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We prove a couple of results on local continuous extension of proper holomorphic 
maps F : D → Ω, D, Ω � Cn, making local assumptions on ∂D and ∂Ω. The first 
result allows us to have much lower regularity, for the patches of ∂D, ∂Ω that are 
relevant, than in earlier results. The second result (and a result closely related to 
it) is in the spirit of a result by Forstnerič–Rosay. However, our assumptions allow 
∂Ω to contain boundary points of infinite type.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we present some results on local continuous extension of proper holomorphic maps F :
D → Ω, D, Ω � Cn, given local assumptions on ∂D and ∂Ω. Our results are motivated by the well-known 
work of Forstnerič–Rosay [10]. There is also extensive literature on the problem of global extension of proper 
holomorphic maps (see [9] and the references therein), from which too we take a few cues.

With F, D, and Ω as above, let p ∈ ∂D and let C(F, p) be the cluster set of F at p, defined as:

C(F, p) :=
{
w ∈ Cn : ∃ a sequence {zν} ⊂ D such that lim

ν→∞
zν = p and lim

ν→∞
F (zν) = w

}
.

If Ω is bounded, then C(F, p) �= ∅. F being proper, C(F, p) ⊂ ∂Ω. In [10], the “local assumptions” alluded 
to above are imposed on ∂D ∩U and ∂Ω ∩W , where U and W are neighbourhoods of p and q respectively, 
where q ∈ C(F, p). Since we will have occasion to mention the main result in [10] let us state it (also see 
[1,23,17] for results of a similar flavour as the following).

Result 1.1 ([10, Theorem 1.1]). Let D and Ω be domains in Cn, Ω bounded, and let F : D → Ω be a proper 
holomorphic map. Let p ∈ ∂D. Assume that there is a continuous, negative plurisubharmonic function ρ
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on D and a neighbourhood U of p such that ∂D ∩ U is a C1+ε submanifold of U for some ε > 0, and 
ρ(z) ≥ −δD(z) for all z ∈ U ∩ D. If the cluster set C(F, p) contains a point q at which ∂Ω is strongly 
pseudoconvex, then F extends continuously to p.

With W and q as above, Result 1.1 assumes ∂Ω ∩W to be strongly pseudoconvex. Later results — [1,23], 
for instance — weaken this requirement to admit certain families of domains Ω such that ∂Ω is of finite 
type at each point of ∂Ω ∩W . In this paper, we wish to extend this analysis and, in contrast, focus on the 
situation when, among other things, ∂Ω ∩W is not even C1-smooth or, if it is smooth, then q is of infinite 
type; see Examples 2.2 and 2.4, respectively.

Concerning the notation δD in Result 1.1: given an open set D � Cn and z ∈ D, we write δD(z) :=
dist(z, Cn \D). The idea of the proof in [10] (although not the details thereof) goes back to Vormoor [24]. 
The technique used in [10] relies on the classical Hopf Lemma for plurisubharmonic functions, which imposes 
constraints on the regularity of ∂Ω ∩W . For F, D, Ω, and p as above, and given a sequence {zν} ⊂ D such 
that zν → p, some form of a Hopf-type lemma is the simplest tool to control {F ′(zν)} — provided ∂Ω is at 
least C2 near {F (zν)} (see [13,21,7], for instance). We explore a different paradigm from the one in [10] that 
allows us to greatly lower the regularity of ∂D∩U and ∂Ω ∩W . Loosely speaking, instead of picking a point 
in C(F, p) and imposing conditions on ∂Ω near it, we consider an interior condition (i.e., on a suitable open 
set in Ω) which is notably less restrictive; see Theorem 1.5. Before we present this result, a few definitions:

Definition 1.2. A function ω : ([0, ∞), 0) → ([0, ∞), 0) is said to satisfy a Dini condition if ω is monotone 
increasing and 

∫ ε

0 r−1ω(r)dr < ∞ for some (hence for any) ε > 0.

Definition 1.3. Let D ⊂ Cn be a domain, p ∈ ∂D, and U be a neighbourhood of p. Let S := ∂D ∩ U .

(1) We say that S is a Lipschitz submanifold of U if for each ξ ∈ S, there exists a neighbourhood Nξ of ξ, 
Nξ ⊂ U , a unitary map Uξ, a constant rξ > 0, and a Lipschitz function ϕξ : Bn−1(0, rξ) ×(−rξ, rξ) → R

such that, writing the affine map z �→ Uξ(z − ξ) as Uξ, we have

Uξ(Nξ ∩D) ⊂ {(Z ′, Zn) ∈ Cn−1 ×C : Im(Zn) > ϕξ(Z ′,Re(Zn)), ‖Z ′‖ < rξ

and |Re(Zn)| < rξ}, (1.1)

Uξ(Nξ ∩ ∂D) = {(Z ′, Zn) ∈ Cn−1 ×C : Im(Zn) = ϕξ(Z ′,Re(Zn)), ‖Z ′‖ < rξ

and |Re(Zn)| < rξ}. (1.2)

(2) (Cf. Kukavica–Nyström [15], for instance) We say that S is a C1,Dini submanifold of U if there exists a 
function ω : ([0, ∞), 0) → ([0, ∞), 0) satisfying a Dini condition, and for each ξ ∈ S, there exist Nξ, Uξ, 
and rξ > 0 as described by (1) above, and a C1 function ϕξ : Bn−1(0, rξ) × (−rξ, rξ) → R such that

‖∇ϕξ(x) −∇ϕξ(y)‖ ≤ ω(‖x− y‖) ∀x, y ∈ Bn−1(0, rξ) × (−rξ, rξ),

and Uξ(Nξ ∩D) and Uξ(Nξ ∩ ∂D) are described by (1.1) and (1.2), respectively.

When n = 1, the expressions Bn−1(0, rξ) × (−rξ, rξ) and Cn−1 × C must be read as (−rξ, rξ) and C, 
respectively. The conditions (1.1) and (1.2) must then be read mutatis mutandis.

Before we give the next definition, let us fix some notations. An open right circular cone with aperture θ
is the following open set
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Γ(v, θ) := {z ∈ Cn : Re 〈z, v〉 > cos(θ/2) ‖z‖},

where v ∈ Cn is a unit vector and θ ∈ (0, π) (here 〈· , ·〉 denotes the standard Hermitian inner product on 
Cn). Given z0 ∈ Cn, the axis of the (translated) cone z0 + Γ(v, θ) is the ray {z0 + tv : t > 0}.

Definition 1.4. Let D ⊂ Cn be a domain and let W be an open set such that ∂D ∩ W is a non-empty 
∂D-open set. We say that D satisfies a uniform interior cone condition in W if, given any open set U ⊂ D

such that U � W , there exist constants rU > 0 and θU ∈ (0, π) such that for each w ∈ U , there exists 
ξw ∈ ∂D ∩W and a unit vector vw such that

• w lies on the axis of ξw + Γ(vw, θU ).
• w ∈ (ξw + Γ(vw, θU )) ∩Bn(ξw, rU ) ⊂ W ∩D.

Given a domain D ⊂ Cn, kD : D ×Cn → [0, ∞) will denote the Kobayashi pseudometric for D. We are 
now in a position to state our first theorem.

Theorem 1.5. Let D and Ω be domains in Cn and let F : D → Ω be a proper holomorphic map. Let p ∈ ∂D. 
Assume that there is a continuous, negative plurisubharmonic function ρ on D, a neighbourhood U of p, 
and a constant s ∈ (0, 1] such that ∂D ∩ U is a Lipschitz submanifold of U , and ρ(z) ≥ −(δD(z))s for all 
z ∈ U∩D. Suppose there exists a neighbourhood U∗ of p, U∗ � U , and an open set W such that ∂Ω ∩W �= ∅, 
and such that

• F (U∗ ∩D) � W , and
• Ω satisfies a uniform interior cone condition in W .

Suppose there exists a function M : ([0, ∞), 0) → ([0, ∞), 0) satisfying a Dini condition so that

kΩ(w; v) ≥ ‖v‖/M(δΩ(w)) ∀(w, v) ∈ (W ∩ Ω) ×Cn. (1.3)

Then, there exists a ∂D-neighbourhood V of p such that F extends to D ∪ V as a continuous map.

One may ask whether, given that Ω in Theorem 1.5 is assumed to satisfy a uniform interior cone condition 
in W , one also requires the condition (1.3). There is a vital point related to this, which is best discussed 
after we state our next theorem and prove Theorem 1.5; see Remark 6.1.

