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ABSTRACT

The present study investigates the ability of five boosting algorithms, namely Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost),

Light Gradient Boosting (LGBoost), Natural Gradient Boosting (NGBoost), and eXtreme Gradient Boosting (XGBoost) for simulating streamflow

in the Lower Godavari Basin, India. Monthly rainfall, temperatures, and streamflow from 1982 to 2020 were used for training and testing. Kling

Gupta Efficiency (KGE) was deployed to assess the ability of the boosting algorithms. It was observed that all the boosting algorithms had

shown good simulating ability, having KGE values of AdaBoost (0.87, 0.85), CatBoost (0.90, 0.78), LGBoost (0.95, 0.93), NGBoost (0.95,

0.95), and XGBoost (0.91, 0.90), respectively, in training and testing. Thus, all the algorithms were used for projecting streamflow in a climate

change perspective for the short-term projections (2025–2050) and long-term projections (2051–2075) for four Shared Socioeconomic Path-

ways (SSPs). The highest streamflow for all four SSPs in the case of NGBoost is more than the historical scenario (9382 m3/s), whereas vice-

versa for the remaining four. The effect of ensembling the outputs of five algorithms is also studied and compared with that of individual

algorithms.

Key words: boosting, KGE, Lower Godavari Basin, SSP, streamflow

HIGHLIGHTS

• All the boosting algorithms have shown good simulating ability and were used in projecting streamflows for short-term projections (2025–

2050) and long-term projections (2051–2075).

• The highest streamflow for all four SSPs in the case of NGBoost is more than the historical scenario (9382 m3/s), whereas vice-versa for the

remaining four.

• The effect of ensembling the outputs of five algorithms is also studied and compared with that of individual algorithms.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Streamflow forecasts in the climate change framework are critical in basin planning and management decisions (Liu et al.
2020). They deliver the essential information that enables decision-makers, water managers, and communities to make proac-
tive and informed decisions about available water resources (Speight et al. 2021). It also helps mitigate the risks associated
with water-related hazards, prioritize flood-prone areas by detecting early peak flows (Oborie & Rowland 2023), and contrib-
ute to sustainable water management (Marques et al. 2022). Simulating streamflow is complex due to the involvement of

several hydrological processes (Guo et al. 2021). In this regard, semi-distributed, distributed, process-based deterministic,
and stochastic hydrological models (Nesru 2023) were employed to simulate these complex hydrological processes. However,
high spatio-temporal dynamics (Ibrahim et al. 2021; Markhali et al. 2022), the necessity of advanced calibration procedures

(Asgari et al. 2022; Jin 2022), and the accurate estimation of initial hydrologic conditions (Manikanta & Umamahesh 2023)
pose challenges to the simulation efficacy of these models.

Machine learning algorithms were explored as promising alternatives to overcome these challenges as they do not entail the

details of underlying physical mechanisms (Kim et al. 2021). However, selecting the most suitable machine learning algor-
ithm for calculating streamflow is also challenging. Some researchers made an effort to analyze various machine learning
algorithms, including boosting algorithms, in terms of improved accuracy, less prone to overfitting, the ability to handle imbal-

anced and noisy data, and versatility across domains. Accordingly, boosting algorithms are proposed in the present study for
simulating streamflow in the Lower Godavari Basin, India. A brief but relevant review of the literature is given in the
following.

Zounemat-Kermani et al. (2021) reviewed resampling ensemble methods and stacking in hydrology and their advantages

over individual models. Troin et al. (2021) extensively reviewed ensemble forecasting related to hydrology, including limit-
ations, challenges, and the road ahead. Basa̧ğaoğlu et al. (2022) reviewed Interpretable and eXplainable Artificial
Intelligence models in a hydroclimatic context.

