i=1 is
given as,

QR(x) = gϕ(fθ′(x)).
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Figure 2: Overview of Semi-Supervised Learning for VQA (SSL-VQA) method. Every batch consists of labelled (v ∈ Vv) and
unlabelled (u ∈ U) samples. First, we generate an augmented pair of clips from v and u using two instances of quality consistent
sampling (QCS), T ′(·) and T ′′(·). For labelled video v, SSL-VQA optimises the supervised and intra-model consistency loss.
For unlabelled video u, SSL-VQA enforces intra-model consistency loss and knowledge transfer loss. Based on the consistency
criteria (ϵr > ϵd), SSL-VQA transfers knowledge from one model to another.

Distance based Quality Model. The second model
fθ′′(·) described in Figure 2 is necessarily a feature encoder
like ST-VQRL. fθ′′(·) measures the distance between the
feature representation of a corpus of pristine videos and any
distorted video x ∈ (Vv ∪ U). Let, zx = fθ′′(x) denote
the feature representation of x. Similarly, for Np pristine
or clean videos, we get feature embedding zr using fθ′′(·).
Thereafter, we fit a multivariate Gaussian (MVG) model on
the corpus of pristine feature set zr to get (µr,Σr). Let the
model parameters for the distorted video representation zx

be (µx,Σx). The quality estimate of video x is given as
QD(x) = exp(−d(zr, zx)/τ), where

d(zr, zx) =

√
(µr − µx)T

(
Σr +Σx

2

)−1

(µr − µx).

We predict the overall quality of a video during inference
stage as (QR(y) +QD(y))/2, where y is any test video.

Supervised Learning Loss
We train both the models with the labelled videos using
the ground truth opinion scores. Both models are trained
separately on a mini-batch of size Bl by minimising the
batch-wise Pearson’s linear correlation coefficient (PLCC)
between predicted quality and ground truth opinion scores.
Note that this loss is differentiable and allows for back-
propagation. Let v = {vi}Bl

i=1 and y = {yi}Bl
i=1, where

{(vi, yi)}Bl
i=1 ∈ V . Thus, the supervised loss is formulated

as

Ls = Lplcc(QR(T ′(v)),y) + Lplcc(QD(T ′(v)),y), (4)

where Lplcc(a, b) = 1−PLCC(a,b)
2 and T ′(v) =

{T ′(vi)}Bl
i=1. Since learning end-to-end on the original

video resolution is computationally intensive, we apply
QCS.

Intra-Model Consistency Loss
The goal of the intra-model consistency loss is to enable
consistent quality predictions for the augmented video clips
obtained through QCS. Let the two quality consistent aug-
mented clips for a mini-batch of videos x = {xi}Bi=1,
where {xi}Bi=1 ∈ (Vv ∪ U) be T ′(x), and T ′′(x). Note that
B = Bl + Bu, where Bu is the mini-batch length of unla-
belled videos. The intra-model consistency loss is given as

Lc =Lplcc(QR(T ′(x)), QR(T ′′(x))))

+ Lplcc(QD(T ′(x)), QD(T ′′(x)))). (5)

Knowledge Transfer based Loss
The goal of the knowledge transfer loss is to utilise both
the models effectively for SSL. If a consistency between
the prediction of both the models on unlabelled data is en-
forced, an erroneous prediction of one model may drive the
other model to wrong knowledge. So the challenge here is
to transfer knowledge from one model to another only when
its prediction is reliable. We hypothesize that we can rely on
the prediction of the model if it is stable with respect to aug-
mented versions of a sample. To determine model stability
with respect to a batch, we evaluate the intra-model consis-
tency for a mini-batch of unlabelled samples u = {ui}Bu

i=1,
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Setting Intra Test Database Cross Database
Test Dataset LSVQtest LSVQ1080p KoNVid-1K LIVE VQC

Method Model Type SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC
VBLIIND Classical

