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Abstract

Programmatic Weak Supervision (PWS) and generative mod-
els serve as crucial tools that enable researchers to maximize
the utility of existing datasets without resorting to laborious
data gathering and manual annotation processes. PWS uses
various weak supervision techniques to estimate the under-
lying class labels of data, while generative models primarily
concentrate on sampling from the underlying distribution of
the given dataset. Although these methods have the poten-
tial to complement each other, they have mostly been studied
independently. Recently, WSGAN proposed a mechanism to
fuse these two models. Their approach utilizes the discrete
latent factors of InfoGAN to train the label model and lever-
ages the class-dependent information of the label model to
generate images of specific classes. However, the disentan-
gled latent factors learned by InfoGAN might not necessarily
be class-specific and could potentially affect the label model’s
accuracy. Moreover, prediction made by the label model is of-
ten noisy in nature and can have a detrimental impact on the
quality of images generated by GAN. In our work, we address
these challenges by (i) implementing a noise-aware classifier
using the pseudo labels generated by the label model (ii) uti-
lizing the noise-aware classifier’s prediction to train the label
model and generate class-conditional images. Additionally,
we also investigate the effect of training the classifier with a
subset of the dataset within a defined uncertainty budget on
pseudo labels. We accomplish this by formalizing the subset
selection problem as a submodular maximization objective
with a knapsack constraint on the entropy of pseudo labels.
We conduct experiments on multiple datasets and demon-
strate the efficacy of our methods on several tasks vis-a-vis
the current state-of-the-art methods. Our implementation is
available at https://github.com/kyrs/subpws-gan

Introduction
The success of many deep learning methods is often credited
to the availability of large amounts of labeled data (Deng
et al. 2009; Cao et al. 2018). However, labeling necessitates
manual annotation, which is a time-consuming and labor-
intensive process. Distant supervision or weak supervision
methods address this issue by using an external knowledge
base (Hoffmann et al. 2011), pre-trained models (Bach et al.
2019), and heuristics approaches (Awasthi et al. 2020) to
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generate inexpensive but potentially noisy class labels for
downstream tasks. These methods use an alternative source
of information to assign labels to the training data and thus
avoid the need for extensive manual annotation. However,
the pseudo labels generated by such methods are often noisy
in nature and can have a detrimental impact on downstream
performance.

Programmatic weak supervision (Zhang et al. 2022a; Rat-
ner et al. 2016, 2020) addresses this issue by combining
the prediction of multiple such noisy sources of labels of-
ten known as label functions (LFs) systematically. In PWS,
a label model is trained to combine the prediction of these
label functions to estimate the unobserved ground truth la-
bel for a given training sample. The generated pseudo label
is then used for downstream training. For a given set of la-
bel functions, the quality of the pseudo label is often deter-
mined by the performance of the label model. Various ap-
proaches have been suggested to effectively train the label
model (Zhang et al. 2022a) without knowing the underly-
ing ground truth class labels. While approaches like (Ratner
et al. 2016, 2020, 2019; Fu et al. 2020) use only the predic-
tion of label functions to estimate the pseudo label, encoder-
based label models also consider data features to estimate
pseudo labels (Cachay et al. 2021; Boecking et al. 2023).

Recently, Boecking et al. (2023) proposed WSGAN, a
novel training strategy to efficiently generate pseudo labels
for a given image dataset. Their approach combines Info-
GAN with an encoder-based label model (Cachay et al.
2021). The key idea is to train both InfoGAN (Chen et al.
2016) and label model simultaneously and leverage the dis-
entangled latent factors learned by InfoGAN to align the la-
bel model’s predictions. This training process offers several
advantages. The synchronized training of the label model
and InfoGAN allows the efficient utilization of the disen-
tangled latent factors of InfoGAN for the training of the la-
bel model. Simultaneously, the pseudo labels generated by
the label model facilitate the generation of class-conditioned
images, which can benefit downstream tasks as an additional
form of data augmentation.

Nevertheless, the implementation of such a training pro-
cess presents several challenges. The disentangled latent
representation of InfoGAN is learned by maximizing the
mutual information between the discrete conditional in-
put and the generated images. However, the representations
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(latent factors) learned from InfoGAN may not be class-
specific. In such a scenario, aligning the prediction of the
label model with such latent factors can hurt the accuracy
of the label model. Furthermore, the predictions of the label
models are often noisy in nature, and using the pseudo la-
bels directly for GAN training can make the overall training
process unstable, impacting the quality of images generated
by InfoGAN.

