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A B S T R A C T

This paper introduces the Neural Network for Non-linear Hawkes processes (NNNH), a non-
parametric method based on neural networks to fit non-linear Hawkes processes. Our method
is suitable for analysing large datasets in which events exhibit both mutually-exciting and
inhibitive patterns. The NNNH approach models the individual kernels and the base intensity
of the non-linear Hawkes process using feed forward neural networks and jointly calibrates the
parameters of the networks by maximizing the log-likelihood function. We utilize Stochastic
Gradient Descent to search for the optimal parameters and propose an unbiased estimator
for the gradient, as well as an efficient computation method. We demonstrate the flexibility
and accuracy of our method through numerical experiments on both simulated and real-world
data, and compare it with state-of-the-art methods. Our results highlight the effectiveness of
the NNNH method in accurately capturing the complexities of non-linear Hawkes processes.

1. Introduction

A.G. Hawkes introduced the Hawkes process, which is a type of multivariate point process used to model a stochastic intensity
vector that depends linearly on past events Hawkes [1]. This approach has been widely applied in various fields, such as
seismology Ogata [2],Marsan and Lengline [3], financial analysis Filimonov and Sornette [4],Bacry et al. [5], social interaction
modelling Crane and Sornette [6],Blundell et al. [7],Zhou et al. [8], criminology Mohler et al. [9], genome analysis Reynaud-Bouret
et al. [10],Carstensen et al. [11], and epidemiology Park et al. [12],Chiang et al. [13].

The Hawkes process in its original form is linear, i.e., the intensities depend on past events through a linear combination of
kernel functions. The primary concern in modelling the Hawkes process is estimating these kernel functions. A common practice
has been to assume a parametric form for the kernel function, such as the exponential and power-law decay kernels, and then use
maximum likelihood estimation (Ozaki [14]) to determine the optimal values of the parameters.

While easier to estimate, a parametric kernel function is often not expressive enough for real-world problems. A significant body
of work is concerned with the non-parametric estimation of the kernel functions. Lewis and Mohler [15] propose a non-parametric,
Expectation–Maximization (EM) based method to estimate the Hawkes kernel and the non-constant base intensity function. Zhou
et al. [8] uses the method of multipliers and majorization-minimization approach to estimate the multivariate Hawkes kernels. Zhou
et al. [16] present the MMEL algorithm, a non-parametric approach that, when combined with the EM technique, is employed for
the estimation of Hawkes kernels. Bacry and Muzy [17] develop a non-parametric estimation based on the Wiener–Hopf equations
for estimating the Hawkes kernels. Achab et al. [18] derive an integrated cumulants method for estimating the Hawkes kernel. Yang
et al. [19] uses a non-parametric method incorporated with online learning technique to approximate the triggering kernels of the
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Hawkes process. Xu et al. [20] proposed a sparse-group-lasso-based algorithm combined with likelihood estimation for estimating the
Hawkes kernels. Joseph et al. [21] use a feed-forward network to model the excitation kernels and fit the network parameters using
a maximum likelihood approach. Except for Bacry and Muzy [17], these non-parametric kernel estimation methods are generally
restricted to the linear Hawkes processes.

Modelling the intensities as a linear combination of kernel functions imposes a non-negativity constraint on the kernel functions,
hich can be interpreted as excitation kernels. Non-negative kernel functions do not allow incorporating inhibitive effects while
odelling the intensity process. Modelling inhibition, where the occurrence of an event reduces the intensity of future arrival,
as drawn relatively less attention in the literature. However, inhibitory effects are prevalent in various domains. For example,
n neuroscience, inhibitory kernel functions can represent the presence of a latency period before the successive activations of a
euron Reynaud-Bouret et al. [22].

This paper proposes a non-parametric estimation model for the non-linear Hawkes process. The non-linear Hawkes process allows
he inclusion of both excitatory and inhibitory effects to model a broader range of phenomena. The stability condition of the
on-linear Hawkes process is explored in Brémaud and Massoulié [23]. Reynaud-Bouret et al. [24], a non-parametric approach
sing histograms is introduced to model the kernel function of a non-linear Hawkes process. This method utilizes the least squares
oss function for the purpose of optimization. Bonnet et al. [25] use a negative exponential function to model inhibitive kernels
or a univariate non-linear Hawkes process and use maximum likelihood estimation to determine the optimal parameters. Bonnet
t al. [26] extend this approach to a multivariate non-linear Hawkes process. Lemonnier and Vayatis [27] develop the Markovian
stimation of Mutually Interacting Process (MEMIP) method, which utilizes weighted exponential functions to determine kernels for
he non-linear Hawkes process. To extend the MEMIP for large dimensional datasets, Lemonnier et al. [28] introduce dimensionality
eduction features. However, the above approaches require the kernel function to be smooth, which is a drawback. Wang et al. [29]
ropose an algorithm that learns the non-linear Hawkes kernel non-parametrically using isotonic regression and a single-index
odel. The Isotonic Hawkes Process, however, assumes only a continuous monotonic decreasing excitation kernel to capture the

nfluence of the past arrivals.
In their work, Du et al. [30] employ a recurrent neural network (RNN) to model event timings and markers simultaneously

y leveraging historical data. Conversely, Mei and Eisner [31] propose a novel continuous-time long short-term memory (LSTM)
odel to capture the self-modulating Hawkes processes, capable of accounting for the inhibiting and exciting effects of prior

vents on future occurrences. Moreover, this approach can accommodate negative background intensity values, which correspond
o delayed response or inertia of some events. While RNN-based models can capture complex long-term dependencies, inferring
ausal relationships or extracting causal information from these models can be challenging.

We propose a neural networks based non-parametric model for the non-linear Hawkes process where feed-forward networks are
sed to model the kernels and time-varying base intensity functions. The architecture of the neural network is chosen such that the
ikelihood function and its gradients with respect to the network parameters can be efficiently evaluated. As the likelihood function
s non-convex with respect to the parameter space, we use the Stochastic Gradient Descent (SGD) with Adam (Kingma and Ba [32])
o obtain the network parameters that maximize the log-likelihood. The method is an extension of the Shallow Neural Hawkes model
roposed by Joseph et al. [21], which was designed for linear Hawkes processes and only allows for the modelling of kernels with
n excitation feature. We evaluate our model against state-of-the-art methods for non-linear Hawkes processes, using both simulated
nd real datasets.

The paper is structured as follows: Section 2 provides a definition of the non-linear Hawkes process and formulates the associated
og-likelihood maximization problem. In Section 3, we introduce the proposed neural network model for the non-linear Hawkes
rocess and discuss the parameter estimation procedure. Section 4 presents the results obtained by our method on synthetic data
nd its application to infer the order dynamics of bitcoin and ethereum market orders on the Binance exchange. Additionally, we
pply our method to a high-dimensional neuron spike dataset. Finally, in Section 5, we summarize our findings and discuss the
imitations of our method.

. Preliminary definitions

efinition of the Hawkes process:. We denote a D-dimensional counting process as (𝑁1(𝑇 ),… , 𝑁𝐷(𝑇 )), and its associated discrete
vents as  = (𝑡𝑛, 𝑑𝑛)𝑛≥1, where 𝑡𝑛 ∈ [0, 𝑇 ) is the timestamp of the 𝑛th event and 𝑑𝑛 ∈ (1, 2,… , 𝐷) is the dimension in which the
th event has occurred. Let {𝑡𝑑1 ,… , 𝑡𝑑𝑘 ,… , 𝑡𝑑𝑁𝑑 (𝑇 )}, be the ordered arrivals for the dimensions 𝑑 = 1,… , 𝐷. Given 𝑡 ≥ 0, the count of

events in [0, 𝑡) for the 𝑑th dimension will be

𝑁𝑑 (𝑡) =
∑

𝑛≥1
1𝑡𝑑𝑛<𝑡

.

The conditional intensity function for the counting process at 𝑡 for the 𝑑th dimension, 𝜆∗𝑑 (𝑡) ∶ R+ → R+, is given by,

𝜆∗𝑑 (𝑡) = 𝑙𝑖𝑚
𝛥𝑡→0

E
[

𝑁𝑑 (𝑡 + 𝛥𝑡) −𝑁𝑑 (𝑡)|𝑡−
]

𝛥𝑡
, (1)

where, 𝑡− , denotes the history of the counting process up to time 𝑡.
For a 𝐷-dimensional Hawkes process the conditional intensity 𝜆𝑑 (𝑡), for the 𝑑th dimension is expressed as,

𝜆𝑑 (𝑡) = 𝜇𝑑 (𝑡) +
𝐷
∑

𝑗=1

∑

𝑗
𝜙𝑑𝑗 (𝑡 − 𝑡

𝑗
𝑘), (2)
2

{∀𝑘|(𝑡𝑘<𝑡)}
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where 𝜇𝑑 (𝑡), the exogenous base intensity for the 𝑑th dimension, does not depend upon the history of the past arrivals. 𝜙𝑑𝑗 (𝑡 − 𝑡
𝑗
𝑘),

1 ≤ 𝑑, 𝑗 ≤ 𝐷, are called the excitation kernels that quantify the magnitude of excitation of the conditional intensity for the 𝑑th
dimension at time 𝑡 due to the past arrival at 𝑡𝑗𝑘, {∀𝑘|𝑡

𝑗
𝑘 < 𝑡} in the 𝑗th dimension. These kernel functions are positive and causal,

i.e., their support is in R+. Inferring a Hawkes process requires estimating the base intensity function 𝜇𝑑 and its kernels functions
𝜙𝑑𝑗 , either by assuming a parametric form for the kernels or in a non-parametric fashion. A more generic form of the Hawkes process
conditional intensity 𝜆∗𝑑 (𝑡), is given by,

𝜆∗𝑑 (𝑡) = 𝛹𝑑 (𝜆𝑑 (𝑡)), ∀𝑑 = 1,… , 𝐷, (3)

where 𝛹𝑑 is the dependency function given by, 𝛹𝑑 ∶ R → R+.
If 𝛹𝑑 is a identity function then, Eq. (3) is equivalent to the linear Hawkes process expressed in Eq. (2). However, if 𝛹𝑑 is a

non-linear function, then the process is called a Non-linear Hawkes Process. For the stability and stationarity of the non-linear
Hawkes process, 𝛹𝑑 should be Lipschitz continuous, as given by Theorem 7 of Brémaud and Massoulié [23]. The advantage of the
non-linear Hawkes process is that it allows the kernel output to take negative values to model inhibitory effects as well as positive
values to model excitatory effects, i.e., 𝜙𝑑𝑗 ∶ R+ → R. Wang et al. [29] uses a sigmoid function (1+ 𝑒−𝑥)−1 and a decreasing function
1 − (1 + 𝑒−𝑥)−1, while Bonnet et al. [25] and Costa et al. [33] use a max function as 𝛹 .