Features

0.473 0.456 0.382 0.430 0.545 0.539 0.398 0.434
TLVQM 0.599 0.582 0.441 0.473 0.592 0.597 0.531 0.551

VIDEVAL 0.607 0.597 0.491 0.547 0.545 0.543 0.416 0.459
VSFA

Supervised
Pretraining

0.663 0.645 0.536 0.543 0.664 0.669 0.651 0.668
FAST-VQA 0.682 0.677 0.552 0.558 0.679 0.666 0.652 0.672

TCSVT-BVQA 0.687 0.679 0.449 0.465 0.682 0.680 0.665 0.682
VISION

Self-
Supervised
Pretraining

0.523 0.478 0.427 0.446 0.606 0.612 0.615 0.636
CONVIQT 0.636 0.624 0.468 0.464 0.662 0.673 0.600 0.627
SSL-VQA−

w/o consistency loss 0.704 0.693 0.562 0.577 0.715 0.713 0.669 0.678

SSL-VQA− 0.719 0.717 0.587 0.601 0.736 0.735 0.683 0.688

Table 1: Performance analysis of SSL-VQA− with ST-VQRL backbone compared against other popular VQA methods with
classical features, supervised pretrained, and self-supervised pretrained backbones when trained only with limited human an-
notated videos without any unlabelled data.

where each ui ∈ U . The model whose consistency loss be-
tween the augmented pair of videos in Equation (5) is less,
is considered more stable. Let ϵr denote the regressor based
quality model’s consistency error and ϵd denote the distance
based quality model’s consistency error. Then,

ϵr = Lplcc(QR(T ′(u)), QR(T ′′(u)))

ϵd = Lplcc(QD(T ′(u)), QD(T ′′(u))).

The prediction of the more stable model is used as a pseudo-
label for the other model. The knowledge transferable loss
function for a mini-batch is given as

Lu = mLplcc(QR(T ′(u)), sg(QD(T ′(u)))))

+ (1−m)Lplcc(sg(QR(T ′(u))), QD(T ′(u)))),
(6)

where m = 1(ϵr > ϵd) is the indicator mask and sg(.) de-
notes the stop gradient operation. This ensures that the sta-
ble model provides a pseudo-label or guidance for the other
model.

The overall loss to train our SSL-VQA model end-to-end
is a combination of the supervised loss, intra-model consis-
tency loss, and knowledge transferable loss as

L = Ls + λcLc + λuLu, (7)
where λc, λu are hyper parameters to balance the loss terms.

Experiments
In this section, we describe the implementation details, ex-
perimental setup, and comparisons with other methods.

Implementation Details of ST-VQRL
Data Generation. We learn our self-supervised ST-VQRL
model on a set of synthetically distorted UGC videos. We
randomly sample 200 videos out of 28056 training videos of
LIVE-FB Large-Scale Social Video Quality (LSVQ) (Ying
et al. 2021) database. LSVQ database videos have unique

scenes with camera captured distortions, so we augment
each of the 200 videos with 12 different synthetic distortion
types and levels in the same manner as in VISION (Mitra
and Soundararajan 2022). In the statistical contrastive loss
and distance based quality model, we use a set of 60 pristine
videos from LIVE-VQA (Seshadrinathan et al. 2010), LIVE
Mobile (Moorthy et al. 2012), CSIQ VQD (Vu and Chandler
2014), EPFL-PoLiMI (De Simone et al. 2010) and ECCV-
EVVQ databases (Rimac-Drıje, Vranje, and Žagar 2010).

Training Details. We encode the distorted video se-
quence using a Video Swin-T (Liu et al. 2022) architecture
modified with gated relative positional bias (Wu et al. 2022)
to take into account the discontinuity in a sampled clip due
to QCS. QCS is applied by dividing each of the 32 continu-
ous video frames into a 7×7 grid, sampling 32×32 patches
from each grid and stitching them together maintaining tem-
poral consistency. The patches within each grid are extracted
from the same location for every distorted version of a scene,
thus the distorted clips are content consistent with respect to
sampling. We train ST-VQRL using AdamW (Loshchilov
and Hutter 2019) with a learning rate of 10−4 and a weight
decay of 0.05 for 30 epochs. The temperature co-efficient τ
mentioned in Equation (2) is 10.

Experimental Setup
We conduct two types of experiments to evaluate VQA
under limited labelled data. In the first experiment
(Experimental Setting 1) in Table 1, we define SSL-VQA−

as our model learnt with only limited labelled samples and
without using any unlabelled data. Thus, we only use the
losses in Equations (4) and (5) to understand how the frame-
work can learn with just the limited labelled data available
for training. In the second experiment (Experimental Set-
ting 2) in Table 2, we perform SSL by also utilizing the un-
labelled data. In both the cases we train the model for 30
epochs using AdamW (Loshchilov and Hutter 2019) with a
learning rate of 10−4 and a weight decay of 0.05. λc, and λu

are chosen to be 1 based on training loss convergence.
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Setting Intra Test Database Cross Database
Test Database LSVQtest LSVQ1080p KoNVid-1K LIVE VQC

