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CRITERIA FOR THE AMPLENESS OF CERTAIN VECTOR

BUNDLES

INDRANIL BISWAS AND VAMSI PRITHAM PINGALI

Abstract. We prove that certain vector bundles over surfaces are am-
ple if they are so when restricted to divisors, certain numerical criteria
hold, and they are semistable (with respect to det(E)). This result is a
higher-rank version of a theorem of Schneider and Tancredi for vector
bundles of rank two over surfaces. We also provide counterexamples
indicating that our theorem is sharp.

1. Introduction

A holomorphic vector bundle E over a compact complex manifold X is
said to be ample if OP(E∗)(1) is ample over P(E∗) (the projective bundle over
X parametrising the lines in the fibres of E∗). Ample vector bundles play
an important role in algebraic geometry because of the various vanishing
theorems that ensue from ampleness. Many of these vanishing theorems
have numerous geometric consequences. It is therefore of interest to find
criteria for ampleness.

For any line bundle L over a projective manifold X, the Nakai-Moizeshon
criterion gives a numerical condition to decide the ampleness of L [4]. It says
that L is ample if for all 1 ≤ k ≤ dimX, we have c1(L)

k.Y > 0 for every
closed subvariety Y of dimension k of X. However, no numerical criterion
can exist for deciding the ampleness of vector bundles [2]. Notwithstanding
this negative result, Schneider and Tancredi proved the following criterion
(that is not purely numerical) for rank two vector bundles over surfaces.

Theorem 1.1 ([7, p. 134]). Let E be a holomorphic vector bundle of rank
two over a compact complex surface X. Assume that c1(E) > 0 and that E
is semistable with respect to det(E). Suppose E

∣∣
C

is ample for every closed
curve C ⊂ X, and

(c1(E)2 − 2c2(E)).X > 0, c2(E).X > 0.

Then E is ample.

This result and its improvements carried out in [8] are useful in studying
the ampleness of cotangent bundles [6]. They also find use in an approach of
Demailly to the Green-Griffiths-Lang conjecture [1]. In this paper we aim to
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generalise this theorem to vector bundles of other ranks for further possible
applications.

We were motivated by the following result of Lübke [5].

Theorem 1.2 ([5, p. 313, Theorem 2.1]). Let (E, h) be a holomorphic Her-
mitian rank-r vector bundle over a compact Kähler manifold (X, ω) of di-
mension n. Suppose Fh ∧ ωn−1 = −

√
−1λωn, where Fh is the curvature of

the Chern connection of h and λ > 0 is a constant. Assume that

c1(E, h) =
rλ

2π
ω.

Also, suppose there exists a positive function ψ such that either of the fol-
lowing holds:

(1) n = 2 and c21(E, h) −
2r(r−1)
r2−2r+2

c2(E, h) = ψω2, or

(2) r = 2 and c21(E, h) −
4(n−1)2

n2−2n+2
c2(E, h) = ψω2.

Then h is Griffiths-positively curved, i.e., 〈v,
√
−1Fhv〉 is a Kähler form

whenever v 6= 0 is a vector in E.

The following is the main result of this paper.

Theorem 1.3. Let E be a holomorphic vector bundle of rank r over a
compact complex manifold X of dimension two. Suppose c1(E) > 0 and E
is semistable with respect to det(E). Also assume that E restricted to every
curve is ample, and that that (c21 − c2)(E).X > 0. Then E is ample if

(1.1)

(
c21(E)− 2r(r − 1)

r2 − 2r + 2
c2(E)

)
.X > 0.

The proof of Theorem 1.3 (carried out in Section 2) uses the existence of
approximately Hermitian-Einstein metrics on semistable vector bundles [3].

In Section 3 we provide examples to indicate that Lübke’s Chern class
inequality in Theorem 1.2 cannot be dispensed with for n = 2 (and arbitrary
r).

2. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. The Nakai-Moishezon criterion
will be used [4]. Our aim is to show that (c1(OP(E∗)(1)))

d.Y > 0 for every
subvariety Y of P(E∗) of dimension d. Let

π : P(E∗) −→ X

be the natural projection. If π(Y ) is a point, we are done trivially. If π(Y )
is a curve, then since E restricted to π(Y ) is ample, we are done. So assume
that π(Y ) = X.