The proof of our next result follows many of the techniques used in [10]. Even so, with D, p, and U
as above, one is able to admit ∂D ∩ U having lower regularity than in [10]. The argument used in [10] is 
very delicate, and is necessitated by an aspect of the hypothesis of Forstnerič–Rosay: i.e., picking a point in 
C(F, p) and imposing conditions on ∂Ω near it (compare the hypotheses of Result 1.1 and Theorem 1.5). 
Given such a hypothesis, the proof relies on certain intrinsic constants matching up precisely. This is why, 
as hinted at earlier, one needs to assume C2 regularity near a point q ∈ C(F, p): which is done both in 
Result 1.1 and in Theorem 1.7. Our greatest departure from [10] involves a concept — namely, local log-
type convexity — introduced by Liu–Wang in [16]. The assumption of Ω being log-type convex near q (which 
substitutes the assumption of strong pseudoconvexity in Result 1.1) is broad enough to admit, on the one 
hand, domains Ω such that ∂Ω ∩W is a C2 submanifold and, on the other hand, Ω such that q is of infinite 
type. Quantitatively, this condition admits useful lower bounds for the Kobayashi distance for Ω, which is 
the delicate part of proving Theorem 1.7.

Before we present Theorem 1.7, we need to define log-type convexity. But first, we must introduce 
a quantity that is very natural in the context of bounded convex domains. For instance, by a theorem of 
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Graham [11,12] (see Result 5.1 below), this quantity provides an optimum estimate for the Kobayashi metric 
for such a domain. Let D be a bounded convex domain in Cn. For each z ∈ D and v ∈ Cn \ {0}, define

δD(z; v) := sup
{
r > 0 :

(
z + (rD) v

‖v‖

)
⊂ D

}
.

Definition 1.6 (Liu–Wang, [16, Definition 1.1]). A bounded convex domain D ⊂ Cn, n ≥ 2, is called log-type 
convex if there are constants C, ν > 0 such that

δD(z; v) ≤ C∣∣ log δD(z)
∣∣1+ν ∀z ∈ D and ∀v ∈ Cn \ {0}. (1.4)

Theorem 1.7. Let D and Ω be domains in Cn, n ≥ 2, Ω bounded, and let F : D → Ω be a proper holomorphic 
map. Let p ∈ ∂D and q ∈ C(F, p). Assume that there is a continuous, negative plurisubharmonic function ρ
on D and a neighbourhood U of p such that ∂D ∩ U is a C1,Dini submanifold of U , and ρ(z) ≥ −δD(z) for 
all z ∈ U ∩D. Suppose there exists a neighbourhood O of q such that

• ∂Ω ∩ O is a C2 submanifold of O, and
• O ∩ Ω is log-type convex.

Then, there exists a ∂D-neighbourhood V of p such that F extends to D ∪ V as a continuous map.

Remark 1.8. The reason Theorem 1.7 has been stated for domains in Cn with n ≥ 2 is because its proof 
relies crucially on results about log-type convex domains (see Section 5), which are defined as domains in 
Cn, n ≥ 2. Note, though, that any bounded convex domain in C satisfies the defining inequality (1.4)
for a log-type convex domain. However, the proofs of the above-mentioned results have been written with 
domains in higher dimensions in mind — additional arguments would be needed in the planar case. For this 
reason, we restrict Theorem 1.7 to n ≥ 2. Furthermore, one suspects that Theorem 1.7, suitably restated, 
is already known for planar domains.

We must mention a connection between Theorem 1.5 and the proof of Theorem 1.7. Note that the 
conclusion of Theorem 1.7 is stronger than that of Result 1.1. Now, the former conclusion can, in principle, 
be deduced under the assumptions in Result 1.1 too. This requires an auxiliary argument alluded to in [10]
(see page 241) — by which one may deduce Hölder continuity of the extension with exponent 1/2. That 
specific argument does not, in general, work in the context of Theorem 1.7. Instead, it turns out that once we 
get a continuous extension of F to p (for Theorem 1.7), we are able to use Theorem 1.5 and get the stronger 
conclusion. We can also estimate the modulus of continuity of the extension given by Theorems 1.5 and 1.7. 
As both theorems admit domains Ω such that ∂Ω ∩W contains points of infinite type (see Remark 6.1 and 
Example 2.4), one cannot expect these extensions, in general, to be Hölder. This leads to the much more 
technical discussion of the modulus of continuity of the extension, which we omit.

We should also emphasise that — with D, U , and p ∈ ∂D as in all the results above — the observations 
just made hold true for ∂D∩U having much lower regularity than in any earlier result on the present theme.

Readers familiar with the essence of the argument of Forstnerič–Rosay in [10] and with the results in 
[5] by Bracci et al. might ask whether the conclusions of Theorem 1.7 may be obtainable under weaker 
conditions on O ∩ Ω. We shall address this in Section 7: see Remark 7.1 and Theorem 7.2.

Given any two domains D, Ω ⊆ Cn, n ≥ 2, it is rare for the pair (D, Ω) to admit a proper holomorphic 
map F : D → Ω. Since the domains D, Ω in Theorems 1.5 and 1.7 must satisfy several conditions, the 
question arises: are there any domains D, Ω ⊆ Cn that satisfy these conditions and admit a non-trivial 
proper holomorphic map F : D → Ω when n ≥ 2? We provide examples of such domains in Section 2. Recall: 
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the conditions in Theorem 1.7 allow ∂Ω to be of infinite type at C(F, p). Section 2 provides an example of 
(D, Ω) where Ω has the latter property and there exists a non-trivial proper holomorphic D → Ω map. As 
for the proofs of Theorems 1.5 and 1.7: they are presented in Sections 6 and 7, respectively.

2. Two examples

In this section, we discuss the examples mentioned above. But we first explain the notation used below 
and in later sections (some of which has also been used without clarification in Section 1).

2.1. Common notations

(1) For v ∈ RN , ‖v‖ denotes the Euclidean norm. For any a ∈ RN and B ⊂ RN , we write dist(a, B) :=
inf{‖a − b‖ : b ∈ B}.

(2) Given a point z ∈ Cn and r > 0, Bn(z, r) denotes the open Eulidean ball with radius r and centre z. 
For simplicity, we write D := B1(0, 1).

(3) Given a domain D ⊂ Cn, KD : D ×D → [0, ∞) denotes the Kobayashi distance for D.

2.2. Examples

We are now in a position to present the examples referred to several times in Section 1. To this end, we 
need the following result by Sibony:

Result 2.1 (paraphrasing [22, Proposition 6]). Let D ⊂ Cn be a domain and z ∈ D. There exists a uniform 
constant α > 0 (i.e., it does not depend on z) such that if u is a negative plurisubharmonic function on D
that is of class C2 in a neighbourhood of z and satisfies

〈v, (HCu)(z)v〉 ≥ c‖v‖2 ∀v ∈ Cn,

where c is some positive constant, then

kD(z; v) ≥
( c

α

)1/2 ‖v‖
|u(z)|1/2 .

Here 〈· , ·〉 denotes the standard Hermitian inner product and HC denotes the complex Hessian.

Example 2.2. An example demonstrating that there exist domains D, Ω ⊂ C2, and a proper holomorphic 
map F : D → Ω such that D, Ω, and F satisfy the conditions stated in Theorem 1.5.

Let us define

D := {(z, w) ∈ C2 : |z|2 + |w| < 1},
Ω := {(z, w) ∈ C2 : |z| + |w| < 1},

and F (z, w) := (z2, w) for (z, w) ∈ D. Then F : D → Ω and it is clear that F is proper. Finally, let 
p = (1, 0) ∈ ∂D. That the stated conditions are satisfied will be discussed in two steps.

Step 1. We shall show that there exists a constant C̃ > 0 such that, writing

ρ(z, w) := C̃
(
|z|2 + |w| − 1

)
, (z, w) ∈ D,
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ρ satisfies the desired estimate in U ∩ D, where U := {(z, w) ∈ C2 : 9/10 < |z| < 11/10, |w| < 1}. 
Since ∂D is not smooth around p, this task will be slightly involved. Note that ρ is a continuous, negative, 
plurisubharmonic function on D.

Since D is Reinhardt, it is elementary to show that if (z, w) ∈ D, θz, θw ∈ R are such that z =
|z|eiθz , w = |w|eiθw , and (ζ, η) ∈ ∂D are such that ‖(z, w) − (ζ, η)‖ = δD(z, w), then

• ∃(ζ, η) ∈ ∂D with the above property such that ζ = |ζ|eiθz and η = |η|eiθw .
• For (ζ, η) as described by the above bullet point, 

∥∥(|z|, |w|)− (
|ζ|, |η|

)∥∥ = δD
(
|z|, |w|

)
.

