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A B S T R A C T

In this work, a mathematical formulation based on variational asymptotic method (VAM) has been proposed
to determine the effect of damage on the auxetic properties of two-dimensional (2D) and three-dimensional
(3D) re-entrant geometries. The influence of damage progression on the auxetic behavior was captured using
a geometrically exact one-dimensional beam theory and an isotropic damage law, implemented in a nonlinear
finite element framework. The effect of material degradation on the macroscale effective elastic properties such
as the elastic modulus and Poisson’s ratio for the two-dimensional and three-dimensional re-entrant auxetic
geometries was quantified. The mechanical behavior as predicted by the in-house Python-based implementation
of the proposed VAM-based formulation is verified with the results from the commercial finite element solver
Abaqus, wherein the user material subroutine was used to capture damage evolution. The numerical examples
presented in this paper reveal that the macroscale auxetic behavior of the geometries was affected significantly
by damage progression. The results of this research will provide insights into the design and analysis of auxetic
materials for applications that warrant consideration of damage evolution.
. Introduction

Auxetic materials exhibit a negative value of Poisson’s ratio (Kolken
nd Zadpoor, 2017), i.e., a longitudinal elongation for these materi-
ls is coupled with a lateral extension unlike conventional materials.
hese materials are fundamentally a tessellation of a unit cell or
icro-structure. The peculiarity in their mechanical characteristics is

ttributed to the deformation mechanism of their micro-structure or
nit cell. With recent advancements in additive manufacturing (Joseph
t al., 2021), several different geometries of these unit cells have
een the subject of various analytical, numerical, and experimental
nvestigations (Smith et al., 2000; Tang et al., 2020; Gaspar et al., 2005;
emennikov et al., 2019; Koudelka et al., 2016; Elipe and Lantada,
012; Rad et al., 2015; Dutta et al., 2021; Li et al., 2021; Jiang
t al., 2019; Mukhopadhyay and Adhikari, 2016, 2017; Wei et al.,
020), while a number of studies have focused on design of novel
eometries exhibiting a negative value of Poisson’s ratio (Peng and
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Bargmann, 2021; Wei et al., 2020; Fu et al., 2018; Grima et al., 2005;
Meena and Singamneni, 2021). Similar to naturally occurring materials,
the characterization of auxetic materials involves determination of
effective elastic properties, i.e., Young’s modulus and Poisson’s ratio
(Mousanezhad et al., 2016; Scarpa et al., 2000; Gatt et al., 2013; Tabacu
et al., 2020; Liu et al., 2020). Numerical homogenization has previously
been used to determine effective elastic properties (Wang et al., 2018;
Theocaris et al., 1997; Srivastava et al., 2023b), while a significant
majority of previous works derive closed-form expressions for effective
elastic properties in terms of geometric and material parameters by
discretizing the auxetic microstructure into beams and imposing suit-
able boundary conditions to represent periodicity (Mousanezhad et al.,
2016; Gatt et al., 2013).

Within the framework of small deformation theories such as the
Euler–Bernoulli beam model, these expressions are independent of ap-
plied strain and stress fields, which is inconsistent with the experimen-
tally observed strain-dependent behavior (Gao et al., 2018). Mechanical
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behavior for these geometries under large far-field stresses can be
predicted accurately using large deformation beam theories, wherein
geometrically exact expressions for curvature are used in the moment
equilibrium equations for the beam. Wan et al. (2004) used large
deformation theory, i.e., the elastica theory, to determine the variation
of Poisson’s ratio with applied strain for the re-entrant type geometry
shown in Fig. 2. Gao et al. (2018) used a similar methodology to deter-
mine strain-dependent mechanical behavior for the double-V geometry
of the microstructure. In addition to one-dimensional non-linearity
along the beam-reference line attributed to large displacements and
rotation of the cross-section, as a consequence of large far-field stresses,
the members constituting the micro-structure may also undergo signif-
icant damage as a consequence of material non-linearity. Within the
framework of continuum damage mechanics pioneered by Kachanov
(1999), the degradation of the material, i.e., the effect of micro-cracks,
can be captured by defining an appropriate damage progression law
to determine a damage variable. Computed as a function of material
parameters and local stress and strain fields, the damage variable
ranges between 0 to 1, representing an undamaged and completely
damaged material state (Voyiadjis and Kattan, 2022).

While a majority of studies exist to quantify the elastic proper-
ties of a range of auxetic configurations, a very limited number of
studies deal with analyzing the effect of damage evolution on the
load-dependent behavior of auxetic materials. Previous works have
focused on the deformation-dependent impact energy absorption char-
acteristics of auxetics and sandwich panels with auxetic core wherein
the improved performance of the auxetic materials relative to con-
ventional materials has been highlighted (Zhang et al., 2020; Madke
and Chowdhury, 2020; Wang, 2022; Najafi et al., 2021) and hence
the design of auxetic microstructure geometries to enhance energy
absorption characteristics has also been previously explored (Bohara
et al., 2021). Some studies dealt with the geometric and material
nonlinear mechanical behavior of auxetic materials (Seetoh et al., 2021;
Du et al., 2022; Prajwal et al., 2022; Sabari et al., 2023). However,
studies on explicit quantification of the influence of damage initiation
and evolution on the auxeticity under large deformations are very
limited. In this context, the present work utilizes a geometrically-
and materially-nonlinear beam model, incorporating large deflections
together with a material damage law, to quantify the effect of damage
on the auxetic behavior.

The paper is organized as follows: Section 2 focuses on the analysis
methodology comprising a geometrically nonlinear beam theory to
model the damage evolution in 2D and 3D re-entrant auxetic materials
using the variational asymptotic method (VAM). The results of the
analysis are presented in detail in Section 3 together with a compar-
ison to 3D finite element analysis results using Abaqus, followed by
conclusions in Section 4.

2. Methodology

A geometrically nonlinear beam model coupled with a damage law
is used to model the mechanical behavior of the ribs in the 2D and
3D auxetic structures considered in this study. In contrast to the con-
ventional beam theories, the actual three-dimensional beam is reduced
to an energetically equivalent one-dimensional problem without impos-
ing ad-hoc kinematic assumptions,following the methodology proposed
by Hodges (2006) and Yu et al. (2002). The VAM-based modeling
framework shown in Fig. 1 is adopted in this work, followed by the
integration of a damage law. In the context of the VAM formulation,
the original three-dimensional problem is split into a two-dimensional
cross-sectional analysis and a one-dimensional non-linear beam analy-
sis, which accurately captures the in-plane as well as out-of-the-plane
cross-sectional warping. As shown in Fig. 1, the cross-sectional stiffness
matrix obtained from the two-dimensional analysis is a required input
2

for one-dimensional non-linear beam analysis. As damage evolves along
the length of the inclined member, the stiffness coefficients corre-
sponding to bending, twist and shear deformations would also exhibit
degradation and thereby impact macroscale behavior for the geometry.
The above damage-coupled geometrically nonlinear beam formulation
is implemented in an in-house nonlinear finite element code developed
in Python.

To demonstrate the effect of damage evolution on auxetic charac-
teristics, the re-entrant type geometry (both in 2D and 3D) as shown
in Fig. 2 is considered in the current work. For the re-entrant type
geometry, it is the hinging of the inclined members, which affects the
negative value of the Poisson’s ratio at the macro-scale. The effective
properties for the re-entrant type geometry of the microstructure are
determined from the deformed configuration of the geometry under
far-field stresses. The microstructure, as shown in Fig. 2 was discretized
into beams with boundary conditions as outlined by Wan et al. (2004)
and Levy et al. (2006), wherein, a large deflection model, i.e., the elas-
tica theory, has been used to determine the effective value of Poisson’s
ratio under large far-field stresses, considering only the deformation of
the inclined member AB as shown in Fig. 2 to be significant. Since the
unit cell is part of a larger material medium, symmetry of deformation
is imposed by suppressing rotations at joints A and B, thereby implying
that the inclined beam AB can be broken into two half cantilever beams
as indicated in Fig. 2.

With reference to Wan et al. (2004), the tip load on the cantilever
beam, i.e. 𝑃𝑥, shown in Fig. 2, is estimated from the far-field stresses
as per the following equation:

𝑃𝑥 = 𝜎𝑥(𝐻 − 𝐿 sin 𝜃)𝑡 (1)

where 𝐻 and 𝐿 are the lengths of the vertical and inclined members
espectively, 𝑡 is the width or thickness of the members and 𝜃 is the

rib-inclination angle for the member as shown in Fig. 2. For larger
deflections, the internal cell angle, i.e. 𝜃 for the geometry will change
significantly, as the members deform, thereby indicating that Eq. (1),
is valid over a limited range of applied stress, wherein the change in
internal angles due to member deformation is not significant. However,
in the present work Eq. (1) is used to determine the effective elastic
modulus over the complete range of applied stress for the 2D re-entrant
geometry, in order to estimate the change in effective stiffness for the
material due to damage evolution. The tip deflection for the cantilever
beams in horizontal and vertical directions, i.e. 𝑈𝑥 and 𝑈𝑦, under the
applied far-field stress 𝜎𝑥 would be determined for different values of
rib-inclination angles 𝜃, and the value of strains 𝜖𝑥 and 𝜖𝑦 is estimated
as per the following equations from the deformed configuration of the
geometry:

𝜖𝑥 =
2𝑈𝑥
𝐿 cos 𝜃

𝜖𝑦 =
2𝑈𝑦

𝐻 − 𝐿 sin 𝜃
(2)

wherein 𝐿 cos 𝜃 and (𝐻 −𝐿 sin 𝜃) are the horizontal and vertical projec-
ions respectively of the undeformed inclined member AB. The macro-
cale value of Poisson’s ratio and effective elastic modulus in the 𝑥
irection are estimated as per the following equations:

𝑥𝑦 = −
𝜖𝑦
𝜖𝑥

= −
𝑈𝑦𝐿 cos 𝜃

𝑈𝑥(𝐻 − 𝐿 sin 𝜃)
(3)

𝐸𝑥 =
𝜎𝑥
𝜖𝑥

=
𝑃𝑥𝐿 cos 𝜃

2(𝐻 − 𝐿 sin 𝜃)𝑡𝑈𝑥
(4)

For comparison purposes, within the framework of linear beam theory,
i.e. Euler–Bernoulli beam model for small deformation is used to obtain
the value of 𝜈𝑥𝑦 and 𝐸𝑥, which are independent of applied stress or
strain field. Accordingly, Eqs. (3) and (4), are reduced to the following
form:

𝜈𝑥𝑦 =

(

3 − 𝑘2
)

sin 𝜃
[

𝛼 − sin 𝜃
][

3 + 𝑘2 tan2 𝜃
] (5)

𝐸𝑥 =
12𝐸𝑠𝛿𝑡

[ ] [

2 2 ] (6)

𝛼 − sin 𝜃 cos 𝜃 𝑘 tan 𝜃 + 12
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Fig. 1. Methodology for beam analysis adopted in the present work as described by Hodges (2006).
Fig. 2. 2D re-entrant geometry with the inclination angle of the ribs 𝜃, the length of inclined member 𝐿 and height of vertical member 𝐻 . Half-length cantilever beam model
for the 2D re-entrant geometry (Wan et al., 2004): the inclined member AB is split into two half-length cantilever beams, i.e. AO and OB. The tip deflections in the horizontal
and vertical directions for the cantilever beam are 𝑈𝑥 and 𝑈𝑦, respectively. The tip load on the cantilever beam is determined from the applied far-field stress, i.e. 𝜎𝑥 Wan et al.
(2004), Srivastava et al. (2023a).
where, 𝑘 is the slenderness ratio of the half length cantilever beam
AO, 𝛼 is the ratio of the length of the vertical strut to the inclined
strut, i.e. 𝐻∕𝐿, 𝐸𝑠 is the value of Young’s modulus for the material
of the auxetic frame and 𝛿𝑡 is the ratio of the in-plane thickness of the
member, i.e. 𝑡 to the length of the member AB as shown in Fig. 2.

