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Summary
Structural variations (SV) are large (>50 base pairs) genomic rearrangements comprising deletions, duplications, insertions, inversions,

and translocations. Studying SVs is important because they play active and critical roles in regulating gene expression, determining dis-

ease predispositions, and identifying population-specific differences among individuals of diverse ancestries. However, SV discoveries in

the Indian population usingwhole-genome sequencing (WGS) have been limited. In this study, using short-readWGS having an average

42X depth of coverage, we identify and characterize 36,210 SVs from 529 individuals enrolled in population-based cohorts in India.

These SVs include 24,574 deletions, 2,913 duplications, 8,710 insertions, and 13 inversions; 1.26% (456 out of 36,210) of the identified

SVs can potentially impact the coding regions of genes. Furthermore, 56 of these SVs are highly intolerant to loss-of-function changes to

the mapped genes, and five SVs impacting ADAMTS17, CCDC40, and RHCE are common in our study individuals. Seven rare SVs signif-

icantly impact dosage sensitivity of genes known to be associated with various clinical phenotypes. Most of the SVs in our study are rare

and heterozygous. This fine-scale SV discovery in the underrepresented Indian population provides valuable insights that extend

beyond Eurocentric human genetic studies.
Introduction

Structural variations (SVs) in the human genome are a

diverse set of large regions of rearrangements in the DNA

sequence spanning for more than 50 base pairs (bp),

comprising unbalanced insertions, deletions, and duplica-

tions, and balanced classes of inversions and transloca-

tions.1 SVs are widespread in the human genome, and

the sequence length of SVs can extend well beyond several

megabases, therefore being responsible for more nucleo-

tide changes than other classes of sequence variations,

for example, single nucleotide polymorphisms (SNPs),

and short insertions and deletions (InDels) (length

<50 bp) in the human genome.2–4 Structural variations

are known to be associated with human phenotypes and

disease traits, for example, obesity, certain types of cancer,

autism, schizophrenia, and cognitive dysfunction, among

others, as well as play crucial roles inmolecular and cellular

processes and gene expression,5–7 thus establishing that SV

discovery and characterization are crucial in human health

studies.

Globally, short-read whole-genome sequencing (WGS) is

an established technology used in large-scale human

cohort studies for identifying genetic variants and under-

standing their contributions to disease traits. Although

initial discoveries of SVs were done by array-based genomic

hybridization techniques8,9 and single molecule or long

reads sequencing technologies,10,11 current SV detection

approaches from high-coverage short-read WGS has facili-
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tated large-scale population-level discovery of SVs in

recent times with better size and breakpoint resolutions,

albeit with some limitations.12–18 The Indian population

is extremely diverse, yet the population-level genetic

makeup has been inferred primarily from SNP19–21 and

limited structural variation discovery studies.18 Our study

will help address this lacuna. In this study, we present a

detailed analysis of structural variations identified through

WGS of individuals enrolled in the Center for Brain

Research TATA Longitudinal Study of Aging (CBR-TLSA)

and Center for Brain Research Srinivaspura Aging Neurose-

nescence and Cognition (CBR-SANSCOG) study.22,23 Both

the CBR-TLSA and CBR-SANSCOG cohorts consist of

adults 45 years and older, recruited from community set-

tings in Bangalore, and the villages of Srinivaspura taluk

(sub-district) located in urban Bangalore and Kolar dis-

tricts, respectively, in the state of Karnataka, India. The

CBR-TLSA study individuals forming the majority set of

this work belong to various communities and population

subgroups from across the country, although currently

residing in metropolitan Bangalore. In this study, we iden-

tify and characterize SVs in 529 deeply sequenced (average

depth of coverage 42X) human genomes from the Indian

population. These 529 individuals, belonging to more

than 30 distinct population subgroups represent a modest

proportion of the rich genetic diversity in India.

We discover a set of 36,210 SVs, comprising 24,574 dele-

tions, 2,913 duplications, 8,710 insertions, and 13 inver-

sions. The SVs we discover are predominantly rare (%1%
ia; 2Manipal Academy of Higher Education, Manipal, Karnataka 576104,

man Genetics and Genomics Advances 5, 100285, July 18, 2024 1

icense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:bratati@iisc.ac.in
https://doi.org/10.1016/j.xhgg.2024.100285
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xhgg.2024.100285&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


frequency in our dataset) and have limited overlap with re-

sults from individuals of European ancestry, thus reflecting

the population specificity of these SVs for Indians. Dele-

tions and duplications are mostly between 100 bp and

1 kb in length, with average lengths of 310 bp and

908 bp, respectively. Insertions are relatively small, with

an average length of 164 bp; 1.26% (456 of 36,210) of

the resultant SVs have the potential to impact coding

regions of mapped genes. Combined with loss-of-function

(LoF) propensities for the respective annotated genes,

we observe that only five of these SVs are commonly

present in our study individuals and mostly in a heterozy-

gous state, and corresponds to three genes (ADAMTS17,

CCDC40,and RHCE). Seven SVs, all being rare and present

in heterozygote carriers, significantly impact dosage sensi-

tivity of genes that are known to be associated with various

clinical phenotypes. We thus observe a greater preponder-

ance of individuals carrying a single copy of the identified

SVs. Most of the SVs in our study are rare and longer SVs

are rarer. The low proportion of SVs capable of causing

genomic alterations in coding regions or known to be dis-

ease relevant, as well as the limited number of long SVs

(length>100 kb constitutes about 5% of the total SVs iden-

tified) may stem from evolutionary selection against large

regions of genetic rearrangements. This might be attrib-

uted to the fact that our study individuals are derived

from population-based cohort studies rather than being

specifically recruited in specific disease cohorts. Our work

alleviates the Eurocentric bias of genomic studies, by

contributing to the discovery and characterization of SVs

from short-read WGS in the much-understudied Indian

population. We expect that with more such discoveries,

regular SV detection in population-based and disease

cohort studies will help to utilize and appreciate their po-

tential for downstream applications and research.
Material and methods

Sociodemographic details of samples
TheCBR TATA Longitudinal Study of Aging (CBR-TLSA)23 andCBR

Srinivaspura Aging Neurosenescence and Cognition (CBR-

SANSCOG)22 longitudinal cohort studies are approved by the Insti-

tutional Human Ethics Committees of the Indian Institute of

Science and Center for Brain Research. We recruited the partici-

pants for the CBR-TLSA study from community settings in Banga-

lore through flyers and oral communication. The Field Data

Collector team conducted awareness campaigns and recruited

CBR-SANSCOG study participants by contacting individuals

through phone or in-person home visits in the village of Srinivas-

pura. All participants have signed the written informed consent

form. The study participants in CBR-TLSA and CBR-SANSCOG

underwent comprehensive clinical examination, neuropsycholog-

ical tests, blood biochemical, and neuroimaging assessments.

Genomic studies consist of genome-array wide genotyping and

WGS to better understand the factors contributing to aging in

this population. In the past decade, there have been significant

advances inworldwide genomics research, highlighted by pioneer-

ing studies like the 1000 Genomes Project14 and the Genome
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Aggregation Database (gnomAD),17 which contained data from a

vast group of over 195,000 individuals. Essentially, genetics and

genomic studies in CBR-TLSA and CBR-SANSCOG study individ-

uals, who are not ascertained for particular diseases during recruit-

ment, aid in estimating the genome-wide variant allele frequencies

in the population that will facilitate further clinical and disease-

based interpretations. Our current work consists of 529 individuals

recruited in these two studies, with overall 47% females and 53%

males, and a mean age of 63.6 years (SD ¼ 10.57).
Distribution of samples across states and ethnicities
Our study samples constitute over 30 well-defined population

ethnic groups and their distributions across various states in India.

The representation of these ethnic groups correlates with the

different states in our study dataset. However, due to confidenti-

ality considerations related to this cohort, we are unable to

disclose ethnic backgrounds of the samples. Instead, we depict

the sample distribution by state on a map of India in Figure S1A.

The majority of our sampled population is primarily reflective of

South India, exhibiting a notably lower representation from

northern India. While our study is designed with the intention

of achieving diversity and inclusivity, it is important to note

that the scope of our sampled demographics might not fully

encapsulate the extensive diversity prevalent across the entirety

of India. Furthermore, we conducted principal component anal-

ysis to reflect the genetic ancestry of the study individuals

(Figure S1B). We utilize the SmartPCA24 package to generate a

PCA plot, revealing associations between genetic variations and

geographical locations in our samples. Figure S1 (A and B) shows

the distribution of individuals mirroring their genetic structure

in relation to the geographic location, with a high proportion of

the individuals belonging to the southern states of India.
WGS
We conducted genomic DNA extraction from peripheral blood

samples obtained from the study participants using a QIAamp

DNA Blood Midi Kit (100); Cat No./ID: 51185 (NucleoSpin Blood

L Midi kit, cat number 740954.20). We assessed the quality and

quantification of genomic DNA using NanoDrop andQubit 4 fluo-

rometer (Thermo Fisher Scientific, Cat #Q33228). We used the

TruSeq DNA PCR-Free kit (Illumina, Cat # 20015962) for library

preparation as per the manufacturer’s instructions. TruSeq DNA

PCR-Free offers superior coverage of areas that are traditionally

difficult to sequence, such as GC-rich regions, promoters, and re-

petitive content. We estimated the quantity of the DNA libraries

using the Qubit 1X dsDNA HS Assay kit (Thermo, Cat. number:

Q33231). We checked the quality of the DNA libraries using Agi-

lent Fragment Analyzer (Agilent Technologies, Inc.) with the

high-sensitivity next generation sequencing (NGS) fragment anal-

ysis kit (Cat. No. DNF-474-1000). We quantified the libraries by an

absolute quantification method using QuantStudio 6 pro-real-

time PCR system (Thermo Fisher) and KAPA Library Quantifica-

tion Kit – Illumina/Universal (Roche Sequencing solutions, Cat #

KK4828). We performedWGS on the Illumina NovaSeq 6000 plat-

form (Illumina Inc., San Diego, CA, USA) using the NovaSeq 6000

S4 reagent kit (Illumina, Cat. No. 20028312) following library

preparation and quality check. We generated a total of 529

paired-end WGS data across 23 different runs on the NovaSeq

6000 sequencer and further processed theWGS data analysis pipe-

line to identify structural variations (Figure S2).