In this study, we address these challenges by training
a noise-aware classifier-guided conditional GAN (Odena,
Olah, and Shlens 2017) for the training of label model and
synthetic image generation. In contrast to conventional con-
ditional GANs that rely on authentic ground truth labels
during training, our approach operates within a weak su-
pervision framework, where the pseudo labels generated
by the label model are used to train the classifier. To han-
dle the noise associated with the pseudo labels, the classi-
fier is trained using a noise-aware symmetric cross entropy
loss (Wang et al. 2019) in an adaptive fashion (Morerio et al.
2020). Within the current setup, as training proceeds, a new
set of the refined dataset and associated pseudo labels gen-
erated by the label model are used to train the classifier.

Further, a recent line of research by Lang, Vijayaragha-
van, and Sontag (2022) shows that, in weak supervision,
a subset of the most representative training samples yields
superior performance compared to using the entire dataset
for downstream training of a classifier. Motivated by this,
we propose to utilize a subset of highly representative and
diverse examples that exhibit minimal uncertainty with the
pseudo labels. We accomplish this by incorporating a data
subset selection process for weak supervision by formulat-
ing it as a submodular maximization problem (Bilmes 2022;
Krause and Golovin 2014) with a knapsack constraint de-
fined over the overall entropy of the pseudo labels of the se-
lected samples. (Krause and Golovin 2014; Xiong, Mehta,
and Singh 2019). Our contributions are summarized below:

(1) We propose a novel technique to fuse a classifier-
guided conditional GAN with an encoder-based label model.
Within the framework of programmatic weak supervision
(PWS), this helps in efficient training of the label model
and generation of class conditional images, (2) We present
a novel approach for subset selection to be used in tandem
with PWS by identifying the most diverse and representative
samples via a submodular maximization technique, aiding
in the reduction of the uncertainty associated with the train-
ing dataset, and (3) We investigate the impact on the overall
performance of the label model as well as on the quality
of images using the proposed subset selection scheme and
compare our method with the current state-of-the-art.

Related Work
Programmatic Weak Supervision
Programmatic Weak Supervision (Ratner et al. 2016) is
an efficient technique that addresses the issue of lack of
ground truth labels for a downstream task. Within this
framework, a subject matter expert uses different sources of
noisy labeling schemes to annotate the unlabeled dataset.
These sources often known as label functions (LFs) provide

partial information about the true labels and exhibit superior
performance than a random model. Generally, these label
functions are often approximated using an external knowl-
edge base (Hoffmann et al. 2011), pre-trained models (Bach
et al. 2019), and other similar techniques (Zhang et al.
2022a). A common practice in PWS is to define a threshold
associated with each label function so that an LF can
abstain from making an uncertain prediction about any
example. One of the main tasks in PWS is to train a label
model that combines the prediction from different LFs to
estimate the underlying ground truth labels. This is done
by estimating the accuracy and dependency between LFs
and then using it to weight their prediction to estimate
the pseudo labels. Different methods have used different
approximation techniques to make informed predictions
about the pseudo labels. Ratner et al. (2016) modeled the
label model using a factor graph, Dawid and Skene (1979)
used expectation maximization to estimate the pseudo
labels, Ratner et al. (2019) used a Markov network and
matrix completion techniques to recover the associated
parameters, FlyingSquid (Fu et al. 2020) used Ising model
to predict pseudo labels. While most of the methods esti-
mate the pseudo labels by only considering the prediction
made by the label functions, Cachay et al. (2021) proposed
to use a neural network, which implicitly captures these
dependencies and use data-dependent features to estimate
the accuracy of the label functions. WSGAN (Boecking
et al. 2023) and WSVAE (Tonolini et al. 2023) further built
on top of the idea proposed by Cachay et al. (2021), and use
generative models such as InfoGAN and VAE to train the
label model. While WSGAN proposed the given fusion for
image data, WSVAE primarily focused on improving the
label model’s performance. To improve the performance of
the downstream model, recent works (Zhang et al. 2022b;
Yu, Ding, and Bach 2022) have proposed to use noise-aware
loss in PWS. However, these losses utilize the weights of
label model to improve the downstream prediction task and,
hence, are not suitable for the training of the label model.
Label models are generally data agnostic and only depend
on the prediction made by the label functions. However,
the label function used to generate noisy labels can differ
for different data modalities. For instance, Varma and Ré
(2018) proposed to generate pseudo labels using heuristic
rules. Similarly, Chen et al. (2019) define rules on top of
the prediction made by a surrogate model. Boecking et al.
(2020) used the information from other modalities of data
like text to estimate the labels.