In this case we shall compute the intersection number by choosing an
appropriate smooth metric h on E and considering the Chern-Weil repre-

sentative of the induced metric h̃ on OP(E∗)(1). Firstly, we fix a Kähler form
ω on X. Let

S ⊂ X



CRITERIA FOR THE AMPLENESS OF CERTAIN VECTOR BUNDLES 3

be the smallest Zariski closed proper subset such that Y \π−1(S) consists of
regular points of the projection map over X \S, i.e., Y \π−1(S) is a smooth
fibre bundle over X \ S.

For every ǫ, there exists an approximate Hermitian-Einstein metric hǫ
(with curvature Fǫ) satisfying c1(hǫ) = ω and (2.3) [3]. We shall choose

ǫ later. Let Θǫ =
√
−1
2π Fǫ. Let (p, [v]) ∈ Y . The key point is that if we

choose a holomorphic normal trivialisation of E near p, then

c1(OP(E∗)(1), h̃ǫ)(p, [v]) =
〈v, π∗Θǫv〉

〈v, v〉 + ωFS,(2.1)

where ωFS is the Fubini-Study metric on the fibres of π (restricted to Y ).
Therefore,

c1(OP(E∗)(1), h̃ǫ)
d(p, [v]) =

d(d− 1)

2

(
π∗

〈v, Θǫ, v〉
〈v, v〉

)2

ωd−2
FS + ωd

FS + dπ∗
〈v, Θǫ, v〉
〈v, v〉 ωd−1

FS

(2.2) =
d(d − 1)

2

(
π∗

〈v, Θǫ, v〉
〈v, v〉

)2

c1(OP(E∗)(1), h̃ǫ)
d−2(p, [v]),

where we noted that on a surface, at most two powers of 〈v,Θǫ, v〉
〈v, v〉 are non-

zero, and since the dimension of the fibre is d − 2, we have ωd−1
FS = 0 on

Y ∩ π−1(p) for any p ∈ S. Note that the expression

d(d− 1)

2

(
π∗

〈v, Θǫ, v〉
〈v, v〉

)2

c1(OP(E∗)(1), h̃ǫ)
d−2(p, [v])

is independent of the choice of the local trivialisation of E.
At this juncture, the following lemma, which is a pointwise assertion, will

be used to lower bound the right-hand-side of (2.2).

Lemma 2.1. For every ǫ > 0, let Θǫ be a (normalized) Chern curvature
endomorphism of a Hermitian holomorphic vector bundle (E, hǫ), of rank
r, at a point p on a surface X. Let v ∈ Ep. Suppose ω is a Kähler form
at p and c1(hǫ) = ω. Moreover, assume that for every ǫ > 0, there exists

a trace-free endomorphism Bǫ of E at p satisfying
∣∣(Bǫ)

j
i

∣∣ ≤ ǫ for all i, j,
and

Θǫ ∧ ω =
1

r
ω2 +

Bǫ

2
ω2.(2.3)

Then

c21(hǫ)−
2r(r − 1)

r2 − 2r + 2
c2(hǫ) ≤ r2

r2 − 2r + 2

(〈v, Θǫv〉hǫ

〈v, v〉hǫ

)2

+
4r + r(r2 − 1)ǫ

4(r2 − 2r + 2)
ǫω2.

(2.4)
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Proof. Since the statement does not depend on the choice of trivialisation as
well as the choice of coordinates, we can assume that hǫ is given by the iden-
tity matrix at this point p, in other words, hǫ is the trivial Hermitian struc-
ture. Moreover, without loss of generality, we assume that v = (1, 0, 0).
For ease of notation, we drop the ǫ subscript on Θǫ. Lastly, we can choose
coordinates so that

ω =
r∑

i=1

Θi
i =

√
−1dz1 ∧ dz1 +

√
−1dz2 ∧ dz2,

and Θ1
1 =

√
−1µ1dz

1∧dz1+
√
−1µ2dz

2∧dz2. By the approximate Hermitian-
Einstein condition (2.3) we see that

µ1 + µ2 =
2

r
+ (Bǫ)

1
1

Θ2
2 +Θ3

3 + . . . = (1− µ1)
√
−1dz1 ∧ dz1 +

(
1− 2

r
+ µ1 − (Bǫ)

1
1

)√
−1dz2 ∧ dz2,

Θi
i ∧ ω =

1

r
ω2 +

1

2
(Bǫ)

i
iω

2,

(Θj
i )11 + (Θj

i )22 = (Bǫ)
j
i .(2.5)