The log-likelihood function of non-linear Hawkes process. The categorization of methods used for estimating Hawkes processes, as
discussed in Cartea et al. [34], can be broadly classified into three groups:

• Maximum likelihood estimation (MLE) It is the most commonly used approach for estimating the kernels of the Hawkes process,
as employed by many methods such as Bonnet et al. [25], Du et al. [30], and Lemonnier et al. [28]. However, MLE methods
have high computational costs as their time complexity increases quadratically with the number of arrivals. Expectation–
maximization methods, such as those used by Lewis and Mohler [15], Zhou et al. [8], Lee et al. [35] and Zhou et al. [36],
also belong to this category.

• Method of moments Wang et al. [29] and Achab et al. [18] use a moment matching method to estimate the Hawkes process.
These methods typically rely on the spectral properties of the Hawkes process. The WH method (Bacry and Muzy [17]), which
is used as a benchmark model in numerical experiments, estimates the Hawkes process as a system of Wiener–Hopf equations
and also falls under this category.

• Least squares estimation (LSE) This method involves minimizing the L2 error of the integrated kernel. Cartea et al. [34] propose
an efficient stochastic gradient-based estimation method for linear multivariate Hawkes processes, which applies to large
datasets and general kernels. However, the method is not suitable for non-linear Hawkes process.

In this paper the optimal kernels are estimated through the maximum likelihood approach.
For a 𝐷-multidimensional non-linear Hawkes process with 𝝁 = [𝜇𝑑 (𝑡)]𝐷×1 and 𝜱 = [𝜙𝑑𝑗 (𝑡)]𝐷×𝐷; 1 ≤ 𝑑, 𝑗 ≤ 𝐷, let 𝜽 = [𝜃1,… 𝜃𝑝… 𝜃𝑃 ]

be the set of parameters used to model 𝝁 and 𝜱. The parameters can be estimated by maximizing the log-likelihood function over
the sampled events from the process. The log-likelihood (LL) function corresponding to the dataset  for the non-linear Hawkes
process is given by (see for instance Rubin [37], Daley and Vere-Jones [38]),

(𝜽,) =
𝐷
∑

𝑑=1

[

∑

(𝑡𝑛 ,𝑑𝑛)∈

{

log(𝜆∗𝑑 (𝑡𝑛)) − ∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

𝜆∗𝑑 (𝑠)𝑑𝑠

}

1𝑑𝑛=𝑑

]

. (4)

Depending on the parametric form of the kernel, 𝜙𝑑𝑗 (𝑡), the LL function may or may not be concave. For instance, even for the
exponential kernel, 𝜙𝑑𝑗 (𝑡) = 𝛼𝑑𝑗 exp(−𝛽𝑑𝑗 )(𝑡), the LL function is not concave in the parameter space. We use the Stochastic Gradient
Descent (SGD) method to search the local optima for the LL function in the parameter space. In order to estimate the parameters 𝜽
using the SGD we need an unbiased estimator of the gradient of the LL, as given by Eq. (4), with respect to 𝜃.

(

∇𝜃𝑝
)

(𝜽,) = ∇𝜃𝑝

( 𝐷
∑

𝑑=1

[

∑

(𝑡𝑛 ,𝑑𝑛)∈

{

log(𝜆∗𝑑 (𝑡𝑛)) − ∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

𝜆∗𝑑 (𝑠)𝑑𝑠

}

1𝑑𝑛=𝑑

])

=
𝐷
∑

𝑑=1

[

∑

(𝑡𝑛 ,𝑑𝑛)∈
∇𝜃𝑝

({

log(𝜆∗𝑑 (𝑡𝑛)) − ∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

𝜆∗𝑑 (𝑠)𝑑𝑠

})

1𝑑𝑛=𝑑

]

. (5)

Following Eq. (5), an unbiased estimator of the gradient of  with respect to 𝜃𝑝 will be,

∇𝜃𝑝 ̂(𝜽, 𝑡
𝑑
𝑛 ) ∶= ∇𝜃𝑝

(

log(𝜆∗𝑑 (𝑡
𝑑
𝑛 )) − ∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

(

𝜆∗𝑑 (𝑠)
)

𝑑𝑠

)

, (6)

where 𝑡𝑑𝑛 is randomly sampled from . The proposed model does not assume a specific parametric form for the kernels and the base
intensities. Instead, it asssumes a neural network model for both components. The model and its estimation is discussed in Section 3.

3. Proposed model

Hornik et al. [39] show that a multilayer feed-forward networks with as few as one hidden layer are capable of universal
3

approximation to a given level of precision and accuracy. We here propose a neural network-based system called the Neural Network
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t

Fig. 1. The architecture of the feed-forward neural network used for modelling kernels and base intensity functions of the non-linear Hawkes process in NNNH.
Here 𝜑 is the activation function, which is taken as ReLU.

for Non-Linear Hawkes (NNNH) to estimate the kernels and the base intensity of the non-linear Hawkes process. Each kernel,
𝜙𝑑𝑗 , 1 ≤ 𝑑, 𝑗 ≤ 𝐷, and base intensity function 𝜇𝑑 , is separately modelled as a feed-forward network. However, the parameters of all
the networks are jointly estimated by maximizing the log-likelihood of the training dataset.

In the NNNH, each kernel 𝜙𝑑𝑗 , 1 ≤ 𝑑, 𝑗 ≤ 𝐷 is modelled as a feed-forward neural network �̂�𝑑𝑗 ∶ R+ → R,

𝜙𝑑𝑗 (𝑡) = 𝐴2◦𝜑◦𝐴1, (7)

where 𝐴1: R → R𝑝 and 𝐴2: R𝑝 → R. More precisely,

𝐴1(𝑥) = 𝐖1𝑥 + 𝐛𝟏 for 𝑥 ∈ R, 𝐖1 ∈ R𝑝×1,𝐛𝟏 ∈ R𝑝,

𝐴2(𝐱) = 𝐖2𝐱 + 𝑏2 for 𝐱 ∈ R𝑝, 𝐖2 ∈ R1×𝑝, 𝑏2 ∈ R,

and 𝜑 ∶ R𝑗 → R𝑗 , 𝑗 ∈ N is the component-wise Rectified Linear Unit (ReLU) activation function given by:

𝜑(𝑥1,… , 𝑥𝑗 ) ∶=
(

max(𝑥1, 0),… ,max(𝑥𝑗 , 0)
)

.

We take 𝐖1 = [𝑎11, 𝑎
2
1,… ., 𝑎𝑝1]

⊤, 𝐖2 = [𝑎12, 𝑎
2
2,… ., 𝑎𝑝2] and 𝐛𝟏 = [𝑏11, 𝑏

2
1,… ., 𝑏𝑝1]

⊤. Therefore, the kernel function can be written as:

𝜙𝑑𝑗 (𝑥) = 𝑏2 +
𝑝
∑

𝑖=1
𝑎𝑖2 max

(

𝑎𝑖1𝑥 + 𝑏
𝑖
1, 0

)

(8)

As the kernel, 𝜙𝑑𝑗 , maps from positive real numbers to real numbers, it is versatile in its ability to model both inhibitory and
excitatory effects.

With a choice of 𝑝 neurons for the hidden layer, the dimension of the parameter space for the above network will be 3𝑝+ 1. For
a 𝐷-dimensional non-linear Hawkes process there will be 𝐷2 kernels and the total number of parameters to be estimated would be
(3𝑝+1)𝐷2. In case the base intensity is not constant, we also model it as a feed-forward neural network, with an architecture similar
to the ones used for the kernels. We then need to approximate in total (3𝑝+1)

(

𝐷2 +𝐷
)

parameters. If the base intensity is assumed
to be a constant, the total number of parameters to be estimated would be (3𝑝 + 1)𝐷2 +𝐷. The Fig. 2 is a schematic representation
of the NNNH model, with each 𝜙𝑑𝑗 , and 𝜇𝑑 being a network (as expressed in Fig. 1). In order to estimate 𝜆∗𝑑 (𝑡), we need in addition
o 𝑡, the history of arrivals until 𝑡, i.e., −

𝑡 . The NNNH therefore estimates 𝜆∗𝑑 (𝑡) as:

𝜆∗𝑑 (𝑡) = max

⎛

⎜

⎜

⎜

⎝

𝜇𝑑 (𝑡) +
𝐷
∑

𝑗=1

∑

{∀𝑘|(𝑡𝑗𝑘<𝑡)}

𝜙𝑑𝑗 (𝑡 − 𝑡
𝑗
𝑘), 0

⎞

⎟

⎟

⎟

⎠

. (9)
4
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Fig. 2. NNNH model for multivariate non-linear Hawkes process.

