ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Atomistic description of conductive bridge formation in two-dimensional material based memristor

Mitra, S and Mahapatra, S (2024) Atomistic description of conductive bridge formation in two-dimensional material based memristor. In: npj 2D Materials and Applications, 8 (1).

[img]
Preview
PDF
npj_2d_mat_opp_8_1_2024.pdf - Published Version

Download (8MB) | Preview
Official URL: https://doi.org/10.1038/s41699-024-00465-w

Abstract

In-memory computing technology built on 2D material-based nonvolatile resistive switches (aka memristors) has made great progress in recent years. It has however been debated whether such remarkable resistive switching is an inherent property of the 2D materials or if the metal electrode plays any role? Can the metal atoms penetrate through the crystalline 2D materials to form conductive filaments as observed in amorphous oxide-based memristors? To find answers, here we investigate MoS2 and h-BN-based devices with electrochemically passive and active (metal) electrodes using reactive molecular dynamics with a charge equilibration approach. We find that the SET and RESET processes in active electrode-based multilayer devices involve the formation and disruption of metal filaments linking the two electrodes exclusively through the grain boundaries, the configuration of which affects the volatility of the resistive switching. Whereas the switching mechanisms in passive electrode-based devices require the formation of interlayer B-N bonds and popping of the S atom to the Mo plane at the point defects. We also show that metal atom adsorption at the point defects causes resistive switching in monolayer MoS2. Our atomic-level understanding provides explanations to the apparently contradictory experimental findings and enables defect-engineering guidelines in 2D materials for such disruptive technology. © The Author(s) 2024.

Item Type: Journal Article
Publication: npj 2D Materials and Applications
Publisher: Nature Research
Additional Information: The copyright for this article belongs to authors
Keywords: Atoms; Boron nitride; Electrodes; Grain boundaries; Layered semiconductors; Molecular dynamics; Molybdenum compounds; Monolayers; Point defects; Sulfur compounds, Atomistics; Bridge-formation; Computing technology; Material-based; Memristor; Metal atoms; Metal electrodes; Nonvolatile; Resistive switching; Two-dimensional materials, Memristors
Department/Centre: Division of Electrical Sciences > Electronic Systems Engineering (Formerly Centre for Electronic Design & Technology)
Date Deposited: 17 May 2024 06:38
Last Modified: 17 May 2024 06:38
URI: https://eprints.iisc.ac.in/id/eprint/84729

Actions (login required)

View Item View Item