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A B S T R A C T

Microstructure is key to controlling and understanding the properties of materials, but traditional approaches
to describing microstructure capture only a small number of features. We require more complete descriptors
of microstructure to enable data-centric approaches to materials discovery, to allow efficient storage of
microstructural data and to assist in quality control in metals processing. The concept of microstructural finger-
printing, using machine learning (ML) to develop quantitative, low-dimensional descriptors of microstructures,
has recently attracted significant attention. However, it is difficult to interpret conclusions drawn by ML
algorithms, which are often referred to as ‘‘black boxes’’. For example, convolutional neural networks (CNNs)
can be trained to make predictions about a material from a set of microstructural image data, but the feature
space that is learned is often used uncritically and adopted without any validation.

Here we explore the use of variational autoencoders (VAEs), comprising a pair of CNNs, which can be
trained to produce microstructural fingerprints in a continuous latent space. The VAE architecture also permits
the reconstruction of images from fingerprints, allowing us to explore how key features of microstructure
are encoded in the latent space of fingerprints. We develop a VAE architecture based on ResNet18 and
train it on two classes of Ti-6Al-4V optical micrographs (bimodal and lamellar) as an example of an
industrially important alloy where microstructural control is critical to performance. The latent/feature space of
fingerprints learned by the VAE is explored in several ways, including by supplying interpolated and randomly
perturbed fingerprints to the trained decoder and via dimensionality reduction to explore the distribution and
correlation of microstructural features within the latent space of fingerprints.

We demonstrate that the fingerprints generated via the trained VAE exhibit smooth, interpolable behaviour
with stability to local perturbations, supporting their suitability as general purpose descriptors for microstruc-
ture. The analysis of computational results uncover that key properties of the microstructures (volume fraction
and grain size) are strongly correlated with position in the encoded feature space, supporting the use of VAE
fingerprints for quantitative exploration of process–structure–property relationships.
1. Introduction

In the field of metallurgy and materials science, process–structure–
property (PSP) linkages are instrumental in guiding material design for
targeted applications [1,2]. Despite the importance of PSP linkages,
a rigorous mathematical framework is not currently available for sys-
tematic analysis in this context [3]. The key problem is that, whilst
compositional processing parameters and measured properties are in-
herently described by numbers, microstructure lacks a comprehensive
numerical descriptor. A central impediment is that the characteristic

∗ Corresponding author at: Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
E-mail address: michael.white-3@postgrad.manchester.ac.uk (M.D. White).

microstructural features exhibit heterogeneity over a wide range of
size, spatial, and temporal scales. From the application standpoint, it is
important to identify a subset of salient measures of internal structure
that can be tracked through a material’s processing history, that capture
the dominant influences on the targeted properties. In conventional
microstructural analysis, some quantitative methods are used, but these
generally rely on metrics applied to image data, such as grain size,
phase fraction and correlation coefficients. This can provide some
crucial information, but the metrics which are suitable in each case
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will depend on the morphology of the microstructure. For example,
interlamellar spacing is useful to describe lamellar microstructures, but
is redundant when considering an equiaxed microstructure. In any case,
such measures embody only a tiny fraction of the information contained
in a microstructural image. A quantitative description of microstructure
that is independent of morphology (a microstructural fingerprint) and
embodies a full range of features would enable direct comparisons
between microstructures with different morphologies, and provide new
methods for constructing PSP relationships [3,4], or for quantifying
the deviation of a given microstructure from some ideal standard in
a quality control procedure.

In the past two decades, reasonable progress has been achieved in
the quantification and low-dimensional representation of microstruc-
tures, over larger processing and material compositional windows [5–
7]. These advances have been possible with the use of concepts and
toolsets from data science and informatics [8,9]. The first potential
benefit is realised with the use of automated feature engineering of
the hierarchical material structures, e.g., establishing low-dimensional
representations that provide maximum value in capturing high-fidelity
PSP linkages. A systematic and comprehensive quantification of the
material structure is now possible, for example by performing statis-
tical analysis of image features [10] or by combining the physics-
inspired framework of 𝑛-point spatial correlations (𝑛-point statistics)
with machine learning approaches, such as principal component anal-
ysis (PCA) [11].

A machine learning approach that has not yet been fully explored,
in the context of microstructural fingerprinting, is variational autoen-
coders (VAEs), which comprise a pair of convolutional neural networks
(CNNs), referred to individually as the encoder and the decoder. VAEs
were first introduced by Kingma and Welling [12]. Initial applications
focussed on generating images of individual objects, particularly hu-
man faces, utilising datasets such as the CelebA dataset [13]. More
recently, attention has shifted towards machine learning applications
in materials science, such as quantification of microstructure and the
development of new PSP relationships. The key difference is that
microstructural image data are such that the entire image field con-
tains potentially meaningful information, rather than an image of
a foreground object of interest and some arbitrary background. At-
tempts have been made to construct VAEs for texture embedding.
One example is TextureVAE, which consists of a VGG19 encoder and
a decoder comprising 4 convolution blocks [14]. The network was
tested on various microstructures and latent dimensions were arti-
ficially varied to visualise their effect on the resulting reconstruc-
tions. Further exploration of the encoded space has also been shown
to carry the potential for material property prediction [15,16]. Con-
versely, the ability to generate synthetic microstructures from specified
properties was demonstrated [17]. Dimensionality reduction of the
encoded space has also been shown to provide meaningful visualisa-
tion of the space, enabling property prediction from microstructural
image data [18] and identification of new processing routes for target
orientation distributions [19].