Fan et al. (2019) employed Light Gradient Boosting (LGBoost), M5 Tree, Random Forest, and four empirical models to
compute evapotranspiration in the Jiangxi province of China. They employed Root Mean Square Error. LGBoost was
superior to the remaining models. Machine learning models were suggested as an alternative to the empirical models.
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McCarty et al. (2020) employed Random Forest, Support Vector Machine, and LGBoost in the Rhine–Ruhr Functional Urban

Region. They used metrics such as accuracy, and Kappa. LGBoost obtained the highest overall accuracy, followed by Random
Forest and Support Vector Machine. Ni et al. (2020) developed a Gaussian mixture model- XGBoost, XGBoost, and Support
Vector Machine for streamflow forecasting in the Yangtze River Basin. Gaussian mixture model- XGBoost proved to be the

best.
Ma et al. (2021) employed XGBoost and the Least Square-Support Vector Machine to develop a flash flood risk map for

Yunnan Province, China. They considered five performance indices. XGBoost performed exceptionally well. Hu et al. (2021)
combined a physics-based model with XGBoost to forecast the occurrence and severity of empirical orthogonal functions

runoff in the Great Lakes region. A hybrid approach is found to perform well. Khosravi et al. (2021) applied M5 Prime,
M5 Rule, six hybrid bagging algorithms, Autoregressive integrated moving average, and Random Forest for streamflow pre-
diction of the Taleghan catchment. Different input combinations were explored for streamflow prediction. They employed six

performance indicators for evaluating the efficacy of models. Hybrid bagging algorithms-M5 Prime outperformed the other.
They also compared the previous studies on the three hydrological models. They proved that Artificial Intelligence models are
superior in performance. Adnan et al. (2021) combined a locally weighted learning technique with various Machine learning

algorithms. They applied ensemble modeling to the Jhelum Catchment, Pakistan, for streamflow prediction. Ensemble locally
weighted learning-additive regression is found to be the best. Pham et al. (2021) employed Adaptive Boosting (AdaBoost),
Boosted Generalized Linear Models, XGBoost, and Deep Boosting to identify flood hazard areas in the Talar watershed,

Mazandaran province, Iran. The area under the curve is the indicator. These values of Deep Boosting are slightly higher
than the remaining three. In general, boosting algorithms performed well.

Shen et al. (2022) employed Natural Gradient Boosting (NGBoost) with Tree-structured Parzen Estimator optimization in
the upper Yangtze River. They used metrics to evaluate the model performance and discussed high-flow cases, etc. Yiming

et al. (2022) applied AdaBoost, Random Forest, and Support Vector Machine to Wangjiaba and Bengbu stations in Huai
River Basin, China, for streamflow prediction. Three machine learning algorithms performed well, but Random Forest and
Support Vector Machines had low prediction rates on high discharge values. AdaBoost performed better than Random

Forest and Support Vector Machine. Khan et al. (2023) applied AdaBoost, Random Forest, Gradient Boosting, and K-Nearest
Neighbors to simulate streamflow in the Hunza River basin, Pakistan. AdaBoost has surpassed all the other models with a
more remarkable simulation ability. The study also recommended that AdaBoost can be further explored for reliable forecast-

ing from a climate change perspective. Szczepanek (2022) employed XGBoost, LGBoost, Categorical Boosting (CatBoost),
Multiple linear regression, and Random Forest to forecast daily streamflow in the mountainous Skawa River catchment.
LGBoost is the best among the three, followed by CatBoost.

Dastour & Hassan (2023) employed a number of models for the Athabasca River Basin. Gradient boosting with bagging

regressor performed well in seven out of 26 streamflow situations. They also developed a mechanism to handle the missing
data in 26 stations. Kilinc et al. (2023) employed the CatBoost-Genetic Algorithm, Long Short-Term Memory (LSTM), Cat-
Boost, and Linear Regression in Sakarya Basin, Turkey. CatBoost-Genetic Algorithm was found to capture streamflow

prediction effectively. Kumar et al. (2023) employed several models to predict the river inflow, the Garudeshwar watershed,
in India. CatBoost performed remarkably compared to other chosen methods. They also discussed the limitations of the tech-
niques. In peninsular India, Sharma et al. (2023) applied four models, for Suvarna, Aghanashini, and Kunderu River Basins.

Different models performed well for each river basin. However, all four models are satisfactory for implementation in a water-
shed. Xu et al. (2023) employed LGBoost to Haidian Island, China. A Personal Computer Storm Water Management Model
provides data for the LGBoost. Hyperparameter tuning procedures were used to obtain optimum parameters. Benchmarking

models used for comparison are Random Forest, XGBoost, and K-Nearest Neighbors. LGBoost is found to be the best among
the chosen models. Rathnayake et al. (2023) employed XGBoost, LGBoost, CatBoost, and Adaptive Network-based Fuzzy
Inference System to simulate river flows of Malwathu Oya, Sri Lanka. CatBoost has an edge over others.