Method SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC
Mean Teacher 0.716 0.703 0.594 0.603 0.716 0.715 0.679 0.681

Meta PseudoLabel 0.714 0.713 0.586 0.587 0.719 0.716 0.676 0.673
FixMatch 0.722 0.725 0.582 0.596 0.727 0.732 0.685 0.687
SSL-VQA 0.731 0.736 0.616 0.645 0.765 0.770 0.711 0.734

Table 2: Performance comparison of SSL-VQA with other SSL benchmarks on intra and inter database test settings. All methods
are initialised with ST-VQRL backbone for fair comparison and are trained with both labelled and unlabelled samples.

Training Database. LSVQ (Ying et al. 2021) has an offi-
cial training set of 28056 videos. We extract 2000 videos
from it randomly. Out of the 2000 videos, we only use
around 500 videos or 1.78% of the training set with human
opinion scores and the remaining 1500 unlabelled videos.

Evaluation Database. We employ two different test set-
tings. In the first setting, we test on the official test database
LSVQtest, containing 7400 videos of varying resolution be-
tween 240p and 720p, and LSVQ1080p containing around
3600 videos of 1080p for intra database performance eval-
uation. We further test the robustness of SSL-VQA in cross
database settings. Particularly, we test on KoNVid-1K (Hosu
et al. 2017), and LIVE VQC (Sinno and Bovik 2019),
each comprising of 1200 and 585 camera captured authen-
tically distorted videos with varying resolutions. We use the
Spearman Rank-Order Correlation Coefficient (SROCC),
and Pearson Linear Correlation Coefficient (PLCC) as per-
formance measures. In both Table 1 and 2, we report the
median performance over 3 random choices of 500 labelled
and 1500 unlabelled videos out of the 2000 chosen videos.

Experimental Setting 1 Analysis

We compare SSL-VQA− with three popular categories of
NR VQA models under Experimental Setting 1. Among the
models based on classical or heuristic based feature designs,
we compare with Video BLIINDS (Saad, Bovik, and Char-
rier 2014), TLVQM (Korhonen 2019), and VIDEVAL (Tu
et al. 2021a). Among recent deep VQA models, we com-
pare with the state-of-the-art FAST-VQA model (Wu et al.
2022) and the popular VSFA (Li, Jiang, and Jiang 2019)
and TCSVT-BVQA (Li et al. 2022) methods. Finally, we
also compare with recent self-supervised feature learning
models such as VISION (Mitra and Soundararajan 2022)
and CONVIQT (Madhusudana et al. 2022). The compar-
ison with the supervised pre-trained FAST-VQA model is
particularly interesting since the experiment reveals how our
self-supervised ST-VQRL backbone of SSL-VQA− enables
learning with limited labelled data.

In Table 1, we see that our method outperforms both clas-
sical feature based and recent deep learning methods. This
increment in performance can be attributed to the use of a
robust quality aware feature backbone viz. ST-VQRL. The
ST-VQRL encoder not only provides robust performance in
the limited data regime but also is independent of any super-
vision like FAST-VQA, VSFA, and TCSVT-BVQA.

Experimental Setting 2 Analysis
Since there exist no direct end-to-end semi-supervised
VQA models in the literature for comparison, we adapt
popular semi-supervised methods for the VQA task.
Semi-supervised approaches can be broadly divided into
pseudo-labelling and consistency regularisation. Since di-
rect pseudo-labelling is not applicable for regression tasks,
we rely upon consistency regularisation based methods such
as MeanTeacher (Tarvainen and Valpola 2017) and Fix-
Match (Sohn et al. 2020). We also modify the meta learning
based SSL method, Meta Pseudo-Label (Pham et al. 2021)
for comparison. We use our self-supervised feature encoder
ST-VQRL as the backbone for fair comparison with SSL-
VQA approaches.

In Table 2, we provide a quantitative comparison between
SSL-VQA and other SSL methods modified for VQA. In
both intra-database and cross database settings, we see a
considerable improvement of SSL-VQA over other meth-
ods. Thus a smart knowledge transfer between the two qual-
ity models enriches our SSL framework leading to superior
performance.

