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Abstract

This work tackles the important task of understanding out-
of-distribution behavior in two prominent types of generative
models, i.e., GANs and Diffusion models. Understanding this
behavior is crucial in understanding their broader utility and
risks as these systems are increasingly deployed in our daily
lives. Our first contribution is demonstrating that diffusion
spaces outperform GANs’ latent spaces in inverting high-
quality OOD images. We also provide a theoretical analysis
attributing this to the lack of prior holes in diffusion spaces.
Our second significant contribution is to provide a theoreti-
cal hypothesis that diffusion spaces can be projected onto a
bounded hypersphere, enabling image manipulation through
geodesic traversal between inverted images. Our analysis
shows that different geodesics share common attributes for
the same manipulation, which we leverage to perform various
image manipulations. We conduct thorough empirical evalu-
ations to support and validate our claims. Finally, our third
and final contribution introduces a novel approach to the few-
shot sampling for out-of-distribution data by inverting a few
images to sample from the cluster formed by the inverted la-
tents. The proposed technique achieves state-of-the-art results
for the few-shot generation task in terms of image quality.
Our research underscores the promise of diffusion spaces in
out-of-distribution imaging and offers avenues for further ex-
ploration. Please find more details about our project at http:
//cvit.iiit.ac.in/research/projects/cvit-projects/diffusionOOD

Introduction
In the last decade, generative models such as Generative
Adversarial Networks (GANs) (Goodfellow et al. 2020;
Karras, Laine, and Aila 2019; Karras et al. 2020, 2021;
Brock, Donahue, and Simonyan 2019) and Diffusion mod-
els (Preechakul et al. 2022; Sinha* et al. 2021; Rombach
et al. 2021a; Ho et al. 2022) have significantly advanced
image synthesis. These models excel in generating realistic
images, but their handling of out-of-distribution (OOD) data
— data that is substantially different from their training sets
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remains a challenge. OOD robustness is essential in deep
learning for applications with limited resources, and it helps
address issues like bias and distribution shifts. For example
an autonomous vehicle trained on a dataset with limited ex-
treme weather images must still perform safely under such
conditions.

The research community has extensively analyzed and
used the StyleGAN2 model (Karras et al. 2020) for various
downstream tasks in particular for several face-related tasks
using the StyleGAN2 trained on the FFHQ dataset (Karras
et al. 2020). Its latent space is known for offering control
over diverse aspects like facial expressions and hairstyles.
Despite its strengths, StyleGAN2’s limitations become evi-
dent with non-face images or faces that do not align with the
FFHQ dataset’s characteristics which are out-of-distribution
(OOD) examples for StyleGAN. When applied to OOD im-
ages such as animals or inanimate objects, StyleGAN’s im-
age generation quality deteriorates. This limitation points to
the challenges in training models on non-face datasets, given
the high data demands and slow convergence. Thus explor-
ing generative models that can better handle a variety of
OOD images is critical for progress in fields like computer
vision, graphics, and entertainment.
Our Contributions Diffusion models, known for their
mathematical clarity and probabilistic insight, have
prompted us to explore their potential in handling out-
of-distribution (OOD) images compared to GANs’ latent
spaces. The main contributions of our work are as follows:
(1) Empirical analysis reveals that diffusion models outper-
form GANs in inverting high-quality OOD images. This
superiority is theoretically linked to the absence of ”prior
holes” in diffusion spaces, a flaw seen in GANs where
inverted latents’ distribution misaligns with the actual
distribution. (2) We hypothesize that the Gaussian structure
of diffusion spaces enables projection onto a hypersphere,
streamlining the traversal between inverted images via
geodesics as well as non-linear traversal. We present diverse
image manipulations, assessing the universality of different
diffusion spaces. (3) Capitalizing on the geometry of diffu-
sion spaces, we introduce a method for few-shot generation,
showcasing state-of-the-art results. In summary, our work
underscores the advantages of diffusion models’ latent
spaces in addressing the challenges posed by GANs for
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Figure 1: We hypothesize that diffusion spaces match the
prior distribution perfectly and are devoid of any “prior
holes” helping in out-of-distribution inversion. Their spheri-
cal, Gaussian nature facilitates traversal, aiding in OOD im-
age manipulation. Their semantic richness leads to cluster-
ing in latent spaces, enabling few-shot image generation.