The outer max function ensures that the estimated 𝜆∗𝑑 (𝑡) is positive and mimics the 𝛹 function in the non-linear Hawkes process,
as given in Eq. (3).

This non-parametric method employs a feed-forward neural network that can precisely estimate any continuous kernel function
and base intensity function defined on a compact set, with a desired level of accuracy (Leshno et al. [40]). However, the challenge
is to jointly estimate the parameters of the 𝐷2 + 𝐷 neural networks used to model the base intensity and the kernel functions. To
do this, the set of parameter values that maximize the log-likelihood over the observed dataset  is found. Since the log-likelihood
function is non-convex in the parameter space, the batch stochastic gradient descent is used to estimate the parameter values that
provide a local maximum of the log-likelihood function. The gradient of the log-likelihood function as given by Eq. (6) with respect
to each network parameter is computed for updating the parameter values in the batch stochastic gradient method.

3.1. Estimating the parameters of the NNNH

The challenge for the NNNH model is, given the dataset  to efficiently obtain the parameters of the networks that locally
maximize the log-likelihood function. More precisely, let 𝜽 = [𝜃1,… 𝜃𝑝… 𝜃𝑃 ]⊤ denote the parameters of the network and let 𝜣
denote the parameter space; then we want to find, for given dataset , the values of the parameters that maximize the log-likelihood
function over the parameter space, i.e.,

�̂� = arg max
𝜽∈𝜣

 (𝜽,) . (10)

Gradient descent is an effective optimization technique when the log-likelihood function can be differentiated with respect to its
parameters. This is because computing the first-order partial derivatives of all parameters has the same computational complexity as
evaluating the log-likelihood function, making it a relatively efficient approach. With neural networks, stochastic gradient descent,
has been shown to be more effective and efficient method for optimization. The NNNH parameter estimation algorithm utilizes
Adam (Kingma and Ba [32]), a stochastic gradient descent technique that adjusts learning rates adaptively and relies solely on
first-order gradients. Eq. (6) provides the necessary unbiased estimator of the log-likelihood function for the NNNH method to be
used with the SGD. Algorithm 1 gives the pseudo-code for the NNNH parameter estimation using Adam.

The essential step while estimating the parameters for the NNNH model is computing the unbiased gradient of the likelihood
function, i.e.,

∇𝜃𝑝 ̂(𝜽, 𝑡
𝑑
𝑛 ) ∶= ∇𝜃𝑝

(

log(𝜆∗𝑑 (𝑡
𝑑
𝑛 )) − ∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

𝜆∗𝑑 (𝑠)𝑑𝑠

)

.

This in turn involves computing the following gradients,

∇𝜃𝑝 log(𝜆
∗
𝑑 (𝑡

𝑑
𝑛 )) and∇𝜃𝑝 ∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

(

𝜆∗𝑑 (𝑠)
)

𝑑𝑠.

While it is possible to compute the former gradient efficiently, the challenge lies in accurately estimating the latter gradient. The
former gradient calculation involves the following steps:

∇𝜃𝑝 log(𝜆
∗
𝑑 (𝑡

𝑑
𝑛 )) = 1

𝜆∗(𝑡𝑑𝑛 )
∇𝜃𝑝 max

⎛

⎜

⎜

⎜

⎝

𝜇𝑑 (𝑡𝑑𝑛 ) +
𝐷
∑

𝑗=1

∑

{∀𝑘|(𝑡𝑗𝑘<𝑡
𝑑
𝑛 )}

𝜙𝑑𝑗 (𝑡𝑑𝑛 − 𝑡
𝑗
𝑘), 0

⎞

⎟

⎟

⎟

⎠

,

= 1
𝜆∗(𝑡𝑑𝑛 )

⎛

⎜

⎜

⎜

∇𝜃𝑝
(

𝜇𝑑 (𝑡𝑑𝑛 )
)

+
𝐷
∑

𝑗=1

∑

{∀𝑘|(𝑡𝑗 <𝑡𝑑 )}

∇𝜃𝑝
(

𝜙𝑑𝑗 (𝑡𝑑𝑛 − 𝑡
𝑗
𝑘)
)

⎞

⎟

⎟

⎟

1𝜆𝑑 (𝑡𝑑𝑛 )>0
.

5

⎝
𝑘 𝑛

⎠
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Algorithm 1: Estimation of parameters of NNNH using Adam.
Input: dataset 
nput: learning rate 𝛼 = 0.01, decay rates 𝛽1 = 0.9, 𝛽2 = 0.999, small constant 𝜖 = 10−8

Output: Optimal parameter value �̂�
initialize parameter vector 𝜽𝟎;
𝑚0 ← 0 (initialize first moment vector);
𝑣0 ← 0 (initialize second moment vector);
initialize iteration step 𝑖 = 0;
while stopping criterion not met do

𝑖 ← 𝑖 + 1
randomly sample (𝑡𝑖, 𝑑𝑖) ∈ 
𝑔𝑖 ← ∇𝜽̂(𝜽𝑖−1, 𝑡𝑑𝑖 ) compute unbiased gradient of the likelihood function
𝑚𝑖 ← 𝛽1𝑚𝑖−1 + (1 − 𝛽1)𝑔𝑖 update biased first moment estimate
𝑣𝑖 ← 𝛽2𝑣𝑖−1 + (1 − 𝛽2)𝑔2𝑖 update biased second moment estimate
�̂�𝑖 ←

𝑚𝑖
1−𝛽𝑖1

compute bias-corrected first moment estimate

�̂�𝑖 ←
𝑣𝑖

1−𝛽𝑖2
compute bias-corrected second moment estimate

𝜽𝑖 ← 𝜽𝑖−1 − 𝛼
�̂�𝑖

√

�̂�𝑖+𝜖
update parameters

nd

Here,

𝜆∗𝑑 (𝑡) = max
(

𝜆𝑑 (𝑡), 0
)

.

In Appendix A, you can find the expressions for the gradients of the neural networks 𝜇𝑑 (𝑡) and 𝜙𝑑𝑗 (𝑡). In Section 3.2 we provide
n approach for efficient estimation of ∇𝜃𝑝 ∫

𝑡𝑑𝑛
𝑡𝑑𝑛−1

(

𝜆∗𝑑 (𝑠)
)

𝑑𝑠.

.2. Gradient of the integrated Hawkes intensity function

The computation of the first order derivatives of,

𝛬𝑑 (𝑡𝑑𝑛 ) ∶= ∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

𝜆∗𝑑 (𝑠)𝑑𝑠,

ith respect to all the parameters will have the same computational complexity as evaluating the function itself. In the SGD method,
t is crucial to perform efficient computations of 𝛬𝑑 (𝑡𝑑𝑛 ) since these gradients must be computed multiple times. Gaussian Quadrature
s a numerical technique that can be used to estimate the definite integral, but it is limited to well-behaved integrands that can
e approximated by a certain degree of polynomial. Unfortunately, the non-linear Hawkes intensity function lacks smoothness,
aking the use of Gaussian Quadrature prone to substantial error. Moreover, Gaussian Quadrature entails computing the quadrature
oints and weights, which can be time-consuming and resource-intensive. The number of quadrature points required for accurate
pproximation also grows quickly with the polynomial degree, resulting in increased computational cost.

Our selection of network architecture can enable efficient evaluation of the integral 𝛬𝑑 (𝑡𝑑𝑛 ) in the NNNH. The above integral can
e expanded as:

∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

𝜆∗𝑑 (𝑠)𝑑𝑠 = ∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

max
(

𝜆𝑑 (𝑠), 0
)

𝑑𝑠

= ∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

max

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

𝜇𝑑 (𝑠) +
𝐷
∑

𝑗=1

∑

{𝑡𝑗𝑘<𝑠}

𝜙𝑑𝑗 (𝑠 − 𝑡
𝑗
𝑘)

⎤

⎥

⎥

⎥

⎦

, 0

⎞

⎟

⎟

⎟

⎠

𝑑𝑠

= ∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

max

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

𝜇 +
𝐷
∑

𝑗=1

∑

{𝑡𝑗𝑘<𝑠}

𝑝
∑

𝑖=1
𝑎𝑖2 max

(

𝑎𝑖1(𝑠 − 𝑡
𝑗
𝑘) + 𝑏

𝑖
1, 0

)

⎤

⎥

⎥

⎥

⎦

, 0

⎞

⎟

⎟

⎟

⎠

𝑑𝑠,

with 𝜙𝑑𝑗 (𝑠) substituted using Eq. (8) and 𝜇𝑑 (𝑠) set as a constant for simplicity in the third line. In addition, we set the bias 𝑏2 to
zero for ease of exposition. Therefore, the above integral takes the following form:

∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

𝜆∗𝑑 (𝑠)𝑑𝑠 = ∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

max

([

𝜇 +
∑

{𝑘,𝑖,𝑗}
𝑎𝑖2 max

(

𝑎𝑖1(𝑠 − 𝑡
𝑗
𝑘) + 𝑏

𝑖
1, 0

)

]

, 0

)

𝑑𝑠. (11)
6
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Let 𝐗 ≡ {𝑥1,… , 𝑥𝑃 ∗} be the sequence of zero-crossings obtained for all the 𝑃 ∗ neurons, where the zero-crossing for the 𝑖th neuron
is obtained by solving:

𝑎𝑖1(𝑥𝑖 − 𝑡
𝑗
𝑘) + 𝑏

𝑖
1 = 0 (12)

𝑥𝑖 = 𝑡𝑗𝑘 −
𝑏𝑖1
𝑎𝑖1
.