Workflow for identifying structural variations
The entire workflow for detecting structural variations by split-

read, read-pair, and assembly-based methods from raw WGS short

reads is depicted in Figure S2. Our stringent SV identification

approach utilizes an ensemble of three callers, described below.

We processed the raw.bcl files obtained from NovaSeq 6000

sequencer and converted these files into the analyzable.fastq

sequence format to conduct quality check and unaligned bam

(ubam) files for processing the WGS pipeline.25 Following this,

we sorted the ubam files and marked the Illumina adapter se-

quences. We then reconverted these reads back to.fastq format

and mapped the paired-end.fastq sequences of 529 individuals

against the GRCh38.p13 build human reference assembly using

the BWA-MEM algorithm.26 After mapping, we identified and

marked duplicate reads while applying base quality recalibration

scores using the Genome Analysis Toolkit (GATK) (Figure S2).

Throughout the crucial steps of whole-genome data analysis,

we conducted quality checks to ensure the accuracy of our results.

The average coverage of these 529 genomes was 42X (Figure S3A)

and 151 bp read length. Additionally, we observed a mean Phred

score of 36 for the sequenced bases, with 97% of reads successfully

mapping to the reference genome.Only 8% of the reads weremap-

ped in multiple regions, known as duplicate reads, and 0.3% of

reads were mapped to the reference genomes in either the forward

or reverse reads, termed singleton reads. These duplicate and

singleton reads were marked and not considered for variant call-

ing. Consistently, these parameters were observed across the ma-

jority of samples, as illustrated in Figures S3B–S3D. All the genome

sequences successfully passed the mentioned quality checks. For

SVs discovery and genotyping, we utilize three callers: LUMPY

(v0.2.13),27 DELLY (v0.8.5),28 and MANTA (v1.6.0),29 which

employ split-read, read-pair, and assembly-based methods. We

use three callers to ensure concurrent, robust, and accurate SV call-

ing for our study dataset. Comparable to large-scale studies such as

the 1000 Genomes14 and gnomAD,16 our methodology distin-

guishes itself by strategically employing these methodologies

with stringent filtering and merging approaches (section below).
Comparison of results from SV discovery workflow with

standard GIAB call sets
We downloaded the HG002/NA24385 benchmark set of SV

call from Genome in a Bottle Consortium (GIAB: https://www.

nist.gov/programs-projects/genome-bottle) in VCF file format

(https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/

AshkenazimTrio/analysis/NIST_HG002_DraftBenchmark_defrabb

V0.011-20230725/), comprising �70,000 SVs.30 Independently,

we procured the GM24385 cell line sample from Corriell

(https://www.coriell.org/1/NIGMS/Collections/NIST-Reference-

Materials) and sequenced it using the S4 flow cell kit in NovaSeq

6000, following Illumina’s recommended protocol at our in-

house sequencing facility. The coverage of GM24385 from our

sequencing is 38X.We thenprocessed theWGSdata analysis pipe-

line of GM24385 (Figure S2) to generate a binary alignment map-

ping (.bam) file and identified structural variations using three SV

caller methods. To check the concordance of our SV calling pipe-

line, we converted the downloaded HG002/NA24385 high-confi-

dence truth set, and our sequenced and analyzed VCF files of

HG002/GM24385 to BED format using ‘‘svtk vcf2bed’’ (https://

github.com/talkowski-lab/svtk). We compare the resulting BED

files of NA24385 and GM24385 (truth set and CBR sequenced

for the same sample, respectively) using BEDTools intersect31
Hu
with 50% reciprocal overlap (flag of ‘‘-f 0.5’’). This comparison re-

sults in a precision of deletions at 96.57%, duplications at 53.13%,

and insertions at 86% for the identified SVs in our study dataset,

which were supported by corresponding SVs in the same GIAB

samples. Nevertheless, the high precision value ensures that there

areminimal false positives in our robust SVdiscoveryworkflow for

identifying the SVs.
Genotyping and merging at the cohort level
After the initial callingof SVsby threemethods (Lumpy,DELLY, and

MANTA), we conducted genotyping, after filtering at the sample

level for each caller, andmerging the variations at the cohort level.

The LUMPY outputs of all 529 individuals are re-genotyped using

SVTyper,32 taking the VCF file of SV sites generated by LUMPY

and the aligned BAM file from theWGS pipeline as input. SVTyper

provides genotyped SV sites for each sample in VCF format.We dis-

cardedall SVswith split-read support of%3andbreakend (BND)SV

type for each individual to avoid false discovery of SVs. Addition-

ally, DELLY is utilized to sensitively and accurately detect structural

variations by integrating the read-pair (discordant paired-end) and

split-reads algorithms. The obtained genotyped SV sites are stored

in binary call format (bcf), which is later converted to variant call

format (vcf). From the resulting DELLY SV output, SVs with split-

read support of %3 and BND SV type of the chromosomal coordi-

nate of END value not equal to the coordinate of STARTare filtered

out. UsingMANTA,we simultaneously carry out an assembly-based

method, which involves constructing a graph of all break-end rela-

tionships in thegenomeandprocessing thecomponents for variant

hypothesis creation, assembly, scoring, and VCF reporting. We

excluded split-read support of %3 and break end with lengths less

than 50 in the MANTA SV vcf file for each sample (Figure S2).

Wemerged the identified structural variations (SVs) at two levels

using ‘‘SURVIVOR merge’’: sample level and cohort level. At the

sample level, we performed the merging of SVs called DELLY,

LUMPY, and MANTA only when they have been discovered by

all threemethods (Figure S2), and the distance of 1000 bp between

the relative breakpoints at each end, taking SVs type into consid-

eration where the minimum length of the SV is 50 bp. Then we

merged the SVs detected in individual samples using all three

methods across all 529 samples. We applied a 1,000-bp distance

between the relative breakpoints at each end, while also consid-

ering the SV types and minimum length of 50 bp. This allowed

us to generate a comprehensive call set of SVs for our study indi-

viduals at the population level (Figure S2).

Next, we calculated the discovery allele frequencies for the final

SV site using ‘‘svtools afreq’’ (http://www.lib4dev.in/info/hall-lab/

svtools/INSTALL.md). This allows us to determine the frequency

distribution of the SVs within our dataset of 529 individuals. Based

on the discovery of allele frequencies, we categorized the SVs into

different frequency groups. Ultra-rare variants are considered as

any variant present in less than or equal to three (0.5%) individ-

uals. SVs with frequencies greater than four individuals but

less than or equal to six individuals (>0.5% to %1%) are classified

as rare. Similarly, SVs with frequencies more than seven individ-

uals but fewer than 26 individuals in our study dataset (>1% to

%5%) are categorized as low frequency. Finally, SVs observed

inmore than 5%, corresponding to over 27 individuals, are catego-

rized as common variants. This categorization allows us to get in-

sights into the distribution and prevalence of SVs within our data-

set, providing a comprehensive understanding of their frequency

in the population under study.
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Filtering SVs
In order to retain good quality and reliable SVs in our final call set,

we conducted thorough manual checks after the discovery work-

flow and discarded SVs identified to be present in repeat regions

of the human genome such as human telomeric, centromeric,

and repeat regions from the following link: https://github.com/

dellytools/delly/blob/main/excludeTemplates/human.hg19.excl.

tsv. Next, we performed a liftover of these regions from hg19 to

hg38 genomic coordinates using the UCSC liftover. Afterward,

we excluded SVs locatedwithin these specific regions to narrowing

our focus on variants with known functional significance. Accu-

rately identifying repeat regions from short reads sequencing

data can be challenging due to the complex and repetitive nature.

Moreover, the short reads may not span the entire length of the

repeat region, leading to difficulties in accurately aligning the

reads to the reference genome or identifying unique mapping lo-

cations. Within our study dataset, it was observed that 16 translo-

cations present within the final call set contained either a single

nucleotide repeat or a dinucleotide repeat. Therefore, we did not

include these 16 translocations in our subsequent analysis. Addi-

tionally, we carried out manual assessments of SVs located in the

X and Y chromosomes. In our final call set, we included pseudoau-

tosomal regions (PAR1 and PAR2), that behave similarly to auto-

somes. Since longer SVs (>1MB) are harder to be robustly detected

from short reads, we again performed manual assessment and

removed those that overlapped with other types of SVs and could

be ambiguous. As a result, we excluded 22 SVs in our final call set.