OOD images. Figure 1 illustrates an illustrative summary of
our findings.

Background
GAN dissection and analyzing latent space of GANs A
slew of research has delved into understanding GANs’ latent
spaces. Härkönen et al.’s GANSpace (Härkönen et al. 2020)
offers interpretable controls for image synthesis, while Bau
et al.’s framework (Bau et al. 2018) provides insights into
GAN layers. Others have dissected GAN architectures to
grasp their intricacies (Karras et al. 2019; Voynov and
Babenko 2020; Shen et al. 2019). The power of GANs
is partly attributed to their use of latent spaces (Radford,
Metz, and Chintala 2015), yet their latent spaces exhibit
flaws, especially with GAN-inversion on out-of-distribution
data (Abdal, Qin, and Wonka 2019). This spurred develop-
ments like (Tov et al. 2021; Abdal et al. 2021; Shen and
Zhou 2020; Subramanyam et al. 2022), with SPHInX (Sub-
ramanyam et al. 2022) being a standout for OOD image in-
version in StyleGAN, serving as our study’s baseline.

Diffusion Models Diffusion models,construct a Markov
chain of noising steps, termed the ”forward process,” to
progressively add noise until the data resembles noise. The
learnt ”backward process” reverses this to generate desired
data samples from the noise. Compared to GANs and VAEs,

these models yield superior samples and cover broader dis-
tribution modes (Xiao, Kreis, and Vahdat 2021; Dhariwal
and Nichol 2021). They typically employ a Gaussian Diffu-
sion process for sampling (Sinha* et al. 2021; Preechakul
et al. 2022; Rombach et al. 2021a; Dhariwal and Nichol
2021; Xiao, Kreis, and Vahdat 2021; Song et al. 2021a;
Bansal et al. 2022). We explore how diffusion models fa-
cilitate OOD inversion and image manipulation.

Multiple diffusion models covered in this work We
posit that if forward processes in diffusion models share
similarities, specific attributes should consistently manifest
across diverse architectures, as the model dynamics are un-
changed (Song et al. 2021b). We investigate the behav-
ior of three different diffusion models: Diffusion Autoen-
coders (Preechakul et al. 2022) (DAE), Diffusion-Denoising
Models for Few-shot Conditional Generation (Sinha* et al.
2021) (D2C), and Latent Diffusion Model (Rombach et al.
2021a) (LDM). DAE and D2C are both autoencoder-based
architectures that utilize diffusion processes for encoding
and decoding. DAE employs an additional semantic encoder
network to condition the diffusion process, while D2C fits
a conditional diffusion model on the latent space of a pre-
trained VAE. LDM is the state-of-the-art among diffusion
models and is the backbone for many popular variants, such
as Stable Diffusion (Rombach et al. 2021b). Note that while
we do not analyze stable diffusion as it is trained on the very
large LAION dataset (Schuhmann et al. 2021), we do ana-
lyze their unconditional latent diffusion model trained on a
specific dataset, FFHQ, which we denote as LDM (FFHQ).
Our OOD analysis results, therefore, should also apply to
the stable diffusion model.

Inverting Out-of-Distribution Images
We use model-specific inversion techniques for inverting im-
ages onto the diffusion space. We obtain DAE’s semantic
and stochastic latents by following the procedure outlined
in (Preechakul et al. 2022). For D2C, we use the pretrained
variational encoder presented in (Sinha* et al. 2021) to ex-
tract features from the input image. Subsequently, we pass
the features through the pretrained conditional latent diffu-
sion process, where we set the condition value to be 0 to
reflect that we need an unmodified image. For LDM (Rom-
bach et al. 2021a), we pass the input image through the
pretrained vector quantized (van den Oord, Vinyals, and
Kavukcuoglu 2017) encoder and then apply the forward pro-
cess to obtain the corresponding latent. We can reconstruct
the output image by using the conditional reverse process
for DAE (Preechakul et al. 2022) or a decoding step in the
case of D2C (Sinha* et al. 2021) and LDM (Rombach et al.
2021a).

