
Nonlinear Analysis: Hybrid Systems 53 (2024) 101493

A
1

A
e
A
a

b

A

K
E
I
N

1

i
t
l
u
a
h
u
o
p
c

h
R

Contents lists available at ScienceDirect

Nonlinear Analysis: Hybrid Systems

journal homepage: www.elsevier.com/locate/nahs

symptotic behavior of inter-event times in planar systems under
vent-triggered control
nusree Rajan a,∗, Pavankumar Tallapragada a,b

Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India
Robert Bosch Centre for Cyber Physical Systems, Indian Institute of Science, Bengaluru, India

R T I C L E I N F O

eywords:
vent-triggered control
nter-event times
etworked control systems

A B S T R A C T

This paper analyzes the asymptotic behavior of inter-event times in planar linear systems,
under event-triggered control with a general class of scale-invariant event triggering rules. In
this setting, the inter-event time is a function of the ‘‘angle’’ of the state at an event. This
viewpoint allows us to analyze the inter-event times by studying the fixed points of the angle
map, which represents the evolution of the ‘‘angle’’ of the state from one event to the next. We
provide a sufficient condition for the convergence or non-convergence of inter-event times to a
steady state value under a scale-invariant event-triggering rule. Following up on this, we further
analyze the inter-event time behavior in the special case of threshold based event-triggering rule
and we provide various conditions for convergence or non-convergence of inter-event times to a
constant. We also analyze the asymptotic average inter-event time as a function of the angle of
the initial state of the system. With the help of ergodic theory, we provide a sufficient condition
for the asymptotic average inter-event time to be a constant for all non-zero initial states of
the system. Then, we consider a special case where the angle map is an orientation-preserving
homeomorphism. Using rotation theory, we comment on the asymptotic behavior of the inter-
event times, including on whether the inter-event times converge to a periodic sequence. We
illustrate the proposed results through numerical simulations.

. Introduction

Event-triggered control is commonly used in several applications with resource constraints. Efficiency of this control method
s due to the state dependent and non-constant inter-event times, which are implicitly determined by a state-dependent event-
riggering rule. However, this also means that the evolution of the inter-event times is difficult to predict, which makes higher
evel planning and scheduling difficult. Further, there is not enough work that analytically quantifies the improvement in resource
sage by event-triggered controllers compared to time-triggered controllers. From both these points of view, it is very useful to
nalyze the inter-event times generated by event-triggered controllers. For example, understanding the evolution of inter-event times
elps to schedule multiple processes over a shared communication channel or to plan transmissions under constraints. Similarly,
nderstanding inter-event times generated by an event-triggering rule can help in the analytical quantification of the improvement
f average inter-event times for an event-triggered controller over that of a time-triggered controller. With these motivations, in this
aper, we carry out a systematic analysis of the asymptotic behavior of inter-event times for planar linear systems under a general
lass of scale-invariant event-triggering rules.
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1.1. Literature review

Event-triggered control is a popular control method in the field of networked control systems [1–4]. In the literature on this topic,
nter-event time analysis is typically limited to showing the existence of a positive lower bound on the inter-event times to guarantee
he absence of zeno behavior. Among the exceptions to this rule, a few works provide bounds on the average sampling rate [5–7].
efs. [8,9] consider a scalar stochastic event-triggered control system and provide a closed form expression for the expected average
ampling period or communication rate. There are also some works [10–13] that determine the necessary and sufficient data rates
or achieving the control objective irrespective of the controller that is used. Refs. [14,15] take a different point of view and design
vent triggering rules that guarantee better performance than periodic time-triggered control, for a given average sampling rate.
ef. [16] designs an event-triggered controller that ensures exponential stability of the closed loop system while satisfying some
iven interval constraints on event times. Whereas, self-triggered [17] and periodic event triggered [18] control methods guarantee
he absence of zeno behavior by design.

Evolution of inter-event times is far less studied topic in the literature. We believe Ref. [19] is the first paper to analyze the
eriodic and chaotic patterns exhibited by the inter-event sequences of linear time invariant systems under homogeneous event-
riggering rules. Ref. [20] analyzes the evolution of inter-event times for planar linear systems under time-regularized relative
hresholding event-triggering rule. Specifically, this paper explains the commonly observed behaviors of inter-event times, such
s steady-state convergence and oscillatory nature, under the ‘‘small’’ thresholding parameter and ‘‘small’’ time-regularization
arameter scenario. However, these results are qualitative in nature as they do not clearly specify the bounds on the parameters
or which the claims hold. At the same time, [20] does not provide explicit bounds on the behavior of inter-event times. Ref. [21]
akes a different approach to characterize the sampling behavior of linear time-invariant event-triggered control systems by using
inite-state abstractions of the system. The same idea is extended to nonlinear and stochastic event-triggered control systems by
efs. [22,23], respectively. On the other hand, [24] provides a framework to estimate the smallest, over all initial states, average

nter-sample time of a linear periodic event-triggered control system by using finite-state abstractions. Ref. [25] improves the above
pproach by showing robustness to small enough model uncertainties. The paper [26] shows that the abstraction based method can
lso be used to analyze the chaotic behavior exhibited by the traffic patterns of periodic event-triggered control systems.

Our previous work [27] analyzes the evolution of inter-event times for planar linear systems under a general class of event-
riggering rules. This work is a continuation of the same. In one of our recent works [28], we analyze the inter-event time evolution
n linear systems under region-based self-triggered control. In this control method, the state space is partitioned into a finite number
f conic regions and each region is associated with a fixed inter-event time.

.2. Contributions

The major contribution of our work is that we analyze the asymptotic behavior of the inter-event times, such as convergence
o a constant or to a periodic sequence, in planar linear systems under a general class of scale-invariant event-triggering rules. We
arry out this analysis by essentially studying how the ‘‘angle’’ of the state, the angle of the state in polar coordinates, evolves from
ne event to the next. We also leverage the literature on ergodic theory and rotation theory in our analysis. Under mild technical
ssumptions, we provide a mathematical explanation for different kinds of asymptotic behavior of the ‘‘angle’’ of the state and as a
onsequence the asymptotic behavior of the inter-event times. We also analyze the asymptotic average inter-event time as a function
f the ‘‘angle’’ of the initial state of the system. Our results are quantitative in nature and are applicable for a very broad class of
vent-triggering rules.

Note that, analyzing the evolution of inter-event times is complex even for planar systems. The results in the paper are among
ery few in the literature that seek to explain the variety of evolutions that is possible for the inter-event times. Thus inter-event
ime analysis even for planar linear systems is useful for building intuition and ideas for more complicated systems. For example,
he idea that analyzing the state evolution from one event to next as a means to analyzing the evolution of inter-event times does
ertainly apply to 𝑛-dimensional systems. We use the same idea in our recent paper [28], where we analyze the inter-event time
ehavior for linear systems under region based self-triggered control. We next provide an overview of the contributions of our paper
elative to closely related works from the literature.

While [19] seeks to study the evolution of inter-event times by understanding the state evolution, the results in the paper are quite
reliminary. In the current paper, we provide several necessary conditions and sufficient conditions on the system parameters which
ould be used to predict convergence or lack of convergence of inter-event times to a constant. The results in [20] are restricted to
lanar linear systems under time-regularized relative thresholding based event-triggering in the ‘‘small relative threshold parameter
nd time-regularization parameter’’ setting. [20] does not explicitly mention the bounds on these parameters for which the results
old, nor is the derivation of such bounds obvious from the analysis. In contrast, our results hold for all range of parameters. In
act, aided by one of our analytical results, we show through simulations that the analytical results and interpretations in [20] are
ot necessarily true for large enough parameters. Further, [19,20] analyze specific triggering rules, whereas our results hold for a
eneral class of scale invariant rules. Refs. [21–26] characterize the sampling behavior of event-triggered control systems by using
inite state-space abstractions of the system. However, this approach can be computationally very demanding.

The main contributions of this paper with respect to our previous work [27] are stability analysis of the fixed points of the angle
map under any scale-invariant quadratic event-triggering rule and a framework to analyze the asymptotic average inter-event time
as a function of the initial state of the system. We also provide several important new results and improve some of the existing
2

results.
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1.3. Organization

Section 2 formally sets up the problem and states the objective of this paper. Section 3 and Section 4 analyze the properties of the
nter-event time as a function of the state at an event and the steady-state behavior of inter-event times under the event-triggered
ontrol method, respectively. In Section 5, with the help of ergodic theory and rotation theory, we study the asymptotic average
nter-event time as a function of the initial state of the system. Section 6 illustrates the results using numerical examples. Finally,
e provide some concluding remarks in Section 7.

.4. Notation

Let R, R≥0, and R>0 denote the set of all real, non-negative real and positive real numbers, respectively. R ⧵ {0} and R𝑛 ⧵ {0}
denote the set of all non-zero real numbers and the set of all non-zero vectors in R𝑛, respectively. Let N and N0 denote the set of all
positive and non-negative integers, respectively. For any 𝑥 ∈ R𝑛, ‖𝑥‖ denotes the euclidean norm of 𝑥. For an 𝑛 × 𝑛 square matrix
𝐴, let det(𝐴) and tr(𝐴) denote determinant and trace of 𝐴, respectively. 𝐵𝜖(𝑢) ∶= {𝑥 ∈ R𝑛 ∶ ‖𝑥 − 𝑢‖ ≤ 𝜖} represents an 𝑛-dimensional
ball of radius 𝜖 centered at 𝑢 ∈ R𝑛. Let (𝑋,, 𝜇) be a measure space where 𝑋 is a set,  = (𝑋) is the borel 𝜎−algebra on the set 𝑋
and 𝜇 is a measure on the measurable space (𝑋,).

2. Problem setup

In this section, we formulate the problem of analyzing the asymptotic behavior of inter-event times in event-triggered control
systems. We begin by specifying the class of systems and event-triggering rules that we consider and then state the main objective
of this paper.

2.1. System dynamics

Consider a linear time invariant planar system,

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), (1a)

where 𝑥 ∈ R2 is the plant state and 𝑢 ∈ R𝑚 is the control input, while 𝐴 ∈ R2×2 and 𝐵 ∈ R2×𝑚 are the system matrices. Consider
a sampled data controller and let {𝑡𝑘}𝑘∈N0

be the sequence of event times at which the state is sampled and the control input is
updated as follows,

𝑢(𝑡) = 𝐾𝑥(𝑡𝑘), ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1). (1b)

Let the control gain 𝐾 be such that 𝐴𝑐 ∶= 𝐴 + 𝐵𝐾 is Hurwitz.

2.2. Triggering rules

In this paper, we assume that the event times {𝑡𝑘}𝑘∈N0
are generated in an event-triggered manner so as to implicitly guarantee

asymptotic stability of the origin of the closed loop system. It is common to construct such event-triggering rules based on a candidate
Lyapunov function. For example, consider a quadratic candidate Lyapunov function 𝑉 (𝑥) = 𝑥𝑇 𝑃𝑥, where 𝑃 ∈ R2×2 is a positive
definite symmetric matrix that satisfies the Lyapunov equation

𝑃𝐴𝑐 + 𝐴𝑇
𝑐 𝑃 = −𝑄, (2)

for a given symmetric positive definite matrix 𝑄. Following are three different event-triggering rules that are commonly used in the
literature for stabilization tasks.