Conditional GAN and Noisy Labels
Synthetic data generated using class-conditional genera-
tive models, such as Generative Adversarial Networks
(GANs) (Goodfellow et al. 2014) is another approach to ef-
ficiently utilize the available dataset. However, in a weak
supervision setting, such a model needs to be trained with
noisy class labels. In a noisy environment, several meth-
ods have been proposed to efficiently train conditional
GAN (Han et al. 2020; Kaneko and Harada 2021). How-
ever, most of these methods use a predefined set of noisy
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class labels to train the GAN. Recently, Morerio et al. (2020)
have shown that in a multi-domain setting, the performance
of a classifier can further be improved by utilizing a con-
ditional GAN. They proposed a unique training paradigm
where the GAN and the classifier are jointly trained in an
iterative fashion, in which the classifier provides refined la-
bels for the GAN, and the GAN provides better samples to
train the classifier. However, the training of such a model is
limited only to a multi-domain setting, where accurate class
labels for at least one domain are available.

Subset Selection for Weak Supervision
The performance of a classifier in a weakly supervised set-
ting is influenced by the data used for its training (Lang,
Vijayaraghavan, and Sontag 2022; Maheshwari et al. 2020;
Mirzasoleiman, Cao, and Leskovec 2020). There exists a
trade-off between the quantity of data used and the accuracy
of the corresponding pseudo labels (Lang, Vijayaraghavan,
and Sontag 2022). Generally, it is customary to utilize the
entire dataset for training purposes. However, this approach
may introduce unnecessary noise and potentially hinder the
overall performance of the classifier. A possible solution is
to formulate the given problem as a subset selection prob-
lem and select the most representative samples with the least
entropy associated with the pseudo labels for the training
of the classifier (Lang, Vijayaraghavan, and Sontag 2022).
However, these methods do not provide any guarantee for
the representativeness and diversity of the samples used for
training and are not computationally suited for an adaptive
training setting, which requires selecting multiple pseudo-
labeled subsets.

Selecting an optimal subset of representative samples
from the training data is an NP-hard problem. However, if
the function used to measure the utility of a given set is
shown to be submodular, then the set generated by maximiz-
ing the given utility using a greedy based selection scheme
with constraints like cardinality (Nemhauser, Wolsey, and
Fisher 1978) and knapsack (Xiong, Mehta, and Singh 2019;
Leskovec et al. 2007; Krause and Golovin 2014), is guar-
anteed to be very close to the optimal set, thereby approxi-
mately solves the subset selection problem.

Recent works (Bilmes 2022; Xiong, Mehta, and Singh
2019; Joseph et al. 2019; Simsar et al. 2023; Wei, Iyer, and
Bilmes 2015; Maheshwari et al. 2021; Sinha et al. 2020),
have used submodular functions to select a subset of the en-
tire data for efficient training of deep learning models.

Proposed Method
Problem Setting and Overview
Let there be n training data samples D̃ = {x1, x2, . . . xn}
drawn i.i.d from a distribution Px. The objective of our for-
mulation is two folds: firstly, we want to infer the class labels
for these samples i.e., y ∈ {0 . . . C} and secondly, we want
to sample synthetic images whose marginal is represented as
Px. In our setting, instead of observing true labels, we have
access to the predictions of K label functions on given train-
ing data. Each label function λk(xi) (where k ∈ {1 . . .K})
generates a noisy prediction of the true class label for a

sample xi. These label functions can either predict among
a given set of possible class labels i.e, λk(xi) ∈ {0 . . . C} or
can abstain from making a prediction because of low con-
fidence (Ratner et al. 2016). Let us refer to the data with
a prediction from at least one label function as D̃t ⊆ D̃
(non-abstained dataset). For each data sample we have an
associated prediction from K label functions represented as
Λ(xi) = (λ1(xi), λ2(xi) . . . λK(xi)). A label model (L)
utilizes the predictions made by these LFs to predict a fi-
nal pseudo label (ŷi) for a given input sample xi. To train
our noise-aware classifier, we generate a subset of original
training data D̃0 ⊆ D̃t and their associated pseudo labels
(Ŷ = {ŷ1 . . . ŷ|D̃0| }) and study the impact of training the
noise-aware classifier with the given subset on the overall
performance of the conditional GAN and the label model.

Figure 1: Overview of the proposed fusion between condi-
tional GAN and Programmatic Weak Supervision. In the
current setup, a subset of the non-abstained samples, se-
lected by submodular maximization under a knapsack con-
straint (subset selection (SS)), is used to train a noise-aware
classifier (P(y|x)). This classifier shares its network weights
with the discriminator (D) and label model (L). The noise-
aware classifier is then employed to train the generator (G)
and refine the label model.