What do we consider as out-of-distribution? For a given
datasetD on which a model is trained, we introduce the con-
cept of an extended in-distribution dataset. This is formed
by augmenting D with images of analogous characteristics,
such as similar poses and alignments. For models trained on
the FFHQ dataset (Karras et al. 2020), we add the dataset
with images matching FFHQ’s preprocessing criteria, in-
cluding those from CelebA (Liu et al. 2015). Images not ad-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14768



hering to FFHQ’s properties are deemed out-of-distribution
(OOD). While pretrained frameworks like StyleGAN (Kar-
ras, Laine, and Aila 2019; Karras et al. 2020) proficiently
invert in-distribution images, they falter with non-standard
face images or non-face visuals. To precisely categorize
OOD datasets, we employ the ”Proxy A-Distance” (PAD)
metric (Ben-David et al. 2006). CelebA, aligned with FFHQ,
has a PAD of 1.39. In contrast, diverse datasets like Im-
ageNet (Deng et al. 2009) and ImageNet Sketches (Wang
et al. 2019) register PAD values between 1.98 and 2.28,
marking them as ideal OOD examples. Based on our analy-
sis, we suggest a PAD threshold of 1.50 to label a dataset as
OOD. Refer to Table 1 for PAD values related to FFHQ.

Dataset PAD
ImageNet (Deng et al. 2009) 1.98
ImageNet Sketches (Wang et al. 2019) 2.28
DSPRITES (Matthey et al. 2017) 2.26
QuickDraw (Ha and Eck 2017) 2.28
CelebA (Liu et al. 2015) 1.39

Table 1: Proxy A-Distance values for various datasets with
respect to FFHQ (Karras, Laine, and Aila 2019). For our
analysis, a Proxy A-Distance value above 1.50 is considered
indicative of Out-of-Distribution (OOD) data, as evidenced
by the values in this table.

Comparison with state-of-the-art out-of-distribution
inversion in GANs We establish multiple baselines. Our pri-
mary candidate for comparison is SPHInX (Subramanyam
et al. 2022), the current SOTA in OOD inversion. However,
we select several different GANs instead of relying solely on
StyleGAN to obtain a more comprehensive understanding
of GAN behavior. The chosen models are BigGAN (Brock,
Donahue, and Simonyan 2019) and StyleGANXL (Sauer,
Schwarz, and Geiger 2022), trained on ImageNet that can
generate diverse natural images. Although ImageNet is now
included in the distribution for these two models, the other
selected datasets remain out of distribution. These mod-
els also have varied architectures, enabling us to evaluate
the generic behavior of GANs. For StyleGANXL (Sauer,
Schwarz, and Geiger 2022) and BigGAN (Brock, Donahue,
and Simonyan 2019), we use a simple optimization-based
inversion method and set a uniform number of 2000 iter-
ations for each technique. We evaluate the reconstruction
quality using the PSNR and SSIM (Wang et al. 2004) met-
rics.

Empirical observations Table 2 and Figure 2 show that
diffusion models achieve high-quality OOD inversion with
high PSNR and SSIM values. On the other hand, we ob-
serve a significant drop in quality for OOD inversion us-
ing GAN-based models consistently across datasets. We also
observe the current state-of-the-art GAN-based OOD inver-
sion, SPHInX (Subramanyam et al. 2022), to perform rela-
tively well among the GAN inversion baselines. However,
even SPHInX consistently generates inferior results com-
pared to all the diffusion-based inversion techniques across
all the datasets. Interestingly, in the case of BigGAN and
StyleGANXL, even in-distribution inversion is hard, and

their performance is inferior to that of the diffusion mod-
els. Empirical evidence suggests that GAN Inversion strug-
gles more with sketch-like datasets such as QuickDraw (Ha
and Eck 2017) and ImageNet Sketches (Wang et al. 2019) as
these datasets require a large number of iterations to obtain
visually meaningful content. As optimization is necessary
to achieve the best results, GAN Inversion is significantly
slower than inversion in diffusion models. Overall, we pro-
vide strong empirical evidence on diffusion models’ ability
to invert and successfully represent OOD images in their re-
spective latent spaces. Due to limited space, only the results
obtained from DAE are presented visually in the main paper,
as it achieved the highest quantitative scores for OOD inver-
sion. For additional information, kindly refer to our project
page, the link to which can be found in the abstract. But why
do diffusion models perform better in representing OOD im-
ages, and what could prevent GANs from doing the same?
We justify this theoretically below.