We perused the mobile element data sourced from the UCSC

Genome Browser (http://genome.ucsc.edu/cgi-bin/hgTables) to

check forpresenceofAluandLINE regionswithinour SVcallset.Us-

ing BEDTools intersect with a 50% reciprocal overlap, we observed

one Alu and three LINE1 elements overlapping with our SV inser-

tions,whichwere present in a limitednumber (n¼ 15, nonoverlap-

ping) of individuals in our study dataset. Furthermore, we delved

deeper for these elements at the individual level in our study data-

set. This analysis revealed that the length of these mobile elements

was unknown, and only left (named as LEFT_SVINSSEQ) and right

(RIGHT_SVINSSEQ) partial insertion sequences were provided in

the VCF INFOfield of the individual call set for those samples. Usu-

ally, such denominations are provided for large insertions of unre-

solved length.We could also see that the insertiondetected in these

regions in our study samples are repetitive in nature, thus alluding

to the incomplete detection of mobile elements from short-read

sequencing methods. As a result, we excluded four such structural

variations from our study dataset, since they cannot be confidently

resolved from the short-read sequences.

To summarize the SV detection workflow, we have considered the

potentialpitfallsgiventhenatureofWGSand inferencesbeingmade,

and introduced stringent checks and filtering criteria for repeat and

complex genomic regions to ensure the quality and reliability of

ourfindings,while lookingforevidence fromall themethods forpop-

ulation-level calling of SV. Employing identical merging parameters

at both the individual level and population level, with consensus

from three supporting callers, matching strands as a distinctive

feature provides robust evidence for the identified SVs.
Annotation of structural variations
We annotated the identified structural variations using AnnotSV

(v3.0.7) withGRCh38.p13 build of the human genome. The result-

ing output file includes gene-based annotations, information on

repeats, genic intolerance, and overlapping features from various
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databases such as the Database of Genomic variants,33 1000 Ge-

nomes,14 gnomAD,17 ExAC34 databases, disease-based annotation

from OMIM,35 pathogenic features from dbVar,36 and American

College of Medical Genetics and Genomics (ACMG) categories.37

By annotating the structural variations, we are able to determine

the number of genes affected in our SV call set. We are extending

our filtration process for impacting clinically relevant SVs by

emphasizing the overlap of coding regions with a minimum over-

lap of 8 bps. Furthermore, to understand their relevance to disease

mapping, we used the eDGAR database38 to map the genes that

were annotated by our identified structural variations. The eDGAR

database contained curated information on gene-disease mapping

derived from sources like OMIM,35 humsavar,39 and ClinVar.40

This comprehensive analysis allows us to gain insights into the po-

tential relationships between the identified genes and diseases.

Our study identified 13 inversions that are located within the

intronic regions of six genes: KIF17, CCDC3, DLG2, SLC8A1,

SLC8A1-AS1, and TTLL11. Inversions refer to the balanced rear-

rangement of DNA segments, involving the reversal of a section of

DNA orientation, and potentially disrupting the binding of tran-

scription factors,whichareproteins regulatinggeneexpression.41,42

Therefore, to understand if these inversions have any impact on the

transcriptionof these genes,wemanually examined themusing the

Transcription Factor Binding Site Prediction (TFBSPred) tool.43 Our

analysis determined that none of the inversions affect the transcrip-

tionsitesandtheyarenot likely toaffect thebindingof transcription

factors at the start site of the gene. This was also supported by the

observation that the individuals in our dataset carrying the corre-

sponding inversions didnot receive any diagnoses related to the ab-

normalities causing rearrangements in these genes.
Genome-wide estimation of deleterious variants
To understand intolerance to changes inflicted by our identified

structural variations in the genomic regions, we extracted

LOEUF and ExAC pLI score metrics from the results obtained

from AnnotSV results. The LOEUF metrics represent the LoF

observed/expected upper bound fraction, where low LOEUF scores

(e.g., 0 to 1) indicate strong selection against predicted loss-of-

function (pLoF) variation in a gene, while high LOEUF scores

(e.g., 9) suggest a relatively higher tolerance to inactivation.

Conversely, the pLI is a score that indicates the probability of a

gene being intolerant to an LoF variation. A gene with a pLI value

of 0.9 or higher is considered an extremely LoF intolerant gene. To

identify SVs mapping to genes that exhibit high intolerance to

LoF, as determined by these metrics, we further focused on SVs

that have the potential to cause frameshift changes, which can

have a significant impact on the function of the affected gene. Ac-

cording to the LOEUF metrics, we identified 32, 40, and two

distinct genes impacted by respectively the same number of dele-

tions, duplications, and insertions as highly intolerant. Similarly,

based on pLI scores, we identify 27 deletions, 34 duplications,

and one insertion as highly intolerant (Table S1).
Gene-based estimation of dosage sensitivity
We conducted an estimation of the dosage sensitivity of the

genomic regions mapping to our called SVs using annotation

from the Clinical Genome Resource (ClinGen) consortium.37 This

estimation involves two independent rating systems: a haploinsuf-

ficiency (HI) score for the LoFs and a triplosensitivity (TS) score for

the gain of functions. We consider the score of 3 for both HI and TS

parameters that suggests evidence of dosage pathogenicity for the
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genic region and are associated with clinical phenotype. In addi-

tion, we refined our analysis by applying additional filters to focus

only on genes that are affected by loss or gain of functions and

frameshift changes and performed an in-depth analysis of the genes

mapping with diseases using the eDGAR database.38

Inspecting correlated neighboring loci associated with

traits enlisted in EBI-GWAS catalog
We performed an analysis to examine correlated neighboring loci

associatedwith traits listed in the EBI-GWAS catalog. For this study,

we utilized the GWAS catalog version 1.0.2, which contains all

associations. The catalog was downloaded from the provided

link on July 26, 2023 (https://www.ebi.ac.uk/gwas/api/search/

downloads/alternative/gwas_catalog_v1.0.2-associations_e110_

r2023-07-20.tsv). Our aimwas to determine if the SVswe identified

could be implicated, functional, or responsible for traits for which

GWASdata are available in the EBI catalog.We ensured consistency

by using the exact same genomic coordinates in GRCh38. We ex-

tracted SNV-phenotype results from the downloaded EBI catalog

and then those SNVs are mapped with our study cohort SNP data-

set.We employed Plink244 tools to calculate LD (linkage disequilib-

rium) correlations between these SNVs that mapped with the EBI

catalog and our identified SVs, treating them as part of the same

set. The correlation calculations were constrained to5500-kbwin-

dows, ensuring that we only considered correlations between an

SNV and SV if they were located within 500 kb of each other45

and thoroughly examined the trait-specific findings reported in

EBI to characterize the SVs for disease. The population genomic

details of SNVs from our study individuals are provided in the sup-

plemental information (‘‘Single nucleotide variants and small in-

sertions and deletions’’ section).

Overlap of SVs in Indians with the worldwide dataset
We retrieved the South Asian (SAS) population-specific structural

variations from the 1000 Genomes latest release,46 nstd152

dataset,47 IndiGen-SV dataset,18 and gnomAD17 SVs in VCF for-

mat from the following links: http://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/data_collections/1000G_2504_high_coverage/working/

20210124.SV_Illumina_Integration/,https://ftp.ncbi.nlm.nih.gov/

pub/dbVar/data/Homo_sapiens/by_study/vcf/, https://clingen.igib.

res.in/indigen/download, and https://gnomad.broadinstitute.org/

downloads#v2-structural-variants. Then, we utilized BEDTools

intersect with a 50% reciprocal overlap threshold (flagged as "-f

0.5") to identify the overlaps based on genomic coordinates be-

tween our SV call set and the other four SV datasets for each SV

type independently. In this process, we aimed to determine the

shared regions between the datasets. In addition, we calculated

the Pearson correlation coefficient (r2) to assess the direction and

strength of the linear relationship between allele frequencies of SVs

overlapping between our dataset and the global datasets of 1000Ge-

nomes, gnomAD, and IndiGen SVs. We additionally, tested the re-

sults for the overlapping SVs after categorizing them into two groups

based on our study frequency distribution: rare variants-present at

less than 1%, and common variants-present at greater than or equal

to 1%. This analysis allows us to understand the similarities and dif-

ferences between the global dataset and the call set we identified.