Several researchers considered Coupled Model Intercomparison Project Phase-6 (CMIP6)-Global Climate Models (GCMs)

framework and Shared Socioeconomic Pathways (SSPs) to consider the influence of climate change on streamflow using
Machine learning algorithms. Singh et al. (2023) applied six Machine learning models, to simulate streamflow in Sutlej
River Basin, India. It was found that Random Forest performed better. It is further used in projecting streamflow using a

mean ensemble of six GCMs for SSP245 and SSP585. It was concluded that the mean annual streamflow in the monsoon
would increase in both scenarios and decrease in pre-monsoon and winter in 2050 and 2080 s. Zhang et al. (2023) employed
a Support Vector Machine, Artificial Neural Network, and Multiple Variable Regression for simulating streamflows across
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river basins, namely, Mackenzie, Lena, Ob & Yenisei. It was found that the Support Vector Machine demonstrated superior

performance and can be further used in projecting streamflows. The mean ensemble of five GCMs in 2021–2100 for SSP245
and SSP585 were considered. It is to minimize the biases associated with individual models. The study reveals minimal
streamflow variation in the Ob basin, whereas increment is observed in the remaining basins. Adib & Harun (2022) used

a Support Vector Regression and Random Forest ensemble to simulate streamflow in Kurau Basin, Malaysia. They have
shown good simulating ability. Further, an ensemble of five GCMs for SSP126, SSP245, and SSP585 were explored to predict
streamflow in 2021–2080. Streamflow significantly decreased in April and May for all three SSPs.

Yang et al. (2023) combined the Soil Water Assessment Tool (SWAT) and Bi-directional-LSTM and developed two hybrid

models, SWAT-T-LSTM and SWAT-D-LSTM, for simulating daily streamflow in Kelantan River Basin, Malaysia. SWAT-T-
LSTM has performed ahead of the other three. Further, this hybrid was used in projecting streamflows. An ensemble of
five GCMs using SSP126, SSP245, and SSP585 were considered. It was concluded that average and extreme streamflow

would increase in the northwest monsoon.
Graf & Vyshnevskyi (2022) employed XGBoost in climate change perspective for projecting streamflows in Prut, Styr, and

Sula catchments of Ukraine using CMIP5-Representative Concentration Pathways-2.6 and 4.5. Decreased streamflows in Prut

and Styr, whereas increased Sula catchments were observed.
The existing literature review reveals several research gaps in the context of streamflow projections. First, there is a lack of

exclusive comparisons among boosting algorithms to identify the most suitable one. Second, limited studies have utilized an

ensemble of multiple CMIP6-GCMs to generate future climate data within a boosting framework. Last, ensemble streamflow
projections are seldom studied, limiting a comprehensive understanding of variability and uncertainty. Accordingly, the fol-
lowing objectives are formulated for the Lower Godavari Basin, India.

1. To study the suitability of boosting algorithms, AdaBoost, CatBoost, LGBoost, NGBoost, and XGBoost for simulating
streamflow.

2. To forecast streamflow utilizing a competent algorithm(s) from a climate change framework using an ensembling of

CMIP6-GCMs and four SSPs.
3. To explore the ensembling of projected streamflow.

The study area was chosen due to the complex hydrologic process resulting from diverse land cover, soil, highly varying
meteorological conditions, and its proximity to the Bay of Bengal.

2. STUDY AREA AND DATA

The Lower Godavari Basin is located at the latitude 17° 000 to 19° 000 N and longitude 80° 000 to 83° 40 E. Figure 1 presents a

digital elevation model of the basin. It shares boundaries with five states. It has a catchment area of 39,180 km2 with the high-
est elevation of 1,642 m. The basin receives an annual rainfall of 1,096 mm, whereas evaporation is from 1,401 to
2,606.40 mm (Jhajharia et al. 2021; Sarkar 2022). Primary land is mainly comprised of cultivated land and forests.