Why Does OOD Inversion Perform Better for
Diffusion Models but Is Objectively Much Harder
for GANs?
We attempt to justify this phenomenon by analyzing the in-
herent geometry of the latent space of diffusion models and
GANs. We assume that our set of images drawn from di-
verse datasets is a subset of the distribution of “all natural
images”. From the manifold hypothesis (De Bortoli 2022),
we assume this lies on a low-dimensional manifold. This di-
mension is often much smaller than the dimension of latent
spaces used in most generative models (Pope et al. 2021;
Sauer, Schwarz, and Geiger 2022). Our equivalent prob-
lem is whether a given diffusion model can embed a given
low-dimensional manifold. As (De Bortoli 2022) shows that
convergence holds in the 1-Wasserstein metric for the SDE
formulation used in Equation 1 i.e., we can embed low di-
mensional manifolds whose dimension is smaller than the
latent dimension and theoretically recover the said distribu-
tion. This is a plausible justification for the models’ capabil-
ity of inverting OOD images.

dx = f(x, t)dt+ g(t)dw (1)

Mathematically defining inversion The problem of inver-
sion involves finding the latent representation z correspond-
ing to a given image x ∈ RH×W that best approximates
the given image in the space of some generative model G.
In general, if we denote the latent space of a model by Z
then z is the solution to the constrained optimization prob-
lem given by z = argmin∥G(z) − x∥R, z ∈ Z , where R.
is some suitable reconstruction metric. Diffusion models, on
the other hand, typically obtain z using the forward process,
whereas GANs lack an explicit mechanism to get z, making
the resulting optimization problem practically challenging to
solve. Our empirical observations show that the inverted dis-
tributions learned by GANs often do not match the prior of
G, which limits their usefulness for downstream tasks. This
discrepancy between the learned and actual priors is the crux
of the difference in inversion settings of GAN and diffusion
models.
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ImageNet ImageNet Sketches DSPRITES QuickDraw
Models PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑)
SPHInX (FFHQ) 27.63 0.8924 21.79 0.7708 27.69 0.9013 23.06 0.8016
StyleGANXL (ImageNet) 26.83 0.8718 20.85 0.6924 24.87 0.8517 22.68 0.7963
BigGAN (ImageNet) 23.37 0.8126 19.63 0.7015 24.72 0.8542 22.23 0.7924
DAE (FFHQ) 32.14 0.9823 31.77 0.9587 32.09 0.9662 32.04 0.9645
D2C (FFHQ) 31.68 0.9564 30.82 0.9413 32.03 0.9634 31.86 0.9592
LDM (FFHQ) 31.84 0.962 30.96 0.9431 31.67 0.957 32.01 0.9627

Table 2: We compare OOD image inversion for multiple models across multiple datasets. The training dataset for each model
is also reported within brackets. We observe diffusion-based models to outperform GANs for OOD inversion significantly.

Defining prior holes We define an encoder model as E =
qϕ(z|x) (E represents any process used to invert an image,
whether by optimization or by leveraging a trained network
etc.), and a prior model as pθ(z), where z is a latent variable
and ϕ and θ are parameters. The issue of mismatch arises
between qϕ(z) and pθ(z), where qϕ represents the aggregate
posterior, which is defined as qϕ(z) = Epdata(x)[qϕ(z|x)].
The mismatch between the prior and aggregate posterior
distributions in GANs can result in ”holes” in the prior
that the aggregate posterior fails to cover. This can lead to
worse generation quality as the inversion process may tra-
verse through points that do not lie in the manifold. Indeed,
as (Choi et al. 2022) shows, deviations from the manifold re-
sult in poor visual quality for StyleGAN. We formally define
the prior hole as follows: let p(z) and q(z) be two distri-
butions with supp(q) ⊆ supp(p) such that the probability
measures are well defined. q has an (ϵ, δ) prior hole with
respect to p for ϵ ∈ (0, 1) and δ ∈ (ϵ, 1) if there exists an
S ∈ supp(p) such that

∫
S
p(z)dz ≥ δ and

∫
S
q(z)dz ≤ ϵ.