𝑡𝑘+1 = min{𝑡 > 𝑡𝑘 ∶ 𝑉̇ (𝑥(𝑡)) = 0} (3a)

𝑡𝑘+1 = min {𝑡 > 𝑡𝑘 ∶ ‖

‖

𝑥(𝑡𝑘) − 𝑥(𝑡)‖
‖

= 𝜎 ‖𝑥(𝑡)‖ }, (3b)

𝑡𝑘+1 = min{𝑡 > 𝑡𝑘 ∶ 𝑉 (𝑥(𝑡)) = 𝑉 (𝑥(𝑡𝑘))𝑒−𝑟(𝑡−𝑡𝑘)}. (3c)

First two triggering rules render the origin of the closed loop system asymptotically stable, with 𝜎 sufficiently small in the latter
rule (see [1,2] for example). The third event-triggering rule ensures exponential stability for a sufficiently small 𝑟 > 0 (see [10] for
example).

During the inter-event intervals, we can write the solution 𝑥(𝑡) of system 2.1 as

𝑥(𝑡) = 𝐺(𝜏)𝑥(𝑡𝑘), ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1),

where 𝜏 ∶= 𝑡 − 𝑡𝑘 and

𝐺(𝜏) ∶= e𝐴𝜏 +
𝜏
e𝐴(𝜏−𝑠)d𝑠(𝐴𝑐 − 𝐴).
3
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𝑀

Using this structure of the solution, we can write the three triggering rules (3) as

𝑡𝑘+1 − 𝑡𝑘 = min{𝜏 > 0 ∶ 𝑓 (𝑥(𝑡𝑘), 𝜏) ∶= 𝑥𝑇 (𝑡𝑘)𝑀(𝜏)𝑥(𝑡𝑘) = 0}, (4)

where 𝑀(𝜏) is a time varying symmetric matrix. In particular, for the triggering rules (3a)–(3c) 𝑀(𝜏) is equal to 𝑀1(𝜏), 𝑀2(𝜏) and
3(𝜏), respectively, where

𝑀1(𝜏) ∶=
d𝐺𝑇 (𝜏)

d𝜏
𝑃𝐺(𝜏) + 𝐺𝑇 (𝜏)𝑃

d𝐺(𝜏)
d𝜏

(5a)

𝑀2(𝜏) ∶= (1 − 𝜎2)𝐺𝑇 (𝜏)𝐺(𝜏) − (𝐺𝑇 (𝜏) + 𝐺(𝜏)) + 𝐼 (5b)

𝑀3(𝜏) ∶= 𝐺𝑇 (𝜏)𝑃𝐺(𝜏) − 𝑃 e−𝑟𝜏 (5c)

Note that if 𝐴 is invertible, then the expression and computation of 𝑀(𝜏) is simplified significantly as

𝐺(𝜏) = 𝐼 + 𝐴−1(e𝐴𝜏 − 𝐼)𝐴𝑐 .

2.3. Objective

The main objective of this paper is to analyze the evolution of inter-event times along the trajectories of system 2.1 for the
general class of event triggering rules (4). We seek to provide analytical guarantees for the asymptotic behavior of inter-event times
under these rules. Specifically, we would like to answer the questions: when do the inter-event times converge to a steady-state
value or to a periodic sequence and when do the asymptotic average inter-event times becomes a constant for all initial states of
the system. We also want to analyze the asymptotic average inter-event time as a function of the initial state of the system. The
approach we take is to analyze inter-event time and the state at the next event as functions of the state at the time of the current
event.

3. Inter-event time as a function of the state

In this section, we analyze the inter-event time 𝑡𝑘+1− 𝑡𝑘, as a function of 𝑥(𝑡𝑘), for the system 2.1 under the general class of event
triggering rules (4). Note that most of the results in this section were first proposed in our previous paper [27]. However, this paper
includes proofs of all the results proposed in [27].

Next, formally, we define the inter-event time function 𝜏𝑒 ∶ R2 ⧵ {0} → R>0 as

𝜏𝑒(𝑥) ∶= min{𝜏 > 0 ∶ 𝑓 (𝑥, 𝜏) = 𝑥𝑇𝑀(𝜏)𝑥 = 0}. (6)

We can write 𝑡𝑘+1 − 𝑡𝑘 = 𝜏𝑒(𝑥(𝑡𝑘)) for all 𝑘 ∈ N0. Next, we analyze the properties of this inter-event time function such as
scale-invariance, periodicity and continuity.

3.1. Properties of the inter-event time function

Remark 1 (The Inter-Event Time Function is Scale-Invariant). Note from (6) that 𝑓 (𝛼𝑥, 𝜏) = 𝛼2𝑓 (𝑥, 𝜏) for all 𝛼 ∈ R and 𝑥 ∈ R2. Hence,
𝜏𝑒(𝛼𝑥) = 𝜏𝑒(𝑥), for any 𝑥 ∈ R2 ⧵ {0} and for any 𝛼 ∈ R ⧵ {0}. ∙

The scale-invariance property implies that we can redefine the inter-event time function for planar systems as a scalar function
𝜏𝑠 ∶ R → R>0,

𝜏𝑠(𝜃) ∶= min{𝜏 > 0 ∶ 𝑓𝑠(𝜃, 𝜏) ∶= 𝑥𝑇𝜃 𝑀(𝜏)𝑥𝜃 = 0}, (7)

where 𝑥𝜃 ∶=
[

cos(𝜃) sin(𝜃)
]𝑇 , so that 𝜏𝑒(𝑥) = 𝜏𝑠(𝜃) for 𝑥 = 𝛼𝑥𝜃 for all 𝛼 ∈ R ⧵ {0}. Hence for a planar system, the inter-event time

𝑡𝑘+1 − 𝑡𝑘 = 𝜏𝑠(𝜃𝑘) for all 𝑘 ∈ N0, where 𝜃𝑘 is the angle between 𝑥(𝑡𝑘) and the 𝑥1 axis.

Remark 2 (𝜏𝑠(𝜃) is a Periodic Function with Period 𝜋). We know that for 𝑥𝜃 =
[

cos(𝜃) sin(𝜃)
]𝑇 , 𝜏𝑠(𝜃) = 𝜏𝑒(𝑥𝜃) = 𝜏𝑒(−𝑥𝜃) = 𝜏𝑠(𝜃 + 𝜋)

for all 𝜃 ∈ R. ∙

Periodicity of 𝜏𝑠(𝜃) helps us to restrict our analysis to the domain [0, 𝜋). Next, we present an important property of 𝑓𝑠(𝜃, 𝜏) that
plays a major role in the subsequent analysis.

Lemma 3 (For Any Fixed 𝜏, 𝑓𝑠(𝜃, 𝜏) is a Sinusoidal Function with a Shift in Phase and Mean). Let 𝑚𝑖𝑗 (𝜏) be the (𝑖𝑗)th element of
𝑀(𝜏) ∈ R2×2. For any fixed 𝜏 ∈ R>0,

𝑓𝑠(𝜃, 𝜏) =
tr(𝑀(𝜏))

2
+ 𝑎 sin (2𝜃 + arctan (𝑏)) , (8)

𝑎 ∶= 1√(tr(𝑀(𝜏)))2 − 4 det(𝑀(𝜏)), 𝑏 ∶=
𝑚11(𝜏) − 𝑚22(𝜏) .
4

2 2𝑚12(𝜏)
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Proof. Here, we skip the time argument of 𝑚𝑖𝑗 (𝜏) for brevity. Note that 𝑚12 = 𝑚21. Then, for any fixed 𝜏 ∈ R>0,

𝑓𝑠(𝜃, 𝜏) =
[

cos(𝜃) sin(𝜃)
]

𝑀(𝜏)
[

cos(𝜃)
sin(𝜃)

]

, (9)

= 𝑚11 cos2(𝜃) + 𝑚22 sin
2(𝜃) + 2𝑚12 cos(𝜃) sin(𝜃),

= 𝑚11 + (𝑚22 − 𝑚11) sin
2(𝜃) + 𝑚12 sin(2𝜃),

=
𝑚11 + 𝑚22

2
+

𝑚11 − 𝑚22
2

cos(2𝜃) + 𝑚12 sin(2𝜃),

which when suitably re-expressed gives the result. □

Using the structure of 𝑓𝑠(𝜃, 𝜏) in (8) and the quadratic form (9), we can easily determine the number of solutions to 𝑓𝑠(𝜃, 𝜏) = 0
for any fixed 𝜏.

Corollary 4 (Number of Solutions 𝜃 to 𝑓𝑠(𝜃, 𝜏) = 0 for a Fixed 𝜏). For any fixed 𝜏 ∈ R>0, if det(𝑀(𝜏)) > 0, then 𝑓𝑠(𝜃, 𝜏) = 0 has
no solutions; if det(𝑀(𝜏)) = 0 then 𝑓𝑠(𝜃, 𝜏) = 0 has a single solution 𝜃 ∈ [0, 𝜋) or 𝑓𝑠(𝜃, 𝜏) = 0 for all 𝜃 ∈ [0, 𝜋); if det(𝑀(𝜏)) < 0 then
𝑠(𝜃, 𝜏) = 0 has exactly two solutions 𝜃 ∈ [0, 𝜋). □

roof. Note that, for any fixed 𝜏 ∈ R>0, det(𝑀(𝜏)) > 0 implies |tr(𝑀(𝜏))| > |𝑎| where 𝑎 is defined as in (8). This implies that the
agnitude of the shift in the mean of the sinusoidal function in (8) is strictly greater than the maximum magnitude of the sinusoidal

unction. Hence, according to Lemma 3, we can say that 𝑓𝑠(𝜃, 𝜏) = 0 has no solutions. Following similar arguments, we can say that
f det(𝑀(𝜏)) = 0 then 𝑓𝑠(𝜃, 𝜏) = 0 has a single solution 𝜃 ∈ [0, 𝜋) or 𝑓𝑠(𝜃, 𝜏) = 0 for all 𝜃 ∈ [0, 𝜋) if, additionally, tr(𝑀(𝜏)) = 0.
imilarly, if det(𝑀(𝜏)) < 0 then 𝑓𝑠(𝜃, 𝜏) = 0 has exactly two solutions 𝜃 ∈ [0, 𝜋). □

From the quadratic form (9), we can also obtain a necessary and sufficient condition for the event-triggering rule (4) to reduce
o a periodic triggering rule, with inter-event times that are independent of the state.

orollary 5 (Necessary and Sufficient Condition for the Triggering Rule (4) to Reduce to Periodic Triggering). 𝜏𝑠(𝜃) = 𝜏1,∀𝜃 ∈ [0, 𝜋) if
nd only if det(𝑀(𝜏)) > 0 for all 𝜏 ∈ (0, 𝜏1), 𝜏1 = min{𝜏 > 0 ∶ det(𝑀(𝜏)) = 0} and 𝑀(𝜏1) = 0, the zero matrix. □

roof. First, we prove sufficiency. If det(𝑀(𝜏)) > 0 for all 𝜏 ∈ (0, 𝜏1), then by Corollary 4 we know that for each 𝜏 ∈ (0, 𝜏1), 𝑓𝑠(𝜃, 𝜏) = 0
as no solutions. Hence, 𝜏𝑠(𝜃) ≥ 𝜏1 for all 𝜃. If additionally, 𝑀(𝜏1) = 0, the zero matrix, then from the definition of 𝜏𝑠(𝜃) in (7) we
an see that 𝜏𝑠(𝜃) = 𝜏1 for all 𝜃.