Comparison for array-based and WGS-based deletion

and duplication SVs
We identified the deleted and duplicated chromosomal regions us-

ing array-based genotyping data from the high-throughput output
Hu
of raw.cel files using Affymetrix Axiom Precision Medicine

Research Array in GeneTitan Multi-Channel Microarray Instru-

ment for 529 samples from our study dataset. We included only

the samples with a call rate above 98.5%, resulting in 515 samples

for further analysis. Furthermore, we generated the summaries,

calls, reports, and confidence files using the Axiom Analysis Suite

(v5.1.1.1). Then, we utilized the Affymetrix Axiom CNV Summary

tool (v1.1.0.85) to generate files in PennCNVoutput format. These

files contain log R ratio and B allele frequency values for all the

samples associated with the CEL files. We retrieved the annotation

file from ThermoFisher (https://www.thermofisher.com/order/

catalog/product/sec/assets?url¼TFS-Assets/LSG/Support-Files/Axi-

om_PMRA.na35.r3.a1.annot.db.zip) to detect CNVs. Furthermore,

we utilized pfb (Population frequency of B allele) and gcmodel (GC

content) files, generated using compile_pfb.pl and cal_gc_snp.pl

scripts, respectively. We employed the default affygw6.hmm files

in PennCNV9 for this step. Then, we converted the genomic coor-

dinates from the GRCh37 build to the GRCh38 build using the

Crossmap.py tool. In conclusion, a comprehensive comparison

was performed between the deletions and duplications identified

by PennCNV method and final call set of structural variations of

deletions and duplications independently. The analysis was

focused on intervals of 5125 kb, and an in-house python script

was utilized to facilitate the evaluation.48
Results

Structural variations identified and characterized

We uncovered a total of 36,210 structural variations,

comprising 24,574 deletions, 2,913 duplications, 8,710

insertions, and 13 inversions, in the genomes of 529 indi-

viduals using split-read, read-pair, and assembly-based

methods (Figure 1A). Reflective of the total number, we

found that the deletions (67%) are the more predominant

types of structural variations followed by insertions (21%)

and duplications (9%) (Figure 1B), over each chromosome

as well. We observed on average 3,010 high-confidence de-

letions, 3,248 insertions, and 193 duplications per genome

(Figure 1C). The majority of deletions (67%) occurred in

fewer than 10 individuals, while more than 50% of inser-

tions were present in more than 10 individuals, indicating

a higher insertion frequency per genome. This was inter-

esting because overall deletions outnumbered insertions

by 3-fold, yet the per-genome estimates showedmore inser-

tions in our study dataset. Duplications detected per chro-

mosome were less common, likely due to challenges in

detecting them using short-read sequencing. The average

number of insertions per genome aligned closely with

South Asian results from 1000 Genomes (3,378 insertions

on average per genome).46 However, average deletions

(4,066) and duplications (1,168) per genome in our dataset

appeared to differ from the 1000Genomes discovery due to

population characteristics or pipeline variations. Taking all

SV types together, our study dataset revealed 3,251 high-

confidence SVs per genome. Notably, a substantial propor-

tion of deletions (77%), duplications (84%), and insertions

(73%) were attributed to a cohort of fewer than 50 individ-

uals, as illustrated in the initial two bars of Figure 1Dwithin
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Figure 1. SV discovery in the high-coverage WGS data of Indian samples
(A) SV count: This bar plot illustrates the number of identified SVs categorized by variant type. The dataset comprises a total of 24,574
deletions, 2,913 duplications, 8,710 insertions, and 13 inversions.
(B) Distribution of SVs per chromosome: This stacked bar plot depicts the distribution of structural variations identified in each chro-
mosome. Deletions are the most prevalent types of SVs, followed by insertions and duplications.

(legend continued on next page)
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our study dataset, highlighting that limited subset of indi-

viduals carried the majority of structural variations. This

distribution pattern of structural variations is consistent

withprevious studies,16 indicating that these large genomic

rearrangements are not common in the population. Our re-

sults emphasized the heterogeneity in the occurrence and

distribution of structural variations at the individual level

(Figures 1D and S4), which played a crucial role in compre-

hending the genomic landscape of these variations.

Genotype distributions

We analyzed the genotype distributions of identified SVs

across all samples. For this we tallied the number of homo-

zygous reference (0/0) individuals having the two copies

of reference alleles, homozygous alternate genotypes (1/

1) representing individuals with the same alternate alleles,

and heterozygous (0/1) genotypes representing individ-

uals having one reference allele and one alternate allele

at the locus, indicating heterozygosity. Figure 1E, depicted

a higher frequency of variants in the small number of het-

erozygous and homozygous alternate individuals (as rep-

resented by the peaks of the blue and red lines). This is

also supported by variant-specific details in Table S2.

These patterns were observed consistently across all three

types of structural variations. Sixty-six deletions, 16 inser-

tions, and two duplications were the only SVs present

across all 529 individuals in our study dataset. These dele-

tions and insertions were for the homozygous alternate

variant, and duplications were present in the heterozy-

gous state. Notably, all of these deletions, duplications,

and insertions present in all individuals, were located

outside the coding regions. This implies the potential

impact on protein-coding sequences is minimal, suggest-

ing that these structural variations may not directly influ-

ence the function of the encoded proteins, even though

some SVs are present in all individuals. Moreover, from

our analysis results, we observed that most rare alleles,

present in heterozygous and homozygous states, were

found in only a few individuals as expected since those

SVs are large rearrangements of the genome (Table S2).

The individuals carrying those rare SVs can be further

studied to gain more insights into their conditions. We

also observed that for the common SVs (present in more

than 26 individuals out of 529), there was a higher average

proportion of heterozygote carriers (130 individuals,
(C) Mean SV count per sample by variant type: In this box and whisk
shown for the overall SVCallset, deletions, duplications, insertions, an
dataset. The boxplot illustrates the median with a horizontal line an
(D) Distribution of SVs across samples: The plot illustrates the distribu
the number of individuals in each bin (1–10,>11–50, >50–100,>101
initial bar, representing 1 to 10 individuals carrying the majority of s
population-based studies.
(E) Genotype distribution of SVs: The genotype distributions of ident
represents the number of individuals, while the y axis represents the
higher count of SVs in a limited number of individuals is emphasize
variations are more likely to be found in either a heterozygous state (
(1/1, as indicated by the red line). The presence of merely 66 deletion
uals is demonstrated by the corresponding plot’s tail in these respec
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7,581 SVs, color-coded in green in Table S2) compared

with those with a homozygous alternate status (average

of 65 individuals, 2,732 SVs, and color-coded in blue

Table S2) (Figure 1E).

Length of SVs

Figure 2A illustrates the length distribution of deletions,

duplications, and insertions within the genome. Across

all three types of SVs in our study dataset, a predominant

occurrence was observed within the range of 50 bp to

500 bp—deletions (65%), duplications (43%), and inser-

tions (98%). Notably, duplications are mostly longer (me-

dian length ¼ 908 bp) compared with deletions (median

length ¼ 310 bp). Moreover, a substantial portion of inser-

tions consisted of relatively small lengths, with a median

length of 164 bp. We also conducted a detailed analysis

of the length of structural variations across all the chromo-

somes (Table S3). Less than half of the deletions and dupli-

cations (13.23% and 15.12%, respectively) in chromosome

1 exceeded average lengths of 3.4 kb and 18 kb, while

36.95% of insertions in chromosome 1 were longer than

the average length of 166 bp. A similar trend was observed

in all other chromosomes for deletions, duplications, and

insertions, as shown in Table S3. This was reflected in the

fact that over all chromosomes, only 13.52% of deletions,

15.48% of duplications, and 36.06% of insertions have

longer stretches than their respective average lengths.

Therefore, longer variations were less common in our

study, indicating that the structural variations in the

analyzed chromosomes were generally smaller in size

compared with their average lengths.

Allele frequencies

We classified the structural variations into four categories

based on their discovery frequency among the individuals

in our dataset: common (>5%), low frequency (>1% but

%5%), rare (>0.5% but %1%), and ultra-rare (%0.5%). In

our analysis, we observed that 26.91% of deletions,

19.40% of duplications, and 34.50% of insertions were

common in our dataset, amounting to 10,185 variations

(Figure 2B and Table S4). Notably, a substantial number

of variations (50.38% of deletions, 54.34% of duplications,

and 35.10% of insertions) occurred in fewer than three in-

dividuals, falling into the ultra-rare category, totaling to

17,028 such variations out of overall 36,210 (Table S4).
er plot, by a horizontal line the mean count of SVs per genome is
d inversions. The SVCallset category represents all SVs in our study
d displays the first and third interquartile ranges.
tion of each SV type across all individuals over eight bins based on
–200, >201–300,>301–400,>401–528, and all 529 samples). The
tructural variations, suggests that SVs are infrequently observed in

ified SVs across all samples are depicted by this line plot. The x axis
estimated probability density of genotypes for each individual. A
d as observed in the peaks closer to the origin of the plots. These
0/1, as indicated by the blue line) or a homozygous alternate state
s, two duplications, and 16 insertions among all depicted individ-
tive categories.
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Figure 2. Length and frequency distributions of SVs
(A) Distribution of SV Lengths: The line plot illustrates the length distribution of identified SVs within our study dataset. Predominantly,
the majority of SVs exhibit lengths ranging from 50 bp to 500 bp across all SV types, followed by the next most frequent range observed
between 1 kb and 3 kb for deletions and duplications. Overall, the lesser number of variations for deletions, duplications, and insertions
depicts that longer SVs are less commonly observed in our study samples.
(B) Frequency Distribution of SVs: This stacked bar plot illustrates the frequency distribution of SVs based on four categories: common
(>5%), low frequency (>1% but % 5%), rare (>0.5% but % 1%), and ultra-rare (%0.5%). Our study dataset reveals a prevalence of rare
and ultra-rare variations (involving at most five individuals), followed by common SVs (involving over 26 individuals), and low-fre-
quency SVs (involving six to 26 individuals) is observed within our study dataset.