In other words, the probability mass of the aggregate poste-
rior falls short of the probability mass of the prior in certain
regions if prior holes exist.

Observation regarding Prior Holes in (Sinha* et al.
2021) Let pθ(z) = N (0,I). For any ϵ > 0, ∃ a distribu-
tion qϕ(z) for any ϵ > 0, δ < 0.5 with an (ϵ, δ) prior hole
such that DKL(qϕ||pθ) and W2(qϕ, pθ) < γ for any γ > 0.
Here, DKL refers to the KL Divergence, and W2 refers to
the 2-Wasserstein distance. Thus, divergence objectives fail
to solve the prior holes for normal priors. Therefore, in-
verted embeddings are not guaranteed to cover the prior if
the prior is an isotropic Gaussian, which is the latent prior
assumed for various GAN models. In this work, we extend
this to a broad class of priors by the following hypothesis to
reason the generic difficulty of GAN-inversion.Such a sce-
nario becomes important for latent spaces such asW,W+ in
the StyleGAN family (Karras, Laine, and Aila 2019; Karras
et al. 2020, 2021).

Lemma 1: Our extended hypothesis on prior holes for
GAN-inversion Let pθ(z) be any prior distribution such that
pθ is absolutely continuous over Rn. For any ϵ > 0, ∃ a dis-
tribution qϕ(z) for any ϵ > 0, δ < 0.5 with an (ϵ, δ) prior
hole such that DKL(qϕ||pθ) and W2(qϕ, pθ) < γ for any
γ > 0. The intuition behind this hypothesis follows from
the fact that we can obtain a large class of priors from the
Isotropic Gaussian using a simple transformation. There-
fore, we can now reason why inversion is hard in mod-
els like StyleGAN, which can easily generate high-quality

in-distribution images. While in GANs, posterior and prior
matching ensures sampling is good, learning an encoder or
even directly optimizing a latent for inversion is hard as the
“embedded” latent space might be forming holes in the prior.

Lemma 1.1: Prior Holes are eliminated in Diffusion
Models We now consider the case of diffusion models and
claim that prior holes are eliminated for diffusion model-
based inversion by construction. The prior for a diffusion
model can be regarded as N (0, I) as this is the distribution
used for sampling. From our discussion earlier, the analog
to the encoder, in this case, is the forward process. Observe
that as (Song et al. 2021a) show, the forward diffusion pro-
cess can be represented in terms of a Stochastic Differen-
tial Equation (SDE) (Song et al. 2021a; De Bortoli 2022)
according to Equation 1. The SDE describing the diffusion
process of x(t) is a standard Wiener process w with the drift
coefficient f(, t), and the diffusion coefficient g : R → R.
Due to the process’s nature, as demonstrated by (Song et al.
2021a), the forward process converges toN (0, I) as t→∞,
given a small enough step size. Therefore, we can conclude
that the learned distribution matches precisely with the prior
distribution N (0, I), which is used for sampling. Thus, our
analysis offers a compelling explanation for the empirical
results observed in our study.

Original BigGAN StyleGANXL SPHInX DAE Im
ageN

et-Sketches
M
S-CoCo

Q
uickDraw

Figure 2: We show inversion results on OOD images from
different datasets. The figure shows that the diffusion-based
technique outperforms the SOTA GAN-based OOD inver-
sion techniques.
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Traversing the Latent Space To Perform
Different Image Manipulations

Diffusion models, such as Imagen (Saharia et al. 2022),
DALL-E2 (et al 2022), and Stable Diffusion (Rombach
et al. 2021b,a), have shown prowess in editing tasks, espe-
cially text-based editing. Diffusion-CLIP (Kim, Kwon, and
Ye 2022) offers an advanced method using clip loss for
text-conditioned image editing, while other image-to-image
translation approaches (Saharia et al. 2021) condition the
generation on various input types. This raises the question of
why the diffusion space is so amenable to editing. We believe
that the answer lies in the diffusion space’s geometric prop-
erties that help traverse different points in the latent space.
We observe that an exploration of these properties yields
valuable insights. We have already highlighted the capabil-
ity of different types of OOD images to be represented in a
diffusion space. However, a common feature of such high-
dimensional representation spaces is the “Curse of Dimen-
sionality” (Zhao, Zhu, and Zhang 2019; Vershynin. 2015;
Giné et al. 2006; Scott 2015), which results in increasingly
sparse spaces with higher dimensions. Therefore, we must
avoid the curse of dimensionality for diffusion spaces to en-
sure that distances between embeddings in our latent space
are bounded. We present two lemmas in this section, guar-
anteeing that the distance between any two latents is always
bounded.