Due to the above, it suffices to show that

ρ
(
|z|, |w|

)
≥ −δD

(
|z|, |w|

)
∀(z, w) : |z|2 + |w| < 1, 9/10 < |z| < 1, |w| < 1/10. (2.1)

Clearly, to establish (2.1), we need to estimate the infimum of the set S(x0, y0) := {‖(x, y) − (x0, y0)‖ :
x2+|y| = 1}, having fixed (x0, y0) such that 9/10 < x0 < 1, 0 ≤ y0 < 1/10, and x0

2+y0 < 1. It is elementary 
to show that, as the curve x2+|y| = 1 has a non-smooth point at (1, 0) and bounds a convex region, S(x0, y0)
must attain its minimum in the set {(x, y) ∈ R × (0, ∞) : x2 + y = 1}, which is a smooth curve C . So, we 
can apply the method of Lagrange multipliers to deduce that if S(x0, y0) attains its minimum at (X, Y ), 
then (X, Y ) satisfies

2X3 + (2y0 − 1)X − x0 = 0, (2.2)
X − x0

Y − y0
= 2X. (2.3)

To estimate min S(x0, y0), we define an auxiliary function φ : R → R, φ(x) := 2x3 + (2y0 − 1)x − x0. 
Independent of the choice of y0, φ is strictly increasing on [1/

√
6, ∞). By the nature of the curve C and 

the choice of x0, it follows that 9/10 < x0 < X < 1. Thus, in order to locate X, it suffices to examine 
φ|[9/10,1]. Let C := sup{6x2 + (2y − 1) : x ∈ [9/10, 1], y ∈ [0, 1/10]}. Since supx∈[9/10,1] φ

′(x) ≤ C, writing 
A = φ(9/10), B = φ(1) we have

|φ(x) − φ(x′)| ≤ C|x− x′| ∀x, x′ ∈ [9/10, 1]

⇒
∣∣φ−1(a) − φ−1(a′)

∣∣ ≥ C−1|a− a′| ∀a, a′ ∈ [A,B]. (2.4)

Thus, by (2.2) and (2.4), since X is a root of (2.2),

|X − x0| =
∣∣φ−1(0) − φ−1(φ(x0))

∣∣ ≥ C−1|φ(x0)| = 2x0

C

∣∣x2
0 + y0 − 1

∣∣.
From the above inequality, we deduce

minS(x0, y0) =
√

(X − x0)2 + (Y − y0)2 ≥ |X − x0| ≥
9

5C
∣∣x2

0 + y0 − 1
∣∣. (2.5)

We set C̃ = 9
5C . Then, (2.5) implies ρ(x0, y0) ≥ − minS(x0, y0). Recalling the purpose of the set 

S(x0, y0), minS(|z|, |w|) = δD(|z|, |w|) for the above mentioned constraints. Thus, the last inequality gives 
us (2.1). By the discussion preceding (2.1),

ρ(z, w) ≥ −δD(z, w) ∀(z, w) ∈ U ∩D.

Step 2. We shall now show that kΩ satisfies the desired estimate in (W ∩ Ω) × C2 where W :=
B2((1, 0), δ), δ > 0 is small enough — with M(t) := c̃ t1/2, t ≥ 0, for some c̃ > 0.
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Clearly, u(z, w) := |z| + |w| − 1, (z, w) ∈ Ω, is negative, plurisubharmonic on Ω. Note that u is smooth 
at a given point (z, w) ∈ W ∩Ω if and only if w �= 0. To establish the required lower bound on kΩ at smooth 
points of u, we will use Result 2.1. For the non-smooth points, we will use the convexity of Ω and apply the 
estimate by Graham as given by Result 5.1.

Since Ω is Reinhardt, it satisfies the same properties as described by the bullet points (prior to (2.1)) in 
Step 1. Thus, using coordinate geometry, it is elementary to see that

δΩ(z, w) = 1 − |z| − |w|√
2

= |u(z, w)|√
2

. (2.6)

Let (z, w) ∈ W ∩ Ω with w �= 0. It is easy to compute that

〈v, (HCu)(z, w)v〉 = 1
4

(
|v1|2
|z| + |v2|2

|w|

)
≥ ‖v‖2

4 ∀v = (v1, v2) ∈ C2.

Then, by Result 2.1 and (2.6), there exists β > 0 such that

kΩ((z, w); v) ≥ β‖v‖
(δΩ(z, w))1/2

∀(z, w) ∈ W ∩ Ω with w �= 0 and ∀v ∈ C2. (2.7)

Now, let (z, w) ∈ W ∩ Ω with w = 0 and let v = (v1, v2) ∈ C2. Write z = |z|eiθz , vk = |vk|eiθk
where θz, θk ∈ R, k = 1, 2. By the invariance of kΩ under the automorphism Ω � (z, w) �→
(e−iθzz, e−i(−θz+θ1−θ2)w

)
, we get

kΩ((z, 0); v) = kΩ
(
(|z|, 0); ei(θ1−θz)(|v1|, |v2|

))
≥ ‖v‖

2 δΩ
(
(|z|, 0); ei(θ1−θz)

(
|v1|, |v2|

))
= ‖v‖

2 δΩ
(
(|z|, 0);

(
|v1|, |v2|

)) , (2.8)

where the inequality is due to Result 5.1. It is easy to see that

δΩ
(
(|z|, 0);

(
|v1|, |v2|

))
≤
∥∥(|z|, 0) − (1, 0)

∥∥ =
√

2 δΩ(z, 0).

Hence, (2.8) implies

kΩ((z, 0); v) ≥ ‖v‖
2
√

2 δΩ(z, 0)
∀z : (z, 0) ∈ W ∩ Ω and ∀v ∈ C2. (2.9)

If we set c̃ = max
(
1/β, 2

√
2
)
, then from (2.7) and (2.9) we get the estimate

kΩ((z, w); v) ≥ ‖v‖/M(δΩ(z, w)) ∀(z, w) ∈ W ∩ Ω and ∀v ∈ C2

for the M introduced above.
All that remains is to produce a neighbourhood U∗ of (1, 0) such that (U∗∩D) is mapped by F as desired. 

Now, the main point of this example is — given that proper holomorphic maps between a given pair of 
domains in Cn are rare when n ≥ 2 — to show that there exist domains D and Ω satisfying the respective 
geometric conditions imposed by Theorem 1.5 that admit a proper non-trivial holomorphic map F : D → Ω. 
In the present example, F is holomorphic on C2. Clearly, it extends continuously to a ∂D-neighbourhood, 
say V , of (1, 0). The existence of the desired U∗ easily follows from the continuity of F at p = (1, 0). �
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Recall the discussion in Section 1 on how the assumptions stated in Theorem 1.7 admit continuous 
extension of F : D → Ω even if q ∈ ∂Ω — D, Ω, F , and q as in the statement of Theorem 1.7 — is a 
point of infinite type. This is very different from the assumptions encountered in previous results on local 
extension of proper holomorphic maps. For this reason, an example, showing that the result implicit in 
the first sentence of this paragraph isn’t vacuously true, is desirable. In discussing such an example, the 
following well-known result (see, for instance, [14, Chapter 3]) will be useful.

Result 2.3. If D is a domain in Cn, p ∈ ∂D, and ∂D is a C2 submanifold of some neighbourhood N of p, 
then there exists an ε > 0 such that Bn(p, ε) � N and:

• δD(z) = δN∩D(z) for all z ∈ Bn(p, ε) ∩D.
• If we define

ρ̃(z) :=
{
−δD(z), if z ∈ D,

δ(Cn\D)(z), if z ∈ Cn \D,

then ρ̃ ∈ C2(Bn(p, ε)
)
. Moreover, ρ̃ is a local defining function for D on Bn(p, ε).

Example 2.4. An example demonstrating that there exist domains D, Ω ⊂ C2, and a proper holomorphic 
map F : D → Ω such that D, Ω, and F satisfy the conditions stated in Theorem 1.7 and such that, with 
p ∈ ∂D and for q ∈ C(F, p), ∂Ω is of infinite type at q.

Let us define the function ϕ : [0, ∞) → R as

ϕ(x) :=
{

exp
(
− 1

x1/2

)
, if x �= 0,

0, otherwise.

Now, set

D := {(z, w) ∈ C2 : Rez > ϕ(|w|2)} ∩ {(z, w) ∈ C2 : |z|2 + |w|4 < 1},
Ω := {(z, w) ∈ C2 : Rez > ϕ(|w|)} ∩B2((0, 0), 1),

and F (z, w) := (z, w2) for (z, w) ∈ D. Then F : D → Ω and it is clear that F is proper. Let p = (0, 0) ∈ ∂D

and q = (0, 0) ∈ C(F, p). Take O := B2(q, r), where r ∈ (0, 1) is such that O ∩ Ω is log-type convex (see 
[16, Example 1.3]). Consider the function ρ : D → R defined as

ρ(z, w) := ϕ(|w|2) − Rez, (z, w) ∈ D.

By definition, ρ is smooth and negative in D. A computation gives

∂2ρ

∂w∂w
(z, w) =

⎧⎨⎩4−1|w|−3 exp
(
− 1

|w|
)( 1

|w| − 1
)
, if w �= 0,

0, otherwise.