Noise-Aware Classifier Training
As stated previously, we have used a classifier to facilitate
the training of the conditional GAN and the alignment of
the label model. Given the absence of ground truth labels,
the classifier is trained using the pseudo labels generated by
the label model.

The cross-entropy loss is a common choice of the loss
function used to train a classifier. However, recent stud-
ies (Wang et al. 2019; Feng et al. 2021) have shown that a
classifier trained only with cross-entropy loss under a noisy
setting tends to exhibit prediction bias and is susceptible to
overfitting. In the context of weak supervision, such a clas-
sifier can not only impact the performance of the conditional
GAN but can also lead to further deterioration of the quality
of pseudo labels generated by the label model.

In our study, we address this issue by training our classi-
fier using a symmetric cross-entropy loss (lsce) (Wang et al.
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2019) between the pseudo label (ŷ ∼ Ŷ) generated by the la-
bel model, and the class conditional distribution modeled by
the classifier (P(y|x)). The classifier is trained on a subset of
the training dataset (D̃0) selected by our proposed submod-
ular maximization scheme. Symmetric cross-entropy loss
is a weighted combination of standard cross-entropy loss
(lce) and reverse cross-entropy loss (lrce). While the cross-
entropy loss provides a better convergence to the classi-
fier, reverse cross-entropy loss provides robustness to dif-
ferent types of noise such as uniform and class conditional
noise (Wang et al. 2019; Ghosh, Kumar, and Sastry 2017),
thereby ensuring that the classifier does not overfit to noisy
class labels. Mathematically, the symmetric cross-entropy
loss (lsce) is described in Eq. 1.

lce(x, ŷ) = −
C∑

t=0

ŷt log(P(t|x))

lrce(x, ŷ) = −
C∑

t=0

P(t|x) log(ŷt)

lsce(x, ŷ) = αlce(x, ŷ) + βlrce(x, ŷ)

lD̃0
sce =

1

|D̃0|

∑
x∼D̃0,ŷ∼Ŷ

lsce(x, ŷ) (1)

The classifier is trained in an adaptive manner (More-
rio et al. 2020), where a new set of data (D̃0) is introduced
for training after a specific number of epochs. During the
training, the given examples and their associated pseudo la-
bels remain unchanged until the next iteration. This ensures
that as the accuracy and performance of the label model im-
prove, a more refined dataset and its corresponding pseudo
labels are utilized for training. Simultaneously, it prevents
the model from diverging due to frequent alterations in data
samples and their associated pseudo labels.

Conditional GAN

In our study, we have employed a classifier-guided genera-
tive adversarial network (GAN) to generate class conditional
images (Odena, Olah, and Shlens 2017). The generator (G)
is fed a noise sample z ∼ N(0, I) and a one hot represen-
tation of class label c ∼ P(C) to sample an image (xg =
G(z, c)) from the parameterized distribution (Pθ). The dis-
criminator (D) tries to distinguish between the images sam-
pled from real data distribution (Px) and the images sam-
pled from parameterized distribution (Pθ). For conditional
image generation, the generator further maximizes the like-
lihood of the image (xg) belonging to class c with respect
to our noise-aware classifier. The objective function that is
optimized for Conditional GAN training is as follows:

l(G,D) = E
x∼Px

[log(D(x))] + E
x∼Pθ

[log(1−D(x))]

min
G

max
D

lgan =l(G,D) + E
x∼G(z,c),c∼P(C)

[lce(x, c)] (2)

Construction of Label Models
In programmatic weak supervision, the label model accu-
mulates the predictions made by different label functions to
make an informed final estimation of the pseudo label as-
sociated with the given training sample. Generally, this is
done by defining an accuracy potential function (ϕk) to cap-
ture the association between the prediction made by a given
label function and any class label y (ϕk(λk, y)). Similar to
previous works (Boecking et al. 2023; Ratner et al. 2020),
we have defined the accuracy potential as an indicator func-
tion, ϕk(λk, y) = 1(λk = y) which captures the notion
whether a given label function (λk) has predicted class y
for a given input sample. With each label function, there
is an associated accuracy parameter (Ak : RN → (0, 1)),
which determines the accuracy of its prediction. We have
used sample-dependent accuracy parameters, where the ac-
curacy of every such association is different for different in-
put samples (Cachay et al. 2021; Boecking et al. 2023). The
label model (L(Λ(x))j), defined below, captures the proba-
bility associated with class j for any input sample x.