The basin is expected to meet various demands, including drinking and industrial needs in Visakhapatnam, generation of

hydropower, domestic water supply for the number of villages, water requirements for Odisha state, and more similar minor
requirements (Polavaram Project Authority 2021). Accordingly, accurate streamflow estimation is crucial for water security,
keeping the effect of climate change on runoff (Hengade et al. 2018). Furthermore, with the growing demands in every sector,

it is felt that the present study will be helpful to policymakers. For example, the increase in demand due to population growth
and other factors is to be understood. Considering these factors, the present study is proposed to analyze streamflow
projections.

The meteorological data for 52 grid locations of the study area from 1982 to 2020 is from the India Meteorological Depart-
ment, whereas observed streamflow is from the Central Water Commission. Future meteorological data for 2025–2075 were
derived from 13 CMIP6-GCMs for four SSPs, 126, 245, 370, and 585 (Mishra et al. 2020).

3. METHODOLOGY

The philosophy of boosting algorithms is to build an ensemble of decision trees to minimize the loss function. They learn

iteratively to solve various classification and regression problems. Employed algorithms here are based on natural Gradient
(NGBoost), level-wise (CatBoost and AdaBoost), leaf-wise (LGBoost), and depth-wise (XGBoost) and are explained as
follows:
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3.1. AdaBoost

AdaBoost (Wang et al. 2019) combines multiple weak learners to create a strong regression model. It focuses on instances
with high loss function to improve the overall performance. Input information comprises (xi, yi) which represents the
input feature and target variables at ith instance, respectively. First, a base learner h0(xi) is used as an initial guess. In con-
tinuation, multiple base learners ht(xi) are iterated, and the weighted error at iteration t (1t) is given by (Equation (1)):

1t ¼
Xt
1

w(t)
i � ht(xi) (1)

The weight updation for successive iteration (tþ 1) is given by (Equation (2)):

w(tþ1)
i ¼ w(t)

i eat:ht(xi) (2)

where w(t)
i and w(tþ1)

i are the weights assigned at (t) and (tþ 1) iterations, respectively; at refers to the contribution factor of

weak learner for t iterations and are expressed as follows (Equation (3)):

at ¼ 1
2
ln

1� 1t
1t

(3)

The ht(xi), 1t, w
(tþ1),
i and at are continuously updated until they meet the desired criteria. The final output (Ht(xi)) is

obtained by combining several base learners and is expressed as (Equation (4)):

Ht(xi) ¼
Xt
1

at � ht(xi) (4)

Figure 1 | Digital elevation model of the Lower Godavari Basin.

Water Science & Technology Vol 89 No 3, 617

Downloaded from http://iwaponline.com/wst/article-pdf/89/3/613/1367111/wst089030613.pdf
by guest
on 21 February 2024



3.2. CatBoost

The mathematical expression of CatBoost (Mehraein et al. 2022) is almost similar to that of AdaBoost. Here, the decision tree
is developed based on a symmetric-wise strategy (refer to Figure 2) and specifically designed to handle categorical features

more efficiently. It uses an ordered boosting technique and combines target encoding and gradient-based splitting to
handle categorical features.

3.3. LGBoost

Unlike another traditional decision tree, LGBoost (Fan et al. 2019) does not use bootstrap sampling to subsample the data. It
uses a leaf-wise strategy, which allows it to process the data faster than traditional level-based methods. A leaf structure that
minimizes the negative gradient of loss function is highly preferred (Figure 3).

Figure 2 | Tree formation in CatBoost.

Figure 3 | Tree formation in LGBoost.
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This leaf structure depends on gradient-based one-side sampling and exclusive feature bundling. Gradient-based one-side

sampling helps in determining the best splits for each feature. It ranks various split points based on their gradients and
ensures the identification of more informative splits, resulting in better predictions. Exclusive feature bundling reduces fea-
tures by bundling several features into a few densely packed ones and lessens computational efforts. Accordingly, the term

light is used due to its ability to achieve faster convergence. The mathematical expressions involved are as follows:
For the given input information, I ¼ {xi, yi}

n
i¼1, the algorithm aims to identify a base learner f̂(xi) for achieving minimal

loss function L(yi, f(xi) and is expressed as (Equation (5)):

f̂(xi) ¼ argminf Eyi ,IL(yi, f(xi)) (5)