Now, we prove necessity. Let 𝜏min = min{𝜏 > 0 ∶ det(𝑀(𝜏)) ≤ 0}. Again from Corollary 4 we know that there is no 𝜃 for which
𝑠(𝜃) < 𝜏min. Then, we know from Corollary 4 that ∃𝜃 such that 𝑓𝑠(𝜃, 𝜏min) = 0 and hence 𝜏𝑠(𝜃) = 𝜏min. However, if det(𝑀(𝜏)) < 0, then
orollary 4 implies that there are exactly two values of 𝜃 in [0, 𝜋) for which 𝜏𝑠(𝜃) = 𝜏min and for all other 𝜃, 𝜏𝑠(𝜃) > 𝜏min. So, it must
e that 𝜏min = 𝜏1 and det(𝑀(𝜏min)) = 0. Finally, if 𝑀(𝜏min) = 𝑀(𝜏1) ≠ 0, then again there is exactly one 𝜃 for which 𝜏𝑠(𝜃) = 𝜏min = 𝜏1
nd for all other 𝜃, 𝜏𝑠(𝜃) > 𝜏1. This proves the necessity. □

Note that this necessary and sufficient condition depends only on the time varying matrix 𝑀(𝜏), which can be determined given
he system parameters and the event-triggering rule. If we know that the triggering rule for a given event-triggered control system
s periodic, then further analysis of inter-event times is not required.

.2. Continuity of the inter-event time function 𝜏𝑠(𝜃)

In this subsection, we seek to obtain conditions under which the inter-event time function 𝜏𝑠(𝜃) is continuous. Towards this
im, we make the following assumption about the matrix function 𝑀(𝜏) since the general class of event-triggering rules (4) for an
rbitrary 𝑀(𝜏) is very broad.

A1) Every element of the matrix 𝑀(.) is a real analytic function of 𝜏 and there exists a 𝜏𝑚 such that 𝑀(𝜏) is negative definite for
(0, 𝜏𝑚), where

𝜏𝑚 ∶= inf{𝜏 > 0 ∶ det(𝑀(𝜏)) = 0}.

t is easy to verify that each 𝑀𝑖(.) in (5), corresponding to the three triggering rules (3), satisfies Assumption (A1). This is because
n 𝑀1(.) and 𝑀2(.) the dependence on 𝜏 comes from the matrix exponential e𝐴𝜏 and its integral with respect to 𝜏. In 𝑀3(.), there
s an additional exponential function e−𝑟𝜏 which is combined linearly with other terms dependent on 𝜏. Letting 𝐽 ∶= 𝑆−1𝐴𝑆 be
he real Jordan form of 𝐴, we have e𝐴𝜏 = 𝑆e𝐽𝜏𝑆−1. Thus, each element of 𝑀𝑖(.) is a linear combination of products of exponential
unctions, polynomials (in case 𝐴 is not diagonalizable) and sinusoidal functions (in case 𝐴 has complex eigenvalues), all of which
re real analytic functions of 𝜏. Thus, each of the 𝑀𝑖(.)’s are real analytic functions of 𝜏. Note that these arguments hold true even
f 𝐴 is singular. Further, both 𝑀 (0) and 𝑀 (0) are negative definite. Though 𝑀 (0) = 0 the time derivative of 𝑀 at 𝜏 = 0, 𝑀̇ (0),
5
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is negative definite for suitable 𝑃 and 𝑟. Otherwise, the sequence of inter-event times generated by the event-triggering rule (3c)
would not have a positive lower bound on inter-event times.

Now, let 𝜏min and 𝜏max denote the global minimum and the global maximum of 𝜏𝑠(𝜃), respectively, that is,

𝜏min ∶= min
𝜃∈[0,𝜋)

𝜏𝑠(𝜃), 𝜏max ∶= max
𝜃∈[0,𝜋)

𝜏𝑠(𝜃).

For a matrix 𝑀(.) that satisfies Assumption (A1), clearly 𝜏min = 𝜏𝑚 as det(𝑀(𝜏)) > 0 in the interval (0, 𝜏𝑚) and according to Corollary 4,
𝑓𝑠(𝜃, 𝜏) = 0 has no solution for 𝜏 ∈ (0, 𝜏𝑚) and has a solution for 𝜏 = 𝜏𝑚. In general, 𝜏max may not exist, that is 𝜏max = ∞. In this case,
it means that there exists a 𝑥0 ∈ R2 ⧵ {0} such that if 𝑥(𝑡𝑘) = 𝑥0 then 𝑡𝑘+1 = ∞. However, such an 𝑥0 cannot exist if 𝐴 has positive
eal parts for both its eigenvalues and if the triggering rule (4) ensures 𝑥 = 0 is asymptotically stable. In such a case, 𝜏max is a finite
uantity.

We approach the question of continuity of the inter-event time function 𝜏𝑠(𝜃) by first analyzing the smoothness properties of the
evel set 𝑓𝑠(𝜃, 𝜏) = 0 in the (𝜃, 𝜏) space. In particular, Assumption (A1) implies that det(𝑀(𝜏)) is also real analytic and as a result it
as finitely many zeros in the interval 𝜏 ∈ [0, 𝜏max]. This observation, along with Corollary 4, can be used to say that 𝑓𝑠(𝜃, 𝜏) = 0 has
initely many connected branches, which are arbitrarily smooth, in the set {(𝜃, 𝜏) ∈ [0, 𝜋) × [0, 𝜏max]}. We formally state this claim
n the following result.

emma 6 (The Level Set 𝑓𝑠(𝜃, 𝜏) = 0 has Finitely Many Connected Branches, Which are Arbitrarily Smooth). Suppose that 𝑀(.)
n (7) satisfies Assumption (A1) and 𝜏max < ∞. Then, the level set 𝑓𝑠(𝜃, 𝜏) = 0 has finitely many connected branches in the set
(𝜃, 𝜏) ∈ [0, 𝜋) × [0, 𝜏max]}. Each branch is an arbitrarily smooth curve in (𝜃, 𝜏) space and can be parameterized by 𝜏 in a closed interval.

roof. First note that under Assumption (A1), all elements of 𝑀(.) are real analytic functions, which implies that det(𝑀(𝜏)) is also
real analytic function of 𝜏. This is true because the determinant of a matrix is a polynomial of its elements, and products and

ums of real analytic functions are also real analytic. As a consequence, on the closed and bounded interval [0, 𝜏max], det(𝑀(𝜏)) has
initely many zeros. This implies that there are finitely many sub-intervals [𝑔𝑖, ℎ𝑖] of [0, 𝜏max] such that det(𝑀(𝑔𝑖)) = det(𝑀(ℎ𝑖)) = 0
nd det(𝑀(𝜏)) < 0 for all 𝜏 ∈ (𝑔𝑖, ℎ𝑖). Then, Corollary 4 guarantees that 𝑓𝑠(𝜃, 𝜏) = 0 has exactly two solutions for each 𝜏 ∈ [𝑔𝑖, ℎ𝑖]
or each of the finitely many 𝑖, with the two solutions coincident at 𝑔𝑖 and ℎ𝑖 but nowhere else. Thus, 𝑓𝑠(𝜃, 𝜏) = 0 has finitely many
ranches in {(𝜃, 𝜏) ∈ [0, 𝜋) × [0, 𝜏max]}. Smoothness of the branches is a consequence of the fact that 𝑓𝑠(𝜃, 𝜏) is an arbitrarily smooth
unction, which is also evident from (8). □

Lemma 6 allows us to apply the implicit function theorem on 𝑓𝑠(𝜃, 𝜏) = 0 at all (𝜃, 𝜏𝑠(𝜃)) ∈ [0, 𝜋)×[0, 𝜏max], except at finitely many
oints. From this, we guarantee that 𝜏𝑠(𝜃) is continuously differentiable in [0, 𝜋), except at finitely many points.

heorem 7 (Inter-Event Time Function is Continuously Differentiable Except for Finitely Many 𝜃). Suppose that 𝑀(.) in (7) satisfies As-
umption (A1) and 𝜏max < ∞. Then, the inter-event time function 𝜏𝑠(𝜃), defined as in (7), is continuously differentiable on [0, 𝜋) except at
initely many 𝜃.

roof. Recalling Lemma 6, consider any one of the finitely many branches of the level set 𝑓𝑠(𝜃, 𝜏) = 0 in the set {(𝜃, 𝜏) ∈
0, 𝜋) × [0, 𝜏max]}. We denote the smooth parameterization of the branch by 𝜏 as 𝜃(𝜏). Then, by Theorem 1 in [29] (Morse–Sard
heorem for real analytic functions), we can say that the critical values 𝜃 of the function 𝜃(𝜏) form a finite set. We can infer two
bservations from this. First, in tracing out the 𝜏𝑠(𝜃) function, there are finitely many jumps between the branches of the level set
𝑠(𝜃, 𝜏) = 0 in the set {(𝜃, 𝜏) ∈ [0, 𝜋) × [0, 𝜏max]}. Second, for all 𝜃 ∈ [0, 𝜋) except at finitely many 𝜃, 𝜕𝑓𝑠(𝜃,𝜏)

𝜕𝜏 |(𝜃,𝜏𝑠(𝜃)) ≠ 0 and therefore
the implicit function theorem guarantees continuous differentiability of 𝜏𝑠(𝜃) on [0, 𝜋) except at finitely many 𝜃. □

Based on Theorem 7 and its proof, we provide a sufficient condition for 𝜏𝑠(𝜃) to be continuously differentiable.

Corollary 8 (Corollary to Theorem 7). If 𝑥𝑇𝜃 𝑀̇(𝜏)𝑥𝜃 ≠ 0 for all (𝜃, 𝜏) ∈ R×R such that 𝑥𝑇𝜃 𝑀(𝜏)𝑥𝜃 = 0 or if 𝑀̇(𝜏) > 0 for all 𝜏 ∈ [𝜏min, 𝜏max],
then the inter-event time function 𝜏𝑠 ∶ R → R>0 defined as in (7) is continuously differentiable. □

Since in simulations, we encounter 𝜏𝑠(𝜃) functions that visually seem to be continuous quite often, we present the following result
in the special case where 𝜏𝑠(𝜃) is a continuous function.

Proposition 9. If the inter-event time function 𝜏𝑠(𝜃) is a continuous function, then every local extremum of 𝜏𝑠(𝜃) is a global extremum.