𝑃 ∗ represents the total number of neurons used in the neural networks for modelling the kernels, 𝜙𝑑𝑗 with 1 ≤ 𝑑, 𝑗 ≤ 𝐷, of a
𝐷-dimensional non-linear Hawkes process. For example, if each kernel in a 𝐷-dimensional non-linear Hawkes process is modelled
using a network with 𝑃 neurons, then 𝑃 ∗ = 𝑃𝐷2.

We re-index the sequence 𝐗 in monotone increasing order as 𝐒 ≡ {𝑠1 ≤ 𝑠2 ≤ ⋯ ≤ 𝑠𝑃 ∗}. Let 𝐒∗ ≡ {𝑠𝑙 ≤ ⋯ ≤ 𝑠𝑢}, where
𝑑
𝑛−1 ≤ 𝑠𝑙 ≤ ⋯ ≤ 𝑠𝑢 ≤ 𝑡𝑑𝑛 , and 1 ≤ 𝑙 ≤ 𝑢 ≤ 𝑃 ∗, be the largest subsequence of the sorted sequence 𝐒. Therefore, 𝐒∗ is the subset of 𝐒,
ith all the zero-crossings that lie between the range [𝑡𝑑𝑛−1, 𝑡

𝑑
𝑛 ].

We then write,

∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

𝜆∗𝑑 (𝑠)𝑑𝑠 = ∫

𝑠𝑙

𝑡𝑑𝑛−1

max
(

𝜆𝑑 (𝑠), 0
)

𝑑𝑠 +⋯∫

𝑠𝑞

𝑠𝑞−1
max

(

𝜆𝑑 (𝑠), 0
)

𝑑𝑠…+ ∫

𝑡𝑑𝑛

𝑠𝑢
max

(

𝜆𝑑 (𝑠), 0
)

𝑑𝑠,

nd exploit the fact that 𝜆𝑑 (𝑠) will be linear in 𝑠 in the sub-intervals, [𝑡𝑑𝑛−1, 𝑠𝑙],… , [𝑠𝑢, 𝑡𝑑𝑛 ]. If 𝜆𝑑 (𝑠) is linear in 𝑠 in the interval [𝑠𝑞−1, 𝑠𝑞],
hen there will be at most one zero crossing for the function max(𝜆𝑑 (𝑠), 0) that lies within this interval. If 𝑠out

𝑞 is the zero-crossing
or max(𝜆𝑑 (𝑠), 0) and 𝑠𝑞−1 ≤ 𝑠out

𝑞 ≤ 𝑠𝑞 , we can write:

∫

𝑠𝑞

𝑠𝑞−1
max

(

𝜆𝑑 (𝑠), 0
)

𝑑𝑠 =

(

∫

𝑠out
𝑞

𝑠𝑞−1
𝜆𝑑 (𝑠)𝑑𝑠

)

1𝜆𝑑 (𝑠𝑞−1)>0
+

(

∫

𝑠𝑞

𝑠out
𝑞

𝜆𝑑 (𝑠)𝑑𝑠

)

1𝜆𝑑 (𝑠𝑞 )>0
.

In case 𝑠out
𝑞 ∉ [𝑠𝑞−1, 𝑠𝑞] the above can be integrated as:

∫

𝑠𝑞

𝑠𝑞−1
max

(

𝜆𝑑 (𝑠), 0
)

𝑑𝑠 =

(

∫

𝑠𝑞

𝑠𝑞−1
𝜆𝑑 (𝑠)𝑑𝑠

)

1𝜆𝑑 (𝑠𝑞−1)>0
.

Therefore, we evaluate 𝛬𝑑 (𝑡𝑑𝑛 ), by splitting the integral into intervals within which max(𝜆𝑑 (𝑠), 0) is linear in 𝑠. The integral,

∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

𝜆∗𝑑 (𝑠)𝑑𝑠,

s well as its gradients with respect to the network parameters can then be exactly evaluated. The expression of the above integral
n a sub-interval [𝑠𝑞−1, 𝑠𝑞], where 𝜆∗𝑑 (𝑠) is linear is provided in the Appendix B.

emark 1. While both the SNH model in [21] and the proposed model (NNNH) use a 2-layered feed-forward neural network to
odel the kernels, the network architecture differs in two aspects. First, the activation functions for the outer layer of the network

n the SNH and the NNNH are exponential and identity functions, respectively. This allows SNH to admit only excitation kernels,
nd the NNNH could have kernels that could take negative values. The second difference is that the kernels in the SNH contribute
inearly to the conditional intensity. In contrast, in the NNNH, the aggregation of the contribution of individual kernels to the
onditional intensity is non-linear so that the intensity is positive in Eq. (9). An immediate implication of the latter difference is
hat for the SNH, the term ∫ 𝜆∗𝑑 (𝑠)𝑑𝑠 in the log-likelihood function can be decoupled into the integrals of the individual kernels.
owever, in the case of the NNNH, due to the outer max function, the integral cannot be written as the sum of the integral of

he individual kernels. This makes the computation of the gradient of the likelihood function for the NNNH model computationally
hallenging. An efficient approach for computing the integral and its gradient is discussed in Section 3.2.

. Experiments and results

In this section, we evaluate the effectiveness of the NNNH method on synthetic and real-world datasets.1 We assess the
erformance of the NNNH method in estimating the conditional intensity function of a non-homogeneous Poisson Processes (NHPP).
e then showcase the adaptability of the NNNH method by utilizing simulated data of one-dimensional non-linear Hawkes processes.

pecifically, we explore the NNNH’s capacity to estimate Hawkes processes with smooth, non-smooth, and negative kernels, and
xamine its robustness in handling different variants of non-linear Hawkes models. Additionally, we investigate the NNNH’s ability
o estimate kernels and base intensity function for data simulated from a multidimensional non-linear Hawkes processes, where we
valuate a simultaneous combination of smooth, non-smooth, and inhibitive kernels.

We investigate the practical applications of non-linear Hawkes models through two case studies. In the first case, we apply
he NNNH method to analyse tick-by-tick cryptocurrency trading data on the Binance exchange, seeking to identify any causal

1 The source code and the dataset used in the experiments described here are available at https://github.com/sobin-joseph/NNNH.
7
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relationships between the buy and sell market orders of the BTC/USD and the ETH/USD pairs. For the second case, we utilize
the NNNH to analyse neuronal spike trains recorded from the motor cortex of a monkey, revealing the interdependence between
individual neurons and how they function in tandem.

Prior to delving into the outcomes of our numerical experiments, we provide a brief overview of the data preprocessing steps
nd the hyper-parameters selected for fitting the NNNH model to a dataset. Specifically we discuss the scaling approach adopted for
he dataset, the choice of the number of neurons opted for the network, the initial learning rates employed for the Adam optimizer,
nd the stopping criteria for the optimizer.

.1. Data preprocessing and choice of hyper-parameters:

For all our experiments, we divide the dataset into training, validation, and test set. The dataset is partitioned in a 60:20:20 ratio
or analysis. Due to the dependence on history in the Hawkes process, we do not alter the chronology of the events. Before splitting
he dataset, we first scale the timestamps. Scaling the dataset is critical step in the preprocessing stage of building neural networks
s it can enhance their performance, stability, and convergence. Additionally, scaling helps to ensure that all input features have
similar range of variance, which can lead to improved initialization of the network parameters and overall performance during

raining. Given dataset  = (𝑡𝑛, 𝑑𝑛), where 𝑡𝑛 ∈ [0, 𝑇 ), let {𝑡𝑑1 ,… , 𝑡𝑑𝑘 ,… , 𝑡𝑑𝑁𝑑 (𝑇 )}, be the ordered arrivals for the dimensions 𝑑 = 1,… , 𝐷.
We define 𝑇max as

𝑇max = max
(

𝑡1𝑁1(𝑇 )
,… , 𝑡𝑑𝑁𝑑 (𝑇 ),… , 𝑡𝐷𝑁𝐷(𝑇 )

)

,

and 𝑁(𝑇max) as:

𝑁(𝑇max) =
𝐷
∑

𝑑=1
𝑁𝑑 (𝑇max).

We scale the original timestamps as:

�̂�𝑑𝑛 = 𝑡𝑑𝑛
𝑁(𝑇max)
𝑇max

.

nitialization of network parameters and choice of batch size. In the NNNH method as discussed in Section 3 we model each kernel
and base intensity function as a feed-forward neural network. To model the base intensity functions, 𝜇𝑑 (𝑡), we use a feed-forward
etwork with fifty neurons in the hidden layer. The following initialization is used for the parameters of the network,

𝑎𝑖1 ∼  (−10−3, 10−3),

𝑎𝑖2 ∼  (0, 0.2),

𝑏𝑖1 ∼  (−1, 1),

here  (𝑎, 𝑏), denotes uniform distribution between 𝑎 and 𝑏.
For the kernels, 𝜙𝑑𝑗 (𝑡), 1 ≤ 𝑑, 𝑗 ≤ 𝐷, of the non-linear Hawkes process we use feed-forward networks with thirty two neurons

n the hidden layer. The selection of thirty two neurons is guided by the hyperparameter tuning process we conduct, which is
laborated upon in Section 4.5. The network parameters of the kernel are initialized using the following scheme,

𝑎𝑖1 ∼  (0,−0.3),

𝑎𝑖2 ∼  (0, 0.2),

𝑏𝑖1 ∼  (0, 0.3).