Here, we employ a residual block VAE architecture, based on
ResNet18 [20], to encode optical micrograph data from two classes
of Ti-6Al-4V; a lamellar microstructure and a bimodal microstructure.
The encoded space is explored via paths between learned fingerprints
and Gaussian permutations of fingerprints, as a tool for generating
artificial microstructures. The latent space in further explored through
dimensionality reduction via 𝑡-stochastic neighbour embedding (𝑡-SNE),
with analysis of morphological metric distributions across the space.
Support vector regression (SVR) is then applied to correlate fingerprints
contained in the latent space with the same morphological metrics to
quantify the trends visualised by the 𝑡-SNE.

Our titanium alloy dataset is representative of the microstructures
f an important class of industrial materials in which control of mi-
rostructure is key to delivering the required in-service performance
2

nd in which quality assurance of material (and hence microstructure) d
is a critical part of manufacturing processes. Furthermore, the nature
of the dataset allows us to evaluate the performance of the VAE with
respect to several aspects common to a broad range of metallurgical
challenges:

1. the descriptors should transparently handle a range of
microstructures (here we have widely varying grain morphol-
ogy);

2. the space of descriptors (the latent space of the VAE) should
be well-behaved, in the sense that the fingerprints should vary
smoothly with changes to the microstructure and vice versa;

3. the representation in the latent space should be interpretable
in terms of key features of the microstructure (or properties of
the material), which is to say that the fingerprints should show
statistical correlation with features and properties.

We explore these aspects of the VAE performance for our Ti-6Al-4V
microstructure dataset.

2. Materials and methods

2.1. Dataset

The LightForm Ti-6Al-4V alloy bimodal/lamellar dataset
(LFTi64BL) is an open access dataset, curated within the LightForm
group at the University of Manchester, and can be accessed via Zen-
odo [21]. The dataset comprises 40 optical 8 bit micrographs of resolu-
tion 1292 × 968 pixels, containing equal numbers of bimodal equiaxed
and lamellar microstructures. An example from each classification is
shown in Fig. 1.

This dataset contains a relatively small number of images for ma-
chine learning purposes. To expand the dataset, patches were extracted
with random rotations and reflections applied. The expanded LFTi64BL
dataset contains 1000 patches from each image, resulting in 40,000
patches of resolution 256 × 256 pixels.

2.2. Greyscale normalisation

Each image was white balanced by clipping greyscale intensities
outside the 90th percentile and remapping to the range [0, 1]. Fig. 2
shows distributions of mean greyscale intensities across the bimodal
and lamellar datasets within LFTi64BL separately, before and after
normalisation.

Prior to white-balancing, the variation in mean greyscale intensity is
heavily influenced by fluctuations in lighting conditions during image
capture. However, after white-balancing, greyscale intensity is more
normally distributed across the dataset. This is now indicative of the
distribution of phase fractions, with lower mean greyscale intensity
corresponding to a higher volume fraction of the 𝛽 phase.

2.3. Variational autoencoders (VAEs)

Variational autoencoders (VAEs) are a tool for encoding image data
into a compressed format (or fingerprint) that preserves morpholog-
ical features. They comprise a pair of convolutional neural networks
(CNNs), referred to individually as the encoder and decoder. Finger-
prints output by the trained encoder can be fed into downstream tasks
such as image classification and property prediction. Fig. 3 provides a
visual interpretation of the general VAE architecture.

Suppose we have an image, 𝑥 ∈ R𝑚1×𝑚2 . The encoder takes the
image 𝑥 as an input and computes a compressed representation 𝑧 ∈ R𝐷,
uch that 𝐷 ≪ 𝑚1𝑚2, where 𝑧 = 𝑒(𝑥) and 𝐷 is a tunable parameter that
enoted the dimensionality of the encoded space. The decoder then
akes the encoded vector 𝑧 as an input and aims to reconstruct the
nput image, 𝑥. We denote the reconstruction as �̂� = 𝑑(𝑒(𝑥)), where
̂ ∈ R𝑚1×𝑚2 . The encoded space learned is continuous and normally