Proof. We prove this result by contradiction. Suppose there exists an extremum of 𝜏𝑠(𝜃) at 𝜃1 with value 𝜏1 ∈ (𝜏min, 𝜏max). That is,
the extremum at 𝜃1 is not a global extremum. Then, the assumptions that 𝜏𝑠(𝜃) is continuous and 𝜃1 is a local extremizer and the
fact that 𝜏𝑠(𝜃) is periodic with period 𝜋 imply that there exist 𝜃2, 𝜃3 ∈ (𝜃1, 𝜃1 + 𝜋) such that 𝜏𝑠(𝜃2) = 𝜏𝑠(𝜃3) = 𝜏𝑠(𝜃1) = 𝜏1. However,
this contradicts Corollary 4, which says that for any given 𝜏1 > 0, 𝑓𝑠(𝜃, 𝜏1) = 0, and hence 𝜏𝑠(𝜃) = 𝜏1, can at most have two solutions
6

for 𝜃. Therefore, the claim in the result must be true. □
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4. Evolution of the inter-event time

In this section, we provide a framework for analyzing the evolution of the inter-event time along the trajectories of the system 2.1
nder the general class of event-triggering rules (4). In the previous section we showed that, for scale-invariant event-triggering rules,
he inter-event time is determined completely by the angle of the state at the current event-triggering instant. So, we restrict our
nalysis to the domain 𝑅1 ∶= R∕2𝜋Z, which is defined as the quotient of real numbers by the equivalence relation of differing by an
nteger multiple of 2𝜋. Then we define a map 𝜙 ∶ 𝑅1 → 𝑅1, referred to as angle map, which represents the evolution of the ‘‘angle’’

of the state from one event to the next as,

𝜃𝑘+1 = 𝜙(𝜃𝑘) ∶= arg
(

𝐺(𝜏𝑠(𝜃𝑘))
[

cos(𝜃𝑘)
sin(𝜃𝑘)

])

, (10)

where

arg(𝑥) ∶=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

arctan( 𝑥2𝑥1
), if 𝑥1 > 0, 𝑥2 ≥ 0

𝜋 + arctan( 𝑥2𝑥1
), if 𝑥1 < 0

2𝜋 + arctan( 𝑥2𝑥1
), if 𝑥1 > 0, 𝑥2 < 0

𝜋
2 , if 𝑥1 = 0, 𝑥2 > 0
−𝜋
2 , if 𝑥1 = 0, 𝑥2 < 0

undefined, if 𝑥1 = 0, 𝑥2 = 0.

and 𝜃𝑘 = arg(𝑥(𝑡𝑘)) denotes the angle between the state 𝑥(𝑡𝑘) and the positive 𝑥1 axis. Thus, analysis of the inter-event time function
𝜏𝑠(𝜃) and the angle map 𝜙(𝜃) helps us to understand the evolution of the inter-event time for an arbitrary initial condition 𝑥(𝑡0). In
particular, the analysis of fixed points of the angle map helps us to determine the steady state behavior of the inter-event times. This
s the main idea behind the results of this section.

We first make an observation regarding the periodicity of 𝜙(𝜃) − 𝜃 map and then we present the main results of this section.

emark 10 (𝜙(𝜃) − 𝜃 is Periodic with Period 𝜋). As the inter-event time function 𝜏𝑠(𝜃) is periodic with period 𝜋, 𝜙(𝜃 + 𝜋) =
rg(𝐺(𝜏𝑠(𝜃 + 𝜋))𝑥𝜃+𝜋 ) = arg(−𝐺(𝜏𝑠(𝜃))𝑥𝜃) = 𝜙(𝜃) + 𝜋. Thus 𝜙(𝜃 + 𝜋) − (𝜃 + 𝜋) = 𝜙(𝜃) − 𝜃 for all 𝜃 ∈ R. ∙

Remark 11 (Sufficient Condition for the Convergence of Inter-Event Times to a Steady State Value). Suppose there exists a fixed point
of the angle map, i.e., ∃𝜃 s.t. 𝜙(𝜃) = 𝜃. Then 𝑡𝑘+1 − 𝑡𝑘 = 𝜏𝑠(𝜃), ∀𝑘 ∈ N0 and for all initial conditions 𝑥(𝑡0) = 𝛼

[

cos(𝜃) sin(𝜃)
]𝑇 , with

𝛼 ∈ R ⧵ {0}. Moreover, if 𝜃 is an asymptotically stable fixed point of the angle map then lim𝑘→∞(𝑡𝑘+1 − 𝑡𝑘) = 𝜏𝑠(𝜃) for all initial
conditions in the region of convergence of 𝜃 under the angle map 𝜙(.).

heorem 12 (Sufficient Condition for the Non-Convergence of Inter-Event Times to a Steady State Value). Consider the planar system 2.1
along with the event-triggering rule (4), for a general 𝑀(.) that satisfies Assumption (A1). If there does not exist 𝜃 ∈ [0, 𝜋) such that
𝜙𝑘(𝜃) − 𝜃 = 𝑑𝜋 for some 𝑑 ∈ Z, ∀𝑘 ∈ {1, 2} and if the inter-event time function 𝜏𝑠(.) is not a constant function, then the inter-event times
do not converge to a steady state value for any initial state of the system.

Proof. Note that the inter-event time converges to a constant 𝑐 if and only if there exists a subset of the level set 𝜏𝑠(𝜃) = 𝑐 which is
positively invariant under the angle map 𝜙(.). Note that the domain of 𝜙(.) is an interval of length 2𝜋. According to Corollary 4 and
Remark 2, the level set 𝜏𝑠(𝜃) = 𝑐 is either empty, or equal to [0, 2𝜋] or {𝜃1, 𝜃1 + 𝜋} or {𝜃1, 𝜃2, 𝜃1 + 𝜋, 𝜃2 + 𝜋} for some 𝜃1, 𝜃2 ∈ [0, 𝜋).

ssuming 𝜏𝑠(.) is not a constant function, there exists a subset of the level set 𝜏𝑠(𝜃) = 𝑐 which is positively invariant under the angle
ap only if ∃𝜃 ∈ [0, 𝜋) such that 𝜙𝑘(𝜃) − 𝜃 = 𝑑𝜋 for some 𝑑 ∈ Z, for some 𝑘 ∈ {1, 2}. This completes the proof of this result. □

Remark 11 and Theorem 12 establish a connection between the steady state behavior of inter-event times and the evolution of
he angle under the angle map. Having established this connection, in the rest of this section, we focus on analysis of the angle map
nd its fixed points.

.1. Stability of the fixed points of the angle map

Next, we are interested in analyzing the stability of the fixed points of the angle map as this will help us understand the steady
tate behavior of the inter-event times. First, we make the following observation about the number of fixed points of the angle map.

emark 13 (Angle map Has a Bounded Number of Fixed Points or Every 𝜃 is a Fixed Point). Note that, there exists a fixed point for the
(𝜃) map if and only if there exists an 𝑥 ∈ R2 ⧵ {0} such that 𝑥(𝑡𝑘) = 𝑥 implies 𝑥(𝑡𝑘+1) = 𝛼𝑥 for some 𝛼 ∈ R ⧵ {0}. This can happen if
nd only if det(𝐿(𝜏)) = 0 for some 𝜏 ∈ R>0, and ∃𝑥 ∈ R2 such that 𝜏𝑒(𝑥) = 𝜏 and 𝐿(𝜏)𝑥 = 0, where

𝐿(𝜏) ∶= 𝐺(𝜏) − 𝛼𝐼. (11)

s det(𝐿(𝜏)) is an analytic function of 𝜏 under Assumption (A1), it has a bounded number of zeros in the interval [𝜏min, 𝜏max]. So, if
here does exist a 𝜏 ∈ [𝜏min, 𝜏max] such that det(𝐿(𝜏)) = 0 then either 𝜙(𝜃) = 𝜃 for all 𝜃 ∈ [0, 𝜋) or the angle map 𝜙(.) has a bounded
umber of fixed points. ∙
7
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Next, we present a lemma which helps to prove the main result of this subsection, which gives sufficient conditions for the
tability and instability of the fixed points of the angle map. Then, we make some observations that are used for further analysis.

Lemma 14 (Sufficient Condition for Asymptotic Stability of a Fixed Point of the angle map). Consider the planar system 2.1 under the
event-triggering rule (4). Assume that the angle map 𝜙(.) is continuous. Let 𝜃⋆ ∈ (0, 𝜋) be a fixed point of the angle map. If there exists an
nterval [𝜃̄1, 𝜃̄2] such that the following conditions hold:

• 𝜃⋆ ∈ (𝜃̄1, 𝜃̄2)
• 𝜙(𝜃) > 𝜃 for all 𝜃 ∈ 1 ∶= [𝜃̄1, 𝜃⋆) and 𝜙(𝜃) < 𝜃 for all 𝜃 ∈ 2 ∶= (𝜃⋆, 𝜃̄2]
• 𝜙2(𝜃) > 𝜃 for all 𝜃 ∈ 1 = [𝜃̄1, 𝜃⋆)
• [𝜃̄1, 𝜃̄2] is positively invariant under the 𝜙(.) map

hen the fixed point 𝜃⋆ is asymptotically stable and [𝜃̄1, 𝜃̄2] is a subset of the region of convergence of 𝜃⋆.

Proof. We structure the proof around the following claims.
Claim (a): 𝜙2(𝜃) < 𝜃 for all 𝜃 ∈ 2.
Claim (b): Consider an arbitrary 𝜃0 ∈ [𝜃̄1, 𝜃̄2], let 𝜃𝑘 ∶= 𝜙𝑘(𝜃0). The subsequences {𝜃𝑘 | 𝜃𝑘 ∈ 1} and {𝜃𝑘 | 𝜃𝑘 ∈ 2} are strictly

ncreasing and decreasing, respectively.
We prove Claim (a) first. Let 𝜃 ∈ 2. By assumption 𝜙(𝜃) < 𝜃. If 𝜙(𝜃) ∈ 2 then again we have 𝜙2(𝜃) < 𝜙(𝜃) < 𝜃, in which

case the claim is true. If 𝜙(𝜃) = 𝜃∗ then again the claim is true as 𝜙2(𝜃) = 𝜃∗ < 𝜃. So, the only remaining case is 𝜙(𝜃) ∈ 1. In
his case, we prove the claim by contradiction. So, suppose 𝜙2(𝜃) ≥ 𝜃 > 𝜃∗. As 𝜙(.) is continuous and 𝜙(𝜃∗) = 𝜃∗, there must exist a
̄ ∈ [𝜙(𝜃), 𝜃⋆) such that 𝜙(𝜃̄) = 𝜃 and hence 𝜙2(𝜃̄) = 𝜙(𝜃). But as 𝜃̄ ∈ 1, we have that 𝜙2(𝜃̄) > 𝜃̄. Putting all these together, we have
(𝜃) = 𝜙2(𝜃̄) > 𝜃̄ ≥ 𝜙(𝜃). This contradiction proves Claim (a).