This implies that ρ is a plurisubharmonic function on D.
We will now show that there exist a constant C > 0 and a neighbourhood U of p such that the plurisub-

harmonic function D � (z, w) �→ Cρ(z, w) satisfies the desired estimate in U∩D. Since ∂D is smooth near p, 
there exist a neighbourhood N of p and ε > 0 with B2(p, ε) � N � {(z, w) ∈ C2 : |z|2 + |w|4 < 1} such that 
the conclusion of Result 2.3 holds and such that ρ|N is a local defining function for D at p ∈ ∂D. Now, since 
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the function ρ̃ as in Result 2.3 is a local defining function of D on B2(p, ε), there exists a neighbourhood 
N ′ of ∂D ∩B2(p, ε) and a positive function H ∈ C2(N ′) satisfying

ρ̃(z, w) = ρ(z, w)H(z, w) ∀(z, w) ∈ N ′.

So, fixing a neighbourhood U of p such that U � N ′, write C := infU H > 0. Then,

Cρ(z, w) ≥ −δD(z, w) ∀(z, w) ∈ U ∩D.

Finally, note that ∂D is of infinite type at q = (0, 0). Hence, the triple (D, Ω, F ) has the desired 
properties. �

3. Preliminary analytic lemmas

This short section is devoted to a few facts from analysis that would be needed in the proofs of the 
theorems stated in Section 1.

Lemma 3.1. Let p ∈ ∂D and U, U∗ be as in Theorem 1.5. Then (in the notation of Definition 1.3) there 
exist a neighbourhood V of p, V � Np ∩ U∗ and a constant C > 1 such that

δD(z) ≤ Y (Up(z)) ≤ CδD(z) ∀z ∈ V ∩D

where we define Y (Z ′, Zn) := Im(Zn) − ϕp(Z ′, Re(Zn)) for (Z ′, Zn) ∈ Bn(0, rp).

Proof. The first inequality is immediate. To prove the second inequality, first we choose a neighbourhood 
V of p, V � Np ∩ U∗ such that diam(V ) < dist(V , Cn \ Np). Then

δD(z) = δNp ∩D(z) ∀z ∈ V ∩D.

The choice of V ensures that if z ∈ V , there exists wz ∈ ∂D ∩Np such that δD(z) = ‖z − wz‖.
Now, clearly the function Y is Lipschitz with some Lipschitz constant C > 1 and it vanishes on Up(∂D∩

Np). Thus, denoting Z = Up(z), we get

Y (Z) = ‖Y (Up(z)) − Y (Up(wz))‖ ≤ C‖Up(z) − Up(wz)‖ = C‖z − wz‖
= CδD(z) ∀z ∈ V ∩D.

Hence the result. �
The next result is the first step on the path — via the distance decreasing property for the Kobayashi 

metric — to get an integrable bound on the norm of the total derivative of the map F in the proof of 
Theorem 1.5. This will allow us to use a type of “Hardy–Littlewood trick” to establish local continuous 
extension of proper holomorphic maps. The latter idea, which we will adapt to our low-regularity setting, is 
inspired by the proof of [7, Lemma 8] (where the relevant estimates are absent, but the idea for obtaining 
them is hinted at).

Result 3.2 (paraphrasing [19, Proposition 1.4]). Let D ⊂ Cn be a domain and W be an open set such that 
∂D ∩ W is a non-empty ∂D-open set. Suppose D satisfies a uniform interior cone condition in W . Let 
ϕ : D → [−∞, 0) be a plurisubharmonic function. Then, given any open set U ⊂ D with U � W , there exist 
constants CU > 0 and αU > 1 such that
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ϕ(w) ≤ −CU (δD(w))αU ∀w ∈ U . (3.1)

Remark 3.3. We remark here that the above is a local version of the Hopf Lemma due to Mercer given by 
[19, Proposition 1.4]. The proof of the local version is routine and we shall skip it. (Indeed, a lemma of 
Hopf-type is typically a local statement; Mercer’s result was formulated as a global statement presumably 
because, then, its proof is similar to that of the global statement given by [8, Proposition 12.2].)

The next lemma is an application of the above version of a Hopf-type lemma — suited for the geometry 
of W ∩ Ω — applied to the “pushforward” of the plurisubharmonic function ρ on D. To be precise, (using 
classical results for proper holomorphic maps) the function

τ : Ω → R, τ(w) := max {ρ(z) : z ∈ F−1{w}}, w ∈ Ω,

is a continuous, negative, plurisubharmonic function on Ω. Having this we now prove

Lemma 3.4. Let U∗ be the open set and F : D → Ω be the map occurring in Theorem 1.5. Let τ be as defined 
above. Then, there exist constants (which depend on U∗) α∗ > 1 and C∗ > 0 such that

τ(w) ≤ −C∗(δΩ(w))α∗ ∀w ∈ F (U∗ ∩D).

Proof. Let W ∗ be an open set such that F (U∗ ∩D) � W ∗ � W . Since Ω satisfies a uniform interior cone 
condition in W , by Result 3.2, there exist C∗ := CW∗∩Ω > 0 and α∗ := αW∗∩Ω > 1 such that

τ(w) ≤ −C∗(δΩ(w))α∗ ∀w ∈ W ∗ ∩ Ω.

This proves the lemma. �
4. Some geometric lemmas

In this section we wish to obtain an estimate on KD, where D is as in Theorem 1.7, similar to the estimate 
provided by Forstnerič–Rosay in [10, Proposition 2.5]. Their estimate is obtained by embedding a specific 
simply-connected bounded planar domain D into the domain they considered in [10, Proposition 2.5]. The 
boundary of the domain that they considered is of class C1,ε near a given boundary point. However, in 
our situation the boundary near p ∈ ∂D has lower (namely, C1,Dini) regularity, so we need to modify their 
construction. For this reason, we introduce a class of domains D(β, ε), β, ε > 0 (see the definition below) 
— analogous to D in [10, Proposition 2.5] — that can be embedded into D for a suitable choice of (β, ε). 
These domains appeared in the work of Maitra [18]. In fact, we shall adapt some of the arguments in [18, 
Proposition 4.2] to the present case.

In this discussion we need some definitions. Let ω, ϕp, and rp be as introduced by Definition 1.3-(2). 
Here n ≥ 2. Let us define ωp : [0, 2

√
2rp) → [0, ∞) as

ωp(r) := sup
{
‖∇ϕp(x) −∇ϕp(y)‖ : x, y ∈ Bn−1(0, rp) × (−rp, rp), ‖x− y‖ ≤ r

}
. (4.1)

One can check that ωp satisfies the following properties:

• ωp is monotone increasing.
• For any r ∈ [0, 2

√
2rp), ωp(r) ≤ ω(r). In particular, ωp satisfies a Dini condition.

• ωp is sub-additive, i.e., given σ, τ ≥ 0, σ + τ < 2
√

2rp, ωp(σ + τ) ≤ ωp(σ) + ωp(τ).
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Now we define h : (−2
√

2rp, 2
√

2rp) → [0, ∞) as

h(t) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t∫
0

ωp(r)dr, if t ≥ 0,

0∫
t

ωp(−r)dr, if t < 0.

(4.2)

It is easy to see that h is strictly increasing on [0, 2
√

2rp), strictly decreasing on (−2
√

2rp, 0], and h(0) =
h′(0) = 0. Now, given β, ε > 0, define the domain

D(β, ε) := {ζ = s + it ∈ C : |t| < ε, βh(t) < s < ε}.

With these definitions we now prove

Proposition 4.1. Let D, U be as in Theorem 1.7. Let p ∈ ∂D ∩U and Np be as given by Definition 1.3-(2). 
For ξ ∈ ∂D ∩ U , let Ψξ : C → Cn denote the C-affine map ζ �→ ξ + ζηξ (where ηξ denotes the unit inward 
normal vector at ξ). Then, for any neighbourhood V of p, V � Np, there exist constants (that depend on 
V ) β, ε > 0 such that Ψξ(D(β, ε)) ⊂ U ∩D for all ξ ∈ ∂D ∩ V .