It integrates T base learners
PT
t¼1

ft(xi) to find the final model fT (xi) (Equation (6)):

fT (xi) ¼
XT
t¼1

ft(xi) (6)

The base learners can be expressed as wd(xi), d [ {1, 2, . . . l}. where l indicates the number of leaves, d refers to the decision

rules of the regression trees.
The combined form of the base learners at step t (ℶt) in the training process is presented as (Equation (7)):

ℶt ¼
Xn
i¼1

(L(yi, ft�1(xi)þ ft(xi) (7)

Equation (7) is further simplified by discarding the constant term, and the transformed (Equation (8)) is as follows:

ℶt ¼
Xn
i¼1

gift(xi)þ 1
2
hif2t (xi)

� �
(8)

where gi and hi represent the first and second-order gradients of the loss function. Consider Sl is the sample set of leaf l, the

equation is further transformed to (Equation (9)) as:

ℶt ¼
Xl
l¼1

X
i[Sl

gi

 !
wl þ 1

2

X
i[Sl

hi þ l

 !
w2

l

 !
(9)

For d(x) tree structure optimal leaf weight scores w�
l and the extreme value of ℶT are computed (Equations (10) and (11)) as

follows:

wl
� ¼ �

P
i[Sl

giP
i[Sl

hi þ l
(10)

ℶT
� ¼ �1

2

XL
l¼1

P
i[Sl

gi

 !2

P
i[Sl

hi þ l
(11)

where, ℶT* represents the scoring function. The final objective function (O) after adding the splits (Equation (12)) is as fol-
lows:

O ¼ �1
2

P
i[SL

gi

 !2

P
i[SL

hi þ l
þ

P
i[SR

gi

 !2

P
i[SR

hi þ l
þ

P
i[Sl

gi

 !2

P
i[Sl

hi þ l

0
BBBBB@

1
CCCCCA (12)

Here SL, SR represents the sample sets of left and right branches, respectively. l refers to the regularization parameter.
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3.4. NGBoost

NGBoost (Duan et al. 2020) employs a natural rather than a conventional gradient to produce a probabilistic prediction with
significantly higher accuracy. The predictions majorly rely on components such as base learners ( f ), distribution (Pu), and the

proper scoring rule (S). In general, gradient boosting methods determine the base learner that generates point estimates. On
the other hand, base learners are probabilistic predictions that follow specific probability distribution functions, such as Gaus-
sian or Laplace, in the case of NGBoost. The scoring rule is an objective function or criterion to decide the convergence of the
solution. At least two degrees of freedom are required to effectively compute magnitude and prediction uncertainty. It takes

time to perform simultaneous boosting with multiple parameters from base learners. NGBoost addresses this shortcoming
through multiparameter boosting and using the natural gradient.

First, the information on input features (xi) and target variable (yi) are imported into the framework and are denoted as:

I ¼ {xi, yi}
n
i¼1

Based on the given input feature, initialize the appropriate base probabilistic model (Equation (13)):

f(m)(xi) ¼ Pu (yijxi) (13)

Here u is not limited to a scalar value, unlike traditional boosting methods. These values determine the probabilistic pre-
dictions of Pu (yijxi). For the chosen distribution having parameters m and logs, the base learners are f(m)

m and f(m)
logs and are

cumulatively represented as f(m) (Equation (14)):

f(m) ¼ ( f(m)
m , f(m)

logs ) (14)

The natural Gradient varies with S(u, yi) and is presented as (Equation (15)) follows:

~rS(u, yi) / vs(u)
�1rS((u, yi)) (15)

Maximum likelihood estimation, Negative logarithmic likelihood, or Continuous ranked probability score can be used as a
loss function.

The parameter updation after several boosting iterations is presented as (Equation (16)):

u(m)
i ¼ u(m�1)

i � h
XM
m¼1

r(m):f(m)(xi) (16)

Initial parameter updation (Equation (17)) is presented as:

u0 ¼ argminu

Xn
i¼1

r(m)S(u, yi) (17)

r(m) refers to the scaling factor and is expressed as (Equation (18)):

r(m) ¼ argminr S(u
(m)
i , yi) (18)

g(m)
i ¼ ~rS(u, yi) represents the generalized natural Gradient and is presented as (Equation (19)):

g(m)
i ¼ vs(u)

�1rS((u, yi)) (19)
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f(m) refers to the output of the base learner (Equation (20)):

f(m) ¼ Fit({xi, g
(m)
i }ni¼1 (20)

where, u(m)
i , u(m�1)

i indicate the parameter predicted after m and m� 1 boosting iterations, respectively, and h refers to the
learning rate.