Now, we prove Claim (b) using induction. Given Claim (a), we have symmetry in the properties of 𝜙(.) around 𝜃∗. Thus, without
oss of generality, suppose that 𝜃0,… , 𝜃𝑙 ∈ 1, 𝜃𝑙+1,… , 𝜃𝑚 ∈ 2 and 𝜃𝑚+1 ∈ 1 for some 𝑙, 𝑚 ∈ N0 with 𝑚 > 𝑙. Then, we have by
ssumption that 𝜃0 < 𝜃1 < ⋯ < 𝜃𝑙 < 𝜃∗ and 𝜃∗ < 𝜃𝑚 < ⋯ < 𝜃𝑙+1. Notice that 𝜙(𝜃𝑙) = 𝜃𝑙+1, 𝜙(𝜃∗) = 𝜃∗ and 𝜙(.) is continuous. So, there
ust exist a 𝜃 ∈ (𝜃𝑙 , 𝜃∗) ⊂ 1 such that 𝜙(𝜃) = 𝜃𝑚 and as a result 𝜃𝑚+1 = 𝜙2(𝜃) > 𝜃 > 𝜃𝑙. In this way, by using induction, and by

nvoking the symmetry in the properties of 𝜙(.) around 𝜃∗, we can conclude that Claim (b) is true.
Now, the subsequences {𝜃𝑘 | 𝜃𝑘 ∈ 1} and {𝜃𝑘 | 𝜃𝑘 ∈ 2} may have finite or infinite length. Both subsequences having finite

ength can happen only if the original sequence {𝜃𝑘}𝑘∈N0
hits 𝜃∗ exactly in finite 𝑘. Now, notice that these subsequences are bounded

nd monotonic and hence must converge to something if they have infinite length. If one of these subsequences is of finite length
hen the limit of the sequence exists and it is 𝜃∗ as lim𝑘→∞(𝜙(𝜃𝑘) − 𝜃𝑘) = 0 and 𝜃∗ is the only fixed point in [𝜃̄1, 𝜃̄2]. If both the
ubsequences are infinite then suppose {𝜃𝑘 | 𝜃𝑘 ∈ 1} and {𝜃𝑘 | 𝜃𝑘 ∈ 2} converge to 𝑎1 ∈ cl(1) and 𝑎2 ∈ cl(2), respectively.
ut this can happen only if 𝜙2(𝑎1) = 𝜙(𝑎2) = 𝑎1 and which in turn is possible only if 𝑎1 = 𝑎2 = 𝜃∗ since we have 𝜙2(𝜃) ≠ 𝜃 for all
∈ [𝜃̄1, 𝜃̄2] ⧵ {𝜃∗}. Finally, notice that if the original sequence {𝜃𝑘}𝑘∈N0

does not hit 𝜃∗ in finite 𝑘 then

{(𝑘, 𝜃𝑘)}𝑘∈N0
= {(𝑘, 𝜃𝑘) | 𝜃𝑘 ∈ 1} ∪ {(𝑘, 𝜃𝑘) | 𝜃𝑘 ∈ 2}.

Thus, the original sequence {𝜃𝑘}𝑘∈N0
also converges to 𝜃∗. □

Now, we present the main result of this subsection. Note that this result is applicable to any scale-invariant event-triggering rule.

Theorem 15 (Sufficient Condition for a Fixed Point of The angle map to Be Stable or Unstable). Consider the planar system 2.1 under the
vent-triggering rule (4). Assume that the angle map 𝜙(.) is continuous. Let 𝜃⋆ ∈ (0, 𝜋) be an isolated fixed point of the angle map. Then,
⋆ is stable (asymptotically stable) if the following two conditions are satisfied.

• there exists a neighborhood of 𝜃⋆ in which 𝜙(𝜃) − 𝜃 decreases (strictly decreases).
• there exists 𝜃̄ < 𝜃⋆ such that 𝜙2(𝜃) ≥ (>)𝜃 for all 𝜃 ∈ [𝜃̄, 𝜃⋆).

f there does not exist a neighborhood of 𝜃⋆ in which 𝜙(𝜃) − 𝜃 decreases, then 𝜃⋆ is an unstable fixed point of the angle map.

roof. We first prove the claim on stability of the fixed point. For each 𝜖 > 0, we can choose 𝛿 > 0 small enough (compared to
∗ − 𝜃̄) such that 𝜙(𝜃) − 𝜃 decreases in 𝐵𝛿(𝜃∗), 𝜙2(𝜃) ≥ 𝜃 for all 𝜃 ∈ [𝜃⋆ − 𝛿, 𝜃∗) and

𝑀𝜖 ∶=
[

min
𝜃∈𝐵𝛿 (𝜃∗)

{𝜙(𝜃)}, max
𝜃∈𝐵𝛿 (𝜃∗)

{𝜙(𝜃)}
]

∈ 𝐵𝜖(𝜃∗).

he last condition is possible because 𝜙(.) is continuous and 𝜙(𝜃∗) = 𝜃∗. Now, we can show that 𝑀𝜖 is positively invariant by similar
rguments as in Lemma 14. Thus, 𝜃⋆ is a stable fixed point.

For the claim on asymptotic stability, notice that for each 𝜖 > 0, we can again construct a neighborhood around 𝜃∗ such that the
onditions of Lemma 14 are satisfied. Thus, 𝜃⋆ is an asymptotically stable fixed point.

Now, suppose there does not exist a neighborhood of 𝜃⋆ in which 𝜙(𝜃) − 𝜃 decreases. Note that, according to Remark 13, the
ngle map has a finite number of fixed points. Then, atleast one of the following two conditions is true. (1) There exists 𝜃̄1 < 𝜃⋆ such
hat 𝜙(𝜃)−𝜃 < 0 for all 𝜃 ∈ [𝜃̄1, 𝜃⋆) or (2) there exists 𝜃̄2 > 𝜃⋆ such that 𝜙(𝜃)−𝜃 > 0 for all 𝜃 ∈ (𝜃⋆, 𝜃̄2]. In both the cases, we can show
he existence of an 𝜖 > 0 such that for any 𝛿 ∈ (0, 𝜖], there exists 𝜃0 in the 𝛿−neighborhood of 𝜃⋆ such that the sequence {𝜃𝑘}𝑘∈N0

⋆ ⋆
8

enerated by the 𝜙(.) map exits the 𝜖−neighborhood of 𝜃 for some 𝑘 ∈ N. This implies that 𝜃 is an unstable fixed point. □
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Note that Lemma 14 and Theorem 15 only require the function 𝜙(.) to be continuous and not differentiable, unlike the existing
results in the literature on the stability of fixed points of a nonlinear map. As we do not require Assumption (A1) in these results,
he angle map is not necessarily differentiable, even if it is continuous. Note that, even if Assumption (A1) holds, the ‘‘min’’ operator

in the definition (7) may introduce a point where the inter-event time function, and hence the angle map, is continuous but not
differentiable.

Corollary 16 (Angle map With Pairs of Stable and Unstable Fixed Points). Consider the planar system 2.1 under the event-triggering rule (4).
Assume that the angle map 𝜙(.) is continuous and 𝜙(.) has a set of even number of fixed points {𝜃1, 𝜃2 … , 𝜃2𝑙}, for some 𝑙 ∈ N, in the interval
[0, 𝜋) where 𝜃𝑖 < 𝜃𝑖+1 ∀𝑖 ∈ {1, 2,… , 2𝑙 − 1}. Let 𝜙(𝜃) > 𝜃 for all 𝜃 ∈ (𝜃2𝑖−1, 𝜃2𝑖) and 𝜙(𝜃) < 𝜃 for all 𝜃 ∈ (𝜃2𝑖, 𝜃2𝑖+1) for all 𝑖 ∈ {1, 2,… , 𝑙}
where 𝜃2𝑙+1 = 𝜃1 + 𝜋. Then 𝜃2𝑖−1 is an unstable fixed point of the angle map ∀𝑖 ∈ {1, 2,… , 𝑙}. Assume also that the interval [𝜃2𝑖−1, 𝜃2𝑖+1]
is invariant under the angle map ∀𝑖 ∈ {1, 2, ..𝑙}. If 𝜙2(𝜃) > 𝜃 for all 𝜃 ∈ (𝜃2𝑖−1, 𝜃2𝑖), then 𝜃2𝑖 is an asymptotically stable fixed point and the
region of convergence is (𝜃2𝑖−1, 𝜃2𝑖+1) for all 𝑖 ∈ {1, 2,… , 𝑙}. ∙

Proof. Note that, for all 𝑖 ∈ {1, 2,… 𝑙}, 𝜃2𝑖 satisfies the conditions of Lemma 14 and 𝜃2𝑖−1 satisfies the instability conditions of
Theorem 15. Thus, proof of this result follows directly from Lemma 14 and Theorem 15. □

In numerical examples, we have often observed that the angle map has even number of fixed points in the interval [0, 𝜋).
In Corollary 16, we provide some analytical guarantees for this behavior.

Remark 11 and Theorem 12 help to analyze the evolution of inter-event times under the general class of event-triggering rules (4).
But, it is difficult to say anything more specific that holds for all the triggering rules. Thus, in the following subsection, we consider
the specific event-triggering rule (3b), or equivalently (4) with 𝑀(.) = 𝑀2(.) given in (5b). We analyze the inter-event times that
are generated by this rule for the planar system 2.1.

4.2. Analysis of fixed points of 𝜙(.) with 𝑀(.) = 𝑀2(.)

Here, our goal is to provide necessary and sufficient conditions for the existence of a fixed point for the angle map 𝜙(.) under the
specific event-triggering rule (3b) or equivalently (4) with 𝑀(.) = 𝑀2(.) given in (5b). First, in the following lemma, we present a
necessary and sufficient condition on a function of time that must be satisfied if the angle map is to have a fixed point. Building on
this lemma, we then present an algebraic necessary condition.

Lemma 17 (Necessary and Sufficient Condition for the angle map To Have a Fixed Point Under Triggering Rule (3b)). Consider the planar
system 2.1 under the event-triggering rule (3b) or equivalently (4) with 𝑀(.) = 𝑀2(.) given in (5b). Suppose that the parameter 𝜎 ∈ (0, 1) is
such that the origin of the closed loop system is globally asymptotically stable. Then, there exists a fixed point for the angle map 𝜙(.) if and
only if det(𝐿(𝜏)) = 0 for some 𝜏 ∈ R>0 and there exists 𝑥 ≠ 0 in the nullspace of 𝐿(𝜏) such that 𝜏𝑒(𝑥) = 𝜏, where 𝐿(𝜏) is defined as in (11)
with 𝛼 = (1 + 𝜎)−1.