Lemma 2.1: Sampling from a d dimensional Isotropic
Gaussian can be approximated closely by sampling from a
Uniform Prior on the d− 1 dimensional hypersphere with
radius

√
d. It is known that, that in high dimensions, the

distribution of a normalized random vector sampled from
the isotropic Gaussian X

∥X∥ ,X ∼ N (0, I) is Uniform on the
unit hypersphere. Using concentration inequalities, we then
derive the

√
d bound.

Lemma 2.2: Given any two datasets of samples each,
their Wasserstein distance is bounded in a spherical la-
tent space and is of the order of as where r is the ra-
dius of the hypersphere This lemma proposes that the dis-
tance between two data points in the spherical space is al-
ways bounded implying that the distance behaves well as
the dimension increases, allowing us to evade the curse of
dimensionality. Consequently, we observe that the geome-
try of the latent space allows for two important properties:
(1) a well-defined underlying geometry of the latent space
and (2) all data points are located at a finite distance from
each other. These properties suggest that it is possible to tra-
verse from any given inverted image to any other inverted
image using a geodesic while remaining on the manifold.
Therefore, during manipulation, the quality of images can
be maintained easily. In contrast, traversing in theW space
of StyleGAN often results in low-quality images as we de-
viate from the manifold (Choi et al. 2022). The key take-
away is that the bounded distance between embeddings in
our well-parameterized latent space allows for efficient im-
age manipulation and avoids issues that arise in other high-
dimensional spaces.

Utilizing the geometry of the latent space for traver-
sal To understand how any transformation in an image
is reflected in the latent space, we must examine the phe-
nomenon of traversal. By starting with a given starting latent
zS and following a path γ, we can end up at a modified la-
tent zT . Our path may be along a geodesic (line segment) or
non-linear if it does not follow any geodesic.

Geodesic interpolation We first formalize the geodesic in-
terpolation in Algorithm 1 between a source image IS and
a target image IT . The inversion and reconstruction oper-
ations are denoted as Invert() and Recon(), respectively.
The dot product is represented by <>, and Uni refers to
the Uniform Distribution. The resulting interpolated image
is denoted by Iint. We use this process to evaluate geomet-
ric interpolation between large sets of source images and
their corresponding synthetic manipulations as targets. By
interpolating through the geodesic that connects IS and IT ,
we observe that the generated images further away from zS
show a progressive change in the manipulation concerned,
moving closer towards IT . In other words, the resulting im-
ages display a gradation in their level of manipulation as we
move along the geodesic.

Algorithm 1: Geodesic Interpolation
Data: IS , IT ∈ RH×W

Result: Iint
zS ← Invert(IS) zT ← Invert(IT )
ϕ← cos−1(< zS , zT >)
α ∼ Uni([0, 1])

zint ← sin((1−α)ϕ)
sin(ϕ) zS + sin(αϕ)

sin(ϕ) zT
Iint ← Recon(zint)

Geodesics for the same manipulation are parallel across
images To assess if a manipulation direction for one image
pair generalizes to others, we must examine its applicability
across multiple instances. If the direction shows a high de-
gree of generality, it would suggest that the latent space is
well-structured and different attributes of OOD images are
disentangled in the latent space. This enables estimating a
global manipulation direction using only a few examples and
applying it to a more extensive set of images. We measure
the degree of parallelism between the geodesics obtained by
calculating their average angle. A value close to zero indi-
cates a higher degree of parallelism and greater generality.
We show the degree of parallelism for three kinds of manip-
ulations: ”white box effect in images”, Gaussian blur, and
gray-scaling images across a set of diffusion models using
angles computed between directions in Table 3. In this case,
an angle ≈ 0 implies that the directions are parallel, while
a similar experiment using SPHInX (Subramanyam et al.
2022) in the StyleGAN latent space has a much larger angle.
Therefore, we observe that diffusion models show a high de-
gree of generality for manipulations in practice. The parallel
directions for a particular manipulation in the latent space
point toward the disentanglement of specific properties in
the diffusion space for OOD images.
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Figure 3: We show that linear traversal along a geodesic in diffusion space yields high-quality results for different manipulations.