Similarly, for the case of 3D re-entrant geometry shown in Fig. 3,
Yang et al. (2015) formulated analytical expressions for the Poisson’s
ratio and effective Young’s modulus. Under the effect of applied far-
field stresses in the vertical direction i.e. 𝜎𝑧, the inclined members
𝑂1𝐸, 𝑂2𝐸, 𝑂3𝐸 and 𝑂4𝐸 deform symmetrically. Hence, from symmetry
considerations, Yang et al. (2015) determined the value of Poisson’s
ratio from the deformed configuration of the inclined member 𝑂1𝐸
and vertical member 𝑂1𝑂4 as shown in Fig. 3, while restricting joint
rotations at node 𝑂1. Similar to the two-dimensional re-entrant geom-
etry, the load on the half cantilever beam model for member 𝑂1𝐸 is
estimated from the far-field stress as per the following equations:

𝑃𝑧 =
1
2
𝜎𝑧𝐿

2 sin2 𝜃 (7)

The value of Poisson’s ratio and effective modulus in the 𝑧 direction,
i.e. 𝜈 and 𝐸 for the three-dimensional geometry were determined
3

𝑧𝑥 𝑧
from the deformations of the inclined and vertical struts as per the
following equation:

𝜈𝑧𝑥 = −
𝜖𝑥
𝜖𝑧

= −
2𝑈𝑥1 (𝐻 − 𝐿 cos 𝜃)
(2𝑈𝑧1 + 𝑈𝑧2 )𝐿 sin 𝜃

(8)

𝐸𝑧 =
𝜎𝑧
𝜖𝑧

=
2𝑃𝑧(𝐻 − 𝐿 cos 𝜃)

(2𝑈𝑧1 + 𝑈𝑧2 )𝐿
2 sin2 𝜃

(9)

where, 𝐻 , 𝐿 and 𝜃 are model parameters as shown in Fig. 3, 𝑈𝑥1 and
𝑈𝑧1 are the horizontal and vertical tip deflections for the half-length
cantilever beam for member 𝑂1𝐸 and 𝑈𝑧2 is the vertical deflection for
the member 𝑂1𝑂4. Again for comparison purposes, for small deforma-
tions, the Euler–Bernoulli beam model gives the following expression
for the Poisson’s ratio and effective modulus in the 𝑧-direction for the
3D geometry:

𝜈𝑧𝑥 = −

[

𝑘2 − 12
]

cos 𝜃
[

𝛼 − cos 𝜃
]

[

𝑘2 sin2 𝜃 + 12 cos2 𝜃 + 6𝛼
]

(10)

𝐸𝑧 =
24𝐸𝛿2𝑡

[

𝛼 − cos 𝜃
]

sin2 𝜃
[

𝑘2 sin2 𝜃 + 12 cos2 𝜃 + 6𝛼
]

(11)

where, 𝑘, is the slenderness ratio for the inclined member 𝑂1𝑂4. For
slender struts, the Poisson’s ratio for 2D re-entrant geometry was shown
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Fig. 3. 3D re-entrant geometry with the rib-inclination angle 𝜃, length of inclined member 𝐿 and height of vertical member 𝐻 . The half-length cantilever beam model for the 3D
re-entrant geometry: the inclined member is split into two half-length cantilever beams. The tip deflections in the horizontal and vertical directions for the cantilever beam are
𝛥𝑥1 and 𝛥𝑧1, respectively. The tip load on the cantilever beam is determined from the applied far-field stress 𝜎𝑧 (Yang et al., 2015; Srivastava et al., 2023a).
to vary significantly with applied strain (Wan et al., 2004). The devia-
tion from the strain-independent value of Poisson’s ratio determined
from Eq. (5) was primarily attributed to large deformations, which
have been previously accounted for using the elastica theory by Wan
et al. (2004) and Levy et al. (2006), however, the results were obtained
by considering physically unrealistic values of tip deflection angles as
inputs. In contrast to the formulations presented in previous work for
the geometry, in this work, the geometrically exact beam theory (GEBT)
presented in Section 2.2 is used to determine deflections of the struts
under large loads.

The material for the auxetic frame was assumed to be ABS plastic,
which exhibits elastic plastic behavior (Hu et al., 2019), thereby imply-
ing that under the effect of far-field stresses, the material of the auxetic
frame can potentially undergo significant damage. Hence, in addition
to the impact of one-dimensional non-linearity due to the slenderness
of the struts on the Poisson’s ratio, the effect of material non-linearity
due to excessive deformations and damage on the load-dependent me-
chanical behavior for the 2D and 3D re-entrant geometries is examined
in the present work.

2.1. Cross sectional analysis

2.1.1. Beam kinematics
Consider the undeformed configuration of the beam as shown in

Fig. 4, wherein 𝒃𝒊 is an orthonormal triad of basis vectors, such that 𝒃𝟏
is along the beam reference line, which passes through the centroid of
the cross section, while 𝒃𝟐 and 𝒃𝟑 are along two mutually perpendicular
direction transverse to 𝒃𝟏. The position vector (�̂�) to a material point
on the cross-section of the beam is thereby expressed in terms of the
4

measure numbers along 𝒃𝟏, 𝒃𝟐 and 𝒃𝟑 i.e.,

�̂�(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝒃𝟏 + 𝑥2𝒃𝟐(𝑥1) + 𝑥3𝒃𝟑(𝑥1) (12)

where, 𝑥1 is measured along the beam reference line and 𝑥2, 𝑥3 are
measure numbers along 𝒃𝟐 and 𝒃𝟑, respectively to a material point on
the undeformed cross section.

The position vector to the points of intersection of the cross-section
with the beam reference line is denoted by 𝒓 relative to the origin of
the fixed frame A and the 𝒃𝟏 vector is tangential to the beam reference
line, i.e.:

𝒓′ = 𝒃𝟏 (13)

The derivatives of the orthonormal triad of 𝒃𝒊 vectors with respect to
𝑥1 are expressed as follows in terms of the initial curvature, i.e. 𝒌 along
the beam reference line:

𝒃′𝒊 = 𝒌 × 𝒃𝒊 (14)

Similarly, the position vector of a material point on the deformed cross
section (�̂�) is given by the following expression (Hodges, 2006):

�̂� = 𝒓 + 𝒖 + 𝑥2𝑩𝟐 + 𝑥3𝑩𝟑 +𝑤𝑖𝑩𝒊 (15)

where 𝒖(𝑥1) is the rigid body translation of the reference point i.e., point
of intersection of the beam reference line and the cross-section, 𝑤𝑖 is
the warping field, 𝑩𝟏 is normal to the deformed beam cross-sectional
plane, while 𝑩𝟐 and 𝑩𝟑, are mutually perpendicular, lying in the plane
of the deformed cross-section also the vector 𝑩𝟏 is not tangential to
the deformed reference line. The orthonormal triads 𝒃𝒊 and 𝑩𝒊 for the
undeformed and deformed state respectively are related as per the
following equation:

𝒃 = 𝑪𝑏𝐵 .𝑩 (16)
𝒊 𝒊
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Fig. 4. Undeformed and deformed configurations of the cross-section: position vector to a material point on the undeformed cross-section, i.e. �̂� is expressed in terms of measure
numbers along the orthonormal triad of 𝒃𝒊 vectors, and the position vector to a material point on the deformed cross-section, i.e. �̂� is expressed in terms of measure numbers
along the orthonormal triad of 𝑩𝒊 vectors.
𝜖

where, 𝑪𝑏𝐵 is the rotation tensor. For the beam cross-sectional analysis,
the three dimensional strain at a material point on the cross-section is
expressed in terms of the one dimensional force and moment strains
along the beam reference line, which are defined as follows:

𝜸 = 𝑪𝑏𝐵 .𝑹′ − 𝒓′ (17)

𝜿 = 𝑪𝑏𝐵 .𝑲 − 𝒌 (18)

where, 𝑲 is the curvature of the deformed centerline of the beam, 𝜸 is
the vector with force strains, 𝜿 is the vector with moment strains and
𝑪𝑏𝐵 is the rotation tensor. From Eqs. (17) and (16), the derivative of
the position vector to the deformed centerline wrt. 𝑥1 can be expressed
as follows:

𝑹′ = (1 + 𝛾11)𝑩𝟏 + 2𝛾12𝑩𝟐 + 2𝛾13𝑩𝟑 (19)

where, 𝛾11, 2𝛾12 and 2𝛾13 are the measure numbers of the force strain
vector in the 𝒃𝒊 basis. Analogous to Eq. (14), the derivative of the 𝑩𝒊
triad w.r.t 𝑥1 can be written as follows in terms of the initial curvature
𝒌 and moment strains 𝜿:

𝑩′
𝒊 = (𝜿 + 𝒌) × 𝑩𝒊 (20)

In order to determine the three dimensional strains, the deforma-
tion gradient tensor (𝑿) is determined as per the following equation
(Hodges, 2006):