Proof. There exists a fixed point for the 𝜙(𝜃) map if and only if there exists an 𝑥 ∈ R2 ⧵ {0} such that 𝑥(𝑡𝑘) = 𝑥 implies 𝑥(𝑡𝑘+1) = 𝛼𝑥
for some 𝛼 > 0. Note that 𝛼 cannot be negative because then ‖

‖

𝑥(𝑡𝑘) − 𝑥(𝑡𝑘+1)‖‖ = (1 − 𝛼−1) ‖
‖

𝑥(𝑡𝑘+1)‖‖ > ‖

‖

𝑥(𝑡𝑘+1)‖‖, which is not possible
for the event-triggering rule (3b) with 𝜎 ∈ (0, 1). Further, if 𝛼 > 1 then for the initial condition 𝑥(𝑡0) = 𝑥, 𝑥(𝑡𝑘) = 𝛼𝑘𝑥 would grow
unbounded, which violates the assumption that 𝜎 is such that the event-triggering rule (3b) guarantees global asymptotic stability.
Thus, it must be that 𝛼 ∈ (0, 1). Using this information, from the event-triggering rule (3b), we obtain 𝛼 = (1 + 𝜎)−1. Now, we can
express

𝑥(𝑡𝑘+1) = 𝐺(𝜏′)𝑥(𝑡𝑘) = 𝛼𝑥(𝑡𝑘),

where 𝜏′ = 𝜏𝑒(𝑥(𝑡𝑘)). This is possible if and only if 𝜏′ = 𝜏𝑒(𝑥(𝑡𝑘)) and 𝐿(𝜏′)𝑥(𝑡𝑘) = 0. In this case, det(𝐿(𝜏′)) = 0. □

Note that Lemma 17 is an extension of Lemma 11 in our conference paper [27], where we only provide a necessary condition
for the angle map to have a fixed point under the triggering rule (3b). Lemma 17 is similar to Proposition 6 in [26], but not the
same. Notice from the proof of Lemma 17 that det(𝐿(𝜏′)) = 0 (equivalently that 𝐺(𝜏′) has eigenvalue 𝛼) is not sufficient for the angle
map to have a fixed point. This is because for an 𝑥 ≠ 0 in the nullspace of 𝐿(𝜏′), 𝑓 (𝑥, 𝜏) = 0 may have multiple solutions 𝜏 and hence
𝜏𝑒(𝑥) may be strictly less than 𝜏′. This subtlety is not addressed in Proposition 6 in [26] or its proof.

While Lemma 17 provides a necessary and sufficient condition for the angle map 𝜙(.) to have a fixed point, it may not be easy
to verify if det(𝐿(𝜏)) = 0 for some 𝜏 ∈ [𝜏min, 𝜏max]. Thus, we next present an algebraic necessary condition for the existence of fixed
points for the angle map 𝜙(.).

Proposition 18 (Algebraic Necessary Condition for the angle map to Have a Fixed Point Under Triggering Rule (3b)). Consider the planar
system 2.1 under the event-triggering rule (3b) or equivalently (4) with 𝑀(.) = 𝑀2(.) given in (5b). Suppose that the parameter 𝜎 ∈ (0, 1) is
such that the origin of the closed loop system is globally asymptotically stable. Further, assume that both the eigenvalues of 𝐴 have positive
real parts. Let 𝐴 =∶ 𝑆𝐽𝑆−1, where 𝐽 ∈ R2×2 is the real Jordan form of 𝐴. Let

−1 [ −1] −1
9

𝑅 ∶= 𝑆 𝐼 − (1 − 𝛼)𝐴𝐴𝑐 𝑆 with 𝛼 = (1 + 𝜎) ,
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𝜎𝑚(𝜏) ∶= e𝜆𝜏

√

(𝜏2 + 2) − 𝜏
√

𝜏2 + 4
2

.

Then, there exists a fixed point for the angle map 𝜙(.) only if

• ‖𝑅‖ > 1, if either 𝐴 is non-diagonalizable with eigenvalue 𝜆 ≥ 0.5 or 𝐴 is diagonalizable.
• ‖𝑅‖ ≥ 𝜎𝑚

(

√

1
𝜆2

− 4
)

, if 𝐴 is non-diagonalizable with eigenvalue 𝜆 ∈ (0, 0.5).

roof. First note that

𝐴𝐿(𝜏) = (1 − 𝛼)𝐴 + (e𝐴𝜏 − 𝐼)𝐴𝑐 .

uppose there exists a fixed point for the 𝜙(𝜃) map. Then by Lemma 17, we know that there exists a 𝜏 ∈ R>0 such that 𝐿(𝜏)𝑥0 = 0
for some 𝑥0 ∈ R2 ⧵ {0}. This implies that 𝐴𝐿(𝜏)𝑥0 = 0 for some 𝑥0 ∈ R2 ⧵ {0} and 𝜏 ∈ R>0. However this is equivalent to saying

(

e𝐴𝜏 − 𝐼
)

𝑧0 = −(1 − 𝛼)𝐴𝐴−1
𝑐 𝑧0, 𝑧0 = 𝐴𝑐𝑥0.

Note that 𝐴𝑐 is invertible because we have assumed it is Hurwitz. Thus, there exists a vector 𝑣 ∶= 𝑆−1𝐴𝑐𝑥0 such that

e𝐽𝜏𝑣 = 𝑅𝑣, for some 𝜏 > 0. (12)

Note that ‖
‖

e𝐽𝜏𝑣‖
‖

≥ 𝜎𝑚𝑖𝑛(e𝐽𝜏 ) ‖𝑣‖, where 𝜎𝑚𝑖𝑛(e𝐽𝜏 ) denotes the minimum singular value of e𝐽𝜏 . Thus, ‖𝑅‖ ≥ 𝜎𝑚𝑖𝑛(e𝐽𝜏 ) for some 𝜏 > 0.
Recall that we assumed that both the eigenvalues of 𝐴 have positive real parts. We can show that if 𝐴 is diagonalizable and has
real positive eigenvalues, then 𝜎𝑚𝑖𝑛(e𝐽𝜏 ) = e𝜆1𝜏 where 𝜆1 is the minimum eigenvalue of 𝐴. Similarly, if 𝐴 has complex conjugate
eigenvalues then 𝜎𝑚𝑖𝑛(e𝐽𝜏 ) = e𝜇𝜏 where 𝜇 > 0 is the real part of the eigenvalues. On the other hand, if 𝐴 is non-diagonalizable

with eigenvalue 𝜆, then 𝜎𝑚𝑖𝑛(e𝐽𝜏 ) = e𝜆𝜏
√

(𝜏2+2)−𝜏
√

𝜏2+4
2 =∶ 𝜎𝑚(𝜏). If 𝐴 is non-diagonalizable with eigenvalue 𝜆 ≥ 0.5 or if 𝐴 is

diagonalizable, 𝜎𝑚𝑖𝑛(e𝐽𝜏 ) is a monotonically increasing function of 𝜏. Thus, 𝜎𝑚𝑖𝑛(e𝐽𝜏 ) > 1 for all 𝜏 > 0. If 𝐴 is non-diagonalizable with
igenvalue 𝜆 ∈ (0, 0.5), 𝜎𝑚𝑖𝑛(e𝐽𝜏 ) attains a minimum value when 𝜏 =

√

1
𝜆2

− 4. Thus, 𝜎𝑚𝑖𝑛(e𝐽𝜏 ) ≥ 𝜎𝑚

(

√

1
𝜆2

− 4
)

for all 𝜏 > 0. This
ompletes the proof of the result. □

Next we show that the algebraic necessary condition for the angle map to have a fixed point under event-triggering rule (3b) is
lways satisfied if 𝐴 is diagonalizable with eigenvalues having positive real parts and 𝐴𝑐 has real negative eigenvalues.

roposition 19. Consider planar system 2.1 under the event-triggering rule (3b) or equivalently (4) with 𝑀(.) = 𝑀2(.) given in (5).
Suppose that the parameter 𝜎 ∈ (0, 1) is such that the origin of the closed loop system is globally asymptotically stable. Further, assume that
oth the eigenvalues of 𝐴 have positive real parts and 𝐴 is diagonalizable. Let 𝐴 =∶ 𝑆𝐽𝑆−1, where 𝐽 is the real Jordan form of 𝐴 and let
𝐴𝑐 have real negative eigenvalues. Then, ‖𝑅‖ > 1, where

𝑅 ∶= 𝑆−1 [𝐼 − (1 − 𝛼)𝐴𝐴−1
𝑐
]

𝑆.

Proof. Note that the induced 2-norm of matrix 𝑅 can be expressed as ‖𝑅‖ = sup{𝑢𝑇𝑅𝑣 ∶ ‖𝑢‖ = ‖𝑣‖ = 1, 𝑢, 𝑣 ∈ R2}. Let (𝜆𝑐 , 𝑥) be an
eigen-pair of 𝐴𝑐 , where 𝜆𝑐 < 0. Let 𝑦 be a unit vector defined as 𝑦 ∶= 𝑆−1𝑥

‖𝑆−1𝑥‖
. Then,

‖𝑅‖ ≥ 𝑦𝑇𝑅𝑦 = 𝑦𝑇 𝑦 − (1 − 𝛼)𝑦𝑇 𝐽𝑆−1𝐴−1
𝑐 𝑆𝑦

= 1 − 1 − 𝛼
𝜆𝑐

𝑦𝑇 𝐽𝑦 ≥ 1 − 1 − 𝛼
𝜆𝑐

𝜆 > 1

where 𝜆 = 𝜆min(𝐴) > 0 if 𝐴 has real eigenvalues or 𝜆 = Re(𝜆(𝐴)) > 0 if 𝐴 has complex conjugate eigenvalues. For obtaining the last
inequality, we have used the facts that 𝛼 ∈ (0, 1) (see proof of Lemma 17) and that 𝜆𝑐 < 0. □

Next, we present a geometric interpretation of the event-triggering rule (3b), which we then use to give bounds on the difference
between an angle 𝜃 and 𝜙(𝜃).

Remark 20 (Geometric Interpretation of the Event-Triggering Rule (3b)). The locus of points 𝑥 which satisfy the equation ‖𝑥 − 𝑥̂‖ = 𝜎 ‖𝑥‖
for a fixed 𝑥̂ and 𝜎 is a circle with center at 𝑥̂

1−𝜎2 and radius 𝜎
1−𝜎2 ‖𝑥̂‖. Also note that origin is always outside this circle. Hence, the

event-triggering rule (3b) ensures that for all 𝑘 ∈ N0, 𝑥(𝑡𝑘) and 𝑥(𝑡𝑘+1) satisfy ‖

‖

‖

𝑥(𝑡𝑘+1) −
𝑥(𝑡𝑘)
1−𝜎2

‖

‖

‖

= 𝜎
1−𝜎2

‖

‖

𝑥(𝑡𝑘)‖‖. ∙

This observation leads us to an upper bound for |𝜙(𝜃𝑘) − 𝜃𝑘|, ∀𝑘 ∈ N0, which we present in the following result. Note that this
bound is useful from a computational point of view for determining the fixed points of the angle map.