Ablation Studies
Finetuning on UGC Data: In earlier section, we show
SSL-VQA’s robustness across intra and inter database test
settings. Now we evaluate SSL-VQA by finetuning it for
specific VQA tasks. In general, we adapt our model on
four smaller VQA datasets viz. KoNVid-1k (Hosu et al.
2017), LIVE VQC (Sinno and Bovik 2019), YouTube-UGC
(Wang, Inguva, and Adsumilli 2019), and LIVE Qualcomm
(Ghadiyaram et al. 2018). KoNVid-1K and LIVE VQC pre-
dominantly have videos captured in the wild with cameras.
YouTube-UGC comprises of videos from various domains
such as real-world, animation, and gaming, spanning a spa-
tial resolution from 240p to 4K. LIVE Qualcomm on other
hand, comprises of authentic videos with specific categories
of distortions such as shakiness, stabilisation, and so on. In
this experiment, we randomly sample 20% of the videos
with labels in each of the UGC databases above for fine-
tuning and use another non-overlapping 20% for testing. We
report the median performance across 10 such splits in Ta-
ble 3. We observe that such fine-tuning with limited labelled
data substantially improves the performance.

Impact of Statistical Contrastive Loss: In VQ represen-
tation learning, we noted that the use of a statistical mea-
sure between spatio-temporal video features in Equation (1)
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KoNVid-1K LIVE VQC LIVE QCOMM YouTube-UGC
Method SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

Mean Teacher 0.783 0.786 0.702 0.693 0.722 0.724 0.725 0.730
Meta PseudoLabel 0.792 0.795 0.705 0.710 0.734 0.735 0.729 0.719

FixMatch 0.798 0.799 0.716 0.729 0.740 0.730 0.734 0.730
SSL-VQA 0.826 0.828 0.733 0.743 0.747 0.751 0.750 0.757

Table 3: Performance on KoNViD, LIVE-VQC, LIVE Qualcomm and YouTube-UGC when SSL-VQA is finetuned on 20% of
annotated videos from each database. We provide comparison with other SSL benchmarks which are also finetuned on 20% of
labelled videos for each of these databases.

Backbone KoNVid-1K LIVE VQC
Pre-trained

Video Swin-T 0.728 0.686

ST-VQRL w/
Similarity loss 0.733 0.684

ST-VQRL w/
Statistical loss 0.765 0.711

Table 4: SROCC performance analysis of different back-
bones on SSL-VQA performance.

Approach KoNVid-1K LIVE VQC
SSL-VQA

w/o consistency loss 0.756 0.697

SSL-VQA
w/o knowledge loss 0.742 0.686

SSL-VQA 0.765 0.711

Table 5: SROCC performance analysis of different unsuper-
vised constraints in Equation (5) and (6) respectively.

is more relevant to perceptual quality. To validate our hy-
pothesis, we show in Table 4, the superiority of our model
optimised with Equation (3) over the cosine similarity loss
as in generic contrastive learning. We also provide the per-
formance when using a supervised Video Swin-T backbone
(Liu et al. 2022) pretrained for action recognition over our
self-supervised backbone. We infer that ST-VQRL learned
from scratch, specifically to capture quality aware features
gives better performance than supervised pretrained Video
Swin-T. Moreover, ST-VQRL learned using a statistical dis-
tance measure captures quality representations better.

Role of Intra-model Consistency and Knowledge
Transfer: SSL-VQA model is optimised using an objective
function comprising of supervised loss, intra-model consis-
tency loss, and knowledge transfer loss. When we evaluate
the model without the consistency loss, note that there is also
no mask in Equation (6) and unrestricted knowledge trans-
fer happens between the two models. Without the knowl-
edge transfer loss, the unlabelled data is only used to impose
intra-model consistency. In Table 5, we see that the absence
of either loss hinders the learning performance showing the
benefit of our contributions in SSL for VQA.

Impact of Number of Labelled and Unlabelled Videos:
As mentioned in experimental setting analysis, we train

(a) (b)

(c) (d)

Figure 3: (a), and (b) correspond to SSL-VQA performance
on KoNVid-1K, LIVE-VQC, LSVQtest, and LSVQ1080p
datasets when the number of labelled videos for training
ranges from 100-500. In (c), and (d), we show the perfor-
mance for 500 labelled videos with different amounts of un-
labelled videos.

SSL-VQA on 500 labelled and 1500 unlabelled videos from
the LSVQ (Ying et al. 2021) database. Here, we present an
analysis of our model’s performance with varying numbers
of labelled and unlabelled videos. In Figure 3a, and 3b, we
present the performance of SSL-VQA trained on with la-
belled videos varying between 100-500 keeping the number
of unlabelled videos fixed. We see a steady increase in per-
formance as the number of labelled videos increases. Sim-
ilarly, in Figure 3c, and 3d, we train SSL-VQA using 500
labelled and 500-2500 unlabelled videos. We see that when
the number of unlabelled videos is considerably high (more
than 1500), the model’s prediction nearly saturates.