𝑿 = 𝑮𝒊𝒈𝒊 (21)

where, 𝑮𝒊 are the covariant vectors for the deformed configuration and
𝒈𝒊 are the contravariant vectors for the undeformed configuration. The
position vectors as defined in Eqs. (12) and (15) are used to determine
the covariant vectors in the undeformed (𝒈𝒊) and deformed (𝑮𝒊) state
respectively in accordance with the following set of equations:

𝒈𝟏 =
𝜕�̂�
𝜕𝑥1

𝒈𝟐 =
𝜕�̂�
𝜕𝑥2

𝒈𝟑 =
𝜕�̂�
𝜕𝑥3

(22)

𝑮𝟏 =
𝜕�̂�
𝜕𝑥1

𝑮𝟐 =
𝜕�̂�
𝜕𝑥2

𝑮𝟑 =
𝜕�̂�
𝜕𝑥3

(23)

The contravariant vectors (𝒈𝒊) are determined as follows from the
covariant vectors (𝒈𝒊) as per the following equation, where

√

𝑔 =
𝑑𝑒𝑡(𝒈𝒊.𝒈𝒋) :

𝒈𝒊 =
𝜖𝑖𝑗𝑘
√

𝒈𝒋 × 𝒈𝒌 (24)
5

2 𝑔
Further, in order to simplify the formulations for the three-dimensional
strain components the orthonormal triad 𝑻 𝒊 is introduced, such that 𝑻 𝟏
is tangential to the deformed center-line of the beam, and 𝑩𝒊 and 𝑻 𝒊
vectors are related as follows:
⎡

⎢

⎢

⎣

𝑩𝟏
𝑩𝟐
𝑩𝟑

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1 −2𝛾12 −2𝛾13
2𝛾12 1 0
2𝛾13 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑻 𝟏
𝑻 𝟐
𝑻 𝟑

⎤

⎥

⎥

⎦

(25)

where, 2𝛾12 and 2𝛾13 are small angles due to shear deformation. Con-
sidering the 𝑻 𝒊 triad, the position vector to a material point in the
deformed configuration can be re-expressed as follows:

�̂� = 𝒓 + 𝒖 + 𝑥2𝑻 𝟐 + 𝑥3𝑻 𝟑 + �̄�𝑖𝑻 𝒊 (26)

In the 𝑻 𝒊 basis, since the shear strain is a part of the warping field,
generalized one-dimensional strain measures of the classical theory are
introduced as follows:

̄ =

⎡

⎢

⎢

⎢

⎢

⎣

𝛾11
𝜅1
𝜅2
𝜅3

⎤

⎥

⎥

⎥

⎥

⎦

(27)

such that :

𝛾11 = 𝛾11|(2𝛾1𝛼=0) (28)

𝜅𝑖 = 𝜅𝑖|(2𝛾1𝛼=0) (29)

The deformation gradient tensor components, in the mixed basis are
thereby expressed as follows:

𝑋𝑖𝑗 = 𝑻 𝒊.𝑮𝒌𝒈𝒌.𝒃𝒋 (30)

where, the covariant vectors for the deformed configuration can be
determined by substituting Eq. (26) in Eq. (23). From the deformation
gradient tensor, the three-dimensional strain components are computed
as follows:

𝛤𝑖𝑗 =
𝑋𝑖𝑗 +𝑋𝑗𝑖

2
− 𝛿𝑖𝑗 (31)

The terms of the deformation gradient tensor and the three dimensional
strain components have been summarized in the Appendix (ref. A.1).
The three dimensional strains, after discarding the product of one-
dimensional strain and warping can be written in the following matrix
form:

𝛤 = 𝛤 𝑤 + 𝛤 𝜖 + 𝛤 𝑤 + 𝛤 𝑤′ (32)
𝑎 𝜖 𝑅 𝑙
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where 𝛤 = [𝛤11 2𝛤12 2𝛤13 𝛤22 2𝛤23 𝛤33]𝑇 and 𝛤𝑎, 𝛤𝑅, 𝛤𝑙 and
𝜖 are coefficient matrices as summarized in Eq. (A.18). The warping
ield further satisfies the following constraint (Hodges, 2006):

𝑎𝑤 = 0 (33)

sing Eq. (32), the strain energy per unit length of the beam in terms
f the three-dimensional strain can be determined using the following
quation:

= 1
2 ∫𝐴

𝛤 𝑇𝐷𝛤
√

𝑔𝑑𝑥2𝑑𝑥3 (34)

where 𝐷 is the material matrix that relates the stress and strain field at
a material point. The terms of the material matrix 𝐷 would undergo
degradation as damage evolves. The degraded material parameters
would be computed at each load step from the local strains as per the
damage law for the material constituting the auxetic frame.

2.1.2. Zeroth order approximation
For a finite element implementation, the warping field is discretized

as follows:

𝑤 = 𝑆𝑉 (35)

where, V is the column matrix with nodal values of the three dimen-
sional warping field and S is the shape function matrix. On substitut-
ing the discretized warping field in the expression for strain energy,
i.e. Eq. (34), and retaining zeroth order terms, the following expression
for the zeroth order strain energy functional is obtained:

2𝑈0 = 𝑉 𝑇𝐸𝑉 + 2𝑉 𝑇𝐷𝑎𝜖𝜖 + 𝜖𝑇𝐷𝜖𝜖𝜖 (36)

n Eq. (36), 𝐷𝑎𝜖 and 𝐷𝜖𝜖 are coefficient matrices for which the in-
egral expressions have been summarized in Eq. (A.20). The zeroth
rder strain energy functional is minimized subject to the constraint
n Eq. (33) using Lagrange’s parameters to get the following Euler–
agrange’s equations:

𝑉 = −𝐷𝑎𝜖𝜖 (37)

he detailed mathematical formulations for the Euler–Lagrange’s equa-
ion have been summarized in the Appendix (ref. A.1.1). In order to
olve the Euler–Lagrange’s equation numerically, warping influence
oefficients 𝑉𝑜 are introduced, such that 𝑉 = 𝑉𝑜𝜖. and the 4 × 4
ross-sectional stiffness matrix (�̄�) is from the coefficient matrices:

̄ = 𝑉 𝑇
𝑜 𝐷𝑎𝜖 +𝐷𝜖𝜖 (38)

he zeroth order strain energy is expressed as follows in terms of the
ross-sectional stiffness matrix:

𝑜 =
1
2
[

𝛾11 𝜅1 𝜅2 𝜅2
]

⎡

⎢

⎢

⎢

⎢

⎣

�̄�11 �̄�12 �̄�13 �̄�14
�̄�12 �̄�22 �̄�23 �̄�24
�̄�13 �̄�23 �̄�33 �̄�34
�̄�14 �̄�24 �̄�34 �̄�44

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝛾11
𝜅1
𝜅2
𝜅3

⎤

⎥

⎥

⎥

⎥

⎦

(39)

2.1.3. First order approximation
For the first-order solution, the warping field determined from the

zeroth-order solution is perturbed as shown below:

𝑉 = 𝑉𝑜 + 𝑉1 (40)

Retaining the leading terms, removing constant terms from zeroth order
approximation and integrating by parts, the strain energy with the
perturbed warping field is obtained (ref, A.1);

2𝑈1 = 𝑉 𝑇
1 𝐸𝑉1 + 2𝑉 𝑇

1 𝐷𝑅𝜖 + 2𝑉 𝑇
1 𝐷𝑆𝜖

′ (41)

The detailed mathematical formulations for the cross-sectional stiffness
matrix as determined from first-order approximation for the warping
field have been summarized in the Appendix (ref. A.1.2). The 6 × 6
ross-sectional stiffness matrix obtained from the procedure for beam
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ross-sectional analysis (Hodges, 2006), thereafter has the following
form such that, the one-dimensional strains along the beam reference
line can be related to force resultants as per the following equations:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐹1
𝐹2
𝐹3
𝑀1
𝑀2
𝑀3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆16
𝑆12 𝑆22 𝑆23 𝑆24 𝑆25 𝑆26
𝑆13 𝑆23 𝑆33 𝑆34 𝑆35 𝑆36
𝑆14 𝑆24 𝑆34 𝑆44 𝑆45 𝑆46
𝑆15 𝑆25 𝑆35 𝑆45 𝑆55 𝑆56
𝑆16 𝑆26 𝑆36 𝑆46 𝑆56 𝑆66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛾11
2𝛾12
2𝛾13
𝜅1
𝜅2
𝜅2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(42)

.2. Geometrically exact beam theory

The cross-sectional stiffness matrix obtained in Section 2.1 is used
s an input for one-dimensional analysis along the beam reference
ine. The equations for one-dimensional beam analysis are derived from
xtended Hamilton’s principle:
𝑡2

𝑡1
∫

𝐿

0

[

𝛿(𝑇 − 𝑈 ) + ̄𝛿𝑊
]

= ̄𝛿𝐴 (43)

here 𝑇 is the kinetic energy per unit length, 𝑈 is the strain energy
er unit length, 𝑊 is the virtual work done by the applied loads per
nit length, and 𝐴, is the virtual action at the ends of the beam.
he mathematical formulations for the Euler–Lagrange’s equations and
he finite element formulation for the one-dimensional analysis have
een summarized in the Appendix (ref. B.1). From the 1D analysis,
he one-dimensional strains (ref. Eqs. (17) and (18)) along the beam
eference line, as determined from Eq. (42) at a given load increment
re used to evaluate the local three-dimensional strains in accordance
ith the recovery relations (ref. Section 2.3), to determine the local
egraded material property as per the damage law for the material
onstituting the auxetic frame at each material point. The degraded
aterial properties are used to determine the cross-sectional stiffness
atrix (ref. A.1) for the next load step as summarized in Fig. 5

.3. Recovery relations and damage evolution

As summarized in Fig. 5, the results from the one-dimensional beam
nalysis are used to determine the three-dimensional local strain 𝛤 in
ccordance with the following equation (Hodges, 2006) (ref. A.1):

=
[

(𝛤𝑎+𝛤𝑅)(𝑉0+𝑉1𝑅)+𝛤𝜖
]

𝜖+
[

(𝛤𝑎+𝛤𝑅)𝑉1𝑆 +𝛤𝜖(𝑉0+𝑉1𝑅)
]

𝜖′+𝛤𝑙𝑉1𝑆𝜖
′′

(44)

The local degradation or damage of the auxetic material is captured
by the damage parameter 𝑑, which is evaluated as a function of local
strain in accordance with appropriate damage law (Xue and Kirane,
2021). The value of the damage parameter, i.e. 𝑑, is used to determine
the local degraded value of Young’s modulus :

𝐸𝑑 = (1 − 𝑑)𝐸 (45)

The terms of the cross-sectional stiffness matrix in Eq. (42) would
undergo significant reduction as damage evolves along the length of the
beam. As the damage parameter modifies the local material property,
the two-dimensional cross-sectional analysis would be repeated after
each load increment for the beam elements to determine the degraded
values of the stiffness coefficients. The flow chart in Fig. 5 summarizes
the incremental procedure adopted to determine the effective prop-
erties for the re-entrant type geometry of the micro-structure as the
damage evolves.