Models Gaussian Blur Grayscale White box
SPHInX (FFHQ) 1.12 0.89 1.05
DAE (FFHQ) 0.09 0.07 0.08
D2C (FFHQ) 0.11 0.12 0.07
LDM (FFHQ) 0.08 0.11 0.09

Table 3: We analyze the parallelism of manipulation direc-
tions, reporting results as average angles in radians. In dif-
fusion space, directions for specific OOD image manipula-
tions are nearly parallel (close to 0), while the leading GAN-
inversion technique for OOD images doesn’t show this con-
sistency.

Linear traversals along a geodesic Prior works such as
DiffusionCLIP (Kim, Kwon, and Ye 2022) have already
shown that given an initial source latent zS , it is possible
to manipulate it to a target latent zT using gradient descent
on a loss objective Lobj . We investigate how the properties
of a diffusion space translate into the manipulation of var-
ious kinds that interest the community. The manipulations
can be broadly categorized into three groups: low-level, se-
mantic, and geometric manipulations. Low-level image ma-
nipulations include tasks like adjusting lighting and color,
while semantic manipulations involve modifying attributes
with higher semantic meanings. On the other hand, geomet-
ric manipulations require complex transformations like pose
transfer. We perform each of these types of manipulations by
optimizing appropriate loss functions. For example, for ob-
ject pose modification, the loss objective combines an iden-
tity loss to maintain image consistency and an alignment loss
to achieve the desired pose. After the target image is ob-
tained, we perform interpolation following Algorithm 1 be-
tween zS and zT to get an approximation of the geodesic that
corresponds to this manipulation. If the intermediate images
obtained show a steady gradation in their properties, we term
the direction as linear i.e., representable by a geodesic. We
found that a broad class of linear directions can be obtained
for many differing tasks. We leverage the parallel nature of
manipulation directions to identify average global direction
by utilizing multiple pairs of ground-truth images where a
specific property, is altered. The global direction is applied

to unseen images to effect the same manipulation. This strat-
egy works effectively when ground-truth pairs for a certain
manipulation can be accessed, and linear traversal is pos-
sible in the latent space. We provide visual results in Fig-
ure 3 for different types of manipulations along appropriate
geodesics.

Input SPHInX-BRGM
Non-linear 

Traversal in DAE Ground-Truth

Colorization
Super-resoluti

on
Inpainting

Figure 4: We show that non-linear traversal in diffusion
space yields high-quality results for image colorization,
super-resolution, and object removal using inpainting.

Learning non-linear traversals in the diffusion space
To learn non-linear traversals in the diffusion space, we
use a neural network fθ, learning non-linear directions. We
choose to solve three popular computer vision tasks: (1) In-
painting (INP), (2) Colorization (CL), and (3) Super Res-
olution (SR), using the diffusion space for OOD images.
We extract a 32 × 32 section from the original image and
use the modified image as input for inpainting. In the case
of colorization, we use grayscale images as input. On the
other hand, super-resolution involves increasing the reso-
lution from 8 × 8 to 256 × 256, representing a 32× up-
sampling. We first use bicubic interpolation to generate a
blurred 256 × 256 image that serves as the input. For each
task, input and ground-truth images are inverted to various
diffusion spaces, and a standard MLP network, comprising
five layers with two 256-size bottleneck layers and ReLU
activations, is trained to learn a mapping between these in-
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CL SR INP
Models PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑)
SPHInX-PULSE (FFHQ) 26.85 0.8726 25.11 0.8604 23.22 0.8148
SPHInX-BRGM (FFHQ) 27.34 0.8823 27.13 0.8837 26.16 0.8701
DAE (FFHQ) 32.12 0.968 32.08 0.964 32.06 0.963
D2C (FFHQ) 32.02 0.961 32.03 0.963 32.12 0.970
LDM (FFHQ) 31.87 0.957 31.72 0.952 32.04 0.964