If we use a constant baseline intensity we initialize 𝜇 = 1.
We use a batch size of hundred for calculating the stochastic gradient. We use different learning rates for updating the parameters

n the hidden layer and the output layer, as we observe faster convergence with this choice. The following learning rates were used
or all the experiments: For fitting the networks used to model the base intensity function we used a learning rate of 10−3 for
pdating the network parameters in the output layer and 10−6 for updating the parameters in the hidden layer. For the networks
sed to model the kernel function the we used corresponding learning rates of 10−2 and 10−3 for the output and hidden layers,
espectively.

topping criteria:. In this study, for all the experiments, we utilize a stopping criterion based on the negative log-likelihood value
omputed on the validation dataset. The negative log-likelihood values are computed at the end of each iteration of the batch
tochastic gradient descent algorithm. The NNNH parameter estimation algorithm stops when the updated parameters fail to improve
he best recorded validation error for a specified number of iterations, following the approach proposed by Goodfellow et al.
41]. This early stopping criterion helps prevent over fitting, as demonstrated in Fig. 3, where we observe a reduction in training
egative log-likelihood value while the validation negative log-likelihood value starts increasing after a certain number of iterations,
ndicating that the model is starting to over-fit the training data.

Through numerical experiments, Section 4.5 presents our investigation of the sensitivity of NNNH estimation to various
yper-parameter choices.
8
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Fig. 3. Plot of Negative log-likelihood for train and validation datasets in one dimensional case, indicating the stopping criteria.

Table 1
The NHPP functions and their corresponding True Negative Log-Likelihood(TNLL)
and NNNH Negative Log-Likelihood(NNLL) obtained from the NNNH method.
Function Underlying equation TNLL NNLL

Exponential 𝜇(𝑡) = 0.5𝑒−0.001𝑡 1177 1173
Linear 𝜇(𝑡) = 0.5 2528 2518
Parabola 𝜇(𝑡) = 2 × 10−7(1.5𝑡 − 2000) 1703 1699
Sin Curve 𝜇(𝑡) = 0.4(sin(2𝜋𝑡 × 0.0004 − 1000) + 1.1) 3482 3538

4.2. Estimation of non homogeneous Poisson process intensity

A Non-Homogeneous Poisson Process (NHPP) 𝑁(𝑡), 𝑡 ≥ 0 is a generalized counting process in which the rate at which events
occurs varies with time. The intensity function, denoted by 𝜇(𝑡) ∶ R+ → R+, captures the varying rate of the events over time,
which could be influenced by factors such as external events, seasonal patterns, or other underlying phenomena. To comprehend
this counting process, estimating the intensity function is necessary. The intensity function of NHPP can be estimated parametrically
or non-parametrically. Parametric estimation assumes that the parametric form of the underlying intensity function is known. For
instance, Rigdon and Basu [42] estimates the parameters by assuming the intensity function as power law function, while Lee et al.
[43] uses a general exponential-polynomial-trigonometric intensity function. If one does not assume the parametric form of the
intensity function, they would resort to non-parametric techniques to estimate the conditional intensity function. In Leemis [44], a
technique is proposed that utilizes a piecewise linear function to estimate the cumulative intensity of the NHPP, while Xiao and Dohi
[45] presents another non-parametric approach that employs a wavelet-based estimation method to estimate the intensity function.

In this section, we show that the NNNH technique can be used to model the intensity function, 𝜇(𝑡), of a non-homogeneous
Poisson process. A single-layered feed-forward neural network can be used to model the intensity function as,

�̂�(𝑡) = max

(

𝑏2 +
𝑝
∑

𝑖=1
𝑎𝑖2 max(𝑎𝑖1𝑡 + 𝑏

𝑖
1, 0), 0

)

, (13)

where, as explained in Section 3, [𝑎𝑖1, 𝑏
𝑖
1, 𝑎

𝑖
2, 𝑏2], 1 ≤ 𝑖 ≤ 𝑝, are the parameters of the network that are estimated by maximizing the

log-likelihood value,

(𝜽,) =
∑

𝑡𝑛∈
log(𝜇(𝑡𝑛)) − ∫

𝑇

0
𝜇(𝑠)𝑑𝑠, (14)

for the training dataset . We use the SGD with Adam, for adaptive learning rates, to find the optimal network parameters, as
discussed in Section 3.1.

We consider an exponential, linear, polynomial, and a trigonometric function, as given in Table 1, to model the conditional
intensity. The arrival times are simulated using the thinning algorithm of Lewis and Shedler [46]. Table 1 compares the true negative
log-likelihood of the simulated NHPP with the negative log-likelihood values obtained using the fitted NNNH model.2

We see that for all the cases considered, the estimated negative log-likelihood values are reasonably close to the true negative
log-likelihood values. Fig. 4 compares the NNNH estimates of the intensity function with the true intensity function. We see for all
the cases considered the NNNH is able to recover the intensity function reasonably well.

2 The source code and the dataset used in the experiments described here are available at https://github.com/sobin-joseph/NNNH.
9
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Fig. 4. NNNH estimated kernel and base intensity for a one-Dimensional Hawkes process with sin base intensity and exponential kernel.

4.3. Univariate hawkes estimation

This section focuses on examining the effectiveness of the NNNH method in estimating one-dimensional non-linear Hawkes
processes using the following criteria:

• Estimation of non-smooth kernels.
• Estimation of negative kernels.
• Estimation of non-linear Hawkes processes for different variations of 𝛹 .
• Estimation of Hawkes processes with varying base intensity function.

We simulate the arrival times for the different variants of the Hawkes processes using the Ogata’s thinning algorithm proposed
in Ogata [47]. We compare the performance of our algorithm to the following state of the art methods:

• WH3: An algorithm proposed in Bacry and Muzy [17], a non-parametric estimation method which solves a Wiener Hopf
system derived from the auto-covariance of the multivariate Hawkes processes. This method demonstrates the capability to
approximate both excitation and inhibitive kernels. Nevertheless, we observe that the outcomes derived from WH display a
certain level of noise, which can pose challenges in terms of interpretation.

• Bonnet: A maximum likelihood based estimation method for Hawkes processes with self excitation or inhibition as proposed
in Bonnet et al. [25] for one dimensional Hawkes and Bonnet et al. [26] for multi dimensional Hawkes. This parametric
method assumes Hawkes kernels to follow a negative exponential function, which restricts its applicability to estimating only
exponential or negative exponential kernels. Consequently, it may not be suitable for estimating other types of Hawkes kernels
with different functional forms. While this method offers advantages in terms of simplicity and computational efficiency, its
limitations in accommodating more diverse kernel shapes should be taken into account.

• EM: A non-parametric method proposed by Lewis and Mohler [15], which utilizes the EM(Expectation–Maximization)
algorithm to estimate the Hawkes kernels and base intensity rates. This method is known for its high stability in estimating
excitation kernels. However, it faces limitations in estimating negative kernels due to the probabilistic interpretation of the
kernels. Moreover, the convergence ability of the EM method decreases when dealing with Hawkes kernels that exhibit slow
decreasing behaviour, such as power law functions(Bacry and Muzy [17]).

3 For both WH and EM we utilize a python library named ‘‘tick’’(available at https://x-datainitiative.github.io/tick/) to perform the analysis.
10
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Fig. 5. Fitted Rectangular kernel: A comparison of the NNNH, WH, and Bonnet estimates with the actual (real) kernel.

Estimation of non-smooth kernels:. We first consider a linear Hawkes process with a non-smooth kernel, specifically a rectangular
kernel of the form,

Rectangular, 𝜙(𝑡) =
{

𝛼𝛽, if 𝛿 ≤ 𝑡 ≤ 𝛿 + 1
𝛽 ,

0, otherwise.

The smoothness assumption of the kernel is a prerequisite for some non-parametric methods used in estimating the kernels of
Hawkes processes, such as the Markovian Estimation of Mutually Interacting Process (MEMIP) proposed in Lemonnier and Vayatis
[27]. As a result, it is necessary to compare the performance of the NNNH method using a non-smooth kernel in order to assess its
effectiveness.

We simulate the process using the following parameter values for the rectangular kernel,

𝜇 = 0.05, 𝛼 = 0.7, 𝛽 = 0.4, 𝛿 = 1.

Simulating the process until 𝑇 = 60 000 yields 𝑁(𝑇 ) = 10 001 arrivals. As a first step, we visually compare the estimated kernels
obtained using the NNNH and the benchmark methods with the true kernel. Fig. 5 illustrates the kernels fitted by the three estimation
methods. As expected we see that the non-parametric models, i.e., the NNNH and the WH are able to better recover the ground
truth. This is also reflected in the negative log-likelihood values obtained for WH, Bonnet, and NNNH methods, i.e., 4228, 12 838,
and 2800 respectively.

Estimation of non-monotonic kernels:. As an example of a non-monotonic kernel,4 we consider Erlang’s kernel of the form,

𝜙(𝑡) = 𝛼𝑡−𝛽𝑡.