L(Λ(x))j =
exp(

∑K
i=0 A(x)iϕi(λi(x), j))∑

s∈y exp(
∑K

i=0 A(x)iϕi(λi(x), s))

where j ∈ {0 . . . C} (3)
The final pseudo label, associated with the input sample

x, is defined as the class with the maximum probability.

ŷ = argmax
j

L(Λ(x))j (4)

To enhance the precision of the generated pseudo labels,
the label model is trained using the probabilities generated
by the classifier for the samples from the non-abstained
dataset (D̃t). In this approach, we employ a linear layer
followed by a softmax (F̂ ) for the alignment of probabili-
ties between the output of the label model and the classifier
(P(t|x)) (Boecking et al. 2023), giving rise to the following
loss function.

lalign(x) = −
C∑

t=0

P(t|x) log(F̂(L(Λ(x))t) (5)

Since our classifier is trained iteratively by utilizing the
pseudo labels generated through the label model

(
ŷ in

Eq. 1
)
, we ensure that the pseudo labels are not entirely ran-

dom, especially during initial epochs. To accomplish this,
we employ a new loss ldecay that assigns equal weights to all
the accuracy parameters and gradually decay this loss as the
label model becomes more accurate (Boecking et al. 2023).
Under this loss, the accuracy parameter for all the label func-
tions is approximated to a value of 0.5, and the overall loss
is decayed by a rate µ as the training proceeds. Mathemat-
ically, it is equivalent to generating an accuracy parameter
of 0.5 for all the label functions, which is approximated by
a vector 0.5 ∗ −→

1 where
−→
1 is a vector of ones with dimen-

sion equal to the number of label functions, giving rise to the
following loss function :

ldecay(x) =µ||A(x)− 0.5 ∗ −→1 ||2 (6)
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This process ensures that during the initial epochs, the
label model approximates a majority vote, and as training
progresses, it becomes more data-specific. Finally, the label
model is trained using llm, by combining alignment and de-
cay loss llm = lalign + ldecay .

Subset Selection for Classifier Training
To facilitate better training of our noise-aware classifier, we
select a subset of data (D̃0) from the training examples that
have received at least one vote from the label functions (D̃t).
We formulate this as a submodular optimization problem as
in (Bilmes 2022; Mirzasoleiman et al. 2013).

Preliminary on Submodularity
Definition 1 A function F : 2V → R is said to be submodu-
lar for a finite set V , if for every A ⊆ B ⊆ V and ∀ v ∈ V\B
F
(
A
⋃
v
)
−F

(
A
)
≥ F

(
B
⋃
v
)
−F

(
B
)

Further, a specific class of submodular functions is called
monotone if ∀

(
A,B ⊂ V

)
s.t. A ⊆ B, F

(
A
)
≤ F

(
B
)
.

A monotonous submodular function can be used to de-
termine the utility of a given set of data for a downstream
task, and an efficient subset of the data can be selected
by maximizing the given function. For a cardinality con-
straint, the process begins with an empty set (S0), and the
selection proceeds iteratively in a greedy manner, select-
ing the data point that maximizes the submodular func-
tion until the given budget on the size is exhausted. Math-
ematically, if v denotes the datapoint to be selected, then
v = argmaxv∈V\Sn−1

F
(
v
⋃
Sn−1

)
− F

(
Sn−1

)
where(

Sn = Sn−1

⋃
v
)
. Although this heuristic method doesn’t

guarantee the generation of an optimal subset due to the
NP-hard nature of the problem, it can still yield a so-
lution that is assured to be in proximity to the optimal
set (Nemhauser, Wolsey, and Fisher 1978) and hence ap-
proximately solves the submodular maximization problem.
Knapsack constraint (Krause and Golovin 2014) is another
special case of submodular maximization, where there are
different costs associated with adding every new element.