istributed.
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Fig. 1. Representative optical micrographs of Ti-6Al-4V from LFTi64BL dataset.
Fig. 2. Distribution of mean greyscale intensities across the LFTi64BL dataset before and after normalisation, for bimdoal and lamellar microstructures separately.
Fig. 3. Schematic of general VAE architecture that takes an image 𝑥 as input, encodes the image into a fingerprint 𝑒(𝑥) and is trained to reconstruct the input image with the
mapping 𝑑(𝑒(𝑥)).
To train a VAE, we must have a set of images, 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑁},
where 𝑁 is the total number of images in the dataset. The dataset is
split into two subsets, 𝑋train ∈ R𝑁train×𝑚1×𝑚2 and 𝑋eval ∈ R𝑁eval×𝑚1×𝑚2 ,
where 𝑋train is used to train the VAE, 𝑋eval is used for evaluating the
VAE on unseen data, 𝑁train + 𝑁eval = 𝑁 , 𝑋train ∪ 𝑋eval ≡ 𝑋 and
𝑋train ∩ 𝑋eval ≡ ∅. The training set is split into batches and fed into
the VAE, one batch at a time. Ultimately, 𝑑(𝑒(𝑥𝑖)) for 𝑥𝑖 ∈ 𝑋train is
computed and a loss function is used as a metric for assessing the
encoded representation and reconstruction quality. The loss function
is then used as an input to an optimiser. The Adam optimiser [22]
3

is currently the state-of-the-art and is utilised throughout all models
discussed herein. The optimiser updates weights and biases in both
the encoder and decoder from a single loss function after each batch
operation. The model can then be evaluated on 𝑋eval to measure
the potential for transfer learning, but metrics calculated on these
images in the evaluation set are not utilised for updating any weights
or biases. Encoded representations, generated from the trained VAE
on microstructural image data, can be considered as a signature, or
microstructural fingerprint (as described in [3]), and will be referred
to as such throughout this paper.
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2.4. Loss functions

During VAE training, a loss function is periodically computed on
the model, to determine performance and provide the inputs for the
optimiser to update the weights and biases in the networks, with the
aim of minimising the loss function. This is typically a combination
between a measure in the spatial domain of the reconstruction accu-
racy and imposing a restriction on the encoded space to be normally
distributed [12]. To measure how normally distributed the encoded
space is, the Kullback–Leibler (KL) divergence, 𝐷KL, can be determined
between each encoded representation and the unit normal distribution
 (0, 1) [23].

The reconstruction accuracy can be measured in several ways. A
popular method is the mean squared error (MSE) [24], which is a
distance metric in the spatial domain, given by

MSE = 1
𝑚

𝑚
∑

𝑗=1
(𝑥𝑗 − �̂�𝑗 )2,

here 𝑚 = 𝑚1𝑚2 is the total number of pixels in the image and the
𝑗 , �̂�𝑗 denote pixels in the input and reconstruction, respectively.

Another metric that operates in the spatial domain is the binary
ross-entropy (BCE), denoted here as 𝑏, which is a measure of negative
og likelihood and is given by

𝑏 = −
𝑚
∑

𝑖=1
𝑥𝑖 log �̂�𝑖 −

𝑚
∑

𝑖=1
(1 − 𝑥𝑖) log(1 − �̂�𝑖).

The issue with minimising these loss functions is that they generally
esult in blurry reconstructions. With the aim of minimising blur, a
oss function on the frequency domain was proposed in [25]. This
equires calculating the 2D Fourier transform of both the input and
econstruction. The spectral loss, 𝑓 (𝑥, �̂�), can then be given by the MSE
etween the 2D Fourier transforms, i.e.,

𝑓 (𝑥, �̂�) =
1
𝑚

𝑚
∑

𝑗=1

(

(Im{ (𝑥)𝑗} − Im{ (�̂�)𝑗})2 + (Re{ (𝑥)𝑗}

−Re{ (�̂�)𝑗})2
)

,

where  denotes the 2D FFT, Im{} denotes the imaginary part of 
nd Re{} the real part. The total loss function to be minimised by the
ptimiser is then given by

= 𝛼𝑏(𝑥, �̂�) + (1 − 𝛼)𝑓 (𝑥, �̂�),

here 𝛼 ∈ [0, 1] is a tunable hyperparameter.

.5. ResNet18-VAE

ResNet [20] is a deep CNN composed of residual blocks and was
nitially proposed for classification of the ImageNet dataset [26], which
s a dataset containing over 1 million natural images with 1000 classes.
s such, the final layer of a standard ResNet is a 1000-dimensional fully
onnected layer, where the output from each node corresponds to a
robability for each ImageNet class label. The depth of the network
an be controlled by varying the number of layers within each block
nd the total number of blocks. Here, we consider ResNet18, which
ontains 8 residual blocks, each comprised of 2 convolution layers with
ubsequent ReLU activation and batch normalisation. Each block has
he potential to be effectively skipped by summing the input received
t each block with the output from that block, after convolution.