Proof. Let Up, ϕp be as in Definition 1.3-(2). Let us denote S̃ = Up(S) for any subset S ⊂ Cn. We shall 
indicate that we are working in the coordinate system given by Up by using Z1, . . . , Zn, where (Z1, . . . , Zn) =
Z = Up(z). Clearly, ρ(Z) := ϕp(Z ′, ReZn) − ImZn, Z = (Z ′, Zn) ∈ Ñp, is a local defining function for D̃
near 0 ∈ ∂D̃. Since ωp as defined in (4.1) is increasing, we have

‖∇ρ(Z) −∇ρ(W )‖ ≤ ωp

(
‖Z −W‖

)
∀Z, W ∈ Ñp. (4.3)

Since V � Np, m ≡ mV := inf
{
‖Dρ

(
ξ̃
)
‖ : ξ̃ ∈ ∂D̃ ∩ Ṽ

}
> 0. Now choose β ≡ βV > 1 such that 

1/β ≤ m
/
4
√

2. The need for such a choice for β will become evident later. Take rV > 0 with rV < rp
satisfying 

(⋃
ξ∈∂D∩V Bn(ξ, rV )

)
∩D ⊂ Np ∩D. Also, recall that the function h as defined in (4.2) satisfies 

h′(0) = 0. So, we can choose a sufficiently small ε ≡ εV > 0 such that

√
2ε < rV and x/h−1(x) < 1/β ∀x ∈ (0, ε). (4.4)

It is clear that with the choice of β, ε above, D(β, ε) ⊂ D(0, rV ). It suffices to show that 
Up

(
Ψξ(D(β, ε))

)
⊂ Ñp∩D̃ for all ξ ∈ ∂D∩V . Fix ξ ∈ ∂D∩V , ζ = s +it ∈ D(β, ε). Now, Up(ξ+ζηξ) = ξ̃+ζη̃ξ

where we write ξ̃ := Up(ξ), η̃ξ := Up(ηξ). Then, by the Fundamental Theorem of Calculus,

ρ
(
ξ̃ + ζη̃ξ

)
= ρ

(
ξ̃
)

+ Dρ
(
ξ̃
)(
ζη̃ξ

)
+

1∫
0

(
Dρ

(
ξ̃ + xζη̃ξ

)
−Dρ

(
ξ̃
))(

ζη̃ξ
)
dx

= s
〈
∇ρ

(
ξ̃
)
| η̃ξ

〉
+ t

〈
∇ρ

(
ξ̃
)
| J

(
η̃ξ
)〉

+
1∫

0

〈
∇ρ

(
ξ̃ + xζη̃ξ

)
−∇ρ

(
ξ̃
)
| ζη̃ξ

〉
dx,

where 〈 · | · 〉 denotes the standard inner product on R2n and J : R2n → R2n is the standard almost complex 
structure. Now, Up being unitary, η̃ξ = −∇ρ

(
ξ̃
)/

‖∇ρ
(
ξ̃
)
‖. Thus, using (4.3), the last equation gives
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ρ
(
ξ̃ + ζη̃ξ

)
≤ −sm + |ζ|

1∫
0

ωp(x|ζ|) dx. (4.5)

Since ζ = s + it ∈ D(β, ε), in view of (4.4)

|ζ|2 ≤ s2 +
(
h−1(s/β)

)2 =
(
h−1(s/β)

)2(
β2
( (s/β)
h−1(s/β)

)2
+ 1

)
≤ 2

(
h−1(s/β)

)2
.

In view of this estimate, (4.5) implies

ρ
(
ξ̃ + ζη̃ξ

)
≤ −sm +

√
2h−1(s/β)

1∫
0

ωp

(
2xh−1(s/β)

)
dx

≤ −sm + 2
√

2h−1(s/β)
1∫

0

ωp

(
xh−1(s/β)

)
dx

= −sm + 2
√

2
h−1(s/β)∫

0

ωp(u) du = −sm + 2
√

2s/β ≤ −sm + sm/2 < 0,

where the second inequality is due to the sub-additivity of ωp and the last inequality is due to our choice of 
β. This shows that ξ̃ + ζη̃ξ ∈ Ñp ∩ D̃ for all ζ ∈ D(β, ε). Hence the result. �

In order to present the next two results, we require a definition and some related remarks.

Definition 4.2. A bounded domain D � C is called a model domain if D is an open subset of {ζ ∈ C : Re ζ >

0} that is symmetric about R, whose boundary is a Jordan curve with 0 ∈ ∂D, and such that, if g denotes 
the unique biholomorphic mapping of D onto D such that g(D∩R) = (−1, 1) and g(0) = 1, then the limit

lim
D�ζ→0

g(ζ) − 1
ζ

(4.6)

exists and is non-zero.

Remark 4.3. Since D in Definition 4.2 is enclosed by a Jordan curve, it follows from Carathéodory’s theorem 
that any biholomorphic map G of D onto D extends to a homeomorphism from D to D. Thus, for such a map, 
G(0) makes sense. Now, it is classical that a biholomorphic map g : D onto−−−→ D such that g(D∩R) = (−1, 1)
and g(0) = 1 exists and is unique.

Remark 4.4. The domains D(β, ε), β, ε > 0, introduced above are examples of model domains. It is obvious 
from its construction that D(β, ε) has the geometric properties that a model domain must have. As for the 
existence of the limit (4.6) for the biholomorphic map gβ,ε : D(β, ε) → D that maps D(β, ε) ∩R onto (−1, 1)
and such that gβ,ε(0) = 1 and the condition on it: the desired condition is given by [18, Lemma 4.3] by 
Maitra combined with [25, Theorem 1] by Warschawski.

The next proposition will lead to our desired estimate on KD as discussed in the beginning of this section 
(for D as in Theorem 1.7). Although this proposition is stated for domains that satisfy very general conditions 
near a given boundary point, we shall apply it to domains that satisfy a much more geometrical hypothesis. 
To be explicit, the domains that are considered in Theorem 1.7 will be shown to satisfy the hypothesis of 
the following proposition. Here ηξ will denote the unit inward normal vector to ∂D at ξ ∈ ∂D ∩ V .
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Proposition 4.5. Let D be a domain in Cn and p ∈ ∂D. Suppose D admits a pair of balls Bn(p, 4�) =: V

and Bn(p, �) =: V ′ such that ∂D ∩ V is a connected C1-submanifold of V , and such that

• ‖ηξ − ηp‖ < 1/8 for every ξ ∈ ∂D ∩ V .
• For each z ∈ V ′ ∩D, there exists a point ξ ∈ ∂D ∩ V such that δD(z) = ‖z − ξ‖.
• There exists a constant c ∈ (5/8, 1) such that

z + tηξ ∈ D and δD(z + tηξ) > ct

for every t ∈ [0, 2�], for every z ∈ V ′ ∩D, and every ξ ∈ ∂D ∩ V .

For ξ ∈ ∂D ∩ V , let Ψξ : C → Cn denote the C-affine map ζ �→ ξ + ζηξ. Assume that there exists a model 
domain D ⊂ C such that Ψξ(D) ⊂ D for each ξ ∈ ∂D ∩ V . Then, there exists a constant C > 0 such that 
for each z1, z2 ∈ V ′ ∩D,

KD(z1, z2) ≤
2∑

j=1

1
2 log 1

δD(zj)
−

2∑
j=1

1
2 log

(
1

δD(zj) + ‖z2 − z1‖

)
+ C.

The above result is, in essence, [10, Proposition 2.5] by Forstnerič–Rosay with the conditions that make 
the proof of the latter work emphasised in the hypothesis of Proposition 4.5 in place of the local C1,ε condition 
of Forstnerič–Rosay. Thus, the proof of Proposition 4.5 is nearly verbatim the proof of [10, Proposition 2.5]
(keeping careful track of where U and Ũ are required, which correspond to V ′ and V , respectively, in our 
case). Therefore, we shall omit the proof of the above proposition.

The following is the estimate on KD alluded to at the beginning of this section.

Corollary 4.6. Let D ⊂ Cn be a domain, p ∈ ∂D, and U be a neighbourhood of p such that ∂D ∩ U is a 
C1,Dini submanifold of U . Then, there exists a neighbourhood U ′ of p and a constant C > 0 such that for 
each z1, z2 ∈ U ′ ∩D,

KD(z1, z2) ≤
2∑

j=1

1
2 log 1

δD(zj)
−

2∑
j=1

1
2 log

(
1

δD(zj) + ‖z2 − z1‖

)
+ C.

Proof. The set Np below will be as given by Definition 1.3-(2). Since ∂D ∩U is a C1,Dini submanifold of U , 
we can choose a sufficiently small � > 0 such that Bn(p, 4�) � Np and such that — writing V := Bn(p, 4�), 
V ′ := Bn(p, �) — all but the last condition stated in Proposition 4.5 are satisfied. Now, by Proposition 4.1, 
there exist constants β, ε > 0 such that Ψξ(D(β, ε)) ⊂ U∩D for all ξ ∈ ∂D∩V . Thus, in view of Remark 4.4, 
the result follows immediately from Proposition 4.5 (by taking U ′ = V ′). �
5. Estimates near a locally log-type convex boundary

This section is devoted to obtaining a useful lower bound for KΩ, where Ω is as in Theorem 1.7. Such a 
lower bound is the delicate part of the proof of Theorem 1.7. To this end, we first state a couple of results 
from the literature.