A Submodular Framework for Subset Selection In
our work, we have used a generalized graphcut-based
monotonous submodular function (Iyer et al. 2021; Bilmes
2022) that uses a greedy approach to select a set of repre-
sentative and diverse examples to train the classifier. Further,
the selection is done under a knapsack constraint where the
addition of any new data sample has a cost equal to the en-
tropy of the pseudo label associated with it, and the selec-
tion of samples is done under a budget on the overall en-
tropy of the subset. Eq. 7 illustrates the formulation of the
generalized graphcut algorithm. The function (F

(
S
)
) rep-

resents the utility of the set (S), and the variable si,j repre-
sents a kernel function that quantifies the similarity between
the ith and jth samples in the dataset. We have used cosine
similarity over the Inception features (DeVries, Drozdzal,
and Taylor 2020) of the images to define our kernel func-
tion. The term

(∑
i∈D̃t

∑
j∈S sij

)
represents a cumulative

score for the similarity between the samples in set (S) and
the data present in the non-abstained dataset (D̃t), capturing

the representativeness of the selected samples in comparison
to

(
D̃t

)
. Additionally, the term

(∑
l,m∈S sl,m

)
represents

the similarity between the selected samples in set
(
S
)
, min-

imizing which, leads to the selection of diverse data points.
The hyperparameter γ controls the tradeoff between repre-
sentativeness and diversity. Further, choosing γ ≥ 2 ensures
that the given function exhibits monotonicity.

F
(
S
)
= γ

∑
i∈D̃t

∑
j∈S

sij −
∑

l,m∈S

sl,m (7)

We have defined a knapsack constraint on the overall entropy
of the pseudo labels generated by label model for the se-
lected samples. Under the given constraint, every data sam-
ple in D̃t has an associated selection cost equal to the en-
tropy of the pseudo label, and the overall entropy of the se-
lected samples cannot exceed a given budget (B) (Eq. 8).
This enforces the selection of diverse and representative
samples while ensuring that uncertainty associated with the
pseudo labels for the selected samples is within a limit. The
complete objective of our formulation is stated as follows:

max
S⊂D̃t

F
(
S
)

s.t. Cost (S) ≤ B (8)
The budget B on the overall entropy of the pseudo labels for
the selected samples is defined to be a fraction (η where 0 <
η < 1) of the total entropy of the pseudo labels (Cost(D̃t))
for the non-abstained data set. Eq. 9 illustrates the overall
constraint on the given submodular maximization problem,
where H is the entropy defined for a given sample (xl), and
L(Λ(xl)) is the probability distribution of the label model
associated with it.

Cost(S) =
∑
xl∈S

H
(
xl;L(Λ(xl))

)
Cost(D̃t) =

∑
xl∈D̃t

H
(
xl;L(Λ(xl))

)
B = η ∗ Cost(D̃t) (9)

For the submodular maximization problem under a knap-
sack constraint, a naive greedy algorithm can perform arbi-
trarily bad as it is indifferent to the cost associated with each
sample. To account for the selection cost associated with ev-
ery sample, the normal greedy-based selection scheme can
further be modified to create a cost-effective greedy algo-
rithm (CEG) (Eq. 10) to select the optimal set, where c(.)
is the cost function defined for every input sample, vk is
the data point that is selected at kth iteration, F

(
Sk−1

)
is

the utility of the set (Sk−1) as per the the submodular func-
tion defined in Eq. 7 and Sk is the new set created by in-
cluding the data point vk in the set Sk−1. In our formu-
lation, the function c(.) is set to be equal to the entropy
associated with the pseudo label generated by label model(
c(v) = H(v;L(Λ(v)))

)
. The cost-effective greedy can be

summarized as below :

vk = argmax
v∈D̃t/ Sk−1

F
(
Sk−1 ∪ v

)
−F

(
Sk−1

)
c(v)

where Sk = Sk−1

⋃
vk (10)
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The given algorithm is run iteratively until the total cost of
the selected set is less than the predefined budget (B).

Even though cost-effective greedy considers the selec-
tion cost for each sample while selecting a subset, it can
still perform arbitrarily badly in some extreme scenar-
ios (Leskovec et al. 2007). Fortunately, for the given sub-
modular maximization objective, the cost-effective greedy
algorithm can be adapted to provide a constant factor of
1
2

(
1− 1

e

)
to the optimal solution (Prop. 1 in supplementary

material) (Leskovec et al. 2007; Xiong, Mehta, and Singh
2019), hence generating a subset close to the optimal set.
In fact, at least one among the final set (Suniform) selected
by using uniform selection cost ((c(v) = 1)) and the fi-
nal set (Scost) selected using desired cost function

(
c(v) =

H(v;L(Λ(v)))
)

will have a constant approximation bound
with respect to the optimal solution, and the set with the
maximum utility score can be used for the training of the
classifier

(
D̃0 = argmaxS(F(Suniform),F(SCost)

)
.