Now,

c1(h)
2 − 2r(r−1)

r2−2r+2c2(h)√
−1dz1 ∧ dz1 ∧

√
−1dz2 ∧ dz2 = 2− r(r − 1)

r2 − 2r + 2

∑
i 6=j

(
−Θj

iΘ
j

i +Θi
iΘ

j
j

)

√
−1dz1 ∧ dz1 ∧

√
−1dz2 ∧ dz2

≤ 2− r(r − 1)

r2 − 2r + 2
×

∑
i 6=j

(
−((Θj

i )11(Θ
j
i )22 + (Θj

i )22(Θ
j
i )11)

√
−1dz1 ∧ dz1 ∧

√
−1dz2 ∧ dz2 +Θi

iΘ
j
j

)

√
−1dz1 ∧ dz1 ∧

√
−1dz2 ∧ dz2

.
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Using (2.5) we see that

c1(h)
2 − 2r(r−1)

r2−2r+2
c2(h)√

−1dz1 ∧ dz1 ∧
√
−1dz2 ∧ dz2

≤

2 +
r(r − 1)

∣∣(Bǫ)
j
i

∣∣2

r2 − 2r + 2
−

r(r − 1)
∑

i 6=j

(
Θi

iΘ
j
j

)

(r2 − 2r + 2)
√
−1dz1 ∧ dz1 ∧

√
−1dz2 ∧ dz2

= 2 +
r(r − 1)

∣∣(Bǫ)
j
i

∣∣2

r2 − 2r + 2
−

r(r − 1)

(
ω2 −∑i(Θ

i
i)
2

)

(r2 − 2r + 2)
√
−1dz1 ∧ dz1 ∧

√
−1dz2 ∧ dz2

≤ 2 +
r(r − 1)ǫ2

r2 − 2r + 2
− 2r(r − 1)

r2 − 2r + 2
+

r(r − 1)
∑

i(Θ
i
i)
2

(r2 − 2r + 2)
√
−1dz1 ∧ dz1 ∧

√
−1dz2 ∧ dz2

=
4− 2r + r(r − 1)ǫ2

r2 − 2r + 2
+

r(r − 1)
∑

i(Θ
i
i)
2

(r2 − 2r + 2)
√
−1dz1 ∧ dz1 ∧

√
−1dz2 ∧ dz2

≤ 4− 2r + r(r − 1)ǫ2

r2 − 2r + 2
+

r(r − 1)(Θ1
1)

2

(r2 − 2r + 2)
√
−1dz1 ∧ dz1 ∧

√
−1dz2 ∧ dz2

+
2r(r − 1)

∑
i≥2(Θ

i
i)11̄(Θ

i
i)22̄

r2 − 2r + 2

=
4− 2r + r(r − 1)ǫ2

r2 − 2r + 2
+

r(r − 1)(Θ1
1)

2

(r2 − 2r + 2)
√
−1dz1 ∧ dz1 ∧

√
−1dz2 ∧ dz2

+
2r(r − 1)

∑
i≥2(Θ

i
i)11̄

(
2
r
+ (Bǫ)

i
i − (Θi

i)11̄
)

r2 − 2r + 2

⇒ (r2 − 2r + 2)c1(h)
2 − 2r(r − 1)c2(h)√

−1dz1 ∧ dz1 ∧
√
−1dz2 ∧ dz2

≤

4− 2r + r(r − 1)ǫ2 +
r(r − 1)(Θ1

1)
2

√
−1dz1 ∧ dz1 ∧

√
−1dz2 ∧ dz2

+2r(r − 1)
∑

i≥2

(Θi
i)11̄

(
2

r
+ (Bǫ)

i
i − (Θi

i)11̄

)
.(2.6)

Now we want to maximize f =
∑

i≥2(Θ
i
i)11̄

(
2
r
+ (Bǫ)

i
i − (Θi

i)11̄
)
subject to

the condition
∑

i≥2(Θ
i
i)11̄ = 1 − µ1. Clearly, f tends to −∞ at infinity.

Therefore, using Lagrange’s multipliers we conclude that the maximum of
f is as follows (we replace µ1 by µ for the remainder of this section):

∑

i≥2

((
1− µ

r − 1
+

(Bǫ)
1
1

2(r − 1)
+

(Bǫ)
i
i

2

)(
2

r
+ (Bǫ)

i
i

)
−
(
1− µ

r − 1
+

(Bǫ)
1
1

2(r − 1)
+

(Bǫ)
i
i

2

)2
)
.