(legend continued on next page)
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Additionally, 2,566 (10.44%), 350 (12.02%), and 967

(11.11%) were rare variations occurring in three to five in-

dividuals (Figure 2B and Table S4). The remaining SVs,

12.26% (3,013 out of 24,574) deletions, 14.25% (415 out

of 2,913) duplications, and 19.29% (1,680 out of 8,710)

insertions were low frequency, being present in more

than five but fewer than 27 individuals in our dataset

(Table S4). The majority of deletions and duplications

were either in rare or ultra-rare categories, being present

in fewer than five individuals (Figures 2B, S5, and

Table S4). We found that 40% of deletions, 43% of duplica-

tions, and 26% of insertions appeared as ‘‘singletons’’ (that

is, only one allele observed across all samples). In our anal-

ysis encompassing all SV classes, we observed that the

majority of SVs were small, with a median size of 274 bp,

and rare (allele frequency % 1%), as depicted in Figure 2C.

In our study, we also presented a graph that illustrates

three parameters intended to support the relationship

between the number of structural variations, their pres-

ence in study individuals, and variety in their length

(Figure 2C). We observed that a major proportion of dele-

tions and duplications (the first bars in Figure 2C, first

two panels) whose lengths were less than 200 kb, are pre-

sent on an average in about 100 individuals in the dataset.

Similarly, for insertions, although they could go up to

1.4 kb in length, about 180 individuals on average had in-

sertions that spanned fewer than 400 bases. This observa-

tion highlights that the extent of DNA rearrangement

was most likely influenced by evolutionary processes and

longer stretches of the genome were to be encountered

less often unless they are favored by natural selection or

chance events that remain neutral to biological functions.

This phenomenon had also been noted in other popula-

tion-scale studies focused on uncovering structural varia-

tions within populations.16,17

Annotation of SVs based on genomic regions

Using Ensembl and RefSeq,49 we annotated our identified

SVs for genic regions and reported schematic representa-

tions of multiple instances in Figure 3 to provide a compre-

hensive understanding of our annotation workflow. In our

study dataset, a total of 18,581 structural variations had an

impact on 11,405 genes. These genes encompass various re-

gions suchas 50 and30 UTR, exons, and introns.Notably, the

remaining structural variations are located outside genic re-

gions, thushavingnodirect influenceonthegenes. Interest-

ingly, we observed that a few SVs affect specific parts of the

genic region. For instance, one SV impacts the starting re-

gion of certain genes, while other regions of the same genes,

such as exonic or intronic regions, are affected by different

SVs in the vicinity. This phenomenon is highlighted in
(C) Relationship between Length and Frequency: The dual-y-axis plo
metrics: the number of structural variations and the mean number of
the primary y axis corresponds to the count of structural variations,
dividuals. The graph highlights a notable pattern wherein smaller SV
ally, it reveals that these smaller SVs tend to be present in fewer ind

Hu
instance 1 within Figure 3. In other instances (instance 2

in Figure 3), some SVs impact multiple adjacent genes due

to their larger size. On average, in our study we observed

that about 21 (¼11,405/529) genes per genome could be

affected by SVs. Furthermore, our specific focus was on the

SVs found in the coding regions of the genomic regions.

In instance 3, as depicted in Figure 3, we observed 6,832

SVs located in those coding regions. To gain a deeper under-

standing,we conducted a thoroughanalysis of those coding

region SVs to identify their impact on functional changes

caused by frameshift SVs. We observed 456 SVs that had

an impact on frameshifts, with 298 deletions, 155 duplica-

tions, and three insertions affecting the start and stop sites

in genes. Out of the total of 456 frameshift changes, 387

were rare SVs (frequency <1%), while the total number of

rare SVs thatwe identifiedwas 20,907 (Figure 2B).Our study

dataset shows that a total of 1.26% (¼456/36,210) of all SVs

can cause changes in the protein-coding regions of the

genome. Thus, on average there can be approximately one

frameshift alteration per genome (¼456/529). The rarity of

protein-altering SVs in our results might be reflective of

the fact that our cohorts were not specifically ascertained

for any particular disease, thus decreasing the propensity

of finding disease-related SVs in the discovery analysis.

Implication to diseases for identified SVs in coding

regions

We analyzed the potential disease-related impact of identi-

fied common (present in>5% of the study individuals) SVs

on the coding region for causing frameshift changes, since

those are the variants that can alter protein amino acid se-

quences, resulting in non-functional or truncated proteins.

Wehavenoted inprevious sections thatmost structural var-

iations are present in <1% of individuals, with heterozy-

gous genotypes. We uncovered 21 genes in 21 deletions,

12 genes in12duplications, and twogenes in two insertions

that are present in at least 5% of individuals of our dataset

and causing frameshift changes. For the 21 deletions, two

genes (ADAMTS17 andCCDC40)mapped to specific genetic

disorders. The rest of the geneshadno reported evidence for

diseasemapping. Deletions inADAMTS17 (ADAMmetallo-

peptidase with thrombospondin type 1 motif 17) are

known to occur in Weill-Marchesani Syndrome (https://

omim.org/entry/607511?search¼ADAMTS17&highlight¼
adamts17); however, the inheritancepattern ismostly auto-

somal recessive, and 155 individuals in our study sample

carry a 6.2-kb deletion; however, all of them are heterozy-

gous, which explains the absence of the syndrome diag-

nosis in these 155 individuals. Homozygous mutations

or compound heterozygote mutations in CCDC40 (coiled-

coil domain containing 40) present in 156 individuals in
t illustrates the relationship between SV size (lengths) and two key
individuals in each SV size bin. The x axis represents SV size, while
and the secondary y axis corresponds to the mean number of in-
sizes are associated with a greater number of variations. Addition-
ividuals.
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Figure 3. Workflow of genomic annota-
tion of SVs
This figure provides a comprehensive un-
derstanding of our SVs annotation work-
flow, presenting multiple instances of
how SVs plausibly affect genic regions in
the genome and thereby their function,
based on the extent of overlap of the SV
with the transcript. In instance 1, multiple
structural variations affecting the same
gene. In instance 2, one large structural
variation can traverse multiple genes.
Instance 3 depicts how SVs can impact 50

or 30 UTRs or exons in the genic coding re-
gions. Instance 4: Frameshift changes,
which can have significant implications
for protein-coding genes and their associ-
ated functions are shown.
the heterozygous state, showing no symptoms of the dis-

eases.50 Additionally, 12 duplications present in 268, and

156 individuals respectively map to two genes ADAMT-

S17and RHCE. Notably, the deletions and duplications

corresponding to the ADAMTS17 gene affect distinct

samples in our study dataset,meaning the same individuals

do not contain the deletion and duplication. The amorph

type Rh-null disease corresponding to RHCE gene (https://

omim.org/entry/111700?search¼rhce&highlight¼rhce) re-

sults from a homozygous genotype; however, all our study

individuals are heterozygous for the duplication. The Rhe-

sus system polypeptide is a specific protein that is encoded

by the RHCE gene, which plays a crucial role in the Rh sys-

tem by determining the presence or absence of the E anti-

gen on the surface of red blood cells. No genetic disorders

are identifiedmapping to the genes and frameshift changes

affected by the insertions in our study. In our study, these

SVs exhibited a heterozygous genotype state indicating

that individuals carrying these SVs may have had one

copy of the variant allele. This crucial information from a

population-based SV detection study enhances compre-
10 Human Genetics and Genomics Advances 5, 100285, July 18, 2024
hension of variant effects on the hu-

man genome and could aid in diag-

nostic and therapeutic development.

Our in-depth analysis revealed that

although automated gene and disease

mapping programs are excellent re-

sources for screening and annotation

purposes, detailed knowledge about

the genomic coordinates and zygosity

of the corresponding variants in the

study samples, combined with the

knowledge of inheritance, is vital to

draw conclusions regarding disease

prevalence attributed to SVs in a

population.

Intolerance to LoF

We assessed the probability of intoler-

ance to LoF caused by SVs in genes us-
ing two standard methods. The first method relies on a

probability score (pLI) of 0.9 or higher, indicating a high

likelihood of intolerance to LoF variations (nSV ¼ 60),

and the second one designates LOEUF values ranging

from 0 to 1, with lower values indicating a greater likeli-

hood of intolerance to LoF variations (nSV ¼ 69). When

we consider the genes that are intolerant to LoF due to be-

ing impacted by the deletions, duplications, and inser-

tions, we observed that most of them are frameshift varia-

tions. We focused on these SVs that affected frameshifts

and observed deleterious effects by both methods (pLI

and LOEUF) in our study dataset, resulting in a total of

56 highly intolerant SVs comprising 24 deletions, 31 dupli-

cations, and one insertion. Because thesemeasures of genic

intolerance were indicative of evolutionary conservation,

observing them for frameshift causing SVs in our study

samples seems contrary to expectations. However, this is

mitigated by the fact that the majority of these highly

intolerant SVs (50 out of 56) were rare occurrences within

our dataset. Additionally, it is noteworthy that the remain-

ing six SVs causing frameshift in genic regions exhibiting
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Figure 4. Comparisons with global datasets
These comparisons and frequency correlation analyses provide valuable insights into the concordance and differences between our
study dataset and various global datasets. The Venn diagrams visually illustrate the extent of shared SVs among the datasets, while
the frequency correlations shed light on the consistency of SV frequencies across different datasets.
(A–D) Venn diagram comparing multiple global datasets: (A) Venn diagram comparing the overlap between the 1000 Genomes dataset
and our study dataset. (B) Venn diagram comparing the overlap between the HGSVG trios dataset (dstd152) and our study dataset. (C)
Venn diagram comparing the overlap between the IndiGen-SV dataset and our study dataset. (D) Venn diagram comparing the overlap
between the gnomAD-SV dataset and our study dataset.
(E–G) Correlations between frequencies of overlapping SVs: (E) Frequency correlation analysis of SVs overlapping between our study
dataset and the 1000 Genomes dataset. (F) Correlation of frequencies for SVs overlapping between our study dataset and the HGSVG
trios (nstd152) dataset. (G) Correlation of frequencies for SVs overlapping between our study dataset and the IndiGen-SV dataset.