3. Results and discussion

In this section, the effect of damage evolution on the auxetic be-
havior of the two-dimensional (Fig. 2) and three-dimensional (Fig. 3)
re-entrant geometries is investigated. For the numerical study dealing
with the 2D re-entrant auxetic geometry, the length of the inclined
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Fig. 5. Procedure for determining the effect of progressive damage evolution on the effective elastic properties for the 2D and 3D re-entrant geometry. At each load increment
𝑖, the local damage variable is evaluated as per the damage law from local strains. The modified material properties, i.e. 𝐸𝑑 , are used to evaluate the modified cross-sectional
stiffness for the beam element for the next load increment.
1
c
s
s
i
m

3

y
t
c
f
w
a
w

a
(
t
j
b
g
b
o
l

Table 1
Elastic properties for 2D and 3D re-entrant geometry from Euler–Bernoulli beam model
(𝐿 = 40 mm; 𝛼 = 2, 𝑘 = 46).

Model parameters 2D re-entrant 3D re-entrant

𝛼 𝜃 𝜈𝑥𝑦 𝐸𝑥 (kPa) 𝜈𝑧𝑥 𝐸𝑧 (kPa)

2 30◦ −0.98 2160 −3.82 2450
2 40◦ −0.66 1270 −2.24 992
2 50◦ −0.43 827 −1.46 545
2 60◦ −0.25 550 −0.98 370

member AB (ref. Fig. 2) is assumed to be 40 mm. Further, the cross-
section for the beam is considered to be square-shaped with a thickness
of 3 mm, such that the slenderness ratio for the inclined members,
i.e. 𝑘 = 46. The ratio of the length of the vertical strut to the inclined
orizontal strut, i.e. 𝛼 = 2 and the material for the auxetic frame was
aken to be ABS plastic, for which E = 2.2 GPa and 𝜈 = 0.37 (Li

et al., 2020). Based on the small deformation theory [ref. Eqs. (5) and
(6)], the magnitude of the Poisson’s ratio (𝜈𝑥𝑦) and effective elastic
modulus (𝐸𝑥) for the 2D re-entrant geometry are tabulated in Table 1
for different values of the rib-inclination angle, i.e. 𝜃. Considering
the influence of different values of rib-inclination angles 𝜃, it can
be witnessed from the numerical results that with a higher value of
rib-inclination angle, the Poisson’s ratio becomes increasingly less neg-
ative, thereby indicating a reduction in the degree of auxetic behavior.
Further, the assessment from the small deformation theory is extended
to 3D re-entrant geometry. To this end, similar to the 2D geometry, the
dimension for the member 𝑂1𝐸 (Fig. 3) was assumed to be 40 mm,
the cross-section for the beam is considered to be square-shaped with
a thickness of 3 mm and the ratio of the length of the vertical strut
to the inclined horizontal strut, i.e. 𝛼 = 2. The results from the Euler–
Bernoulli beam model [ref. Eqs. (10) and (11)] tabulated in Table 1 for
3D re-entrant geometry with different values of 𝜃 reveal that the degree
of auxeticity enhances as the value of 𝜃, diminishes. (ref. Section 2).

3.1. Material behavior

The value of limiting strain for the linear elastic behavior of the ma-
terial of the auxetic frame, i.e. ABS Plastic was considered to be 0.013
(Li et al., 2020; Hu et al., 2019). Acrylonitrile–butadiene–styrene (ABS)
is a widely used amorphous thermoplastic, which exhibits minimal
strain hardening (Hu et al., 2019). The tensile stress–strain behavior for
the material is closer to ideal elastic plastic behavior shown in Fig. 6
7

(Dundar et al., 2021; Hu et al., 2019). Hence, the damage parameter 𝑑 2
was estimated as per the following damage law to represent the exper-
imentally observed stress–strain behavior for ABS plastic in previous
works (Einav et al., 2007; Hu et al., 2019):

𝑑 = 1 −
𝜖𝑜
𝛤11

𝜋(𝑑) 𝛤11 > 𝜖𝑜 (46)

where, 𝜖𝑜, is the damage initiation strain for the material (ref. Fig. 6),
𝛤11 is the local tensile strain determined from the recovery relations
(Section 2.3) and 𝜋(𝑑) = 1 for ideal elastic plastic behavior. The
methodology adopted in the present work can also be extended to
materials which exhibit plastic hardening after finite deformations.
Previously, coupled damage and plasticity models have been developed
(Einav et al., 2007), wherein, it was shown that the same constitutive
framework can be adopted to describe both the growth of damage and
the evolution of plastic strains, i.e. damage laws can be tailored to
represent specific material behaviors such as plastic hardening (𝜋(𝑑) >
) and softening (𝜋(𝑑) < 1) as shown in Fig. 6. Appropriate damage laws
an be plugged into the variational asymptotic method based cross-
ectional analysis to determine the change in cross-sectional bending
tiffness and the resultant deformation characteristics of the constitut-
ng members of the auxetic frame to predict the change in macroscale
echanical behavior for the geometries.

.2. Mesh convergence

As discussed in Section 2, one-dimensional non-linear beam anal-
sis should be coupled with two-dimensional cross-sectional analysis
o accurately predict the affect of local material degradation on the
ross-sectional stiffness of the inclined members and the deformed con-
iguration of the geometry. In this context a mesh convergence analysis
as carried out for the finite element implementation of the variational
symptotic method based cross-sectional analysis (ref. Section 2.1) as
ell as for the 3D FEM simulations carried out in Abaqus (UMAT).

For the 3D FEM simulations and the VAM based methodology
dopted in the present work, the half-length cantilever beam models
ref. Section 2) were employed to predict load-dependent behavior for
he 2D and 3D geometry, wherein periodicity is imposed by suppressing
oint rotations. The boundary conditions imposed on the half length
eam representing the inclined members of the 2D and 3D re-entrant
eometry are shown in Fig. 7(d). Previously the half-length cantilever
eam models have been used to predict the strain-dependent behavior
f the re-entrant geometries and the resultant numerical response under
arge deformations has also been experimentally validated (Wan et al.,

004; Yang et al., 2015; Srivastava et al., 2023a).
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Fig. 6. (a) Strain vs. stress behavior of one-dimensional damage hyperelasticity model
for ideal elasto plastic behavior, plastic hardening and softening (Einav et al., 2007).

Fig. 7 shows the variation of strain determined as per Eq. (2) from
the deformed configuration, i.e. the tip deflections of the cantilever
for the 2D re-entrant geometry (𝜃 = 30◦, 𝛼 = 2) with applied tensile
loads. Fig. 7(a) shows the change in the mechanical behavior for
the geometry with damage progression as predicted by the 3D FEM
simulations, wherein the damage law was implemented using UMAT
for varying cross-sectional mesh sizes, i.e. 2 × 2, 4 × 4 and 8 × 8
mesh of the beam (ref. Fig. 7(c)). The results for the 4 × 4 and
8 × 8 mesh sizes converge well, indicating that the results do not
vary for increasing mesh refinements in Abaqus. Similarly, Fig. 7(b)
shows the strain vs load behavior as determined from the VAM and
GEBT based methodology adopted in the present work for different
mesh sizes compared against the converged results from the 3D FEM
simulations, wherein it is observed that the results for 4 × 4 and
8 × 8 mesh sizes are sufficiently convergent. Hence, the square shaped
cross-section of the inclined members of the 2D and 3D re-entrant
geometries was sub-divided into 16 elements (4 × 4 mesh) for the finite
element implementation of the VAM based cross-sectional analysis in
the present work, whereas for the one-dimensional non-linear beam
analysis (ref. Section 2.2), the beam was discretized into 19 elements
along the length as shown in Fig. 7(d).

3.3. Cross-sectional analysis accounting for damage

The terms of the cross-sectional stiffness matrix are a function of ge-
ometric and material parameters, and hence would undergo significant
reduction as the material in the cross-section degrades. As shown in
Fig. 8, the flexural rigidity or bending stiffness (Fig. 2) as determined
from the methodology based on VAM and GEBT (Section 2) for the
cross-section at the root of the half-length cantilever beam AO (ref.
Fig. 2) for the 2D re-entrant geometry (𝛼 = 2, 𝜃 = 30◦) decreases
with increasing magnitudes of normalized compressive load, i.e. 𝑃𝑥∕𝑃𝑐𝑟,
where 𝑃𝑐𝑟, is the critical buckling load for the half length cantilever
beam. Fig. 8 also shows contour plots for the damage parameter 𝑑
over the cross-section for different values of applied load, wherein the
damage parameter varies between 0 to 1.

As emphasized in Section 2.3, the damage parameter is determined
from the evolution of the local strain at the material points. It can
be inferred from the contour plots that initially for lower magni-
tudes of applied loads, the cross-section remains relatively undamaged
(i.e. 𝑃𝑥∕𝑃𝑐𝑟 = −0.23), however, as the magnitude of the applied far-field
stress increases, the cross-section damages significantly (i.e. 𝑃𝑥∕𝑃𝑐𝑟 =
−0.33). Since the damage is driven by tensile strain, the damage is more
8

predominant over the half of the cross-section under tension as the
member AB exhibits a bending dominant mode of deformation. Due to
progressive reduction in flexural stiffness, the deformed configuration
of the geometry is affected significantly, thereby implying a corre-
sponding impact on the macroscale behavior of the auxetic geometry.

3.4. Load vs. strain behavior

For a 2D re-entrant geometry (Fig. 2), the variation of the macro-
scale strain (𝜖𝑥) with normalized compressive and tensile load (𝑃𝑥∕𝑃𝑐𝑟)
for rib-inclination angle, i.e. 𝜃 = 30◦ is plotted in Fig. 9(a) along
with the deformed configuration of the geometry under compression.
The macroscale strain (𝜖𝑥) has been determined from the geometry’s
deformed configuration as per Eq. (2). The results from the 2D cross-
sectional analysis and 1D non-linear beam analysis in the present work
(Fig. 5) have been compared and verified against the results from
Abaqus (v6.17) wherein, the damage law was implemented through
user material subroutine, UMAT. The slope of the load vs. strain plots
indicates a marked degradation in the macroscale value of effective
elastic modulus or stiffness in the 𝑥-direction (𝐸𝑥). This is a conse-
quence of increased deformations of the damaged members due to
material non-linearity (0 < 𝑑 < 1) as compared to the scenario, wherein
damage is not considered (𝑑 = 0) (shown in Fig. 9(a)).