(2.7)
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Thus we have

(r2 − 2r + 2)c1(h)
2 − 2r(r − 1)c2(h)√

−1dz1 ∧ dz1 ∧
√
−1dz2 ∧ dz2

≤ 4− 2r + r(r − 1)ǫ2 +
r(r − 1)(Θ1

1)
2

√
−1dz1 ∧ dz1 ∧

√
−1dz2 ∧ dz2

+2r − 4− 2r(Bǫ)
1
1 −

r

2
((Bǫ)

1
1)

2 +
r(r − 1)

∑
i≥2((Bǫ)

i
i)
2

2
+ 2rµ

(
2

r
+ (Bǫ)

1
1 − µ

)

≤ r(r2 − 1)ǫ2

2
+ 2rǫ+

r2(Θ1
1)

2

√
−1dz1 ∧ dz1 ∧

√
−1dz2 ∧ dz2 .(2.8)

This completes the proof of the lemma. �

Returning to the situation at hand, choose

ǫ = min

(
1,

2
∫
((r2 − 2r + 2)c1(h)

2 − 2r(r − 1)c2(h))

r(r2 + 1)
∫
ω2

)

and let h = hǫ. Since c1(OP(E∗)(1), h̃ǫ) is a closed form representing the
cohomology class c1(OP(E∗)(1)), we have

(c1(OP(E∗)(1)))
d.Y =

∫

Y

c1(OP(E∗)(1), h̃ǫ)
d.

Therefore, Lemma 2.1 shows that

(c1(OP(E∗)(1)))
d.Y ≥

d(d− 1)

4r2

∫

S

((r2 − 2r + 2)c21 − 2r(r − 1)c2)(p)

(∫

π−1(p)∩Y
ωd−2
FS

)
.

Now
∫
π−1(p)∩Y ω

d−2
FS is the degree of π−1(p)

⋂
Y ⊂ π−1(p) = P(E∗

p), and

hence the given condition (1.1) in Theorem 1.3 implies that

(c1(OP(E∗)(1)))
d.Y > 0.

This completes the proof.

3. Counterexamples

Consider vector bundles of rank r on surfaces. In this section we provide
counterexamples to show that if Lübke’s condition

c21(E).X >
2r(r − 1)

r2 − 2r + 2
c2(E).X

is not met, then the conclusion of the theorem cannot hold in general. Like-
wise for semistability with respect to det(E). For r = 2, the counterexample
for semistability was provided in [7] and the sharpness of the Chern class
inequality was shown in [9]. For the remainder of this section we assume
that r ≥ 3.
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Indeed, just as in [7], let M be a Riemann surface of genus at least two,
and let F be a stable vector bundle of rank two on M such that c1(F ) = 0
and the symmetric product SmF is stable for all m ≥ 1. Set X = P(F ),
and let L = OP(F )(1). (Then c1(L)

2 = 0 and L
∣∣
C
is positive for all curves

C on X.) Let H be an ample line bundle on X, and set

E = L⊕H ⊕H ⊕ . . . ⊕H.

Note that E is not ample because its quotient L is not ample. However, E
is ample when restricted to curves. Then we have

c1(E) = c1(L) + (r − 1)c1(H),

c2(E) = (r − 1)c1(L)c1(H) +
(r − 1)(r − 2)

2
c21(H).

The slope of L is c1(L).c1(E) = (r − 1)c1(L)c1(H) and that of H is

c1(H).c1(E) = c1(H).c1(L) + (r − 1)c1(H)2.

Therefore, the semistability of E (with respect to det(E)) holds if and only
if

(r − 2)c1(L).c1(H) = (r − 1)c1(H)2.

Certainly this inequality cannot be met for an arbitrary H (and thus am-
pleness can fail if semistability does not hold). Suppose that semistability
is met. Then we have the following:

c1(E)2.X = (r − 1)2c1(H)2.X + 2(r − 1)c1(L)c1(H).X = (r − 1)rc1(L)c1(H).X,

2r(r − 1)

r2 − 2r + 2
c2(E).X =

2r(r − 1)

r2 − 2r + 2

2(r − 1) + (r − 2)2

2
c1(L)c1(H) = c1(E)2.

Therefore, if Lübke’s Chern class inequality is not met, ampleness cannot
hold in general.
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