To convert ResNet18 into an encoder, it was modified by replacing
he average pool and 1000-dimensional fully connected layers at the
nd of the network with a flattening of the final convolution output.
his was followed by a 512-dimensional fully connected layer with tanh
ctivation, which is then simultaneously fed into two separate fully con-
ected layers. Each fully connected layer consists of |𝑧| neurons, where
𝑧| is the specified dimension of the encoded space. The dimensionality
f the latent space was set to 256 to generate the results presented in
4

his paper. One of these fully connected layers is utilised as a set of
eans, 𝜇, whilst the other is treated as a set of standard deviations, 𝜎.
hese are then combined into the output 𝑧 as

= 𝜇 + exp(𝜎 (0, 1)),

here  (0, 1) denotes the standard normal distribution, with mean 0
and standard deviation 1. This branching into 𝜇 and 𝜎, with subsequent
combination of the two, is what sets variational autoencoders apart
from standard autoencoders. The decoder then essentially mirrors the
encoder with transpose convolution layers replacing the standard con-
volution layers. The architecture for this ResNet18 VAE is provided in
Fig. 4.

2.6. Morphological analysis

Morphological measurements were automated for the LFTi64BL
dataset as metrics for correlation with fingerprints produced by the
VAE. These metrics can then also be plotted as colour maps over a
low dimensional space obtained from dimensionality reduction of the
fingerprint space, to visualise how such features are distributed. Each
metric requires the images to be binarised prior to measurement.

2.6.1. Image binarisation
Binarised images are required to compute certain metrics on the

images, such as phase fraction and grain size. A high-pass Gaussian
filter was applied to each image, in the Fourier domain, to normalise
illumination across the images. The images were then binarised with
Otsu’s thresholding method [27], before applying area closing to re-
move noise from all images and αs laths from the bimodal images.
Pixels corresponding to αp grains are assigned a label, whilst all other
pixels are labelled as 0. Fig. 5 provides representative examples of
the resulting binary images. The binarised lamellar microstructures are
highly accurate, but there is some retention of αs laths in the bimodal
microstructures due to connectivity with the αp grains.

2.6.2. Phase fraction
Due to the way in which the images were binarised (see Sec-

tion 2.6.1), the phase fraction is simply determined as the sum of all the
pixel values in the binary image divided by the total number of pixels
in the image.

2.6.3. Lamellae direction
For the lamellar images in the LFTi64BL dataset, another descriptor

we can consider is the dominant direction, or orientation, of the lamel-
lae, relative to the bottom edge of the image. This can be quantified
as the mean angle subtended between the elongation direction of each
lamella and the bottom edge of the image. An erosion is applied on
the binary image to isolate overlapping grains before each grain is
labelled with a unique integer. Watershed segmentation is then applied
with markers taken from the labelled image and the initial binary
image as a mask. Each grain in the watershed image is isolated and
eigenvectors are computed for each grain. The primary eigenvector
describes the direction of each lamella. The angle between the primary
eigenvector and the bottom edge of the image is then calculated for
each grain and averaged to provide the metric for lamellae direction of
a given image. Fig. 6 shows the erosion and watershed method applied
to a representative micrograph and Fig. 7 shows the corresponding
eigenvectors for an individual grain.

2.6.4. Bimodal grain size
As a metric for quantifying the bimodal microstructures in

LFTi64BL, average grain size measurements were automated following
ASTM E1382-97 [28]. Random line scans are applied on the binarised
bimodal micrographs and peaks in the derivative of the profile along
the line scans are used to detect grain edges. The distance in pixels
between peaks in the derivative of the profile line is then converted

into a distance in μm.
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Fig. 4. ResNet18 VAE architecture for the 256 × 256 inputs used in the present study.
Fig. 5. Representative optical micrograph image patches for (a) lamellar and (c) bimodal and corresponding binarised images (b) and (d), respectively.
2.7. Support vector regression (SVR)

Once fingerprints have been extracted from the ResNet18 VAE,
regression algorithms can be trained to predict morphological metrics.
Here, we use support vector regression (SVR), which is an extension
to support vector machines for continuous variables [29]. Gaussian
5

process regression is a popular alternative to SVR, but relies on rela-
tively low-dimensional inputs compared to the dimensionality of the
ResNet18 VAE fingerprints. Fingerprints are randomly split into a
training set containing 90% of the fingerprints and a test set containing
10% for input into the SVR. This is repeated 10 times with random
splits to perform 10-fold cross-validation.
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Fig. 6. Watershed segmentation process applied to a representative micrograph for grain isolation. (a) shows the original micrograph, (b) is the binarised micrograph with area
closing applied, (c) illustrates the erosion and labelling and, finally, (d) shows the watershed segmented micrograph, with the colour map corresponding to grain ID.
Fig. 7. Eigenvectors plotted on an individual lamella for direction measurement, with
the primary eigenvector shown in red and the secondary eigenvector plotted in blue.