Lemma 21 (Upper Bound on |𝜙(𝜃𝑘) − 𝜃𝑘|). Consider the planar system 2.1 under the event-triggering rule (3b) or equivalently (4) with
𝑀(.) = 𝑀2(.) given in (5). Suppose that the parameter 𝜎 ∈ (0, 1) is such that the origin of the closed loop system is globally asymptotically
stable. Then the evolution of the ‘‘angle’’ of the state from one sampling time to the next is uniformly bounded by sin−1 (𝜎). That is,
|𝜙(𝜃 ) − 𝜃 | ≤ sin−1 𝜎 , ∀𝑘 ∈ N .
10
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Proof. According to the geometric interpretation of the event-triggering rule (3b) provided in Remark 20, 𝑥(𝑡𝑘+1) is on the circle
ith center at 𝑥(𝑡𝑘)

1−𝜎2 and radius 𝜎
1−𝜎2

‖

‖

𝑥(𝑡𝑘)‖‖. Thus, the angle between 𝑥(𝑡𝑘) and 𝑥(𝑡𝑘+1) is the maximum when 𝑥(𝑡𝑘+1) is on a tangent
o this circle that passes through the origin. As a tangent to the circle is perpendicular to the radial line passing through the point
f tangency, the maximum possible angle is exactly equal to sin−1 (𝜎). That is, |𝜙(𝜃𝑘) − 𝜃𝑘| ≤ sin−1 (𝜎) , ∀𝑘 ∈ N0. □

emark 22. In the event-triggered control literature, typically, the relative thresholding parameter 𝜎 ∈ (0, 1) in the event-triggering
ule (3b) is such that the origin of the closed loop system is globally asymptotically stable. Then, |𝜙(𝜃𝑘) − 𝜃𝑘| ≤ sin−1 (𝜎) < 𝜋

2 , ∀𝑘 ∈ N0.
According to Theorem 12, this implies that, the inter-event times converge to a steady state value if and only if the angle map has
a fixed point.

5. Asymptotic average inter-event time

In this section, we analyze the asymptotic average inter-event time as a function of the angle of the initial state of the system 2.1
under the event-triggering rule (4). First, we study ergodicity of the angle map and then, with the help of ergodic theory, we provide
a sufficient condition for the asymptotic average inter-event time to be a constant for all non-zero initial conditions of the system
state. Later, with the help of rotation theory, we analyze the asymptotic behavior of the inter-event times, such as convergence
or non-convergence to a periodic orbit, for a special case where the angle map is an orientation preserving homeomorphism. Note
that, in this section, we do not provide any fundamentally new results. Rather, we invoke the existing results in ergodic theory and
rotation theory to provide a mathematical explanation for different kinds of asymptotic behavior of the inter-event times. We make
the following assumption in this section of the paper.

(A2) The inter-event time function 𝜏𝑠(.), defined as in (7), is continuous.

Assumption (A2) is not very restrictive as in Theorem 7 we show, under mild technical assumptions on 𝑀(𝜏), that in general the
inter-event time function 𝜏𝑠(.) is continuous except at finitely many angles 𝜃. In Corollary 8, we also provide a sufficient condition
under which the function 𝜏𝑠(.) is continuous. Note also that the angle map 𝜙(.) is a continuous map on a compact metric space
under Assumption (A2).

5.1. Ergodicity of the angle map

In this subsection, we study about the ergodicity of the angle map to analyze the asymptotic average inter-event time as a function
of the initial state of the system.

Remark 23 (Angle map is Ergodic Under Assumption (A2)). Consider system 2.1 under the event-triggering rule (4). Let Assumption
(A2) hold. Then according to Krylov–Bogolyubov theorem [30], there exists an invariant probability measure under the angle map
𝜙 ∶ 𝑅1 → 𝑅1, defined as in (10), as it is a continuous map on the compact space 𝑅1. Moreover, according to Theorem 4.1.11
in [31], there exists at least one ergodic measure in the set of all 𝜙−invariant probability measures. Hence, the angle map is ergodic
under Assumption (A2).∙

Now, we define the asymptotic average inter-event time function, 𝜏avg, as

𝜏avg(𝜃) ∶= lim
𝑘→∞

1
𝑘

𝑘−1
∑

𝑗=0
𝜏𝑠(𝜙𝑗 (𝜃)). (13)

Note that in general, this function may not be defined for every 𝜃 ∈ 𝑅1, but for the 𝜃 for which the limit exists, 𝜏avg(𝜃) denotes
the asymptotic average inter-event time when the angle of the initial state of the system is 𝜃. Now, based on the Birkhoff Ergodic
theorems [32], we can say the following regarding 𝜏avg(𝜃).

Lemma 24 (Asymptotic Average Inter-Event Time Function is a Constant Almost Everywhere). Consider system 2.1 under the event-triggering
rule (4). Let Assumption (A2) hold. Let the angle map 𝜙 ∶ 𝑅1 → 𝑅1, defined as in (10), be ergodic on the probability space (𝑅1,, 𝜇).
Then the asymptotic average inter-event time function 𝜏avg defined as in (13) exists for 𝜇-almost every 𝜃 ∈ 𝑅1. Moreover, 𝜏avg(𝜃) = ∫ 𝜏𝑠𝑑𝜇
for 𝜇-almost every 𝜃 ∈ 𝑅1.

Proof. Proof of this lemma follows directly from the Birkhoff ergodic theorems for measure preserving transformations and ergodic
transformations, respectively. □

Ergodicity of the angle map implies that the asymptotic average inter-event time function is a constant almost everywhere, with
respect to the measure 𝜇, on 𝑅1. However, 𝜏avg may be different in each invariant set of the angle map. Now, we provide a sufficient
condition for the uniform convergence of average inter-event time to a constant for every point on 𝑅1.

Proposition 25 (Sufficient Condition for the Uniform Convergence of Average Inter-Event Time to a Constant for Every Point On 𝑅1).
Consider system 2.1 under the event-triggering rule (4). Let Assumption (A2) hold. If the angle map, 𝜙 ∶ 𝑅1 → 𝑅1 defined as in (10), has

1

11

at most one periodic orbit, then the average inter-event time converges uniformly to a constant for every point in 𝑅 .
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Proof. According to the theorem in [33], the angle map, 𝜙 ∶ 𝑅1 → 𝑅1, is uniquely ergodic if and only if 𝜙 has at most one periodic
orbit. Hence, by the Oxtoby ergodic theorem [32], if the angle map has at most one periodic orbit then the average inter-event time
onverges uniformly to a constant for every point on 𝑅1. □

Note that, Proposition 25 provides a sufficient condition for the asymptotic average inter-event time function, 𝜏avg(𝜃) to be a
onstant for all 𝜃 ∈ 𝑅1. This result also suggests that the analysis of periodic orbits of the angle map helps in analyzing the asymptotic
verage inter-event time function.

.2. Asymptotic behavior of the inter-event times

In this subsection, we consider a special case where the angle map is an orientation preserving homeomorphism.

A3) The angle map, 𝜙 ∶ 𝑅1 → 𝑅1 defined as in (10), is an orientation-preserving homeomorphism.

ote that, the angle map is said to be a homeomorphism if it is continuous and bijective with a continuous inverse. The angle map
s said to be orientation-preserving if it admits a monotonically increasing lift. Note that, the angle map is a homeomorphism if it is
ontinuous and orientation-preserving. Under this special case, we provide a framework to analyze the asymptotic behavior of the
nter-event times, such as convergence or non-convergence to a periodic orbit, with the help of rotation theory. This analysis also
ives us insights into the asymptotic average inter-event time as a function of the initial state.

Now, let 𝜋̄ ∶ R → 𝑅1 be defined as 𝜋̄(𝑥) = 𝑥(mod 2𝜋), i.e., the projection of the real line onto 𝑅1. Let 𝛷 ∶ R → R be a lift of 𝜙,
that is (𝜋̄◦𝛷)(𝑥) = (𝜙◦𝜋̄)(𝑥) for all 𝑥 ∈ R. Next, we define the rotation number of the angle map,

𝜌̄(𝜙) ∶= 𝜋̄(𝜌(𝛷)), (14)

where 𝜌(.) is defined as,

𝜌(𝛷) = lim
𝑛→∞

𝛷𝑛(𝑥) − 𝑥
𝑛

.

ote that, according to Proposition 11.1.1 in [31], as 𝜙(.) is an orientation-preserving homeomorphism of the circle, this limit
exists for every 𝑥 ∈ R and is independent of the point 𝑥. The rotation number plays a crucial role in determining the qualitative
behavior of the orbits of an orientation-preserving homeomorphism. We can determine the existence of a periodic point of an
orientation-preserving homeomorphism if we know the rationality of the rotation number of the map. Thus, the rationality of the
rotation number of the angle map indirectly helps us to comment about the uniform convergence of the average inter-event time to

constant for every point on 𝑅1.

roposition 26 (Angle map With Irrational Rotation Number). Consider system 2.1 under the event-triggering rule (4). Let Assumptions
(A2) and (A3) hold. If the rotation number of the angle map, defined as in (14), is irrational, then the average inter-event time converges to
a constant uniformly for all initial states of the system. Moreover, the 𝜔−limit set 𝜔(𝜃) is independent of 𝜃 ∈ 𝑅1 and is either 𝑅1 or perfect
and nowhere dense.

Proof. According to Proposition 11.1.4 and Proposition 11.1.5 in [31], if the rotation number of the angle map is irrational then
there does not exist a periodic orbit for the angle map. Hence, by Proposition 25, the average inter-event time converges to a constant
uniformly for all initial states of the system. Moreover, according to Proposition 11.2.5 in [31], the 𝜔−limit set 𝜔(𝜃) is independent
of 𝜃 ∈ 𝑅1 and is either 𝑅1 or perfect and nowhere dense. □

Rotation theory also helps us to describe the qualitative behavior of the orbits of an orientation-preserving homeomorphism with
rational rotation number.

Proposition 27 (Angle map With Rational Rotation Number). Consider system 2.1 under the event-triggering rule (4). Let Assumptions (A2)
and (A3) hold. If the rotation number of the angle map, defined as in (14), is rational, 𝜌̄(𝜙) = 𝑝

𝑞 , then every forward orbit of 𝜙 converges
to a periodic sequence with period 𝑞. Moreover, for all initial states of the system, inter event times converges to a periodic orbit with period
.

roof. Proof of this proposition follows directly from Proposition 11.1.4, Proposition 11.1.5 and the Poincare classification
n [31]. □

emark 28 (Number of Periodic Points and Periodic Orbits). If the rotation number of 𝜙 is rational, 𝜌̄(𝜙) = 𝑝
𝑞 , then 𝜙𝑞 map has 𝑚𝑞 fixed

points where 𝑚 ∈ N denotes the number of periodic orbits of the angle map. If there are 𝑚 > 1 periodic orbits, without semi-stable
eriodic orbits, then 𝑚 is always even. ∙

emark 29 (Stability of Periodic Orbits and 𝜏avg(𝜃) In the Region of Convergence of a Stable Periodic Orbit). Note that, if we know the
rotation number of the angle map precisely and if it is a rational number, 𝜌̄(𝜙) = 𝑝

𝑞 , then we can determine the periodic orbits of the
angle map by analyzing the fixed points of 𝜙𝑞(.) map. Further, we can analyze stability and region of convergence of periodic orbits
of 𝜙(.) map by analyzing stability and region of convergence of fixed points of 𝜙𝑞(.) map. Note also that, the asymptotic average
inter-event time 𝑡𝑎𝑣𝑔(𝜃) is a constant for all 𝜃 in the region of convergence of a stable periodic orbit. And this constant is equal to
12

the average of 𝜏𝑠(𝜃), averaged over the finitely many (q number of them) periodic points 𝜃 in the corresponding periodic orbit. ∙
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Fig. 1. Simulation results of Case 1 when 𝐴𝑐 has real eigenvalues at {−0.5528,−1.4472}.