Table 4: In the table, we assess non-linear traversal performance for colorization, super-resolution, and inpainting. The results
indicate easier traversal and higher quality outputs in diffusion space compared to GANs’ latent space. All the results are
calculated using the LHQ-256 (Skorokhodov, Sotnikov, and Elhoseiny 2021) dataset.

verted latent pairs. We use the Adam optimizer (Kingma and
Ba 2014) with a learning rate of 10−3. Significant improve-
ment is achieved through spherical regularization (Menon
et al. 2020), which projects the network output back onto
the sphere of our latent space. This approach, feasible due
to the known manifold geometry of any diffusion space,
ensures consistent latent space optimization, thereby pre-
serving quality and accelerating convergence. We employ a
standard L1 loss between the predicted and ground-truth la-
tents, which suffices without additional image space losses.
The models are trained and tested on the LHQ-256 (Sko-
rokhodov, Sotnikov, and Elhoseiny 2021) dataset. As mea-
sured by the PSNR and SSIM metrics, evaluation results are
summarized in Table 4.

Comparing non-linear traversal in StyleGAN’s latent
space For OOD images across tasks, direct baselines in
pretrained GAN latent spaces are scarce due to inversion
challenges. Yet, models like PULSE (Menon et al. 2020)
and BRGM (Marinescu, Moyer, and Golland 2020) exist
for faces. We built baselines using SPHInX (Subramanyam
et al. 2022) for OOD inversion in StyleGAN’s space, fol-
lowed by adapting PULSE and BRGM. This sheds light on
non-linear traversal in StyleGAN’s space for OOD images.
After modifying PULSE and BRGM for each task, we used
SPHInX for inversion and changed the loss function appro-
priately for tasks like colorization and inpainting. Evalua-
tion of the LHQ-256 dataset (Table 4) underscores the ease
of traversing diffusion models over GAN-latent spaces. Vi-
sual comparisons are in Figure 4, showcasing the inpainting
model’s versatility, including object removal.

Few-shot enerated Samples

Figure 5: Using just 10 instances from ImageNet’s Fruits
and Cars classes, this figure demonstrates FS-DAE’s ability
to produce diverse, high-quality samples for both.

Few-Shot Generation
GANs are data-hungry and inefficient in training from
scratch on new data, moreover their latent spaces do not al-
low selective sampling of OOD data from a few samples. We
note that the task of generating new samples using a small
fixed set of samples (few-shot generation) can be posed as
a geometric problem in a latent space. Given N inverted la-
tents, it is possible to consider any point on the

(
N
2

)
lines

as a valid new generation. As a preliminary study, we only
consider the linear version in this work, i.e., we sample new
points from the

(
N
2

)
geodesics in the latent space of DAE

and D2C. Our method is benchmarked against the state-
of-the-art Latent Learner (Mondal et al. 2023) and another
few-shot StyleGAN approach (Ojha et al. 2021). We evalu-
ated our technique on a setup consistent with (Mondal et al.
2023; Ojha et al. 2021), using images from datasets like
Babies and sunglasses. Our technique’s efficacy is evident
from FID scores in Table 5. Notably, unlike the compara-
ble works needing fine-tuning for each set of few-shot sam-
ples, our method (FS-DAE & FS-D2C) surpasses the SOTA
without fine-tuning. We also show visual results in Figure 5
for two classes, i.e., 10 images of cars and fruits, respec-
tively, taken from ImageNet. Our approach generates high-
quality images with significant variations, thus opening new
research directions for few-shot image generation.

Method Babies Sunglasses Sketches Bitmoji
Latent Learner 63.31 35.64 35.59 64.50

Ojha et.al 74.39 42.13 45.67 69.54
FS-DAE (Ours) 63.12 35.51 36.21 64.43
FS-D2C (Ours) 63.24 35.59 37.90 64.76

Table 5: We compare FID scores for the different approaches
for a few-shot generation. Our naive geometric approach
generates near state-of-the-art results for this task.

Conclusion
We investigate the latent spaces of advanced diffusion mod-
els like D2C, DAE, and LDM, focusing on OOD image in-
version and manipulation. These models outperform state-
of-the-art GANs, as shown by our rigorous experiments and
theoretical analysis. They are robust and particularly advan-
tageous in low-resource settings, where training new models
is impractical. Our research promotes further exploration of
this paradigm.
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