2.8. 𝑡-stochastic neighbour embedding (𝑡-SNE)

The encoded space learned is high-dimensional (256 dimensions
for ResNet18-VAE architecture, outlined in Section 2.5). This makes
it difficult to visualise the encoded space in its entirety. To aid in
visualising this high-dimensional space, we can perform dimensionality
reduction down to 2 or 3 dimensions, which allows us to plot the
encoded space and to assess how the microstructures in our training
set are distributed. Here, we consider 𝑡-stochastic neighbour embedding
(𝑡-SNE) [30].

The fingerprints are represented as a similarity matrix, 𝑆, where
entries, 𝑆𝑖,𝑗 , denote the probability that 𝑧𝑗 is a nearest neighbour
of 𝑧𝑖. The aim is then to minimise the distance between 𝑆𝑖,𝑗 and
𝑆𝑗,𝑖 [31]. Standard SNE utilises a Gaussian distribution to determine
similarity between fingerprints, whereas 𝑡-SNE relies on the Student’s 𝑡
distribution, hence its name. Due to the longer tail of the 𝑡 distribution,
relative to a Gaussian distribution, the use of the 𝑡 distribution results
in more separated embeddings and helps alleviate the crowding issue
often encountered with SNE [32]. Principal component analysis (PCA)
is used to initialise the 𝑡-SNE.

2.9. Traversing the encoded space

One way in which the encoded space can be traversed is through
construction of a specific path. Here, we consider a linear path. Two
images, 𝑥1 and 𝑥2, are randomly selected and 𝑒(𝑥1), 𝑒(𝑥2) are computed.
A linear path is then constructed from 𝑒(𝑥1) to 𝑒(𝑥2) in the encoded
space, according to the following equation.

𝑒𝑛(𝑥1, 𝑥2) = 𝑒(𝑥1) +
𝑛 + 1
𝑁

(𝑒(𝑥2)), 𝑛 = 1,… , 𝑁,

where 𝑒𝑛(𝑥1, 𝑥2) denotes each fingerprint along the path and 𝑁 is the
number of steps along the path. Fingerprints along the path are then
supplied to the decoder to output reconstructions.

Another method for generating potentially valid encoded repre-
sentations of microstructure is to form a random cloud, centred at
6

a known valid encoded representation, 𝑒(𝑥), for some image 𝑥. This
can be achieved by sampling random Gaussian noise from  (0, 1) and
summing with 𝑒(𝑥), i.e.,

𝑒𝑛(𝑥) = 𝑒(𝑥) + 𝛾 (𝜇, 𝜎), 𝑛 = 1,… , 𝑁,

where 𝑒𝑛(𝑥) is a random neighbour of 𝑒(𝑥), 𝛾 is a tunable scale factor
that controls the noise level, 𝜇, 𝜎 ∈ R𝐷 denote the element-wise mean
and standard deviation for each dimension in the encoded space and
𝑁 is the number of neighbouring fingerprints to be output.

3. Results

3.1. Reconstruction accuracy

The ResNet18 VAE was trained under two separate regimes. The
first included exclusively either lamellar or bimodal microstructures
and the second included the full LFTi64BL dataset, containing both
lamellar and bimodal microstructures. Fig. 8 shows some example
reconstructions from the lamellar dataset after 1000 epochs. When
training is restricted to the lamellar dataset, grain boundaries are
accurately identified and reconstructed, but there is some smooth-
ing evident in the reconstructions and the interlamellar 𝛽 appears
coarsened. This becomes clearer upon inspection of the morphological
metric distributions shown in Fig. 9. The αp volume fraction is slightly
reduced in the reconstructions, with some anomalies between 30%
and 50%. The mean lamellae direction, relative to the bottom edge of
each image patch, is consistent. This confirms that the αp grains are
oriented correctly in the reconstructions, but there is an increase in
the mean lamellae width, which is likely due to the smoothing effect
removing smaller grains. There is also an increase in the mean lamellae
aspect ratio, owed to the coarsening of the interlamellar 𝛽 in the
reconstructions which results in αp grains appearing more elongated.

Training the VAE on exclusively bimodal microstructures results in
a similar smoothing effect as with the lamellar images, although this
appears more pronounced in the bimodal case due to the nature of the
fine scale features present in this case. Fig. 10 shows some example
reconstructions for the bimodal micrographs. All αs laths retained in
the prior 𝛽 grains are completely absent from the reconstructions and
the outputs are effectively a mask for the αp grains. This is confirmed
to be a feature of the entire set of reconstructions in Fig. 11, which
shows a drastic increase in both the αp volume fraction and mean αp
grain size.

3.2. Traversing the encoded space

The encoded space was explored with the methods discussed in
Section 2.9. Fig. 12 shows reconstructions along a linear path between
a pair of fingerprints from the training set. A linear path between
the fingerprints was constructed and 8 equispaced fingerprints were
determined along the path. These fingerprints were supplied to the
trained decoder to generate the images in Fig. 12.
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Fig. 8. Representative examples of (a) 256 × 256 patches from the lamellar microstructures and (b) their corresponding reconstructions from the ResNet18 VAE architecture, after
1000 epochs.