Result 5.1 (Graham, [11,12]). Let Ω be a bounded convex domain in Cn. Then:

‖v‖ ≤ kΩ(z; v) ≤ ‖v‖ ∀z ∈ Ω and ∀v ∈ Cn \ {0}.
2δΩ(z; v) δΩ(z; v)
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Here, the quantity δΩ(z; v) is as introduced in Section 1.

Result 5.2 (paraphrasing [16, Theorem 3.2] by Liu–Wang). Let Ω be a bounded domain, q ∈ ∂Ω, and suppose 
there exists a neighbourhood O of q such that O ∩ Ω is log-type convex. Then, there exists a neighbourhood 
W of q, W � O, and a constant Cq > 1 such that

kO∩Ω(w; v) ≤ CqkΩ(w; v) ∀w ∈ W ∩ Ω and ∀v ∈ Cn.

Remark 5.3. [16, Theorem 3.2] has a seemingly more technical statement than the above paraphrasing. We 
get the above — in the language of [16, Theorem 3.2] — by focusing attention to ξ = q ∈ ∂Ω ∩ O. Then, 
W is the ball Bn(q, ε), where ε > 0 is as given by the latter theorem. The constant Cq > 1, then, is

exp
(
c

(
log 1

supx∈W∩Ω δΩ(x)

)−(1+ν)
)
,

where c, ν > 0 are as given by [16, Theorem 3.2].

Lemma 5.4. Let Ω, q ∈ ∂Ω, and O �open Cn be as in the statement of Result 5.2. Then, there exists a 
neighbourhood W of q, W � O, and constants c, ν > 0 such that

kΩ(w; v) ≥ c‖v‖
(

log 1
δΩ(w)

)1+ν

∀w ∈ W ∩ Ω and ∀v ∈ Cn.

Proof. Since O ∩ Ω is log-type convex, there are constants C, ν > 0 such that

δO∩Ω(w; v) ≤ C
∣∣ log δO∩Ω(w)

∣∣−(1+ν) ∀w ∈ O ∩ Ω and ∀v ∈ Cn.

We now choose a sufficiently small neighbourhood W of q with W � O such that the conclusion of 
Result 5.2 holds and such that δO∩Ω(w) = δΩ(w) < 1 for all w ∈ W ∩ Ω. Then, applying Result 5.1 to 
kO∩Ω and using the inequality above, the result follows. �

The next proposition relies on the convex domain O ∩Ω, where O and Ω are as introduced above, having 
a geometry that is favourable for the estimates that we require. At this stage, we need to introduce a new 
notion; we wish to have a brief discussion about Goldilocks domains, which were introduced by Bharali–
Zimmer [4, Definition 1.1]. In the proposition below, a key step is to show that O∩Ω is a Goldilocks domain. 
This fact and the convexity of O ∩ Ω together will allow us to prove this result. First, we need a couple of 
definitions:

Let Ω ⊂ Cn be a bounded domain and r > 0. Define

MΩ(r) := sup
{

1
kΩ(w; v) : δΩ(w) ≤ r, ‖v‖ = 1

}
.

We say that Ω is a Goldilocks domain if

(1) for some (hence any) ε > 0 we have

ε∫ 1
r
MΩ(r)dr < ∞, and
0
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(2) for each w0 ∈ Ω there exist constants α, β > 0 (that depend on w0) such that

KΩ(w,w0) ≤ α + β log 1
δΩ(w) ∀w ∈ Ω.

See [4, Remark 1.3] for an explanation of the geometric significance of the two conditions above.

Proposition 5.5. Let Ω, q ∈ ∂Ω, and O �open Cn be as in the statement of Result 5.2. Then, for ξ ∈
(∂Ω ∩ O) \ {q}, there exist constants ε, K > 0 such that Bn(q, ε), Bn(ξ, ε) ⊂ O and

KO∩Ω(w1, w2) ≥
1
2 log 1

δΩ(w1)
+ 1

2 log 1
δΩ(w2)

−K (5.1)

for all w1 ∈ Bn(q, ε) ∩ Ω, for all w2 ∈ Bn(ξ, ε) ∩ Ω.

Proof. This result will be proved in the following two steps.

Step 1. Showing that O ∩ Ω is a Goldilocks domain

First, we shall prove that

ε∫
0

1
r
MO∩Ω(r)dr < ∞

for some (hence for any) ε > 0. Fix 0 < ε < 1, r ∈ (0, ε], and v ∈ Cn with ‖v‖ = 1. Let w ∈ O ∩Ω be such 
that δO∩Ω(w) ≤ r. By Result 5.1 we get

1
kO∩Ω(w; v) ≤ 2δO∩Ω(w; v) ≤ 2C

(
log 1

δO∩Ω(w)

)−(1+ν)

≤ 2C
(

log 1
r

)−(1+ν)

,

where C, ν > 0 are as given by Definition 1.6. Since 
∫ ε

0 r−1( log(1/r)
)−(1+ν)

dr < ∞, our desired integral is 
also convergent.

Now, O ∩ Ω being convex, by [4, Lemma 2.3], for each w0 ∈ O ∩ Ω there are constants α, β > 0 (that 
depend on w0) such that

KO∩Ω(w0, w) ≤ α + β log 1
δO∩Ω(w) ∀w ∈ O ∩ Ω.

The above argument shows that O ∩ Ω satisfies both of the conditions in [4, Definition 1.1] for being a 
Goldilocks domain.

Step 2. Proving the estimate (5.1)

Since O ∩ Ω is convex, it follows from [5, (2.4)] that

KO∩Ω(w,w′) ≥ 1
2

∣∣∣∣ log δO∩Ω(w)
δO∩Ω(w′)

∣∣∣∣ ∀w, w′ ∈ O ∩ Ω. (5.2)

Now, fix a point o ∈ O ∩ Ω and let ξ ∈ (∂Ω ∩ O) \ {q}. So, q and ξ are two distinct boundary points 
of the Goldilocks domain O ∩ Ω. Let ε > 0 be such that Bn(q, ε), Bn(ξ, ε) ⊂ O, such that — denoting 
Vq := Bn(q, ε) ∩ Ω, Vξ := Bn(ξ, ε) ∩ Ω — Vq ∩ Vξ = ∅, and such that δO∩Ω(w) = δΩ(w) < δO∩Ω(o) for 
all w ∈ Vq ∪ Vξ. Then, it follows from the proof of [4, Proposition 6.8] that there exists a constant K ′ > 0
such that
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KO∩Ω(w1, o) + KO∩Ω(o, w2) −KO∩Ω(w1, w2) ≤ K ′ ∀w1 ∈ Vq and ∀w2 ∈ Vξ. (5.3)

Therefore, (5.2) and (5.3) together imply

KO∩Ω(w1, w2) ≥
1
2 log 1

δΩ(w1)
+ 1

2 log 1
δΩ(w2)

+ log δO∩Ω(o) −K ′ ∀w1 ∈ Vq and ∀w2 ∈ Vξ.

Thus, choosing K > max(0, K ′ − log δO∩Ω(o)), we get the desired conclusion. �
The following will play a key role in the proof of the main result of this section.

Result 5.6 (Liu–Wang, [16, Theorem 1.4]). Let Ω be a bounded domain in Cn. Suppose that there exists a 
connected open set O with ∂Ω ∩O �= ∅ and O∩Ω is log-type convex. Then, for any open set W with W � O, 
there exists K > 0 such that the Kobayashi distance satisfies

KΩ(w1, w2) ≤ KO∩Ω(w1, w2) ≤ KΩ(w1, w2) + K ∀w1, w2 ∈ W ∩ Ω.

We now have all the ingredients to establish the lower bound for KΩ that we need.

Proposition 5.7. Let Ω, q ∈ ∂Ω, and O �open Cn be as in the statement of Result 5.2. Then, for ξ ∈
(∂Ω ∩ O) \ {q}, there exist constants ε, K > 0 such that Bn(q, ε), Bn(ξ, ε) ⊂ O and

KΩ(w1, w2) ≥
1
2 log 1

δΩ(w1)
+ 1

2 log 1
δΩ(w2)

−K

for all w1 ∈ Bn(q, ε) ∩ Ω, for all w2 ∈ Bn(ξ, ε) ∩ Ω.

Proof. Let us choose ε > 0 such that Bn(q, ε) ∪Bn(ξ, ε) � O, such that (5.1) holds for all w1 ∈ Bn(q, ε) ∩Ω
and for all w2 ∈ Bn(ξ, ε) ∩ Ω. By Result 5.6, there exists K > 0 such that

KO∩Ω(w1, w2) ≤ KΩ(w1, w2) + K ∀w1, w2 ∈
(
Bn(q, ε) ∪Bn(ξ, ε)

)
∩ Ω.