Fig. 9(b) also shows the 3D contour plots for the damage variable,
i.e. 𝑑 along the length of the half-length cantilever member AO at
different values of the applied compressive load. From Fig. 9(b), it can
be inferred that the damage is more predominant near the joints of
the re-entrant geometry (ref. Fig. 2) and remains limited to the portion
of the beam under tension. Previously Hu et al. (2019) fabricated
and tested specimens for re-entrant anti-trichiral honeycombs, wherein
plastic hinges formed near the joints of the microstructure due to the
elastic plastic behavior of the base material, i.e. ABS, significantly
affected mechanical response under large deformations, similar to the
observation in the present work.

Fig. 10 shows the variation of macro-scale strain (𝜖𝑧) with applied
compressive and tensile load in the vertical direction, i.e. 𝑃𝑧 for the
3D re-entrant geometry, as well as the deformed configuration of
the geometry under tension. The deformed configuration shows the
increased deformation of the damaged members (0 < 𝑑 < 1), relative
to the undamaged members (𝑑 = 0). As in the case of 2D geometry, in-
creased deformations of the damaged members, indicate a degradation
in macro-scale effective elastic modulus.

The load vs strain behavior for the 2D and 3D geometry as de-
termined from the methodology adopted in the present work is also
compared against the elastica model presented by Wan et al. (2004)
as shown in Figs. 9 and 10. The elastica theory, similar to the Euler–
Bernoulli beam model neglects cross-sectional warping, i.e. flexural
rigidity is independent of the curvature along the beam reference line as
well as the material degradation, hence the load-dependent behavior as
predicted by the elastic model agrees well with the undamaged results
(𝑑 = 0).

3.5. Quantification of the Young’s modulus and the Poisson’s ratio with
damage evolution

In order to quantify the effect of damage on the effective elastic
properties of the material, certain indices are introduced in this section.
The effect of material degradation on the effective elastic modulus of
the geometry is quantified by the parameter 𝜂 defined as follows:

𝜂 = |

|

|

𝐸𝑈𝐷 − 𝐸𝐷
𝐸𝑈𝐷

|

|

|

× 100% (47)

where 𝐸𝑈𝐷 is the value of the undamaged effective elastic modulus. In
other words, the effective elastic modulus 𝐸𝑈𝐷 is obtained by consider-
ing only the effect of geometric non-linearity or large deflections of the
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Fig. 7. (a) Strain vs. applied load behavior for 2D re-entrant geometry (𝜃 = 30◦, 𝛼 = 2) plotted for varying cross-sectional mesh sizes in Abaqus (UMAT) (b) Strain vs. applied
load behavior for 2D re-entrant geometry (𝜃 = 30◦, 𝛼 = 2) plotted for varying cross-sectional mesh sizes adopted for two-dimensional cross-sectional analysis (VAM) in the present
work. (c) Varying mesh sizes considered in the present work for convergence analysis [2 × 2, 4 × 4 and 8 × 8] (d) Finite element mesh adopted for the half length cantilever
beam models for 2D and 3D re-entrant geometries (Wan et al., 2004; Yang et al., 2015) in 3D FEM (Abaqus) simulations and present work (VAM + GEBT).
constituting members of the geometry. Meanwhile, 𝐸𝐷 is the value of
effective elastic modulus determined by taking into account the effect
of material degradation as well. Similarly, in order to quantify the effect
of damage on Poisson’s ratio, the parameter 𝛽 is introduced:

𝛽 = |

|

|

𝜈𝐷 − 𝜈𝑈𝐷
𝜈𝑈𝐷

|

|

|

× 100% (48)

where 𝜈𝑈𝐷 is the value of Poisson’s ratio considering the material of
the auxetic frame to be undamaged and 𝜈𝐷 is the value of Poisson’s
ratio considering the effect of damage as well as large deformations.
Therefore, higher values of the parameters 𝜂 and 𝛽 indicate a greater
impact of material behavior on the effective elastic properties. To this
end, a parametric study is conducted to analyze the effect of damage
on the auxetic mechanical properties for various rib inclination angles
of the 2D and 3D auxetic geometries.
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Figs. 11(a–d) and 12(a–d) show the variation of Poisson’s ratio, (𝜈𝑥𝑦)
and effective elastic modulus (𝐸𝑥) with applied tensile and compressive
loads respectively for the 2D auxetic frame for various rib inclination
angles. The results are compared with the scenario, wherein the ef-
fect of damage is not considered (𝑑 = 0), i.e. considering only the
effect of geometric non-linearity or large deflections of the members
constituting the geometry. It can be inferred that under the effect of
tensile and compressive loads, the value of Poisson’s ratio deviates
significantly from the values predicted by small-deformation theory
(ref. Table 1). Further, as the effect of damage along the length of the
member AO becomes more pronounced, the value of Poisson’s ratio
diverges significantly from the values obtained for undamaged mate-
rial, i.e. the parameter 𝛽 increases as 𝜈𝐷 becomes increasingly more
negative compared to 𝜈𝑈𝐷 under tension (ref. Fig. 11) and increasingly
less negative under compression (ref. Fig. 12). Similarly, the effective
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Fig. 8. Variation of bending stiffness for the cross-section at joint A of the member A0 (ref. Fig. 2) as determined from the methodology based on VAM and GEBT (Section 2)
and 2D contour plots for the damage variable, i.e. 𝑑 at different values of applied loads (𝑃𝑥∕𝑃𝑐𝑟 = −0.23 and 𝑃𝑥∕𝑃𝑐𝑟 = −0.33) for the cross-section.
elastic modulus deviates significantly from the corresponding values
predicted by small deformation theory (ref. Table 1), and as damage
progresses along the length of the members, deviation from the values
obtained for undamaged material is observed, i.e. the value of the index
𝜂 increases as 𝐸𝐷 becomes increasingly less compared to 𝐸𝑈𝐷 under
tension as well as compression.

Figs. 13(a–d) and 14(a–d) show the variation of Poisson’s ratio (𝜈𝑧𝑥),
and effective elastic modulus (𝐸𝑧) with applied tensile and compressive
loads respectively for the 3D auxetic frame for various rib inclination
angles. Similar to the 2D geometry, as the effect of damage along
the length of the member 𝑂1𝐸 becomes more pronounced, the value
of Poisson’s ratio diverges significantly from the values obtained for
undamaged material, i.e. the parameter 𝛽 increases as 𝜈𝐷 becomes
increasingly less negative compared to 𝜈 under tension (ref. Fig. 13)
10

𝑈𝐷
and increasingly more negative under compression (ref. Fig. 14). Simi-
larly, for the effective elastic modulus (𝐸𝑧) the value of the parameter 𝜂
increases, indicating a rapid degradation in macroscale stiffness for the
3D re-entrant geometry under tension as well as compression It is also
observed that the range of applied tensile load over which the effect of
damage is not significant, i.e. 𝜂 = 0 and 𝛽 = 0, is inversely related to
rib-inclination angle for the 2D and the 3D re-entrant geometry.

4. Conclusions

In this article, the influence of damage on the auxetic behavior
of 2D and 3D re-entrant geometries has been investigated using the
variational asymptotic method in a geometrically nonlinear frame-
work. The proposed methodology incorporates the two-dimensional
cross-sectional analysis and geometrically exact one-dimensional beam
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Fig. 9. (a) Variation of strain (𝜖𝑥) with applied compressive and tensile load, i.e. 𝑃𝑥, and the deformed configuration of the 2D re-entrant geometry for 𝜃 = 30◦ as determined
from the methodology based on (VAM + GEBT), verified with results from 3D FEM [Abaqus (UMAT)]. (b) 3D contour plot for the damage variable 𝑑 for the inclined half-length
member A0 [ref. Fig. 2] at different values of applied loads (𝑃𝑥∕𝑃𝑐𝑟 = −0.23 and 𝑃𝑥∕𝑃𝑐𝑟 = −0.33).
theory to capture the degradation of cross-sectional stiffness of aux-
etic members using an isotropic damage law. The resulting numerical
framework, implemented in an in-house Python code, was employed to
quantify the effect of material degradation on the macroscale effective
elastic modulus and Poisson’s ratio of the re-entrant type geometry.
The results obtained from the proposed formulation were verified with
the 3D finite element results obtained using the FEM tool, Abaqus
together with a user subroutine UMAT to model damage evolution.
The numerical evaluation suggests that the macroscale behavior of
the re-entrant geometries was significantly affected by the damage
progression. The value of effective modulus was considerably reduced
under tensile and compressive far-field stresses for the 2D and 3D
microstructures. Under tension, the auxetic behavior improved slightly
11
for the 2D re-entrant geometry due to increased deformations, while
in the case of the 3D re-entrant geometry, the value of Poisson’s ratio
became less negative for the damaged material. Under compression the
auxetic behavior improved for the 3D configuration, while in the case
of the 2D re-entrant geometry, the value of Poisson’s ratio became less
negative. It was also observed that the range of applied tensile and
compressive loads over which the effect of damage is not significant
is inversely related to the rib-inclination angle for the 2D and 3D
geometries respectively. Thus, the numerical examples in this work
indicate that physical non-linearity arising due to material degradation
should be accounted for when it comes to the analysis and design of
auxetic materials for structural applications.
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Fig. 10. (a) Variation of strain (𝜖𝑧) with applied compressive and tensile load, i.e. 𝑃𝑧, and the deformed configuration of the 3D re-entrant geometry for 𝜃 = 60◦ as determined
from the methodology based on VAM and GEBT verified with results from 3D FEM [Abaqus(UMAT)].

Fig. 11. Variation of Poisson’s ratio, i.e. 𝜈𝑥𝑦 and effective elastic modulus, i.e. 𝐸𝑥 with applied tensile load in the horizontal direction, i.e. 𝑃𝑥∕𝑃𝑐𝑟 for different rib inclination angles
for the 2D re-entrant geometry: (a) 𝜃 = 30◦, (b) 𝜃 = 40◦, (c) 𝜃 = 50◦ and (d) 𝜃 = 60◦. The results from the methodology based on (VAM + GEBT), are verified with results from 3D
FEM [Abaqus (UMAT)]. The effect of damage evolution on elastic properties is quantified by the parameters 𝜂 and 𝛽, for effective elastic modulus and Poisson’s ratio respectively.