Conclusion
We presented a novel SSL approach with a robust qual-
ity aware feature encoder ST-VQRL. Through extensive
experiments, we showed that SSL-VQA achieves higher
performance than existing state-of-the art VQA methods
even when learned with very few human annotated videos.
We also benchmarked SSL methods for VQA and showed
the superiority of our framework on the use of unlabelled
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VBLIIND TLVQM VIDEVAL VSFA FAST-VQA TCSVT-BVQA VISION CONVIQT SSL-VQA−

VBLIIND - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TLVQM 1 1 1 1 - 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

VIDEVAL 1 1 1 1 1 1 0 0 - 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0
VSFA 1 1 1 1 1 1 1 1 1 1 1 1 - 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0

FAST-VQA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 - 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0
TCSVT-BVQA 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 - 1 1 1 1 1 0 1 1 0 0 0 0

VISION 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 1 0 0 0 0
CONVIQT 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 - 0 0 0 0
SSL-VQA− 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -

Table 6: Results of one-sided Wilcoxon Rank Sum Test performed between the SROCC values of the other VQA algorithms
and SSL-VQA−. Each entry in the table consists of a codeword with 4 symbols corresponding to the testing on LSVQtest,
LSVQ1080p, KoNVid-1K, and LIVE VQC databases in that order. A code value of “1” indicates that the VQA model in the row
is statistically superior to the VQA model in the column. While a value of “0” indicates row model is inferior to the column
model and “− ” indicates a statistically similar performance.

Method LSVQ
Test

LSVQ
1080p KoNVid LIVE

VQC
VSFA 0.801 0.675 0.784 0.734

PatchVQ 0.827 0.711 0.791 0.770
CSVT-BVQA 0.852 0.771 0.834 0.816
FAST-VQA 0.876 0.779 0.859 0.823
SSL-VQA− 0.891 0.799 0.877 0.839

Table 7: SROCC performance of various VQA methods

videos. As our model works on video fragments similar to
FAST-VQA (Wu et al. 2022), it is also computationally ef-
ficient. We believe that SSL-VQA can make deep learning
based VQA perform robustly with limited labels.

A Evaluation on Full LSVQ Train Data
We provide a quantitative analysis between VQA methods
and SSL-VQA− with ST-VQRL feature backbone trained
on the full annotated train set of LSVQ in Table 7. We infer
that our ST-VQRL representation achieves superior perfor-
mance compared to various benchmark methods even at full
scale supervision.

B Statistical Significance Test
In Tables 1 and 2, we reported the median performance of
SSL-VQA− and SSL-VQA against various VQA and SSL
methods in limited labelled data or in semi-supervised set-
tings respectively over 3 random training splits. We conduct
a statistical significance test to validate the superiority of our
method. In particular, the non-parametric Wilcoxon Rank
Sum Test is used to compare the rank of two sets of correla-
tion coefficients for a pair of methods across 3 splits. Similar
to (Yu et al. 2019), we consider the null hypothesis as that
the the median of one algorithm is equal to that of the other
at 95 % significance level. The alternate hypothesis is that
the medians differ. From Tables 6 and 8, we observe that our
SSL-VQA− and SSL-VQA outperform other methods with
regard to f-test in both the experimental settings.

Mean
Teacher

Meta
Pseudo
Label

FixMatch SSL-VQA

Mean Teacher - 0 1 0 1 0 1 0 0 0 0 0 0
Meta

Pseudo-Label 1 0 1 0 - 0 1 0 0 0 0 0 0

FixMatch 1 0 1 1 1 0 1 1 - 0 0 0 0
SSL-VQA 1 1 1 1 1 1 1 1 1 1 1 1 -

Table 8: Results of one-sided Wilcoxon Rank Sum Test per-
formed between the SROCC values of the other semisuper-
vised algorithms and SSL-VQA. The code word has similar
representation as in Table 6.

C Training Details
SSL-VQA and all other benchmarking methods were
trained in Python 3.8 using Pytorch 2.0 on a 3 × 24 GB
NVIDIA RTX 3090 GPU. We consider the optimizer hyper-
parameters to train SSL-VQA is similar to that of described
in FAST-VQA as both uses a Video Swin-T backbone.
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