Thus, using the above estimate, the result follows immediately from Proposition 5.5. �
6. The proof of Theorem 1.5

Before we present the proof, we fix some notations that will be used over the course of the proof. We will 
write F̃ =

(
F̃1, . . . , F̃n

)
= F ◦ (Up)−1, where Up is as introduced in Definition 1.3. For any subset S ⊂ Cn, 

we will write S̃ = Up(S), and we will indicate that we are working in the coordinate system given by Up

by using Z1, . . . , Zn, as in the proof of Proposition 4.1.
Further, in the proof below C will denote a positive constant that depends only on the data in the 

hypothesis of Theorem 1.5. However, the magnitude of C may change from line to line.

Proof of Theorem 1.5. Let V be the neighbourhood of p as given by Lemma 3.1. Then, since F (V ∩D) ⊂
W ∩ Ω, for all z ∈ V ∩D and v ∈ Cn, we have

‖F ′(z)v‖
M
(
δΩ(F (z))

) ≤ kΩ(F (z);F ′(z)v) ≤ kD(z; v) ≤ ‖v‖
δD(z) .

The last inequality follows by the distance decreasing property for the Kobayashi metric under the inclusion 
map Bn(z, δD(z)) ↪→ D. Now, using Lemma 3.4, for all z ∈ V ∩D
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−(δD(z))s ≤ ρ(z) ≤ τ(F (z)) ≤ −C∗
(
δΩ(F (z))

)α∗
, (6.1)

which gives (since M is increasing), for all z ∈ V ∩D

M
(
δΩ(F (z))

)
≤ M

(
C(δD(z))s/α∗

)
.

Combining the above inequalities we get

‖F ′(z)v‖ ≤ ‖v‖
δD(z)M

(
C(δD(z))s/α∗

)
∀z ∈ V ∩D, ∀v ∈ Cn. (6.2)

We now express the estimate (6.2) in the new coordinate system Cn � z �→ Z = Up(z). Let us write 
A := U−1

p , which is a unitary transformation. Applying chain rule, (6.2) gives

‖F̃ ′(Z)v‖ = ‖F ′(z)(Av)‖ ≤ ‖Av‖
δD(z)M

(
C(δD(z))s/α∗

)
= ‖v‖

δD(z)M
(
C(δD(z))s/α∗

)
≤ C ‖v‖

Y (Z)M
(
C(Y (Z))s/α∗

)
, (6.3)

where the last inequality holds by Lemma 3.1. Recall that M satisfies a Dini condition. It is elementary to 
see (using change of variables) that for fixed κ, m > 0, the composite function t �→ M(κ tm) also satisfies a 
Dini condition. Hence, we can rewrite (6.3) as:

‖F̃ ′(Z)v‖ ≤ ψ
(
Y (Z)

)
‖v‖ ∀Z ∈ Ṽ ∩ D̃, ∀v ∈ Cn, (6.4)

where ψ is a non-negative Lebesgue integrable function on range(Y ).
Now we choose a neighbourhood Ũ of 0 ∈ Cn, Ũ � Ṽ and δ > 0 such that( ⋃

ξ∈ ∂D̃∩ Ũ

Bn(ξ, δ)
)

∩ D̃ ⊂ Ṽ ∩ D̃. (6.5)

Pick 1 ≤ j ≤ n, fix ξ = (ξ′, ζ + i η) = (ξ′, ζ + i ϕp(ξ′, ζ)) ∈ ∂D̃ ∩ Ũ , and 0 < t < t′ < δ. Then,

F̃j(ξ + t′ε) − F̃j(ξ + tε) =
t′∫
t

i
∂F̃j

∂Zn
(ξ + xε) dx where ε = (0, . . . , 0, i) ∈ Cn. (6.6)

By (6.4),

∣∣∣∣∣
t′∫
t

i
∂F̃j

∂Zn
(ξ + xε) dx

∣∣∣∣∣ ≤
t′∫
t

ψ
(
Y (ξ + xε)

)
dx =

t′∫
t

ψ(x) dx.

Hence, by integrability of ψ and the fact that 0 ∈ domain (ψ), the limit

F̃ •
j (ξ) := F̃j(ξ + t′ε) − lim

t→0+

t′∫
t

i
∂F̃j

∂Zn
(ξ + xε) dx

exists. (Note that, although the right hand side of the above expression involves the parameter t′, in view 
of (6.6), it does not depend on t′.) Also, we get the estimate (which is uniform in ξ)
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∣∣F̃ •
j (ξ) − F̃j(ξ + t′ε)

∣∣ ≤ t′∫
0

ψ(x) dx ∀ξ ∈ ∂D̃ ∩ Ũ and ∀t′ ∈ (0, δ). (6.7)

We can now define F̂ =
(
F̂1, . . . , F̂n

)
: D̃ ∪

(
∂D̃ ∩ Ũ

)
−→ Ω

F̂ (Z) :=

⎧⎪⎪⎨⎪⎪⎩
F̃ •(Z) =

(
F̃ •

1 (Z), . . . , F̃ •
n(Z)

)
, if Z ∈ ∂D̃ ∩ Ũ ,

F̃ (Z), otherwise.
(6.8)

Our goal is to show that F̂ is continuous. It is enough to show its continuity on ∂D̃ ∩ Ũ . We will adapt a 
Hardy–Littlewood trick to complete the proof.

Let ε > 0. As ψ is integrable near 0, there exists r(ε) ∈ (0, δ) such that (6.7) gives

∣∣F̃ •
j (ξ) − F̃j(ξ + r(ε)ε)

∣∣ ≤ r(ε)∫
0

ψ(x) dx < ε/3 for every ξ ∈ ∂D̃ ∩ Ũ . (6.9)

Define S(ε) :=
{
ξ + r(ε)ε : ξ ∈ ∂D̃ ∩ Ũ

}
. By the choice of Ũ as in (6.5), we have S(ε) � Ṽ ∩ D̃ ⊂ Ũ ∩ D̃. 

Hence F̃j

∣∣
S(ε)

is uniformly continuous. So, there exists σ ≡ σ(ε) > 0 such that

∣∣F̃j(Z) − F̃j(W )
∣∣ < ε/3 whenever Z, W ∈ S(ε) with ‖Z −W‖ < σ. (6.10)

Now, let ξ1, ξ2 ∈ ∂D̃∩Ũ such that ‖ξ1− ξ2‖ < σ. Let W1, W2 ∈ S(ε) such that Wk := ξk + r(ε)ε, k = 1, 2. 
Since ‖W1 −W2‖ = ‖ξ1 − ξ2‖ < σ, (6.9) and (6.10) together imply

∣∣F̃ •
j (ξ1) − F̃ •

j (ξ2)
∣∣ ≤ 2∑

k=1

∣∣F̃ •
j (ξk) − F̃j(Wk)

∣∣ +
∣∣F̃j(W1) − F̃j(W2)

∣∣ < ε.

This shows that F̂
∣∣
∂D̃ ∩ Ũ

is continuous.
Let us now fix ξ = (ξ′, ζ + i η) = (ξ′, ζ + i ϕp(ξ′, ζ)) ∈ ∂D̃ ∩ Ũ . It suffices to show that for any sequence 

{Zν} ⊂
(
Ũ ∩ D̃

)
\ {ξ}, converging to ξ, we have F̂j(Zν) → F̃ •

j (ξ) as ν → ∞. Define an auxiliary sequence 

{Z̃ν} as

Z̃ν :=

⎧⎪⎪⎨⎪⎪⎩
Zν , if Zν ∈ ∂D̃,

Zν , if Zν =
(
ξ′, ζ + i (x + ϕp(ξ′, ζ))

)
for some x > 0,

π(Zν), otherwise,

where π(Z) := (Z ′, Xn + i ϕp(Z ′, Xn)) and Z = (Z ′, Xn + i Yn) ∈ Ũ ∩ D̃ — i.e., the projection along Rε

into the boundary of D̃. Since π is continuous, Z̃ν → ξ as ν → ∞. Now, using the estimates (6.7) and (6.9)
together with the fact that F̂

∣∣
∂D̃ ∩ Ũ

is continuous, we get

lim
ν→∞

(
F̂j(Z̃ν) − F̂j(Zν)

)
= 0 and lim

ν→∞
F̂j(Z̃ν) = F̃ •

j (ξ) = F̂j(ξ).

This proves that F̂ as defined in (6.8) is continuous. Since Up is an automorphism of Cn, this completes 
the proof. �
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Before we end this section, we must elaborate upon a point that was deferred in Section 1.