Mechanics of Materials 193 (2024) 104980C. Srivastava et al.
Fig. 12. Variation of Poisson’s ratio, i.e. 𝜈𝑥𝑦 and effective elastic modulus, i.e. 𝐸𝑥 with applied compressive load in the horizontal direction, i.e. 𝑃𝑥∕𝑃𝑐𝑟 for different rib inclination
angles for the 2D re-entrant geometry: (a) 𝜃 = 30◦, (b) 𝜃 = 40◦, (c) 𝜃 = 50◦ and (d) 𝜃 = 60◦. The results from the methodology based on (VAM + GEBT), are verified with results
from 3D FEM [Abaqus (UMAT)]. The effect of damage evolution on elastic properties is quantified by the parameters 𝜂 and 𝛽, for effective elastic modulus and Poisson’s ratio
respectively.
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Appendix A

In this section the detailed mathematical formulations for the two-
dimensional cross-sectional analysis and one-dimensional beam anal-
ysis (ref. Section 2) as adopted from the work by Hodges (2006) has
been presented:
13
A.1. 2D cross-sectional analysis

As shown in Fig. 4, the position vector (�̂�) to any material point on
the undeformed cross-section of the beam is expressed in terms of the
measure numbers along 𝒃𝟏, 𝒃𝟐 and 𝒃𝟑 i.e.,

�̂�(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝒃𝟏 + 𝑥2𝒃𝟐(𝑥1) + 𝑥3𝒃𝟑(𝑥1) (A.1)

where, 𝑥1 is measured along the beam reference line and 𝑥2, 𝑥3 are
measure numbers along 𝒃𝟐 and 𝒃𝟑.

Similarly, the position vector of a material point in the deformed
cross-section (�̂�) is expressed as follows (ref. Section 2.1.1):

�̂� = 𝒓 + 𝒖 + 𝑥2𝑩𝟐 + 𝑥3𝑩𝟑 +𝑤𝑖𝑩𝒊 (A.2)

From the definition of covariant and contravariant vectors, the
deformation gradient tensor 𝑿 is given by :

𝑿 = 𝑮𝒊𝒈𝒊 (A.3)

where

𝒈𝒊 =
𝜖𝑖𝑗𝑘
2
√

𝑔
𝒈𝒋 × 𝒈𝒌 (A.4)

𝒈𝟏 =
𝜕�̂�
𝜕𝑥1

𝒈𝟐 =
𝜕�̂�
𝜕𝑥2

𝒈𝟑 =
𝜕�̂�
𝜕𝑥3

(A.5)

𝑮𝟏 =
𝜕�̂� 𝑮𝟐 =

𝜕�̂� 𝑮𝟑 =
𝜕�̂� (A.6)
𝜕𝑥1 𝜕𝑥2 𝜕𝑥3
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Fig. 13. Variation of Poisson’s ratio, i.e. 𝜈𝑧𝑥 and effective elastic modulus, i.e. 𝐸𝑧 with applied tensile load in the vertical direction, i.e. 𝑃𝑧∕𝑃𝑐𝑟 for different rib inclination angles
for the 3D re-entrant geometry: (a) 𝜃 = 30◦, (b) 𝜃 = 40◦, (c) 𝜃 = 50◦ and (d) 𝜃 = 60◦. The results from the methodology based on (VAM + GEBT), are verified with results from 3D
FEM [Abaqus (UMAT)]. The effect of damage evolution on elastic properties is quantified by the parameters 𝜂 and 𝛽, for effective elastic modulus and Poisson’s ratio respectively.
In Eq. (A.4),
√

𝑔 = 𝑑𝑒𝑡(𝒈𝒊.𝒈𝒋), substituting Eq. (A.1) in Eq. (A.5), we
have the following equations for the covariant vectors:

𝒈𝟏 = (1 − 𝑥2𝑘3 + 𝑥3𝑘2)𝒃𝟏 + 𝑘1𝑥2𝒃𝟐 − 𝑘1𝑥3𝒃𝟑 (A.7)

𝒈𝟐 = 𝒃𝟐 (A.8)

𝒈𝟑 = 𝒃𝟑 (A.9)

With reference to Eq. (14), 𝑘𝑖 are the measure numbers for the initial
curvature of the beam in the 𝒃𝒊 basis, i.e. 𝑘1 is the pretwist along the
beam reference line, and 𝑘1 and 𝑘2 are the initial curvatures about
𝒃𝟐 and 𝒃𝟑. Substituting Eqs. (A.7), (A.8) and (A.9) in Eq. (A.4), the
contra-variant vectors are determined as follows:

𝒈𝟏 =
𝒃𝟏
√

𝑔
(A.10)

𝒈𝟐 =
𝑥3𝑘1
√

𝑔
𝒃𝟏 + 𝒃𝟐 (A.11)

𝒈𝟑 = −
𝑥2𝑘1
√

𝑔
𝒃𝟏 + 𝒃𝟑 (A.12)

where
√

𝑔 = 1 − 𝑥2𝑘3 + 𝑥3𝑘2, further in the deformed configuration of
the beam the 𝑩𝟏 vector, is not tangential to the deformed center-line.
Considering the 𝑻 𝒊 triad, the position vector to a material point can be
re-expressed as follows:

�̂� = 𝒓 + 𝒖 + 𝑥2𝑻 𝟐 + 𝑥3𝑻 𝟑 + �̄�𝑖𝑻 𝒊 (A.13)

From Eq. (25), it can be inferred that in the 𝑻 𝒊 basis, shear deformation
is considered to be a part of the warping field 𝑤𝑖. The deformation
gradient tensor components, in the mixed basis is expressed as follows:

𝑋 = 𝑻 .𝑮 𝒈𝒌.𝒃 (A.14)
14

𝑖𝑗 𝒊 𝒌 𝒋
where, the covariant vectors for the deformed configuration are deter-
mined by substituting Eq. (A.13) in Eq. (A.6):

𝑮𝟏 = (1 + 𝛾11 − 𝑥2𝐾3 + 𝑥3𝐾2 −𝑤2𝐾3 +𝑤3𝐾2 +𝑤1,1)𝑻 𝟏

+ (−𝑥3𝐾1 +𝑤1𝐾3 −𝑤3𝐾1 +𝑤2,1)𝑻 𝟐

+ (𝑥2𝐾1 −𝑤1𝐾2 +𝑤2𝐾1 +𝑤3,1)𝑻 𝟑

𝑮𝟐 = 𝑻 𝟐 +𝑤1,2𝑻 𝟏 +𝑤2,2𝑻 𝟐 +𝑤3,2𝑻 𝟑

𝑮𝟑 = 𝑻 𝟑 +𝑤1,3𝑻 𝟏 +𝑤2,3𝑻 𝟐 +𝑤3,3𝑻 𝟑

The terms of the deformation gradient tensor are determined from
Eq. (A.14) as follows:

𝑋11 =
1 + 𝛾11 − 𝑥2𝐾3 + 𝑥3𝐾2 −𝑤2𝐾3 +𝑤3𝐾2 +𝑤1,1

√

𝑔
+
𝑥3𝑘1𝑤1,2

√

𝑔

−
𝑥2𝑘1𝑤1,3

√

𝑔

𝑋12 = 𝑤1,2

𝑋13 = 𝑤1,3

𝑋22 = 1 +𝑤2,2

𝑋21 =
−𝑥3𝐾1 +𝑤1𝐾3 −𝑤3𝐾1 +𝑤2,1

√

𝑔
+

(1 +𝑤2,2)𝑥3𝑘1
√

𝑔
−
𝑤2,3𝑥2𝑘1

√

𝑔

𝑋23 = 𝑤2,3

𝑋33 = 1 +𝑤3,3

𝑋32 = 𝑤3,2

𝑋31 =
𝑥2𝐾1 −𝑤1𝐾2 +𝑤2𝐾1 +𝑤3,1

√

𝑔
+
𝑤3,2𝑥3𝑘1

√

𝑔
−

(1 +𝑤3,3)𝑥2𝑘1
√

𝑔
(A.15)
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Fig. 14. Variation of Poisson’s ratio, i.e. 𝜈𝑧𝑥 and effective elastic modulus, i.e. 𝐸𝑧 with applied compressive load in the vertical direction, i.e. 𝑃𝑧∕𝑃𝑐𝑟 for different rib inclination
angles for the 3D re-entrant geometry: (a) 𝜃 = 30◦, (b) 𝜃 = 40◦, (c) 𝜃 = 50◦ and (d) 𝜃 = 60◦. The results from the methodology based on (VAM + GEBT), are verified with results
from 3D FEM [Abaqus (UMAT)]. The effect of damage evolution on elastic properties is quantified by the parameters 𝜂 and 𝛽, for effective elastic modulus and Poisson’s ratio
respectively.
𝛤11 =
𝛾11 − 𝑥2𝜅3 + 𝑥3𝜅2 −𝑤2(𝑘3 + 𝜅3) +𝑤3(𝑘2 + �̄�2) +𝑤1,1 + 𝑥3𝑘1𝑤1,2 − 𝑥2𝑘1𝑤1,3

√

𝑔

𝛤22 = 𝑤2,2

𝛤33 = 𝑤3,3

2𝛤23 = 𝑤2,3 +𝑤3,2

2𝛤12 =
𝑤1,2(1 − 𝑥2𝑘3 + 𝑥3𝑘2) − 𝑥3(𝑘1 + �̄�1) +𝑤1(𝑘3 + �̄�3) −𝑤3(𝑘1 + �̄�1) +𝑤2,1 + (1 +𝑤2,2)𝑥3𝑘1 −𝑤2,3𝑥2𝑘1

√

𝑔

2𝛤13 =
𝑤1,3(1 − 𝑥2𝑘3 + 𝑥3𝑘2) + 𝑥2(𝑘1 + �̄�1) −𝑤1(𝑘2 + �̄�2) +𝑤2(𝑘1 + �̄�1) +𝑤3,1 +𝑤3,2𝑥3𝑘1 − (1 +𝑤3,3)𝑥2𝑘1

√

𝑔
(A.16)

Box I.
The three-dimensional strain components are determined as per
Eq. (31) from the terms of the deformation gradient tensor: see the
Eq. (A.16) in Box I.