We simulate the process using the following parameter values:

𝜇 = 0.2, 𝛼 = 0.3, 𝛽 = 0.9.

We simulate the Hawkes process with the above kernel for 𝑇 = 10 000, resulting in a dataset of count 𝑁(𝑇 ) = 4859 events. We
compare the estimated NNNH kernel with the benchmark kernels. Fig. 6 NNNH illustrates the kernels fitted by the three estimation
methods. As expected, the non-parametric models, i.e., the NNNH and the WH, can better recover the shape of the ground truth.
The estimates from WH are noisier, which is also reflected in the corresponding values of the negative log-likelihood. The negative
log-likelihood values obtained for WH, Bonnet, and NNNH methods are 7529, 6759, and 6736, respectively.

Estimation of negative kernels:. We next consider a non-linear Hawkes process,

𝜆∗(𝑡) = max

(

𝜇 +
∑

𝜏<𝑡𝑛

𝜙(𝑡 − 𝜏), 0

)

,

where, 𝛹 in Eq. (3) is a max function, i.e. 𝛹 (𝜆(𝑡)) = max(𝜆(𝑡), 0). The inhibitive kernel, 𝜙, is specified as an exponential function
given by,

𝜙(𝑡) = −0.5𝑒−2𝑡.

Given that non-parametric methods, such as the Expectation–Maximization (EM) approach introduced in Lewis and Mohler [15],
are capable of estimating only positive kernels, it is of interest to evaluate the capacity of the NNNH method in estimating the
negative kernels.

4 We thank the referee for the suggestion
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Fig. 6. Fitted Erlang kernel: A comparison of the NNNH, WH, and Bonnet estimates with the actual kernel.

Fig. 7. Fitted negative exponential kernel: A comparison of the NNNH, WH, and Bonnet estimates with the actual kernel.

We simulate the above process for 𝑇 = 14 000, with a base intensity, 𝜇 = 0.9. This resulted in 𝑁(𝑇 ) = 10 001 events. We first
compare the kernel obtained using the NNNH, WH, and Bonnet method with the ground truth in Fig. 7. All three methods are able
to recover the kernel, but visually the NNNH and Bonnet methods appear to provide better estimates. Furthermore, this conclusion
is supported by the estimated negative log-likelihood values, which are 9833, 9559, and 9564 for the WH, Bonnet, and the NNNH,
respectively.

Estimation of non-linear hawkes processes for different variations of 𝛹 ∶. Diverse variations of the non-linear Hawkes process can be
derived by making distinct selections of the function 𝛹 (.) in Eq. (3). In their work, Wang et al. [29] explore various variations of the
non-linear dependency function, 𝛹 (.) beyond the usual max function, including sigmoid and decreasing functions. To provide a more
understanding of our proposed method, we conduct simulations of a non-linear Hawkes process using an alternative dependency
function, specifically the sigmoid function defined as follows:

𝛹 (𝑥) = 1
1 + 𝑒−(𝑥−2)

.

For this particular simulation, we consider the following kernel:

𝜙(𝑡) = 𝑒−2𝑡.

This simulated data is utilize to estimate the Hawkes process using the NNNH model, there by demonstrating the effectiveness
and versatility of our approach. Its important to note that while the dependency function, 𝛹 (.) used for generating the Hawkes
process is the sigmoid, but the underlying network architecture and the choice of activation function for estimation using NNNH
remains the same as described in Section 3. The non-linear Hawkes process was simulated for a duration of 𝑇 = 10 000, resulting
in 𝑁(𝑇 ) = 3028 events. According to Eq. (9), the NNNH model converts a non-linear Hawkes process with any 𝛹 into a non-linear
Hawkes process with 𝛹 as a max function. As a result, the recovered kernels from the NNNH method might not correspond to
the kernels of the original process. However, we can compare the actual simulated intensity process with the intensities recovered
from the NNNH method and the WH method. Fig. 8 demonstrates that the recovered intensities match the simulated intensities.
The accuracy of NNNH estimates of quantiles is evident from the QQ(Quantile–Quantile) plot obtained from the fitted WH and the
NNNH method on the test dataset, as shown in Fig. 9.

Predictive capacity of the NNNH method. Accurately inferring the kernels is critical in developing an improved predictive model for
the arrival process. For example, a algorithm relies on predicting the time at which next arrival happens with 90% confidence. With
12
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Fig. 8. Comparison of real and estimated intensity function by WH and NNNH for non-linear Hawkes process with sigmoid as 𝜓 function.

Fig. 9. QQ plot comparing estimated and true intensities for sigmoid non-linear Hawkes process using WH and NNNH.

an accurate prediction model, approximately 90% of the predictions are expected to be correct, and in roughly 10% of the cases,
the events will arrive after the predicted time. If the model consistently produces accurate predictions (i.e., does not fail for 10% of
the cases), then the predictions are overly conservative, indicating that the predicted time is set too far in the future. Conversely,
if more than 10% of the predictions fail, the predicted time is closer than anticipated. Therefore, a prediction model that produces
predictions with Q% certainty should have Q% correct outcomes. The accuracy of such a prediction model can be evaluated using
a QQ plot.

In this context, we compare the NNNH method with the WH method. From the QQ plot presented in Fig. 9, NNNH model closely
aligns with the 45-degree reference line than WH model, representing the ideal model’s QQ plot. Furthermore, it is of significance
to note that the negative log-likelihood values for NNNH and WH are 2954 and 3813 respectively. These observations lends support
to our conclusion that NNNH offers a better fit compared to WH.

Estimation of Hawkes processes with varying base intensity function. To complete the univariate case test for the NNNH, we examine a
Hawkes process with a base intensity that varies over time. We adopt a trigonometric sin function for the time-varying base intensity
𝜇(𝑡), which is specified in Table 1. The associated kernel for the Hawkes process is expressed as:

𝜙(𝑡) = 𝑒−2𝑡.

We simulate the process till 𝑇 = 3000, which results in 𝑁(𝑇 ) = 2482 events. The comparison between the recovered base intensity
function and the excitation kernel using the NNNH method with the true values is depicted in Fig. 10. The results demonstrate that
the NNNH approach can accurately estimate both the base intensity function and the kernel concurrently.

4.4. Multivariate Hawkes estimation

In this section, we evaluate the NNNH approach for estimating multivariate non-linear Hawkes processes using a simulated
dataset. The multivariate non-linear Hawkes process is simulated using the Ogata’s thinning algorithm. The parameters of the neural
13
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Fig. 10. Estimated kernel and base intensity by applying NNNH to a one-dimensional Hawkes process with sin base intensity and an exponential kernel.

networks utilized to model the kernels in the NNNH method are optimized by maximizing the log-likelihood through the stochastic
gradient descent method, as described in Section 3.1. We utilize the WH method (Bacry and Muzy [17]) and the Bonnet Multivariate
method (Bonnet et al. [26]) as our comparative models. While the WH method is non-parametric, the Bonnet Multivariate approach
assumes a parametric structure for the kernels in the Hawkes process. Both reference models are capable of estimating kernels that
exhibit inhibitory effects.

We consider two examples for the simulated case. We first consider a multivariate Hawkes process, with both positive and
negative exponential kernels. Specifically the parameter chosen for the model are:

𝛼 =
[

−0.9 3
1.2 1.5

]

,

𝛽 =
[

5 5
8 8

]

,

and a constant base intensity

𝜇 =
[

0.5
1.0

]

.

The kernels of the process are defined as: 𝜙𝑑𝑗 (𝑡) = 𝛼𝑑𝑗𝑒
−𝛽𝑑𝑗 𝑡, 1 ≤ 𝑑, 𝑗 ≤ 2.

We simulate the process till 𝑇 = 1000, which results in 𝑁(𝑇 ) = 1002 events. Fig. 11 plots the true kernels and the kernels
recovered using the NNNH, the WH, and the Bonnet Multivariate methods. Through a visual examination, it can be observed that
the Bonnet Multivariate approach closely approximates the actual kernels. This outcome is in line with expectations as the simulated
data employed a parametric form of the Hawkes process that is specifically suitable for the Bonnet Multivariate model. Regarding
the non-parametric models, the WH estimates exhibit greater variability compared to the NNNH estimates. The respective negative
log-likelihoods for the NNNH, the WH, and the Bonnet Multivariate methods are 1480, 1967, and 1460.

Subsequently, we examine a bivariate non-linear Hawkes process that encompasses a combination of diverse types of kernels.
Precisely, we select the kernels as follows:

exponential kernel𝜙11(𝑡) = 0.3𝑒−3𝑡,

rectangular kernel𝜙12(𝑡) =

{

0.7 × 0.4, if 1 ≤ 𝑡 ≤ 1 + 1
0.4 ,

0, otherwise.
,

negative exponential𝜙21(𝑡) = −0.2𝑒−𝑡,

exponential𝜙22(𝑡) = 0.4𝑒−2𝑡,

and use the following base intensity values:

𝜇 =
[

0.1
0.2

]

.

We perform simulations up to time 𝑇 = 10 000, resulting in the occurrence of a total 8489 events in the two dimensions. Fig. 12
presents the findings obtained from the NNNH approach in comparison with other techniques. Notably, the advantages of employing
a non-parametric estimation method for Hawkes processes are evident in this context. Both the NNNH and the WH methods
successfully capture all the kernels, whereas the Bonnet Multivariate approach does not accurately depict the rectangular kernel. It
is worth mentioning that the estimated kernels obtained using the WH method appear to be more erratic than those of the NNNH.
The corresponding negative log-likelihood values for the WH, the Bonnet Multivariate, and the NNNH are 3051, 3062, and 2899
respectively.
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Fig. 11. The kernels fitted using the NNNH, WH, and Bonnet Multivariate methods, for a bivariate Hawkes process with both positive and negative kernels.