Note that, we can easily analyze stability and region of convergence of periodic orbits 𝜙(.) map by using Lemma 14 and
Theorem 15.

There are a number of papers, see for example [34–36], which propose different methods to determine a numerical approximation
of the rotation number of a circle homeomorphism. In these papers, authors claim that it is possible to check the rationality of the
rotation number. Specifically, if the rotation number is rational then it is possible to find the exact value in finite number of steps.
But one drawback is, if the rotation number is irrational then these algorithms will not terminate in finite number of steps. Moreover,
due to the inevitability of numerical errors in finite-precision arithmetic on computers, in general it is practically not possible to
conclusively determine if the rotation number is rational or irrational. Nevertheless, results that we have presented in this paper
are still valuable as they provide a mathematical explanation for different kinds of asymptotic behavior of the orbits of the angle as
well as the inter-event times. For the situations in which we know that the angle map has a fixed point or that it has periodic points
of a certain period then one could use the insights from our results to determine 𝜏avg(𝜃) for different 𝜃 in an efficient manner.

6. Numerical examples

In this section, we illustrate our results and highlight some interesting behavior of the inter-event times using numerical examples
of several different systems of the form 2.1 with the event-triggering rule (3a) and (3b). In each case, we choose the control gain
matrix 𝐾 so that 𝐴𝑐 = (𝐴 + 𝐵𝐾) is Hurwitz. We choose a quadratic Lyapunov function 𝑉 (𝑥) = 𝑥𝑇 𝑃𝑥, where 𝑃 is the solution of
the Lyapunov equation (2) with 𝑄 = 𝐼 . Then, from an analysis as in [1], we set the thresholding parameter 𝜎 = 0.99𝜆min(𝑄)

2‖𝑃𝐵𝐾‖

in the
event-triggering rule (3b) for the sampled data controller (1b). Next, we describe specific cases in detail.

Case 1
Consider the system

𝑥̇ =
[

0 1
−2 3

]

𝑥 +
[

1 0
0 1

]

𝑢 =∶ 𝐴𝑥 + 𝐵𝑢.

The system matrix 𝐴 has real eigenvalues at {1, 2}. We let the control gain 𝐾 =
[

−1 −0.8
3 −4

]

so that 𝐴𝑐 has real eigenvalues

at {−0.5528,−1.4472}. Fig. 1 shows the simulation results of this system for the event triggering rule (3b). Fig. 1(a) presents the
13
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evolution of the smallest eigenvalue of the time-varying symmetric matrix 𝑀̇ and it shows that the sufficient condition for continuous
differentiability of 𝜏𝑠(.), given in Corollary 8, is satisfied. Hence, for this case, the inter-event time function 𝜏𝑠(𝜃) is continuously
ifferentiable and it is also periodic with period 𝜋. From Fig. 1(b) and Fig. 1(c) we can verify that det(𝑀(𝜏)) = 0 has exactly two
olutions and they are precisely 𝜏min and 𝜏max respectively. Fig. 1(d) shows that there are two points at which det(𝐿(𝜏)) = 0. Fig. 1(e)
erifies that the angle map 𝜙(.) has exactly two fixed points at 𝜃1 = 1.15rad and 𝜃2 = 1.85rad in the interval [0, 𝜋), where 𝜃1 is a stable
ixed point. Fig. 1(f) presents a lift of the angle map. As the lift 𝛷(.) is increasing monotonically, the angle map 𝜙(.) is an orientation
reserving homeomorphism. Based on our analysis, we can say that there does not exist any periodic orbit with period greater than
ne. We also know that every forward orbit of the angle map converges to one of the fixed points. Fig. 1(g) is the phase portrait
f the closed loop system. Notice that the state trajectories converge to a radial line which makes an angle of 1.15 radian with the
ositive 𝑥1 axis, which is exactly the point at which the angle map 𝜙(.) has the stable fixed point. From Fig. 1(h) it is clear that, for
ultiple values for the initial state of the system, the inter-event time converges to a steady state value of 0.18, which is exactly

qual to 𝜏𝑠(𝜃1). Fig. 1(i) presents the average inter-event time, evaluated for different values of total number of sampling instants,
s a function of the angle of the initial state of the system. Note that as the total number of sampling instants (𝑁) increases, the
verage inter-event time, for all initial conditions except the case where the angle of the initial state of the system is an unstable
ixed point of the angle map, converges to the value of inter-event time function at the stable fixed points of the angle map. Due to
he error in numerical computations, as 𝑁 increases, the computed value of the average inter-event time at the unstable fixed points
f the angle map diverges from the actual value of the inter-event time function at those points.

ase 2
In this case, we use the same 𝐴 matrix as in Case 1 but choose the input matrix 𝐵 = [0 1]𝑇 and the control gain 𝐾 = [0 − 5]

o that 𝐴𝑐 has complex conjugate eigenvalues at {−1+ 𝑖,−1− 𝑖}. Fig. 2 shows the simulation results for Case 2. For this case also the
nter-event time function is continuously differentiable and periodic with period 𝜋. From Fig. 2(b) and Fig. 2(c) we can verify that
et(𝑀(𝜏)) = 0 has exactly two solutions and these two points are 𝜏min and 𝜏max respectively. Fig. 2(d) shows that det(𝐿(𝜏)) is always
ositive. Therefore the 𝜙 map in Fig. 2(e) has no fixed point. Fig. 2(e) shows that the sufficient condition, given in Theorem 12,
or non-convergence of inter-event times to a steady-state value is satisfied. Hence, we can say that the inter-event times do not
onverge to a steady state value for any initial condition. Note that, under the event-triggering rule (3b), we can also use Remark 22
o show the non-convergence of inter-event times to a steady-state value. Fig. 2(f) presents a lift of the angle map 𝜙(.). As the lift 𝛷(.)
s increasing monotonically, the angle map 𝜙(.) is an orientation preserving homeomorphism. Fig. 2(g) represents the phase portrait

of the closed loop system. Fig. 2(h) shows the evolution of inter-event times, for two arbitrary initial conditions, is oscillating in
nature. Fig. 2(i) presents the average inter-event time, for the total number of sampling instants equal to 1000, as a function of the
angle of the initial state of the system. For this case, the average inter-event time is a constant for all initial states of the system.
This may be due to several reasons. Either there does not exist a periodic orbit for the angle map or the angle map has a unique
eriodic orbit with period greater than one or the average inter-event time corresponding to all periodic orbits of the angle map is
he same. It is not easy to distinguish between these cases from the simulation results.

ase 3
Consider another system,

𝑥̇ =
[

0 1
−2 3

]

𝑥 +
[

1 0
0 1

]

𝑢 =∶ 𝐴𝑥 + 𝐵𝑢.

The system matrix 𝐴 has real eigenvalues at {1, 2}. The control gain 𝐾 =
[

−1 −0.8
1.8 −4

]

so that 𝐴𝑐 has complex conjugate eigenvalues

t {−1+0.2𝑖,−1−0.2𝑖}. Fig. 3 shows the simulation results of this system for the event triggering rule (3b) with 𝜎 = 0.2251. Fig. 3(a)
hows that the angle map 𝜙(.) has two fixed points, where the larger one is a stable fixed point. Note that according to Proposition 18,
here exists a fixed point for the angle map only if ‖𝑅‖ > 1. In this case, we can verify that ‖𝑅‖ = 1.3136. In Fig. 3(b) the inter-event
ime is converging to a steady state value for two different initial conditions. Under the assumption of sufficiently small relative
hreshold parameters, [20] says that if the eigenvalues of the closed loop system matrix 𝐴𝑐 are complex conjugates then the inter-
vent times oscillate in a near periodic manner. But, in this example we show that even if 𝐴𝑐 has only complex conjugate eigenvalues,
he inter-event times may still converge to a steady state value. Note however, that we cannot claim that this is a counter-example
o the results of [20] as the bound on the relative thresholding parameter for which their results hold is not explicitly stated.

ase 4
Now consider the system,

𝑥̇ =
[

1 4
0 1

]

𝑥 +
[

0
1

]

𝑢 =∶ 𝐴𝑥 + 𝐵𝑢.

has real and equal eigenvalues at {1, 1}. We let the control gain 𝐾 = [−2 − 4], so that 𝐴𝑐 has eigenvalues at {−1 + 2𝑖,−1 − 2𝑖}.
ig. 4 shows the simulation results of this system for the triggering rule (3a). Fig. 4(a) shows that the inter-event time function 𝜏𝑠(𝜃)
s discontinuous around 𝜃 = 2.3 radians. In Fig. 4(b), we can see that around 𝜃 = 2.3 radians, there is a jump in the smallest 𝜏 value
t which 𝑓 (𝜃, 𝜏) = 0. This causes a point of discontinuity in the inter-event time function.
14

𝑠
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Fig. 2. Simulation results of Case 2 when 𝐴𝑐 has complex conjugate eigenvalues at {−1 + 𝑖,−1 − 𝑖}.

Fig. 3. Simulation results of Case 3 when 𝐴𝑐 has complex conjugate eigenvalues at [−1 + 0.2𝑖,−1 − 0.2𝑖].

Fig. 4. Simulation results of Case 4 with discontinuous inter-event time function.
15
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7. Conclusion

In this paper, we analyzed the asymptotic behavior of inter-event times in planar linear systems under a general class of scale-
nvariant event-triggering rules. As the inter-event time is a function of the angle of the state at an event, we carried out inter-event
ime analysis indirectly by studying the evolution of the angle of the state from one event to the next. The analysis of evolution of
nter-event times is complex even for planar systems and the results in this paper are among very few in the literature that even
eek to explain the variety of evolutions that is possible for the inter-event times. The proposed analytical results on the evolution of
nter-event times are not directly extendable to a general n-dimensional system. However, the idea that analyzing the state evolution
rom one event to next as a means to analyzing the evolution of inter-event times does certainly apply to n-dimensional systems. We
ave used the same idea in one of our recent work [28] to analyze the evolution of inter-event times of general n-dimensional LTI
ystems under the region-based self-triggered control method. Future work includes analysis of asymptotic behaviors of inter-event
imes using an approximate rotation number of the angle map. Another direction could be to determine an approximate asymptotic
verage inter-event time with known error bounds. One could use more ideas from ergodic theory to do the same. Other potential
esearch directions include extensions of the analysis to event-triggered control systems of higher dimensions and to nonlinear
ystems, at least in a self-triggered control context.
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