The three-dimensional strains, after discarding the product of one-
dimensional strain and warping can be written in the following matrix
form:

𝛤 = 𝛤 𝑤 + 𝛤 𝜖 + 𝛤 𝑤 + 𝛤 𝑤′ (A.17)
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𝑎 𝜖 𝑅 𝑙
where 𝛤 = [𝛤11 2𝛤12 2𝛤13 𝛤22 2𝛤23 𝛤33]𝑇 and :

𝛤𝑅 = 1
√

𝑔

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝑘1(𝑥3
𝜕
𝜕𝑥2

− 𝑥2
𝜕
𝜕𝑥3

) −𝑘3 𝑘2
𝑘3 𝑘1(𝑥3

𝜕
𝜕𝑥2

− 𝑥2
𝜕
𝜕𝑥3

) −𝑘1
−𝑘2 𝑘1 𝑘1(𝑥3

𝜕
𝜕𝑥2

− 𝑥2
𝜕
𝜕𝑥3

)
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎣

0 0 0
⎦
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𝛤

T
s

𝐸

f

𝑤

w

F

𝑉

T
l

2

𝛤𝑎 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
𝜕
𝜕𝑥2

0 0
𝜕
𝜕𝑥3

0 0

0 𝜕
𝜕𝑥2

0

0 𝜕
𝜕𝑥3

𝜕
𝜕𝑥2

0 0 𝜕
𝜕𝑥3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝜖 =
1
√

𝑔

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 𝑥3 −𝑥2
0 −𝑥3 0 0
0 𝑥2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝛤𝑙 =
1
√

𝑔

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.18)

For a finite element implementation, the warping field is discretized
(ref. Eq. (35)) and substituted in Eq. (36):

2𝑈 = 𝑉 𝑇𝐸𝑉 +2𝑉 𝑇 (𝐷𝑎𝑅𝑉 +𝐷𝑎𝜖𝜖 +𝐷𝑎𝐿𝑉
′) + 𝑉 𝑇𝐷𝑅𝑅𝑉 + 2𝑉 𝑇𝐷𝑅𝜖𝜖

+ 2𝑉 𝑇𝐷𝑅𝐿𝑉
′

+ 2𝑉 ′𝑇𝐷𝐿𝜖𝜖 + 𝑉 ′𝑇𝐷𝐿𝐿𝑉
′ + 𝜖𝑇𝐷𝜖𝜖𝜖 (A.19)

where the coefficients are:

𝐸 = ∫𝐴
(𝛤𝑎𝑆)𝑇𝐷𝛤𝑎𝑆.

√

𝑔𝑑𝑥2𝑑𝑥3

𝐷𝑎𝑅 = ∫𝐴
(𝛤𝑎𝑆)𝑇𝐷𝛤𝑅𝑆

√

𝑔𝑑𝑥2𝑑𝑥3

𝐷𝑎𝜖 = ∫𝐴
(𝛤𝑎𝑆)𝑇𝐷𝛤𝜖

√

𝑔𝑑𝑥2𝑑𝑥3

𝐷𝑎𝐿 = ∫𝐴
(𝛤𝑎𝑆)𝑇𝐷𝛤𝐿𝑆

√

𝑔𝑑𝑥2𝑑𝑥3

𝐷𝑅𝑅 = ∫𝐴
(𝛤𝑅𝑆)𝑇𝐷𝛤𝑅𝑆

√

𝑔𝑑𝑥2𝑑𝑥3

𝐷𝑅𝜖 = ∫𝐴
(𝛤𝑅𝑆)𝑇𝐷𝛤𝜖

√

𝑔𝑑𝑥2𝑑𝑥3

𝐷𝑅𝐿 = ∫𝐴
(𝛤𝑅𝑆)𝑇𝐷𝛤𝐿𝑆

√

𝑔𝑑𝑥2𝑑𝑥3

𝐷𝐿𝜖 = ∫𝐴
(𝛤𝐿𝑆)𝑇𝐷𝛤𝜖

√

𝑔𝑑𝑥2𝑑𝑥3

𝐷𝐿𝐿 = ∫𝐴
(𝛤𝐿𝑆)𝑇𝐷𝛤𝐿𝑆

√

𝑔𝑑𝑥2𝑑𝑥3

𝐷𝜖𝜖 = ∫𝐴
(𝛤𝜖)𝑇𝐷𝛤𝜖

√

𝑔𝑑𝑥2𝑑𝑥3 (A.20)

A.1.1. Zeroth order approximation
From the expression for strain energy i.e. Eq. (34), the zeroth order

terms are retained, such that:

2𝑈0 = 𝑉 𝑇𝐸𝑉 + 2𝑉 𝑇𝐷𝑎𝜖𝜖 + 𝜖𝑇𝐷𝜖𝜖𝜖 (A.21)

The zeroth order strain energy functional is minimized subject to the
constraint 𝛤𝑎𝑤 = 0, which for the discretized warping field can be
written as follows:

𝑉 𝑇
∫𝐴

𝛤𝑎𝑆
√

𝑔𝑑𝑥2𝑑𝑥3 = 0

𝑉 𝑇𝐷𝑐 = 0

he Euler–Lagrange’s equation for the minimization of the zeroth order
train energy function can be written as follows:

𝑉 +𝐷𝑎𝜖𝜖 = 𝐷𝑐𝜆 (A.22)

We know that for non-trivial solutions of the warping field, in order
to satisfy the constraint 𝛤𝑎𝑤 = 0, the warping field should be of the
ollowing form (Hodges, 2006):
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1 = 𝑐1
𝑤2 = 𝑐2 − 𝑐4𝑥3

𝑤3 = 𝑐3 + 𝑐4𝑥2 (A.23)

hich implies that the matrix 𝛤𝑎 has a kernel 𝜓 :

𝜓 =
⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 −𝑥3
0 0 1 𝑥2

⎤

⎥

⎥

⎦

(A.24)

The discretized kernel matrix can be written as 𝜓 = 𝑆𝛹 , such that the
constraint on the warping field can be rewritten as 𝐸𝛹 = 0, which
allows for simplification for Lagrange’s parameter by premultiplication
with 𝛹𝑇 as follows:

𝛹𝑇𝐸𝑉 + 𝛹𝑇𝐷𝑎𝜖𝜖 = 𝛹𝑇𝐷𝑐𝜆

𝜆 = (𝛹𝑇𝐷𝑐 )−1𝛹𝑇𝐷𝑎𝜖𝜖 (A.25)

The Lagrange’s parameter vanishes since 𝛹𝑇𝐷𝑎𝜖 = 0, thereby implying
that the Euler–Lagrange’s equation is reduced to the following form:

𝐸𝑉 = −𝐷𝑎𝜖𝜖 (A.26)

A.1.2. First order approximation
For the first-order solution, the warping field determined from the

zeroth-order solution is perturbed as shown below:

𝑉 = 𝑉𝑜 + 𝑉1 (A.27)

Retaining the leading terms, removing constant terms from zeroth order
approximation and integrating by parts, the strain energy with the
perturbed warping field is written as follows;

2𝑈1 = 𝑉 𝑇
1 𝐸𝑉1 + 2𝑉 𝑇

1 𝐷𝑅𝜖 + 2𝑉 𝑇
1 𝐷𝑆𝜖

′ (A.28)

where,

𝐷𝑅 = 𝐷𝑎𝑅𝑉𝑜 +𝐷𝑇
𝑎𝑅𝑉𝑜 +𝐷𝑅𝜖 (A.29)

𝐷𝑆 = 𝐷𝑎𝐿𝑉𝑜 −𝐷𝑇
𝑎𝐿𝑉𝑜 −𝐷𝐿𝜖 (A.30)

urther, influence coefficients 𝑉1𝑅 and 𝑉1𝑆 are introduced such that:

1 = (𝑉1𝑅𝜖 + 𝑉1𝑆𝜖′) (A.31)

The Euler–Lagrange’s equation for minimization of the strain energy
functional subject to the constrain (Eq. (33)) can be written as follows
:

𝐸𝑉1 +𝐷𝑅𝜖 +𝐷𝑆𝜖
′ = 𝐷𝑐𝜆 (A.32)

The Lagrange’s parameter is solved for by pre-multiplication with 𝛹𝑇

𝜆 = (𝛹𝑇𝐷𝑐 )−1𝛹𝑇 (𝐷𝑅𝜖 +𝐷𝑅𝜖
′) (A.33)

Substituting in Lagrange’s equation, we get :

𝐸𝑉1 =
[

𝐷𝑐 (𝛹𝑇𝐷𝑐 )−1𝛹𝑇 − 𝛥
]

(𝐷𝑅𝜖 +𝐷𝑅𝜖
′) (A.34)

he second-order asymptotically correct energy can be written as fol-
ows as presented as below:

𝑈1 = 𝜖𝑇𝐴𝜖 + 𝜖𝑇𝐵𝜖′ + 𝜖′𝑇𝐶𝜖′ + 𝜖′𝑇𝐷 ̄𝜖′′ (A.35)

where:

𝐴 = 𝑉 𝑇
𝑜 𝐷𝑎𝜖 +𝐷𝜖𝜖 + 𝑉 𝑇

𝑜 (𝐷𝑎𝑅 +𝐷𝑇
𝑎𝑅 +𝐷𝑅𝑅)𝑉𝑜 + 2𝑉 𝑇

𝑜 𝐷𝑅𝜖 + 𝑉 𝑇
1𝑅𝐷𝑅

𝐵 = 𝑉 𝑇
𝑜 (𝐷𝑎𝑙 +𝐷𝑅𝑙)𝑉𝑜 +𝐷𝑇

𝑙𝜖𝑉𝑜 + (𝑉 𝑇
𝑜 𝐷𝑎𝑙 +𝐷𝑇

𝑙𝜖)𝑉1𝑅 + 1
2
(𝐷𝑇

𝑅𝑉1𝑆 + 𝑉 𝑇
1𝑅�̄�𝑆 )

𝐶 = 𝑉 𝑇
1𝑆�̄�𝑆 + 𝑉 𝑇

𝑜 𝐷𝑙𝑙𝑉𝑜

𝐷 = (𝑉 𝑇
𝑜 𝐷𝑎𝑙 +𝐷𝑇

𝑙𝜖)𝑉1𝑆 (A.36)

This expression for second-order asymptotically correct energy is con-
verted to generalized Timoshenko form :

2𝑈 = 𝜖𝑇𝑋𝜖 + 2𝜖𝑇 𝑌 𝛾 + 𝛾𝑇𝐺𝛾 (A.37)
1 𝑠 𝑠 𝑠
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𝑋