(legend continued on next page)
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high intolerance to LoF are present in at most 87 individ-

uals, averaging at only 26 individuals in the entire set of

study samples. We observed that five SVs (one deletion

in one individual, three duplications in three different in-

dividuals, one insertion in four individuals) present in the

homozygous alternate state affected genes with high pro-

pensity for LoF, respectively being CARD11 for deletion;

ANO8, USP37, PDZD2 for duplication; and FLT4 for inser-

tion. Although ANO8, USP37, and PDZD2 are not immedi-

ately known for specific diseases, CARD11 and FLT4 are

known to be implicated in B cell-induced immunodefi-

ciency and lymphedema, respectively; however, clinical

symptoms indicative of such conditions were not present

in our study individuals. This is not surprising though,

given that a spectrum for disease conditions could exist

in a population, and thus having genetic knowledge

relating to such conditions could empower clinical prac-

tices for precise diagnosis.

Dosage sensitivity of SVs

We annotated our identified structural variations (SVs)

using ClinGen37 recommended parameters for dosage

sensitivity-haploinsufficiency and TS. Haploinsufficiency

occurs when a single functional copy of a gene is inade-

quate to maintain normal function, while TS describes

abnormal phenotypic effects resulting from an additional

copy of a specific gene. Through our analysis, we discov-

ered 100 deletions, 17 duplications, and 42 insertions

that impact dosage sensitivity and are associated with a

clinical phenotype. Among these SVs, frameshift changes

that affected the start and stop sites in six genes (TNRC6B,

FLG, COL1A1, BRIP1, SHANK3, and ARID1B) were

observed for deletions, and one gene (AUTS2) for duplica-

tions (Tables S4A and S4B). However, on a closer observa-

tion, we noticed that the SVs identified are most of the

time not in a genomic region of reported mutations

for these associated diseases. For example, mutations,

including copy number variations, and large transloca-

tions in SHANK3 are well-known for causing inherited

Schizophrenia 15, Phelan-McDermid syndrome. However,

only two individuals in our study sample carry the 336-bp

deletion with no manifestations of the above clinical fea-

tures, thus possibly indicating that not all genetic varia-

tions in the same gene will result in identical extreme

clinical phenotypes. The annotation results depicted

here are obtained from ClinGen datasets that possibly pla-

ces more significance toward reported inherited disorders,

and less on the actual sequence regions. Table S5 provides

additional insights into these genes and their potential

disease associations, including the number of individuals

carrying these genes. It is important to note that the num-
(H) Distribution of allele frequencies among the SVs that overlap with
two groups based on our study frequency distribution: rare variants,
than 1%. Notably, a substantial proportion was found to be commo
Genomes-SAS, and 62% from IndiGen-SV—highlighted in dark gray.
ered rare within our study and are represented in light gray.
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ber of individuals carrying these genes in our dataset is

relatively low, being maximum of two, suggesting that

the significance of these genes being associated with the

reported diseases may be limited.51,52

Overlap of SVs in Indians with the worldwide datasets

Wecompared the genomic coordinates of the SVs identified

in our dataset with multiple global SV datasets, namely

1000 Genome SAS latest release,46 HGSVG trios of

nstd152 SV dataset,47 IndiGen-SV,18 and gnomAD17 SV da-

tasets. Upon comparing with the 1000 Genomes project of

3,202 samples that have a sizable number of individuals

belonging to South Asian ancestry, we observed a substan-

tial overlap with our discovery set. Specifically, we found

an overlap of 11,022 (45%) deletions, 1,056 (37%) dup-

lications, and 1,275 (15%) insertions within our dataset

(Figure 4A). Furthermore, we conducted a comparison of

our SV results against SVs obtained in the HGSVG trios

(nstd152) and found that 8,695 (35%) deletions, 1,099

(37%) duplications, and 6,436 (74%) insertions overlapped

with the trios’ dataset (Figure 4B). It can be noted here

that the nstd152 dataset is derived from PacBio long-read

sequencing, Illumina3.5 kbp and7.5 kbp jumping libraries,

and optical mapping, with subsequent long-range phasing

and haplotype structure determination. Comparing our

study dataset with IndiGen-SV reveals overlaps of 8,697

(35%) deletions, 690 (24%) duplications, and 1,904 (22%)

insertions (Figure 4C). Notably, taking all the SV types

together, we observed 31% overlap between IndiGen and

our study samples, possibly because the sampled individ-

uals in these two datasets are from different ethnic groups

across the countrywith IndiGenmore biased towardnorth-

ern India-based sample collection, thus highlighting the

significant diversity among Indian populations, and the

need to do more such SV discovery studies for comprehen-

sive results. Then, we compared our dataset with gnomAD-

SVs and observed 1,187 deletions overlapping, although

the latter reports more than 169,000 deletions. Addition-

ally, 157 duplications and 37 insertions from our dataset

overlap with gnomAD (Figure 4D). This low level of match

was expected because gnomADcontains about 329,000 SVs

from individuals representing diverse world populations

with an overrepresentation of European ancestry and an

underrepresentation of Indian individuals. Nevertheless,

the strongest positive correlation r2 ¼ 0.88 between allele

frequencies of overlapping SVs are observed for the gno-

mAD dataset (Figure 4E). We also found a strong positive

correlation of 0.7 (Figure 4F), 0.71 (Figure 4G) between

allele frequencies of overlapping SVs discovered in 1000

Genomes-SAS SV and IndiGen-SV, respectively. Nonethe-

less, when we considered for the entire set of previously
a global dataset of SVs: The overlapping SVs were categorized into
present at less than 1%, and common variants, present at greater
n within our study dataset—60% from gnomAD, 63% from 1000
The remaining SVs that overlapped between datasets were consid-
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discovered structural variations from 1000 Genomes, and

IndiGen-SV, that comprises individuals of Indian descent

or South Asian ancestry, we observed that about 54% of

the SVs overlap with our results, thereby rendering about

46% of our identified SVs to be currently specific to the In-

dian population. This result is particularly notable as these

datasets encompass samples from the South Asian popula-

tion, thus enhancing the generalizability and applicability

of our study’s findings to a broader genetic context.

We conducted further analysis on the allele frequencies

of SVs that overlapped between our study dataset and a

global dataset. These overlapping SVs were categorized

into two groups based on our study frequency distribution:

rare variants, present at less than 1%, and common vari-

ants, present at greater than 1%. Notably, a substantial pro-

portion was found to be common within our study data-

set—60% from gnomAD, 63% from 1000 Genomes-SAS,

and 62% from IndiGen-SV—highlighted in dark gray.

The remaining SVs that overlapped between datasets

were considered rare within our study and are represented

in light gray (Figure 4H). This conforms to the expectation

that common variants will be ubiquitous in several popu-

lations, and rare variants will exhibit population-specific

signatures.

Comparisons with EBI-GWAS catalog

We examined the impact of SVs on observable traits (phe-

notypes) by analyzing their genetic linkage with known

trait-associated variants. From the entire downloaded

EBI-GWAS catalog, our analysis identified 148 variants

therein that are in strong genetic linkage (LD r2 R 0.7)

with 145 of our identified SVs. This suggests that these

SVs may play a role in explaining the observed trait associ-

ations (Table S5). Among them, 44 SVs located in coding

regions demonstrate strong LD with 42 variants from the

GWAS catalog. Notably, within our study dataset, we

found one deletion (chr4:11024191-11028005), reported

for "Alzheimer disease or family history of Alzheimer dis-

ease"-associated SNP (chr4:11024404, genetic linkage

with r2 ¼ 1), in two individuals and another insertion in

four individuals (chr17:71643353-71643415), which is re-

ported for "cognitive impairment (MoCA score) in Parkin-

son disease" (genetic linkage with r2 ¼ 0.75) associated SNP

(chr17:71680028). To gain more insight into their cogni-

tive status, we examined the APOE SNPs (rs429358 and

rs7412, responsible for the APOE isoforms implicated in

cognitive impairment) from our in-house SNPs dataset

for these six individuals. We observed that only one indi-

vidual (age ¼ 55, female) exhibits the ε3/ε4 genotype

known to increase the risk of developing Alzheimer disease

and has a high score of 30 in the cognitive screening test

HMSE (Hindi Mental State Examination). In the future,

our goal is to closely follow up this individual and investi-

gate the cognitive phenotypes to better understand the im-

plications of these findings. Additionally, we observed a

deletion in KCNAB1 in strong LD with SNP associated pre-

viously to aging traits and another deletion in LAMA1 in
Hum
strong LD to SNP known to be associated previously to

type 2 diabetes (Table S5). Moreover, we identified a dele-

tion involving FNTB and MAX genes, which is in signifi-

cant LD and associated with white blood cell count

(Table S5). These results highlight the relevance of SVs in

explaining various phenotypic associations and provide

ground for inspecting these specific SVs as potential causal

variants for the reported trait associations.
Comparison of SVs from array-based and WGS methods

In our study dataset, we identified a total of 4,803 duplica-

tions and 7,860 deletions from the genome-wide array

based experimentally derived genotypes using the

PennCNV method. To explore the relationship between

array data deletions and duplications and our identified

SVs, which consist of 24,574 deletions and 2,910 duplica-

tions, we conducted a comprehensive analysis. Our anal-

ysis revealed that 2,572 deletions and 454 duplications

overlapped between the array data and WGS-based SVs.