Experiments
We assess the effectiveness of our method by experiment-
ing with it on different datasets and label functions. Specif-
ically, we use the label functions provided by the authors of
WSGAN (Boecking et al. 2023). The primary experiments
are done on five datasets, namely Animals with Attributes 2
(AWA2) (Xian et al. 2018), DomainNet (Peng et al. 2019),
CIFAR10 (Krizhevsky, Hinton et al. 2009), MNIST (Le-
Cun et al. 1998), FashionMNIST (Xiao, Rasul, and Vollgraf
2017) and German Traffic Sign Benchmark (GTSRB) (Stal-
lkamp et al. 2012). These experiments are conducted on the
following four types of label functions:

Domain transfer: Experiments related to DomainNet
use a domain transfer framework, wherein the label func-
tions are trained using images from distinct source domains,
like paintings, art and are subsequently used to generate
weak labels for a new target domain like real-world im-
ages (Mazzetto et al. 2021). Attribute heuristics: Exper-
iments related to AWA2 use attribute classifiers that are
trained on a fixed set of animal images. The weak labels
for the unseen dataset are generated by training a decision
tree on top of the predictions made by these classifiers. Self-
supervised learning: Experiments related to CIFAR10-B,
MNIST, GTSRB, and FashionMNIST use label functions
generated by finetuning a shallow MLP network over a small
validation dataset. A SimCLR (Chen et al. 2020) model pre-
trained on ImageNet was utilized to generate features for this
experiment. Synthetic: Experiments related to CIFAR10-A
are conducted using label functions generated by synthet-
ically corrupting the true class labels of data under given
propensity and accuracy rate. Further details about the label
functions can be found in WSGAN (Boecking et al. 2023).

Baselines and Evaluation Metrics
We analyze the performance of two versions of our model.
Firstly, we conduct experiments by considering all the sam-
ples where the label function has provided at least one
vote for the classifier’s training i.e., D̃0 = D̃t. The asso-
ciated results related to these experiments are reported as

Ours (comp). Secondly, we conduct experiments where the
dataset for classifier training is selected using the proposed
submodular scheme. The results for these experiments are
reported as Ours (sub). We used Apricot library (Schreiber,
Bilmes, and Noble 2020) to perform submodular optimiza-
tion for subset selection using the lazy greedy method. All
the major experiments are conducted using a DCGAN (Rad-
ford, Metz, and Chintala 2015) architecture. In the cur-
rent design, the discriminator network shares weights with
the classifier and accuracy parameter-based model. Fur-
ther, we have provided a network ablation over styleGAN-
ADA (Karras et al. 2020) architecture under a similar con-
figuration for CIFAR10-B and high-resolution images like
LSUN (Yu et al. 2015) in the supplementary material, which
also includes the hyperparameters of subset selection and
other implementation details.

We utilized the FID (Heusel et al. 2017) score to assess
and compare the image quality produced by our approach.
Similar to WSGAN, we conducted five independent itera-
tions of our proposed technique and recorded the average
FID score. Additionally, as PWS operates in a transductive
setting, we follow the prior work and have reported the mean
accuracy of the pseudo labels on the training data to com-
pare the performance of the label model with other base-
lines. Metrics related to the F1 score, mean precision and
other related scores are provided in the supplementary mate-
rial. We have also evaluated the performance of the proposed
method on the downstream data augmentation task.

To show the improvement in the accuracy of the clas-
sifier, we have reported the Adjusted Rank Index score
(ARI) for the training epochs. We have conducted a com-
parative analysis with different label models, including
Majority Voting (MV), MeTaL (Ratner et al. 2019), Fly-
ingSquid (FS) (Fu et al. 2020), Snorkel (Ratner et al.
2020), hyper-label model(HLM) (Wu et al. 2023) and Daw-
idSkene (DS) (Dawid and Skene 1979). To facilitate this
comparison, we employed the label model codebase from
Wrench (Zhang et al. 2021) and utilized the official code-
base provided by WSGAN and hyper-label model. If any
conflicts emerged during the implementation process due to
version disparities, we referred to the numerical values re-
ported in the paper. When information was unavailable, we
omitted to report those particular numbers.

Results on Classifier Performance
Figure-2 shows the Adjusted Rank Index between the pre-
diction made by our classifier and the underlying ground
truth label. We have further compared it with the prediction
made by WSGAN. The results indicate that the noise-aware
classifier is more effective than WSGAN in learning the un-
derlying ground truth labels.