Remark 6.1. The curious reader might ask whether, since Ω in Theorem 1.5 is assumed to satisfy a uni-
form interior cone condition in W , one also requires the condition (1.3). The question might arise as the 
assumption of a uniform interior cone condition in W suggests the existence of a local plurisubharmonic
barrier. Then, by Result 2.1, one may hope to deduce (1.3). In fact, the last two ingredients summarise the 
approach to the proof in [23] (also see [2]). However, such an approach actually requires a local plurisub-
harmonic barrier with “good” estimates — obtaining such estimates is quite hard, and a uniform interior 
cone condition is not sufficient for such an estimate. Now, note that the hypothesis of Theorem 1.5 imposes 
no regularity condition on ∂Ω. In its absence, our uniform interior cone condition in W functions as a very 
mild (local) boundary-regularity condition on Ω. The latter enables us to use a version of the Hopf Lemma 
to obtain the inequality (6.1). In contrast, in [23] — and in most of the articles on the present theme cited 
above — the relevant patch of the boundary of the target domain is required to be C2-smooth (in order to 
deduce the analogue of (6.1)). That brings us to the condition (1.3): a careful perusal of [23,2] will reveal 
that (1.3) is less restrictive than the plurisubharmonic-barrier condition. Our function M is just a way to 
express quantitatively the requirement that kΩ(w; ·) must grow as w approaches ∂Ω via W ∩Ω but may do 
so relatively slowly. Classically, (1.3) is true if ∂Ω ∩W is strongly pseudoconvex (with M(r) =

√
r); it is 

also true if ∂Ω ∩W is real analytic and all points in ∂Ω ∩W are of finite type (in which case M is some 
fractional power); see [7]. However, recall that we want Theorem 1.5 to be able to address the case when 
∂Ω ∩ W contains infinite-type points. This is what M (which is more general than a power) enables; see 
[3,16].

7. The proof of Theorem 1.7

We will present the proof in two steps. The method that we will use in the first step is the method of 
the proof of [10, Theorem 1.1]. In this step, we will show that F extends as a continuous map on D ∪ {p}. 
In the second step, we will apply Theorem 1.5 to get the desired conclusion.

Step 1. Proving that F extends continuously to p ∈ ∂D

First, we note that the cluster set C(F, p) is connected. This is so because there is a basis of neighbourhoods 
{Nν} of p such Nν ∩D is connected for each ν (see [6, Chapter 1, Section 1] for more details). Also, F being 
proper, C(F, p) ⊆ ∂Ω.

We shall establish our goal by contradiction. Assume that F does not extend continuously to p ∈ ∂D. 
Then, C(F, p) is not a singleton. Since C(F, p) is connected, we can find a point ξ ∈ (∂Ω ∩O) ∩C(F, p) with 
ξ �= q. Consider a pair of sequences {z1

ν} and {z2
ν} in U ∩D such that, writing wj

ν := F
(
zjν
)

for j = 1, 2, 
we have

zjν → p for j = 1, 2, and w1
ν → q, w2

ν → ξ as ν → ∞.

So, we can find a non-negative integer N > 1 such that for all ν ≥ N

KD

(
z1
ν , z

2
ν

)
≤ 1

2 log 1
δD

(
z1
ν

) + 1
2 log 1

δD
(
z2
ν

) − l(ν) + C, (7.1)

KΩ
(
w1

ν , w
2
ν

)
≥ 1

2 log 1
δΩ
(
w1

ν

) + 1
2 log 1

δΩ
(
w2

ν

) −K, (7.2)

where C > 0 is given by Corollary 4.6, K > 0 is given by Proposition 5.7, and

l(ν) :=
2∑ 1

2 log
(

1
δD

(
zjν
)

+
∥∥z1

ν − z2
ν

∥∥
)

→ ∞. (7.3)

j=1
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Recall that, the function τ : Ω → R, w �→ max {ρ(z) : z ∈ F−1{w}}, is continuous, negative, and plurisub-
harmonic on Ω (see the discussion prior to Lemma 3.4). Since ∂Ω is of class C2 near q, we appeal to the 
classical Hopf Lemma for plurisubharmonic functions which, essentially, is the inequality (3.1) wherein — 
due to (local) C2-regularity — the exponent αU = 1 independent of the open set U . This lemma gives us, 
raising the value of the N above if needed, a constant C0 > 0 such that for j = 1, 2, and for all ν ≥ N ,

τ
(
wj

ν

)
≤ −C0δΩ

(
wj

ν

)
.

This gives, for j = 1, 2, and for all ν ≥ N ,

−δD
(
zjν
)
≤ ρ

(
zjν
)
≤ τ

(
wj

ν

)
≤ −C0δΩ

(
wj

ν

)
. (7.4)

Then, (7.1), (7.2), and (7.4) together imply

KD

(
z1
ν , z

2
ν

)
≤ 1

2 log 1
δΩ
(
w1

ν

) + 1
2 log 1

δΩ
(
w2

ν

) − l(ν) + C − logC0

≤ KΩ
(
w1

ν , w
2
ν

)
+ (K + C − logC0) − l(ν)

≤ KD

(
z1
ν , z

2
ν

)
+ (K + C − logC0) − l(ν) ∀ν ≥ N.

The above estimate implies that {l(ν) : ν ∈ Z+} is bounded, which contradicts (7.3).
Thus, the map F̂ : D ∪ {p} → Ω as defined by

F̂ (z) :=
{
F (z), if z ∈ D,

q, if z = p,
(7.5)

is continuous and F̂
∣∣
D

= F .

Step 2. Proving that F extends continuously to a ∂D-neighbourhood of p

Let W be the neighbourhood of q with W � O and let C, ν > 0 be the constants as given by Lemma 5.4. 
Then,

kΩ(w; v) ≥ c‖v‖
(

log 1
δΩ(w)

)1+ν

∀w ∈ W ∩ Ω and ∀v ∈ Cn.

Note that the function r �→
(
log(1/r)

)−(1+ν)
, 0 < r < 1, is integrable at zero, and its value approaches 0

as r → 0+. Thus, it satisfies the conditions on M featured in Theorem 1.5.
Now, ∂Ω ∩ O being C2 smooth, Ω must satisfy a uniform interior cone condition in W . Also, since the 

map F̂ as defined by (7.5) is continuous, we can find an open ball U∗ with centre p with U∗ � U such that

F (U∗ ∩D) ⊂ F̂ (U∗ ∩ (D ∪ {p})) � W.

Hence, by Theorem 1.5, F extends continuously to a ∂D-neighbourhood of p. �
Now that we have seen the argument for Theorem 1.7, we can make the following

Remark 7.1. We see that the two key properties that the pair (Ω, q) must possess, in addition to the issue 
of the regularity ∂Ω near q that was discussed in Section 1, that make the above proof work are (i) a 
localization result for KΩ akin to Result 5.6, and (ii) whatever that leads to the estimate (5.3). Readers 
familiar with the results in [5] might notice that a weaker condition than O ∩ Ω being log-type convex 
provides just these two ingredients. That said:
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• Replacing log-type convexity of O ∩Ω by the property alluded to only ensures the continuous extension 
of F to D∪{p}. It is unclear if the continuous extension of F to D∪V can be achieved without imposing 
some additional constraint on kΩ.

• Our intention in Theorem 1.7 is to present — in terms of the assumptions made — a result in the same 
spirit as Result 1.1. In the latter case, a lower bound akin to (1.3) is automatic.

It is for these reasons that we highlight Theorem 1.7 in Section 1. Also, while some conditions are now 
known that will ensure that O ∩Ω is convex and has the visibility property (i.e., the property introduced in 
[5]), the latter property is slightly non-explicit. Moreover, the latter is not the last word on properties that 
will produce a localization result akin to Result 5.6; this will be discussed in forthcoming work. We also 
refer the reader to [20, Proposition 12] by Nikolov–Andreev for a result with assumptions similar to those 
in Theorem 1.7, but applied globally.

The discussion in Remark 7.1 provides enough clues for us to conclude with one last result. We refer the 
reader to [5, Section 2] for definitions.

Theorem 7.2. Let D and Ω be domains in Cn, n ≥ 2, Ω bounded, and let F : D → Ω be a proper holomorphic 
map. Let p ∈ ∂D and q ∈ C(F, p). Assume that there is a continuous, negative plurisubharmonic function ρ
on D and a neighbourhood U of p such that ∂D ∩ U is a C1,Dini submanifold of U , and ρ(z) ≥ −δD(z) for 
all z ∈ U ∩D. Suppose there exists a neighbourhood O of q such that

• ∂Ω ∩ O is a C2 submanifold of O, and
• O ∩ Ω is convex and has the visibility property.

Then, F extends to a continuous map on D ∪ {p}.

Since the proof of the above is very similar to the argument in Step 1 of the proof in Section 7, we 
only mention the differences in the argument. Firstly, the role of Result 5.6 is played by [5, Theorem 1.4]. 
Secondly, the visibility property of O ∩ Ω ensures that (5.3) is true.
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