Fig. 12. The fitted kernels, using the NNNH, WH, and Bonnet Multivariate method, for a bivariate non-linear Hawkes process with a mix of exponential and
rectangular kernels.

4.5. Sensitivity analysis

In the context of the NNNH approach, we have made deliberate decisions concerning the quantity of neurons deployed in the
network’s hidden layer to emulate the kernels and the learning rate employed to regulate the parameter updates in the Adam
algorithm. To gauge the sensitivity of the NNNH method, we have conducted a numerical investigation with regard to these
decisions. Specifically, we have examined the influence of variations in the number of neurons and learning rates on the negative
log-likelihood value, while holding all other factors constant. Note that the likelihood values reported are for the validation dataset
which was not used in the training of the network
15
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Table 2
Percentage change in negative log-likelihood (NLL) values and
corresponding computational time for different numbers of
neurons in the neural network.
No of neurons NLL % change % time change

2 2057.78 −0.061 +164.1
4 2058.01 −0.057 +95.4
8 2059.06 −0.004 +89.9
16 2059.14 −0.001 +90.9
32 2059.16 0.00 0.00
64 2061.29 +0.10 +6.7
128 2061.63 +0.12 +77.3
256 2061.62 +0.12 +76.1

Table 3
Percentage change in negative log-likelihood
(NLL) values for different learning rates.
Learning rate NLL % change

0.01 2064.54 +0.00
0.005 2064.19 −0.02
0.001 2065.49 +0.05
0.0005 2067.87 +0.12

The sensitivity analysis is conducted for the negative exponential kernel, which is discussed in Section 4.3. The study focuses
n the variation in the number of neurons employed in the neural networks, and the corresponding impact on the negative log-
ikelihood values. The results are presented in Table 2. The findings indicate that alterations in the number of neurons have an
nsignificant effect on the minimum negative log-likelihood values obtained, but they do impact the computational time required to
chieve optimal parameters. Table 2 demonstrates that using a smaller number of neurons results in increased computational time.
his can be attributed to the larger number of iterations required for the method to reach the stopping criteria. In other words,
s the number of neurons decreases, the optimization process takes longer to converge, leading to higher computational time. The
eural network with thirty two neurons has the lowest computational time. Therefore, we use a neural network with 32 neurons in
ur experiments to model the kernels.

Table 3 presents the percentage variation in the negative log-likelihood values linked to the optimal parameters obtained by
arying the learning rate for the output layer of the neural network. The learning rate for the hidden layer remains unchanged, and
s taken as ten percent of the learning rate for the output layer.

We find that the optimal network parameters obtained using varying learning rates results in similar negative log-likelihood
alues and therefore use a learning rate of 0.01 for all our experiments.

.6. Real data

.6.1. Financial dataset
In this study, we evaluate the efficacy of the NNNH method on high-frequency order book data pertaining to two of the most

requently traded cryptocurrencies, namely bitcoin and Ethereum. The data comprises of buy and sell trade records for the BTC-USD
bitcoin-US dollar) and ETH-USD (Ethereum-US Dollar) pairs. We streamed the Binance exchange order book data, as several popular
ryptocurrencies are traded in this exchange, and the exchange has high trade volumes. We obtain the tick-by-tick arrival times for
oth buy and sell trades from the exchange. The market is composed of makers and takers, with makers generating buy or sell orders
hat are not carried out immediately, thereby creating liquidity for that cryptocurrency. In contrast, takers place market orders that
re executed instantly, thereby taking away the liquidity.

The Binance exchange furnishes two streams of tick-by-tick data: trade arrival data and trade stream data. The trade arrival data
omprises of limit orders, which are orders placed with a specified price limit, and market orders, which are orders executed at the
revailing market price. Limit orders are executed when the best available market price reaches the set limit, while market orders
re executed instantly at the current best limit order. The Binance trade-stream data provides the timestamp of these order arrivals,
long with price and volume features, and a unique identifier for the buyer/seller. Since a single market order may necessitate
ultiple limit orders to fulfil the requested volume, several trades are recorded with a common identifier. Therefore, we cleaned

he dataset by filtering out the data with common IDs and retaining only the unique trade events. Finally, based on whether the
uyer was a market maker or taker, the trades were marked as either a buy or a sell market order.

Our analysis focuses exclusively on the trades conducted for the BTC-USD and ETH-USD pairs, which account for the predominant
rading volumes in the cryptocurrency exchange. The arrival time for market orders for these two pairs can be modelled as a four
imensional non-linear Hawkes process, i.e.,

First Dimension: Intensity process for the sell market orders for the BTC-USD pair
econd Dimension: Intensity process for the buy market orders for the BTC-USD pair
16
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Table 4
Summary of the crypto-currency market orders recorded on
December 7 2021 between 12:00 and 12:10 UTC.
Market order type BTC-USD ETH-USD Aggregate

Sell 4219 3480 7699
Buy 4374 2999 7373

Total 8593 6479 15 072

Fig. 13. Histogram for the inter event time arrivals of the BTC-USD sell trade.

Third Dimension: Intensity process for the sell market orders for the ETH-USD pair
ourth Dimension: Intensity process for the buy market orders for the ETH-USD pair.

The analysis was performed for the market orders arrival times on December 7 2021, between 12:00 to 12:10 (UTC) on the
Binance exchange. Table 4 summarizes the data after classifying the trades as buy or sell market order events.

Fig. 13 provides the histogram of the inter-arrival time of the sell BTC-USD market orders. The timestamps for order arrival are
in milliseconds.

Our aim is to employ the NNNH method to jointly model the intensity process of buy and sell market orders for BTC-USD and
ETH-USD currency pairs. This modelling approach enables us to gain insights into the causal relationships between the two pairs,
such as whether the arrival of a buy BTC-USD order affects the arrival of a sell ETH-USD market order. Furthermore, identifying
the functional form of the self and cross modulation due to the arrival of market orders is of interest. This highlights the necessity
of non-parametric estimation techniques, as the true form of the modulation function remains unknown. To achieve our objective,
we partition the dataset into train, validation, and test sets. We optimize the parameters of the model using stochastic gradients
computed on the train set and use the validation set for applying the early stopping criteria. Specifically, if there is no improvement
in negative log-likelihood values computed on the validation set for ten consecutive iterations, we stop training. Finally, we evaluate
the goodness of fit using the negative log-likelihood reported on the test set.

We adopt the widely used non-parametric methods, namely the WH and the EM method (Lewis and Mohler [15]), as reference
models. In Fig. 14, we compare the obtained kernels using the three methods. The corresponding negative log-likelihood values are
9630, 6732, and 6400 for the EM, WH, and NNNH methods, respectively. The estimated base intensities for BTC-USD sell, BTC-USD
buy, ETH-USD sell, and ETH-USD buy, in the order of appearance, using the NNNH method are 0.0028, 0.0032, 0.0021, and 0.0022,
respectively.

By examining Fig. 14, we can draw the following observations for the market orders that arrived during the training window:

• Significant self excitation is observed for both BTC-USD and ETH-USD buy and sell market orders.
• ETH-USD buy orders result in excitation of BTC-USD buy and BTC-USD sell orders.
• The self excitation of ETH-USD buy and sell orders is higher compared to their respective BTC-USD orders.
• A certain level of inhibition is observed in BTC-USD sell orders due to buy BTC-USD orders.
17
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Fig. 14. Fitted kernels for BTC-USD and ETH-USD sell-buy market orders estimated using the NNNH, the WH, and the EM methods.

Notably, all three methods effectively capture a lagged cross-excitation effect in BTC-USD sell orders caused by buy ETH-USD
buy orders.

Fig. 15 presents the QQ plot for the BTC-USD and ETH-USD order arrivals based on the EM, WH, and NNNH models. The sample
quantiles for the QQ plot are obtained from the test dataset. The results indicate that all three models make reasonably accurate
predictions. Notably, the NNNH method appears to have more precise predictions, particularly for BTC-USD and ETH-USD sell
orders, as evidenced by the visual assessment.

4.6.2. Neuron spike train dataset
In this study, we utilized the NNNH method to analyse a dataset of neuron spikes, which was obtained from an experiment

conducted by Engelhard et al. [48]. The primary objective of the experiment was to examine the relationship between unit recordings
from the motor cortex of monkeys and the position and grip strength of their hands as they utilized a joystick to manipulate a robotic
arm. Consistent with the approach taken by Aljadeff et al. [49], we analysed the data obtained from the nine simultaneous electrode
recordings. Although the dataset included additional information regarding hand motion, such as cursor trajectory and grip force,
our analysis was focused exclusively on the neuron spike train.

To provide a brief biological background about neuron spikes, we refer to Duval et al. [50]. Neurons employ an electrical wave
of short duration, known as the action potential or spike, to reliably transmit signals from one end to the other (Castelfranco and
Hartline [51]). Action potentials are all-or-none events and are triggered when the neuron’s membrane potential, which is the
electrical potential difference between the inside and the outside of the neuron, is sufficiently large. Between two successive action
potentials, the neuron adds up its inputs, causing changes in its membrane potential. When this potential reaches a sharp threshold,
the neuron fires a spike that propagates (Luo et al. [52]).