Fig. 9. Morphological metric distributions across the original image patches and their corresponding reconstructions for the lamellar dataset.

Fig. 10. Representative examples of (a) 256 × 256 patches from the bimodal microstructures and (b) their corresponding reconstructions from the ResNet18 VAE architecture,
after 1000 epochs.
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Fig. 11. Morphological metric distributions across the original image patches and their corresponding reconstructions for the bimodal dataset.
Fig. 12. Reconstructions along linear path through the encoded space learned during training on exclusively lamellar image data from LFTi64BL.
The fingerprints along this path show a smooth transition along
the linear path, which is a direct result of the continuity of the latent
space learned by the VAE. These microstructures are synthetic and
are not included in the training set, although they do have the same
characteristics as the lamellar microstructures in the training set.

Fig. 13 shows the output from the same method applied to the full
LFTi64BL dataset, with the linear path defined between a lamellar and
a bimodal microstructure. The same smooth transition between the
input microstructures is observed, however, intermediate microstruc-
tures along the path stray considerably away from the training set,
particularly towards the centre of the path. This is to be expected, but
confirms that, for VAEs to generate convincing artificial micrographs,
it is crucial that the training set be cohesive and not contain drastic
variations in microstructure. Otherwise, the latent space constructed
is likely to contain microstructures that are not representative of the
training set.

To visualise neighbouring microstructures localised around an indi-
vidual fingerprint, a sample microstructure was randomly selected and
supplied to the trained encoder. The fingerprint obtained was perturbed
with a small amount of Gaussian noise, as described in Section 2.9 with
𝛾 = 0.2, and provided to the trained decoder to generate a synthetic
microstructure. This process was repeated and Fig. 14 shows 10 reali-
sations of the microstructures produced. Each artificial microstructure
possesses similar features to the input micrographs in terms of grain
morphology and direction of lamellae with respect to the bottom edge
of the image. This shows that local fingerprints within the latent space
are likely to possess similar microstructural features.

Fig. 15 shows example micrographs constructed with increasing
values of 𝛾. As 𝛾 increases, images generated become no longer rep-
resentative of the training dataset. If 𝛾 is too small, then there is
very little variation in the output microstructures. Fig. 16 shows mean
fields across 100 realisations of synthetic microstructures produced
8

with the same range of 𝛾 values as in Fig. 15. There were constructed
by averaging the greyscales for each pixel across the set of realisations
for each 𝛾 value. This confirms that for 𝛾 < 0.2, there is basically no
change to the reconstructed microstructure after perturbing the input
fingerprint. At 𝛾 = 0.2, there is bias towards retaining some of the
larger grains, although the grain boundary does fluctuate slightly and
surrounding grains can be subject to change. For larger 𝛾, there is no
bias introduced by the input microstructure, but the resulting synthetic
microstructures are not representative. Despite synthetic microstruc-
tures being discussed here, this method is recommended as a tool for
exploring the latent space and visualising the sorts of features that
are shared between microstructures within some neighbourhood in the
latent space, rather than aiming to produce statistically equivalent but
distinct realisations of an input microstructure.

PCA was trained on the fingerprints constructed by the VAE and
then used to transform the noise-perturbed fingerprints alongside the
original fingerprints (see Fig. 17). This shows the noise-perturbed
fingerprints emanating from a single point, which corresponds to the
fingerprint to which the noise was applied, and we can see that noise
added with a scale factor of 𝛾 > 0.5 are all completely outside the
encoded space learned by the VAE.

3.3. Metric distributions across the encoded space

Dimensionality reduction, in the form of 𝑡-SNE (described in Sec-
tion 2.8), was also applied to the original 256-dimensional fingerprints
to reduce them down to 2-dimensional vectors. This enables finger-
prints to be plotted in a 2-dimensional scatter plot to visualise the entire
latent space and distribution of metrics across the space. Fig. 18 shows
the full LFTi64BL dataset reduced to 2-dimensions. The colour map
in this figure that illustrates the microstructure classification, with 0
denoting a bimodal microstructure and 1 denoting lamellar. There is a
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Fig. 13. Reconstructions along linear path through the encoded space learned during training on the full LFTi64BL dataset.
Fig. 14. Synthetic microstructures generated from the addition of unit Gaussian noise, with a scale factor of 𝛾 = 0.2, to a known valid encoded representation, from which
morphology is inherited.
Fig. 15. Representative examples of synthetic microstructures generated via the Gaussian cloud method with various 𝛾 values, compared with original micrograph.
Fig. 16. Mean fields across 100 realisations of microstructures generated via the Gaussian cloud method with various 𝛾 values.
strong clustering of each class, with only a small overlap between them,
allowing fingerprints from each class to be easily separated. Training
an SVM with 90% of the fingerprints allocated for training and 10%
reserved for testing yields a mean classification accuracy of 99.9% ±
0.001 after 10-fold cross-validation.