Additionally, we performed an in-depth analysis of the

lengths of these overlapping SVs to understand which

length categories exhibited more overlap. Interestingly,

we observed significant overlap with array data for larger

SVs. This especially is meaningful considering that array-

based technologies for large variant detection is more sen-

sitive toward uncovering longer (tens of kilobases) dele-

tions and duplications,53 thus corroborating the robust

identification of longer SVs (length >10 kb–1 Mb) in our

discovery set (Figure S6).
Discussion

The depiction of genetic variations in their entirety re-

mains unfulfilled if we exclude SVs from population

genetic sequencing studies. Moreover, SV plays crucial

roles in genomic and cellular processes as well as disease as-

sociations. The Indian population has been severely under-

represented in genomic studies. Here, we report mapping

and characterization of SVs in Indians from population-

based cohorts identified by short-read high-coverage

(average depth 42X) WGS. The robust analysis using mul-

tiple discovery tools upon deep coverage WGS data has

empowered us to identify 36,210 SVs from the consensus

of these methods, including mapping of rare SVs at high

genomic resolution from 529 individuals across more

than 30 distinct population subgroups (Figures S1A and

S1B) representing a modest proportion of the rich genetic

diversity of India. Previously, discovery of SVs in individ-

uals of South Asian descent have been made in the 1000

Genomes study, focusing on a small number of individuals

with ancestral connections to Gujaratis in west India and

Telugus in southern India, in addition to Bengalis and Pak-

istanis. Another recent study has also contributed to SV

discovery in the Indian population.18 Upon cross-refer-

encing our identified SVs with the SVs uncovered from

these two studies taken together, we note that 54% of
an Genetics and Genomics Advances 5, 100285, July 18, 2024 13



our identified SVs overlap with previously known ones,

and therefore 46% are unique to our study dataset, most

of them being rare in prevalence. This is also perceivable

from our resultant SVs where low-frequency or rare vari-

ants make up about half of the total 36,210 SVs discovered.

Considering the diversity of India’s population, the rela-

tively moderate level of overlap that we observed empha-

sizes the distinctiveness of our results obtained from a

different set of study individuals sampled from different

geographic regions and probably belonging to different

population subgroups compared with the IndiGen or

1000 Genomes. This phenomenon is also highlighted in

the IndiGen study where they found that 55% of the un-

covered SVs are unique to Indians.18 It also underlines

the importance of conducting exhaustive studies across

various regions and including diverse ethnic groups to

facilitate SV discovery in less studied non-European popu-

lations. We would like to note that the sample size is a lim-

itation in this work, and 529 samples are not sufficient to

capture the huge population size and rich genetic diversity

of India for characterizing structural variation for the

entire population. Also, the extant Indian population

groups have evidence of their ancestry derived from the

genetically distinct and divergent ancestral north Indians

(ANIs) and the ancestral south Indians (ASIs),54,55 and

our samples mostly belong to the south Indian states

with lesser representation from north Indian states. Never-

theless, it may be acknowledged that recruiting individuals

from the community, data generation costs including

high-coverage WGS and computational analysis burden

as well as data storage are substantial barriers to feasibly

achieving a large sample size for such studies. We expect

to add more samples in the future in order to have a larger

and improved map of SVs in the Indian population. We

have also shown results from the single nucleotide varia-

tions analysis in our supplemental information, that

more than 6% of them are unique when compared with

the latest 1000 Genomes-SAS results. Our dataset most

likely captures more of the ASI-specific genetic variations,

and this group was earlier underrepresented in studies.

We report an average of 3,248 high-confident inser-

tions, 3,010 deletions, and 193 duplications per genome

in Indian individuals. At the individual level though,

there is substantial heterogeneity in the distribution of

SVs, for example, much fewer number of SVs are ubiqui-

tously present in all the genomes, in contrast to a much

greater number of variations carried by a fraction (less

than 50 out of 529) of the individuals (77% of deletions,

84% of duplications, and 73% of insertions), which has

been shown in other populations as well.17 At the chro-

mosomal level on average, deletions (69%) are the more

predominant type of SVs, followed by insertions (21%),

and duplications (9%). We note that the larger the varia-

tion, the less frequent it is in our study. SV duplications

are observed to bemostly longer compared with other var-

iations in our dataset. The median length of duplications

(908 bp) is longer than that of deletions (310 bp) and in-
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sertions (164 bp). Most of the SVs are enriched in rare

or ultra-rare variants (fewer than five individuals in our

dataset), whereas only 26.91%, 19.4%, and 34.50% of

deletions, duplications, and insertions, respectively, are

commonly present in our study samples. It is encouraging

to note that there is significant overlap between the SVs

identified through WGS and array-based methods for

the longer ones (>10 kb length, those might be spuriously

identified by short-read WGS), which reiterates that mul-

tiple discovery methods are essential for consistent and

reliable identification of a larger gamut of SVs at popula-

tion scale.

We observed a lesser proportion 7.5% (¼2,732/36,210) of

SVs being carried in the homozygous state compared with

the heterozygous state (21% from7,582/36,210), and given

that our study individuals have not been ascertained for

particular diseases, this observation is aligned with the hy-

pothesis that in autosomal genes in a randomly mating

population, evolutionary selection acts in favor of hetero-

zygotes so that there is one well-functioning copy of the

gene, and homozygous carriers of the harmful variant are

less prone to be observed in a non-diseased population.56

On a deeper analysis of the homozygous SVs present in

high LoF genes, we observe that the individuals carrying

these variants do not show obvious manifestations of rele-

vant disease phenotypes. This is not surprising given that

potentially harmful genetic variants can be present in indi-

viduals in a general population, and the phenotypes could

also represent a spectrum that makes them undetectable.

Also, many such disease traits are complex and polygenic,

and thus apparently healthy individuals in a general popu-

lation will carry many such variants. Our detailed analysis

tounravel themedical and clinical significanceof identified

SVs corroborates these ideas and highlights the importance

of population-scale genomic sequencing all themore in or-

der to delineate population-specific attributable genetic risk

for several complex and rare disease conditions.

Of all the resultant SVs (36,210) in our study samples, 456

(1.263%) have the potential to cause frameshift changes in

the genome. The majority of these frameshifts are inflicted

by rare (387) SVs in our study dataset. Even thoughwe iden-

tified 20,904 rare and ultra-rare SVs, only a minuscule frac-

tion (387 out of 20,904 ¼ 1.85%) can cause coding region

disruptions in 529 individuals. Furthermore, we conducted

an in-depth analysis of these frameshift SVs, specifically

focusedonSVs thatwere common, that is, present inat least

27 individuals, and map to disease database. We identified

three such genes (ADAMTS17, CCDC40, and RHCE) known

tobe implicated in inheriteddisorders.However, the SVswe

have identified mapping to these genes are present in het-

erozygous carriers, whereas the implicated diseases are

mostly known to have autosomal recessive inheritance.

Thus, manual inspection of zygosity, knowledge of disease

diagnosis in study samples, and mode of inheritance for

known disorders are crucial factors that ought to be consid-

ered in addition to automated disease annotation while

characterizing genetic variants inpopulation-based studies.
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We found that 50 SVs are rare and highly intolerant to

LoF. Also, we observed that six deletions and one duplica-

tion are rare and associated with dosage sensitivity for a

loss of phenotype, exhibiting frameshift changes affecting

the start and stop sites, indicating potential alterations in

the protein-coding sequences. We also found that 44 SVs

located in coding regions are in strong LD (r2 > 0.7) with

42 variants reported for disease associations in the

EBI-GWAS catalog. This could form the basis for future

studies in the Indian and other world populations to

help pinpoint causal variants and elucidate disease mecha-

nisms better with larger sample sizes and targeted cohorts

for the specific disease conditions.

Our results take a step toward realizing the goal of having

an SVmap for the Indian population.We uncovered rare as

well as common unique SVs in Indians with robust sensi-

tivity and specificity; this could facilitate elucidating the

role of SVs in not only rare diseases but also complex disor-

ders that affect the general population, akin to propositions

in earlier studies.57While our study encompassed a consid-

erable cohort of 529 individuals and utilized robust meth-

odologies for data analysis, it is crucial to acknowledge

that our sample might not entirely encompass the diverse

spectrum of the diverse Indian population. Consequently,

our results emphasize the necessity for future endeavors

involving multicentric studies that encompass various re-

gions and population subsets across India. Leveraging this

previously undocumented genetic diversity from this

genomic resource based on the Indian population will

help contribute to the global genomic landscape as well.