The histogram in Fig. 16 presents the inter-arrival times of spikes generated by a single neuron. Notably, the peak of the histogram
is marginally displaced from the origin, in contrast to the histogram of a conventional exponential distribution. This observation
may suggests the presence of an inhibitory process. To model the neuron spike train, we employed a non-linear Hawkes process
that is nine-dimensional. Each dimension of the process is associated with the intensity of neuron spike arrivals at an individual
electrode. We use the NNNH method to estimate the kernel functions and the base intensities for this process.

Table 5 gives the number of spike events for each neurons used for the analysis.
Table 6 reports the base intensity values for the arrival of neuron spikes at each electrode obtained from applying NNNH to

the neuron spike events. Furthermore, Fig. 17 visually presents a network diagram depicting the outcomes derived from the NNNH
estimation. This figure offers insights into both self-dependencies and mutual interactions among individual neurons. Additionally,
18
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Fig. 15. QQ plot comparing order arrivals of BTC-USD and ETH-USD using EM, WH, and NNNH methods.

Fig. 16. Histogram of inter-spike time intervals for neuron 1 in grip-and-reach task.

Table 5
Summary statistics of neuron spike data.
Neuron 1 2 3 4 5 6 7 8 9

No. of events 4121 1895 912 2509 221 2784 149 3854 1360

the figure includes a depiction of the kernel norm, denoted as |𝜙𝑑𝑗 |1, associated with each individual kernel. The kernel norm,
defined as |𝜙𝑑𝑗 |1 = ∫ ∞

0 𝜙𝑑𝑗𝑑𝑡, denotes the average count of events attributed to type 𝑑 that are triggered or decayed due to the
influence of type 𝑗 (Bacry et al. [53]). Also Fig. C.18 in Appendix C illustrates the interdependency among neurons derived from
the NNNH estimation. The observations drawn from the Fig. C.18 and network diagram in Fig. 17 suggest that the neurons not
19
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Table 6
Base intensities of neuron spike data obtained using the NNNH for the grip-and-reach task.
𝜇1 𝜇2 𝜇3 𝜇4 𝜇5 𝜇6 𝜇7 𝜇8 𝜇9
0.009 0.035 0.001 0.046 0.001 0.043 0.001 0.076 0.022

Fig. 17. A network representation of the inter-neuronal dependency generated through the NNNH method in a monkey grip-and-reach task is presented. Each
node within the graph corresponds to an individual neuron, while the edges signify the directional relationships between neurons, including self-dependency.
Notably, the numerical values associated with the edges denote the corresponding kernel norm values. Excitatory connections are denoted by a blue colour,
while inhibitory connections are highlighted in red.

only demonstrate self-dependency but also establish inter-dependency connections with each other. These self or mutual neuronal
dependencies manifest with varying degrees across different neurons. While the majority of neurons exhibit a decaying behaviour
in their dependencies, a subset of neurons showcases an excitatory relationship with others. This phenomenon indicates that a spike
occurring in a single neuron can trigger either an excitatory or inhibitory response in neighbouring neurons.

From Fig. C.18, it is observed that a majority of the neurons exhibit a self-inhibitory characteristic. Specifically, after firing,
eurons typically undergo a refractory period during which they cannot generate additional spikes. The inhibitory pattern evident
n the plots likely corresponds to this refractory period. Based on the figures, it is reasonable to assume that the refractory period
or the recorded motor neurons falls within the 20–60 ms range.

. Conclusion

This paper proposes a non-parametric method for estimating non-linear Hawkes processes. We call the method Neural Network
or Non-linear Hawkes processes or the NNNH method. The NNNH method involves modelling the kernels and the base intensity
unctions of a non-linear Hawkes process as individual neural networks. The parameters of the neural networks involved are jointly
stimated by maximizing the log-likelihood function using the batch stochastic gradient descent with Adam for adaptive learning.
o apply the SGD method, an unbiased estimator for the gradients with respect to the network parameters is proposed. The paper
rovides an efficient scheme to evaluate the integrated intensity and its gradients, which can be a computational bottleneck.

The effectiveness of the NNNH method in learning the underlying process is investigated through numerical experiments. Unlike
any recent neural network-based models that predict conditional intensities, the NNNH model retains the interpretability of the
awkes process by enabling the inference of the kernels rather than just direct prediction of the conditional intensities. The ability

o recover the kernels is desirable for understanding causal relationships between the arrivals in different dimensions, for instance.
he NNNH method performed satisfactorily for the diverse set of problems considered. We also see that the NNNH can be used
o estimate non-homogeneous Poisson process. The NNNH method is able to recover non-smooth kernels, kernels with negative
ntensities, and estimate other variants of the non-linear Hawkes processes.
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The NNNH approach is applied to examine the process of order arrivals for buy and sell transactions on the Binance exchange
n relation to the BTC-USD and ETH-USD currency pairs. We find evidence of both self and cross excitation in the order arrivals
or the two currency pairs. Notably, self excitation is observed to be significant for both currency pairs, while the cross dependence
xhibits an asymmetry whereby ETH-USD order arrivals are more strongly influenced by BTC-USD order arrivals than vice versa.

We applied the NNNH model to a publicly accessible dataset of neuron spikes obtained from the motor cortex of monkeys engaged
n a grip-and-reach task. As anticipated, the kernels obtained from the analysis exhibit self-inhibition, which could be associated with
he refractory period of the neurons. Our findings provide evidence of the NNNH method’s efficacy in analysing high-dimensional
atasets.

The NNNH method has a disadvantage in that the estimation of model parameters relies on the use of stochastic gradient descent
SGD), which updates the network parameters iteratively using first-order derivatives. Convergence of SGD-based methods can be
low, often requiring several iterations before the stopping criterion is met. However, the use of SGD makes the NNNH method
ell-suited for online learning, enabling the model to be trained on new data points that are continuously streaming in, as opposed

o a static dataset. Moreover, the NNNH method is amenable to parallel computing of the gradients for batch SGD. A potential
venue for future research is to extend the NNNH method to model marked non-linear Hawkes processes.
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ppendix A. Gradients of the neural network parameters

As both 𝜇𝑑 (𝑥) and 𝜙𝑑𝑗 (𝑥) has similar network, the gradients will also be similar. The gradient with respect to each of the
parameter𝜃𝑝 is given by,

∇𝜃𝑝𝜙𝑑𝑗 (𝑥) = ∇[

𝑏2 ,𝑎
𝑝
2 ,𝑎

𝑝
1 ,𝑏

𝑝
1

]

(

𝑏2 +
𝑃
∑

𝑖=1
𝑎𝑖2 max

(

𝑎𝑖1𝑥 + 𝑏
𝑖
1, 0

)

)

he gradients corresponding to each of the neural parameters were provided as,

∇𝑏2𝜙𝑑𝑗 (𝑥) = 1

∇𝑎𝑝2
𝜙𝑑𝑗 (𝑥) = max
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Appendix B. Integrated intensity function — network representation

Given the splitting criteria in Section 3.2,

∫

𝑠𝑞

𝑠𝑞−1
𝜆∗𝑑 (𝑠)𝑑𝑠 = ∫

𝑠𝑞

𝑠𝑞−1
max

(

𝜆𝑑 (𝑠), 0
)

𝑑𝑠,

If there are no zero crossings for max
(

𝜆𝑑 (𝑠), 0
)

within the interval [𝑠𝑞−1, 𝑠𝑞], then 𝜆∗𝑑 (𝑠) is linear in the interval. Also if 𝜆𝑑 (𝑠𝑞−1) > 0,
hen the network expression for the integrated intensity is given as,

∫

𝑠𝑞

𝑠𝑞−1
max

(

𝜆𝑑 (𝑠), 0
)

𝑑𝑠 =

[

∫

𝑠𝑞

𝑠𝑞−1
𝜆𝑑 (𝑠)𝑑𝑠

]

1𝜆𝑑 (𝑠𝑞−1)>0

=

[

∫

𝑠𝑞

𝑠𝑞−1
𝜇 +

∑

{𝑘,𝑖,𝑗}
𝑎𝑖2 max

(

𝑎𝑖1(𝑠 − 𝑡
𝑗
𝑘) + 𝑏

𝑖
1, 0

)

]

1𝜆𝑑 (𝑠𝑞−1)>0

=

[

∫

𝑠𝑞

𝑠𝑞−1
𝜇 +

∑

{𝑘,𝑖,𝑗}
𝑎𝑖2

[

𝑎𝑖1(𝑠 − 𝑡
𝑗
𝑘) + 𝑏

𝑖
1

]

1𝑎𝑖1(𝑠−𝑡
𝑗
𝑘)+𝑏

𝑖
1>0

]

1𝜆𝑑 (𝑠𝑞−1)>0

=

[

𝜇𝑠 +
∑

{𝑘,𝑖,𝑗}
𝑎𝑖2

[

𝑎𝑖1

(

𝑠2

2
− 𝑡𝑗𝑘𝑠

)

+ 𝑏𝑖1𝑠
]

1𝑎𝑖1(𝑠−𝑡
𝑗
𝑘)+𝑏

𝑖
1>0

]𝑠𝑞

𝑠𝑞−1

1𝜆𝑑 (𝑠𝑞−1)>0

Appendix C. Neuron spike train dataset — plots

See Fig. C.18.
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Fig. C.18. Kernels of motor neurons demonstrating the self-dependency and mutual dependency of neurons for the grip-and-reach task estimated by NNNH.
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