Results on Label Model Performance
Table-1 shows the comparison of the mean posterior accu-
racy of our proposed method with other baselines. Com-
pared to WSGAN, our proposed method gives a 3.0% im-
provement in AWA2 dataset and around 1.8% improvement
in CIFAR10-A. Among the subset selection and the non-
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Dataset MV MeTaL FS Snorkel DS HLM WSGAN Ours (comp) Ours (sub)
AWA2 0.627 0.622 0.621 0.617 - 0.651 0.670 0.701 0.698

CIFAR10-A 0.831 0.804 0.800 0.804 0.850 0.842 0.872 0.890 0.890
CIFAR10-B 0.719 0.708 0.708 0.709 0.677 0.726 0.729 0.740 0.740
DomainNet 0.595 0.486 0.635 0.507 0.658 0.646 0.643 0.650 0.653

FashionMNIST 0.735 0.730 0.734 0.725 0.717 0.735 0.744 0.754 0.754
GTSRB 0.816 0.619 0.815 0.671 0.814 - 0.825 0.829 0.828
MNIST 0.778 0.758 0.773 0.759 0.729 0.781 0.816 0.818 0.819

Table 1: Comparison between the average posterior accuracy of the label models for samples with at least one vote from the
label function. The best performer across methods is denoted as bold.
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Figure 2: Comparison of Adjusted Rank Index(ARI) of proposed methods and WSGAN.

Dataset WSGAN Ours (comp) Ours (sub)
AWA2 36.00 25.92 25.23

CIFAR10-A 22.71 18.00 17.50
CIFAR10-B 24.41 18.72 18.72
DomainNet 44.35 37.42 36.82

GTSRB 73.96 62.55 59.09
FashionMNIST 15.94 11.78 11.81

MNIST 5.35 4.00 4.00

Table 2: Comparison of image quality (mean FID) score of
the proposed method with WSGAN.

Dataset W-S W-L Os-L Os-L Oc-C Os-C
AWA2 0.99 0.99 2.58 1.59 1.59 1.79

CIFAR10-A 1.38 0.46 0.50 0.76 1.74 2.16
CIFAR10-B 0.66 0.36 0.42 0.82 1.22 1.56
DomainNet 0.84 0.84 1.88 3.14 3.77 1.88

FashionMNIST 0.36 2.72 2.74 2.92 0.74 0.64
GTSRB 0.05 0.32 1.06 0.60 0.81 1.27
MNIST 0.30 0.08 0.34 0.22 0.52 0.38

Table 3: Percentage increase in the test accuracy using syn-
thetic data augmentation. The WSGAN model with syn-
thetic pseudo labels (W-S) and label function-based pseudo
labels (W-L) is compared with our complete data setting
(Oc) and subset selection setting (Os) using conditional la-
tent vectors (L) and classifier-based (C) pseudo labels.

abstained data, we found a marginal difference in the per-
formance of the label model.

Results on Image Generation
The results in Table-2 highlight the average FID scores
achieved by our methods compared to those of WSGAN.
On average, our method achieves 7.08 point FID improve-
ment compared to WSGAN. Additionally, the subset selec-
tion scheme for the classifier further improves the quality of
generated images. This distinction is particularly notable for

the GTSRB dataset, with a 3.46-point FID enhancement.

Results on Data Augmentation
To examine the improvement in test accuracy for the data
augmentation task, we trained a ResNet-18 (He et al. 2016)
model using around 1000 synthetic images generated by the
GAN, in addition to the original training dataset. For pseudo
labels, we have considered two settings. Firstly, we use the
conditional discrete latent vector (L) used for image gener-
ation. Secondly, we use the output of the classifier to gen-
erate the associated class label for the images (C). The re-
sults of the experiment are reported in Table-3. Compara-
tively, we found that our proposed method generates better
results than the baseline. Among the subset selection scheme
and the non-abstained data, we found the performance of the
subset selection scheme to be better for DomainNet, Fash-
ionMNIST, CIFAR10-B, CIFAR10-A for conditional dis-
crete latent vector (L), and AWA2, CIFAR10-A, GTSRB,
and CIFAR10-B for classifier based pseudo labels (C).

Conclusion
In this work, we introduced a new framework to fuse the
training of conditional GAN and label models using a noise-
aware classifier. We have further investigated the impact of
training the classifier using a subset of representative and di-
verse samples with limited uncertainty associated with the
pseudo labels. Our empirical results indicate an improve-
ment in the quality of images and the accuracy of pseudo
labels compared to existing state-of-the-art techniques. We
further demonstrate that employing a subset selection strat-
egy helps in improving the image quality of GAN, and a
small training set can generate comparable performance of
label model. However, it is worth noting that the subset
selection approach has limitations tied to the size of the
non-abstained sample set, which can result in computational
challenges for very large datasets. In future work, we aim to
extend our approach to bigger datasets.
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