Differential causality and low penetrance of disease traits

in different populations with considerable contributions

from the environment and gene-environment interaction

factors emphasizes the need formore such studies to proac-

tively use genomic insights inmedicine.Our in-depth char-

acterization of identified SVs signifies that a comprehensive

evaluation of the contribution of SVs to disease association

studies will improve their power, thus furthering the medi-

cal genetics scenario for India and worldwide.
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42. Spielmann,M., Lupiáñez, D.G., andMundlos, S. (2018). Struc-

tural variation in the 3D genome. Nat. Rev. Genet. 19, 453–

467. https://doi.org/10.1038/s41576-018-0007-0.

43. Zogopoulos, V., Spaho, K., Ntouka, C., Lappas, G., Kyranis, I.,

Bagos, P., Spandidos, D., and Michalopoulos, I. (2021).

TFBSPred: A functional transcription factor binding site pre-

diction webtool for humans and mice. Int. J. Epigen. 1, 9.

https://doi.org/10.3892/ije.2021.9.

44. Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell,

S.M., and Lee, J.J. (2015). Second-generation PLINK: rising to

the challenge of larger and richer datasets. GigaScience 4.

https://doi.org/10.1186/s13742-015-0047-8.

45. Beyter, D., Ingimundardottir, H., Oddsson, A., Eggertsson,

H.P., Bjornsson, E., Jonsson, H., Atlason, B.A., Kristmundsdot-

tir, S., Mehringer, S., Hardarson, M.T., et al. (2021). Long-read

sequencing of 3,622 Icelanders provides insight into the role

of structural variants in human diseases and other traits.

Nat. Genet. 53, 779–786. https://doi.org/10.1038/s41588-

021-00865-4.

46. Byrska-Bishop, M., Evani, U.S., Zhao, X., Basile, A.O., Abel,

H.J., Regier, A.A., Corvelo, A., Clarke, W.E., Musunuri, R., Na-

gulapalli, K., et al. (2022). High-coverage whole-genome
Hum
sequencing of the expanded 1000 Genomes Project cohort

including 602 trios. Cell 185, 3426–3440.e19. https://doi.

org/10.1016/j.cell.2022.08.004.

47. Chaisson, M.J.P., Sanders, A.D., Zhao, X., Malhotra, A., Porub-

sky, D., Rausch, T., Gardner, E.J., Rodriguez, O.L., Guo, L.,

Collins, R.L., et al. (2019). Multi-platform discovery of haplo-

type-resolved structural variation in human genomes. Nat.

Commun. 10, 1784. https://doi.org/10.1038/S41467-018-

08148-Z.

48. Zhou, B., Arthur, J.G., Guo, H., Hughes, C.R., Kim, T., Huang,

Y., Pattni, R., Lee, H., Ji, H.P., and Song, G. (2017). Automatic

detection of complex structural genome variation across

world populations. Preprint at bioRxiv. https://doi.org/10.

1101/200170.

49. Firth, H.V., Richards, S.M., Bevan, A.P., Clayton, S., Corpas,

M., Rajan, D., Van Vooren, S., Moreau, Y., Pettett, R.M., and

Carter, N.P. (2009). DECIPHER: Database of Chromosomal

Imbalance and Phenotype in Humans Using Ensembl Re-

sources. Am. J. Hum. Genet. 84, 524–533. https://doi.org/10.

1016/j.ajhg.2009.03.010.

50. Alsamri, M.T., Alabdouli, A., Iram, D., Alkalbani, A.M., Almar-

zooqi, A.S., Souid, A.-K., and Vijayan, R. (2021). A Study on

the Genetics of Primary Ciliary Dyskinesia. J. Clin. Med. 10,

5102. https://doi.org/10.3390/jcm10215102.

51. Nmezi, B., Giorgio, E., Raininko, R., Lehman, A., Spielmann,

M., Koenig, M.K., Adejumo, R., Knight, M., Gavrilova, R., Al-

turkustani, M., et al. (2019). Genomic deletions upstream of

lamin B1 lead to atypical autosomal dominant leukodystro-

phy. Neurol. Genet. 5, e305. https://doi.org/10.1212/NXG.

0000000000000305.

52. Giorgio, E., Robyr, D., Spielmann, M., Ferrero, E., Di Gregorio,

E., Imperiale,D.,Vaula,G., Stamoulis,G., Santoni, F.,Atzori,C.,

et al. (2015). A large genomic deletion leads to enhancer adop-

tion by the lamin B1 gene: a second path to autosomal domi-

nant adult-onset demyelinating leukodystrophy (ADLD).

Hum. Mol. Genet. 24, 3143–3154. https://doi.org/10.1093/

hmg/ddv065.

53. Zhang, X., Du, R., Li, S., Zhang, F., Jin, L., andWang, H. (2014).

Evaluation of copy number variation detection for a SNP array

platform. BMC Bioinf. 15, 50. https://doi.org/10.1186/1471-

2105-15-50.

54. Reich, D., Thangaraj, K., Patterson, N., Price, A.L., and

Singh, L. (2009). ARTICLES Reconstructing Indian popula-

tion history. Nature 461, 489–494. https://doi.org/10.

1038/nature08365.

55. Moorjani, P., Thangaraj, K., Patterson, N., Lipson, M., Loh,

P.-R., Govindaraj, P., Berger, B., Reich, D., and Singh, L.

(2013). Genetic Evidence for Recent PopulationMixture in In-

dia. Am. J. Hum.Genet. 93, 422–438. https://doi.org/10.1016/

j.ajhg.2013.07.006.

56. Jiggins, C. (2010). Elements of Evolutionary Genetics. B. Char-

lesworth & D. Charlesworth. Roberts & Company. 2010. 768

pages. Price $80 (hardback). Genet. Res. (Camb) 92, 323.

https://doi.org/10.1017/S001667231000042X.

57. Stankiewicz, P., and Lupski, J.R. (2010). Structural Variation in

the Human Genome and its Role in Disease. Annu. Rev. Med.

61, 437–455. https://doi.org/10.1146/annurev-med-100708-

204735.
an Genetics and Genomics Advances 5, 100285, July 18, 2024 17

https://doi.org/10.1093/nar/gkw971
https://doi.org/10.1093/nar/gkw971
https://doi.org/10.1002/cpbi.27
https://doi.org/10.1093/nar/gks1213
https://doi.org/10.1002/humu.23645
https://doi.org/10.1002/humu.23645
https://doi.org/10.1186/s12864-017-3911-3
https://doi.org/10.1093/nar/gku989
https://doi.org/10.1093/nar/gku989
https://doi.org/10.1093/nar/gkv1222
https://doi.org/10.1038/ng.3720
https://doi.org/10.1038/s41576-018-0007-0
https://doi.org/10.3892/ije.2021.9
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1038/s41588-021-00865-4
https://doi.org/10.1038/s41588-021-00865-4
https://doi.org/10.1016/j.cell.2022.08.004
https://doi.org/10.1016/j.cell.2022.08.004
https://doi.org/10.1038/S41467-018-08148-Z
https://doi.org/10.1038/S41467-018-08148-Z
https://doi.org/10.1101/200170
https://doi.org/10.1101/200170
https://doi.org/10.1016/j.ajhg.2009.03.010
https://doi.org/10.1016/j.ajhg.2009.03.010
https://doi.org/10.3390/jcm10215102
https://doi.org/10.1212/NXG.0000000000000305
https://doi.org/10.1212/NXG.0000000000000305
https://doi.org/10.1093/hmg/ddv065
https://doi.org/10.1093/hmg/ddv065
https://doi.org/10.1186/1471-2105-15-50
https://doi.org/10.1186/1471-2105-15-50
https://doi.org/10.1038/nature08365
https://doi.org/10.1038/nature08365
https://doi.org/10.1016/j.ajhg.2013.07.006
https://doi.org/10.1016/j.ajhg.2013.07.006
https://doi.org/10.1017/S001667231000042X
https://doi.org/10.1146/annurev-med-100708-204735
https://doi.org/10.1146/annurev-med-100708-204735

	Landscape of genomic structural variations in Indian population-based cohorts: Deeper insights into their prevalence and cl ...
	Introduction
	Material and methods
	Sociodemographic details of samples
	Distribution of samples across states and ethnicities
	WGS
	Workflow for identifying structural variations
	Comparison of results from SV discovery workflow with standard GIAB call sets
	Genotyping and merging at the cohort level
	Filtering SVs
	Annotation of structural variations
	Genome-wide estimation of deleterious variants
	Gene-based estimation of dosage sensitivity
	Inspecting correlated neighboring loci associated with traits enlisted in EBI-GWAS catalog
	Overlap of SVs in Indians with the worldwide dataset
	Comparison for array-based and WGS-based deletion and duplication SVs

	Results
	Structural variations identified and characterized
	Genotype distributions
	Length of SVs
	Allele frequencies
	Annotation of SVs based on genomic regions
	Implication to diseases for identified SVs in coding regions
	Intolerance to LoF
	Dosage sensitivity of SVs
	Overlap of SVs in Indians with the worldwide datasets
	Comparisons with EBI-GWAS catalog
	Comparison of SVs from array-based and WGS methods

	Discussion
	Data and code availability
	flink6
	Supplemental information
	Acknowledgments
	Declaration of interests
	References