T
a

𝑆

S
a

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A

B

e

∫

w
u
l
a
p
s
s
f

∫

𝛿

T
t
a
l
i
c
a

∫

p

𝑓

𝑓

where,

𝐺 = (𝑄𝑇𝐴−1(𝐶 − 𝐵𝑇𝐴−1𝐵)𝐴−1𝑄)−1

𝑌 = 𝐵𝑇𝐴−1𝑄𝐺

= 𝐴 + 𝑌 𝐺−1𝑌 𝑇 (A.38)

he 6 × 6 cross-sectional stiffness matrix can thereafter be determined
s follows :

=
[

𝑋 𝑌 𝑇

𝑌 𝐺

]

(A.39)

uch that the one-dimensional strains can be related to force resultants
s per the following equation:

𝐹1
𝐹2
𝐹3
𝑀1
𝑀2
𝑀3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆16
𝑆12 𝑆22 𝑆23 𝑆24 𝑆25 𝑆26
𝑆13 𝑆23 𝑆33 𝑆34 𝑆35 𝑆36
𝑆14 𝑆24 𝑆34 𝑆44 𝑆45 𝑆46
𝑆15 𝑆25 𝑆35 𝑆45 𝑆55 𝑆56
𝑆16 𝑆26 𝑆36 𝑆46 𝑆56 𝑆66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛾11
2𝛾12
2𝛾13
𝜅1
𝜅2
𝜅2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.40)

ppendix B

.1. Geometrically exact beam theory

The equations for one-dimensional beam analysis are derived from
xtended Hamilton’s principle:
𝑡2

𝑡1
∫

𝐿

0

[

𝛿(𝑇 − 𝑈 ) + ̄𝛿𝑊
]

= ̄𝛿𝐴 (B.1)

here 𝑇 is the kinetic energy per unit length, 𝑈 is the strain energy per
nit length 𝑊 is the virtual work done by the applied loads per unit
ength, 𝐴 is the virtual action at the ends of the beam of length L, and 𝑡1
nd 𝑡2, are arbitrary instances of time (Yu and Blair, 2012). For a static
roblem, the kinetic energy term is eliminated. The variation of the
train energy, which is a function of one-dimensional force and moment
trains along the beam reference line, i.e. 𝛾 and 𝜅 can be written as
ollows:
𝐿

0
𝛿𝑈𝑑𝑥1 = ∫

𝐿

0

[

𝛿𝛾𝑇
(

𝜕𝑈
𝜕𝛾

)

+ 𝛿𝜅𝑇
(

𝜕𝑈
𝜕𝜅

)]

𝑑𝑥1 (B.2)

The partial derivative of the one-dimensional strain energy can be
recognized as sectional force resultants, i.e.:

𝐹 =
(

𝜕𝑈
𝜕𝛾

)

𝑀 =
(

𝜕𝑈
𝜕𝜅

)

(B.3)

where F is the column matrix with axial and shear forces and M is
the column matrix with twisting and bending moments. Further, the
variation of strain measures along the beam reference line are expressed
as functions of virtual displacement and rotations, i.e. 𝛿𝑞 and 𝛿𝜓 :

𝜅 = 𝛿𝜓
′
+ �̃�𝛿𝜓 (B.4)

𝛿𝛾 = 𝛿𝑞
′
+ �̃�𝛿𝑞 + (�̃� + 𝑒1)𝛿𝛹 (B.5)

where 𝐾 is the curvature vector for the reference line of the deformed
beam. Substituting the expressions for variation of strain measures in
Eq. (B.2), the variation of strain energy can be written as follows:

∫

𝐿

0
𝛿𝑈𝑑𝑥1 = ∫

𝐿

0
𝛿𝛾𝑇𝐹 + 𝛿𝑇𝑀𝑑𝑥1

= ∫

𝐿

0

[

(𝛿𝑞′)𝑇 − 𝛿𝑞
𝑇
�̃� − 𝛿𝛹

𝑇
(�̃�

+ 𝑒1)
]

𝐹 +
[

(𝛿𝜓
′
)𝑇 − 𝛿𝜓

𝑇
�̃�
]

𝑀𝑑𝑥1

Substituting the above equation in Eq. (B.1) :
𝑡2 𝑙

𝛿𝑈 − 𝛿𝑊 𝑑𝑥1𝑑𝑡 =
𝑡2 𝑙[

(𝛿𝑞′)𝑇 − 𝛿𝑞
𝑇
�̃� − 𝛿𝛹

𝑇
(�̃� + 𝑒1)

]

𝐹
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∫𝑡1 ∫0 ∫𝑡1 ∫0
+
[

(𝛿𝜓
′
)𝑇 − 𝛿𝜓

𝑇
�̃�
]

𝑀 (*)

− (𝛿𝑞)𝑇 𝑓 − (𝛿𝜓)𝑇𝑚𝑑𝑥1𝑑𝑡 = ∫

𝑡2

𝑡1
(𝛿𝑞)𝑇𝐹

+ (𝛿𝜓)𝑇 �̂�|

𝐿
0 𝑑𝑡 (B.6)

Eq. (B.6) is integrated by parts to get the following Euler–Lagrange
equations:

𝐹 ′ + �̃�𝐹 + 𝑓 = 0

𝑀 + �̃�𝑀 + 𝑚 + (�̃� + 𝑒1)𝐹 = 0

he above equations are used in conjunctions with kinematical equa-
ions and constitutive relations to determine the complete set of vari-
bles. Hodges (2006) presents the following mixed variational formu-
ation for the one-dimensional beam equations, wherein the kinemat-
cal equations are added to the variational formulation. This involves
onstrained minimization of Hamilton’s integral and determining the
ssociated Lagrange’s parameters:
𝑡2

𝑡1
∫

𝐿

0

{[

(𝛿𝑞′)𝑇 − 𝛿𝑞
𝑇
�̃� − 𝛿𝛹

𝑇
(�̃� + 𝑒1)

]

𝐹 +
[

(𝛿𝜓
′
)𝑇 − 𝛿𝜓

𝑇
�̃�
]

𝑀

+ 𝛿𝛾𝑇
[(

𝜕𝑈
𝜕𝛾

)𝑇
− 𝐹

]

+ 𝛿𝜅𝑇
[(

𝜕𝑈
𝜕𝜅

)𝑇
−𝑀

]

+ 𝛿𝐹
𝑇 [
𝑒1 + �̃�𝑢 − 𝐶𝑇 (𝑒1 + 𝛾)

]

−
(

𝛿𝐹
′
)𝑇

𝑢

+ 𝛿𝑀
𝑇
[

𝛥 + 𝜃
2
+ 𝜃𝜃𝑇

4

]

(𝐶𝑘 − 𝑘 − 𝜅)

−
(

𝛿𝑀
′
)𝑇

𝜃 − (𝛿𝑞)𝑇 𝑓 − (𝛿𝜓)𝑇𝑚
}

𝑑𝑥1𝑑𝑡

= ∫

𝑡2

𝑡1
(𝛿𝑞)𝑇𝐹 + (𝛿𝜓)𝑇 �̂� −

(

𝛿𝐹
)𝑇

�̂� −
(

𝛿𝑀
)𝑇

�̂�||
|

𝐿

0
𝑑𝑡

where, 𝐶 is the rotation matrix expressed in terms of the Rodrigues
arameter 𝜃 (Hodges, 2006):

𝐶 =
(1 − 1

4 𝜃
𝑇 𝜃)𝛥 − 𝜃 + 1

2 𝜃𝜃
𝑇

(1 + 1
4 𝜃

𝑇 𝜃)
(B.7)

Yu and Blair (2012) present a general purpose finite element imple-
mentation for the above equation, wherein the following system of
equations is solved for the discretized beam with N elements and N
+ 1 nodes:

At the starting node:

𝑓−
𝑢1

− 𝐹⋆1 = 0 𝑓−
𝜓1

−𝑀⋆
1 = 0 𝑓−

𝐹1
− �̂�1 = 0 𝑓−

𝑀1
− �̂�1 = 0 (B.8)

At the ending node:

𝑓+
𝑢𝑁

− 𝐹⋆𝑁+1 = 0 𝑓+
𝜓𝑁

−𝑀⋆
𝑁+1 = 0 𝑓+

𝐹𝑁
− �̂�𝑁+1 = 0 𝑓+

𝑀𝑁
− �̂�𝑁+1 = 0

(B.9)

At the intermediate node:

𝑓+
𝑢𝑖
+𝑓−

𝑢𝑖+1
= 0 𝑓+

𝜓𝑖
+𝑓−

𝜓𝑖+1
= 0 𝑓+

𝐹𝑖
+𝑓−

𝐹𝑖+1
= 0 𝑓+

𝑀𝑖
+𝑓−

𝑀𝑖+1
= 0 (B.10)

where,

𝑓±
𝑢𝑖
= ±𝐶𝑇𝐶𝑎𝑏𝐹𝑖 − 𝑓

±
𝑖 (B.11)

𝑓±
𝜓𝑖

= ±𝐶𝑇𝐶𝑎𝑏𝑀𝑖 − �̄�
±
𝑖 −

𝛥𝐿𝑖
2

[

(𝑒1 + �̃�1)𝐹𝑖

]

(B.12)

±
𝐹𝑖

= ±𝑢𝑖 −
𝛥𝐿𝑖
2

[

𝐶𝑇𝐶𝑎𝑏(𝑒1 + 𝛾1) − 𝐶𝑎𝑏𝑒1

]

(B.13)

±
𝑀𝑖

= ±𝜃𝑖 −
𝛥𝐿𝑖
2

[

𝛥 +
𝜃𝑖
2

+
𝜃𝑖𝜃𝑇𝑖
4

]

𝐶𝑎𝑏𝜅𝑖 (B.14)

𝑓− =
1
(1 − 𝜖)𝑓𝑎𝛥𝐿𝑖𝑑𝜖 𝑓+ =

1
𝜖𝑓𝑎𝛥𝐿𝑖𝑑𝜖 (B.15)
𝑖 ∫0 𝑖 ∫0
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�̄�−
𝑖 = ∫

1

0
(1 − 𝜖)𝑚𝑎𝛥𝐿𝑖𝑑𝜖 �̄�+

𝑖 = ∫

1

0
𝜖𝑚𝑎𝛥𝐿𝑖𝑑𝜖 (B.16)

The one-dimensional strains along the beam reference line are deter-
mined using the following equations:
[

𝛾
𝜅

]

= 𝑆
[

𝐹
𝑀

]

(B.17)
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