The same methodology for dimensionality reduction was applied
to the lamellar and bimodal fingerprints separately to map distribu-
tions of various microstructural features. Figs. 19(a) and 19(b) shows
9

greyscale intensity from the lamellar micrographs, before and after
normalisation.

Prior to normalisation, there is a strong clustering between two
groups of images, heavily influenced by illumination during image
capture. After normalisation, greyscale intensity is more closely linked
to volume fraction and is normally distributed across the dataset.
Dimensionality reduction then shows a smooth gradient of greyscale
intensity across the latent space. The plots with volume fraction yield
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Fig. 17. PCA applied to fingerprints learned by the VAE alongside fingerprints
constructed with the Gaussian cloud method. Original fingerprints are shown in grey
and the colour map denotes the 𝛾 values applied to generate the artificial fingerprints.

Fig. 18. 𝑡-SNE with 2 components applied to encoded representations, where the
colour map denotes classifications, with bimodal microstructures in red and lamellar
microstructures in blue.

similar results, although less pronounced. Figs. 19(c) and 19(d) shows
plots of the encoded spaces for bimodal and lamellar microstructures,
trained separately.

Finally, we look at directionality (discussed in Section 2.6.3) for
lamellar microstructures and grain size (Section 2.6.4) for bimodal
microstructures as morphological features of interest. Fig. 19(e) shows
the 𝑡-SNE plot with a colour map corresponding to lamellae direction.

This appears to show random scatter across the encoded space,
in contrast to the Gaussian cloud for image generation that seems to
reconstruct images with similar direction, when perturbing fingerprints
with a small amount of Gaussian noise. Nearest neighbours are shown
to have similar directionality, but this is contained within small regions
of the latent space and not universal. This random distribution of
directionality may be useful in practice, though, as this implies that
when encoding the microstructural information in such a manner,
directionality can be effectively ignored and sample orientation when
imaging would not be of any concern.

Fig. 19(f) shows the 𝑡-SNE plot for the bimodal fingerprints with a
colour map denoting grain size. Here, we see a gradient of grain size
across the latent space, suggesting that nearest neighbours will share
similar morphologies.

In each 𝑡-SNE reduction, there is a small group of fingerprints that
are separated away from the main cluster. There are no discernible
differences between the microstructures that result in these fingerprints
and those that form the main cluster. Despite these microstructures
being included in the training set, their reconstructions after training
are effectively just noise. This is a caveat of the VAE training process
and not the dimensionality reduction. Removing these outliers from
the set of fingerprints and rerunning the 𝑡-SNE with the remaining
fingerprints results in retention of the main cluster and a complete
absence of the secondary cluster. Removing the images that reside in
10
Table 1
Quantitative analysis of error for SVR predictions.

Class Metric Mean percentage error

Lamellar
Greyscale intensity 0.60% ± 0.01
Volume fraction αp (%) 1.83% ± 0.03
Directionality (◦) 148% ± 29

Bimodal
Greyscale Intensity 0.75% ± 0.01
Volume Fraction αp (%) 2.50% ± 0.03
Grain Size (μm) 7.91% ± 0.12

the secondary cluster from the training set and retraining the VAE from
scratch results in a new cluster forming, with a different morphology,
that contains a different set of images. Nonetheless, we are able to
explore the encoded space of valid reconstructions, using the 𝑡-SNE as
a guide to identify suitably encoded microstructures.

3.4. Metric predictions from encoded representations

If an approach to microstructural fingerprinting is successfully cap-
turing the ‘‘essence’’ of the microstructure, then we might reasonably
expect to be able to recover key features of the microstructure, such as
grain size, from the encoded fingerprint. A strong correlation between
the fingerprint and a given property also opens the possibility of
reversing the inferential process and asking what fingerprints (or which
regions of latent space) would correspond to a microstructure exhibit-
ing a given property of interest (with the possibility of a trained VAE
then reconstructing an example of the corresponding microstructure).

The predictability of morphological metrics across the encoded
space was validated with SVR, described in Section 2.7. The fingerprints
output from the RestNet18 VAE are randomly split into 90% training
data and 10% test data. This is repeated 10 times to perform 10-fold
cross-validation. The SVR is then trained on the training set and outputs
for the test set are compared with the true values to measure the predic-
tion accuracy. Fig. 20 shows scatter plots for the SVR predictions across
the 10 train–test splits combined, against the true values, with the line
𝑦 = 𝑥 plotted in red to illustrate deviation from exact predictions.
Table 1 then shows percentage error and standard deviation of the
predictions relative to the true values.

4. Discussion

Reconstructions from the proposed ResNet18 VAE were shown to
accurately identify grain boundaries, albeit with some smoothing. This
information loss is acceptable for correlating with the morphological
features discussed, as these features are still captured. However, pre-
diction of properties that rely upon small scale features, such as fine
αs laths, may become hindered. This could be alleviated with higher
resolution images and patches with a higher magnification.

The encoded space learned by the VAE is continuous and contains
valid microstructural fingerprints that are not included in the training
set. Two methods were used to explore the encoded space as a tool for
generating artificial microstructures. The linear path method illustrates
the continuity of the space and shows a smooth transition between
microstructures, when linearly interpolating between two known fin-
gerprints. With a training set containing only lamellar microstructures,
reconstructions along this path are completely artificial but still re-
semble lamellar microstructures. Once the training set is expanded to
include both bimodal and lamellar microstructures, the linear interpo-
lation between a bimodal fingerprint and a lamellar fingerprint yields
a blend between the two morphologies. These can still be perceived
as valid microstructures, but it is important to note that these are not
representative of any data in the training set and VAEs trained in such
a way should be interpolated carefully.

Gaussian noise was also used to explore the encoded space more lo-
cally around an individual fingerprint. Iteratively perturbing a learned
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Fig. 19. 𝑡-SNE with 2 components applied to encoded representations of the LFTi64BL dataset, with colour maps denoting various morphological metrics.
fingerprint and supplying the output to the trained decoder yields
another set of artificially generated microstructures. In this case, the
decoder generates microstructures with similar features to the input
image, including the lamellae thickness and direction relative to the
bottom of the image, provided that a suitably small amount of noise is
applied. This behaviour is only observed locally for some features, such
as lamellae direction, which is randomly distributed across the encoded
space. This may be due to the fact that the VAE was trained on patches
with random rotations applied, making the VAE rotationally invariant
in this case. This removes any bias towards sample orientation during
image capture. Adding large amounts of noise would result in variations
of such features.

Dimensionality reduction via 𝑡-SNE was performed to reduce the
fingerprints to 2 dimensions. This enables them to be plotted in a 2-
dimensional scatter plot to visualise the distribution of morphological
features across the encoded space. The fingerprint position in the
11
encoded space appears to depend significantly on the volume fraction
of αp, relative to other morphological metrics. This was confirmed by
SVR, which was trained to predict volume fraction with an average
percentage error of 1.83% ± 0.03 for the lamellar dataset and 2.50%
± 0.03 for the bimodal dataset. Grain size was also highly correlated
with the encoded representations and SVR was able to predict grain
size with reasonable accuracy, giving an average percentage error of
7.91% ± 0.12. Directionality of lamellae appeared to be distributed
randomly across the encoded space from the 𝑡-SNE plots and this was
also confirmed with SVR, which was unable to learn any trends in the
data and repeatedly predicted the mean direction for each fingerprint,
resulting in an average percentage error of 148% ± 29. In practice,
the random nature of the distribution of lamellae direction could be
a useful feature, as this implies that sample orientation under the
microscope can be effectively ignored when capturing a dataset for VAE
without any bias being introduced.
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Fig. 20. Scatter plots to illustrate combined 10-fold cross validation SVR predictions of various morphological metrics with the line 𝑦 = 𝑥 added to highlight where true predictions
should lie.
5. Conclusions

The latent space of microstructural fingerprints generated from vari-
ational autoencoders (VAEs) has been explored to further our under-
standing of how VAEs encode feature information from microstructural
image data.

• We show that a residual block VAE architecture based on ResNet18
is able to produce accurate reconstructions of microstructures (up
to some smoothing).

• Interpolation of fingerprints along a linear path in latent space
and random perturbations about fingerprints of input microstruc-
tures resulted in the generation of plausible synthetic microstruc-
tures, demonstrating the suitability of the VAE for smooth repre-
sentation of microstructure.
12
• Fingerprints constructed by the trained VAE were shown to cor-
relate with morphological features, including αp volume fraction
and grain size, using support vector regression (SVR) with 10-fold
cross-validation.

• Principal component analysis (PCA) was shown to provide useful
insight into the amount of noise that can be added before the syn-
thetic fingerprints become disconnected from the learned latent
space.

Our study based on a set of micrographs of titanium alloy mi-
crostructure demonstrates that a VAE can encode material microstruc-
tures to produce fingerprints that exhibit several of the key features
required in a general purpose fingerprint. Important next steps will
be to test this approach on a broader class of microstructures and to
apply it to datasets exhibiting variation in both microstructure and
measured properties, to allow exploration of the suitability of VAEs
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for predicting microstructure–process–property relationships in an ex-
plainable framework. We also note that generative adversarial networks
(GANs) are found to generate high-fidelity synthetic microstructures,
with strong statistical similarity to the training data, even in a limited
data regime [33], with possible extensions to reconstructing 3D vol-
umes [34]. It would be interesting to consider synthetic images output
from a GAN as inputs to the VAE to determine how the generated
images are distributed through the encoded space and assess their
potential for bolstering morphology prediction.
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