3.5. XGBoost

XGBoost (Wang et al. 2022) is a gradient boosting technique used in ensembles. The decision tree is constructed in a depth or
level-wise manner. It employs a similar mechanism to CatBoost, but the depth of the tree determines its formation. These are
developed based on the similarity scores. The size varies depending on the leaves, nodes, and splits. Decision stump refers to a

shorter decision tree possessing a single split. Typically, tree splits range between 4 and 8 for larger ones. However, splits can
be increased further, requiring high computational power. The new trees are added to the ones that already exist. The losses
incurred by adding trees are taken care of with the help of the gradient descent procedure. The mathematical expressions

involved in XGBoost are presented (Equations (21)–(23)) as follows:

y(t)i ¼ y(t�1)
i � h:v�

j (21)

v�
j ¼ ai þ bi

2þ l
(22)

L(yi, pi) ¼ y(t�1)
i � 1

2
(yi � pi)

2 (23)

Here, y(t)i is the estimated value; y(t�1)
i is the initial prediction; v�

j represent the jth leaf node’s similarity score; yi,
pi are observed and predicted values; ai, bi are the ordinates of a specific leaf node.

The formation of the decision tree continues until L(yi, pi) meets the termination criteria. Lower learning rates are prefer-

able as they facilitate sufficient time for capturing the input features, ensuring prediction accuracy.
KGE is the evaluation metric to judge the model performance as it considers the data correlation, bias, and variability

(Newman et al. 2021). KGE greater than 0.75 is considered good (Towner et al. 2019). It is expressed as (Equation (24)):

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r � 1)2 þ sS

sO
� 1

� �2

þ mS

mO
� 1

� �2
s

(24)

mO, sO are mean and standard deviations of observed data, whereas ms, ss are for the simulated. r is the correlation
coefficient.

Comprehensive conceptual differences between the employed boosting algorithms are presented in Table 1.

Table 1 | Conceptual differences of boosting algorithms

Features

Algorithms

AdaBoost CatBoost LGBoost NGBoost XGBoost

Formation of decision tree Asymmetric
level-wise

Symmetric
level-wise growth

Asymmetric
leaf-wise growth

Level-wise
growth

Depth-wise
growth

Splitting method Greedy
splitting method

Greedy
splitting method

Gradient-based
one-side sampling

Natural
gradient

Histogram
based

Handling categorical features No Yes No No No

Regularization No Yes Yes Yes Yes

Memory consumption Low High Low High Moderate

Feature importance Available Available Available Available Available

Scalability Fast Moderate Fast Low Fast
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4. RESULTS

4.1. Hyperparameter tuning

Hyperparameters are the explicitly defined parameters that control the learning process and significantly impact algorithm

performance. The parameters obtained for individual boosting algorithms using the grid search method are presented in
Table 2. A few remarks on hyperparameters are also part of Table 2.

4.2. Boosting algorithms performance for historical data

The chosen algorithms were examined for 70:30 as well as 80:20 train-test split ratios. The KGE value for both split ratios in
training and testing periods is presented in Figure 4. The 80:20 train-test split ratio performed slightly better than the 70:30
split ratio for all boosting algorithms. Accordingly, related results are presented only for 80:20 to minimize the repetition.

Figure 5(a) and 5(b) presents scatter plots for training and testing, corresponding to 374 training and 94 testing records.
Brief but relevant inferences for AdaBoost, CatBoost, LGBoost, NGBoost, and XGBoost (in the same order) are as follows:
[additional plots are presented in Supplementary material for the benefit of readers].

Table 2 | Hyperparameter-tuned boosting method parameters

Parameter (range) (1)
AdaBoost, CatBoost, LGBoost,
NGBoost, XGBoost (2) Remarks (3)

Learning rate (0–1) 0.2, 0.03, 0.03, 0.4, 0.3 The learning rate is the number of steps to update the weights to obtain the
minimal loss function. CatBoost and LGBoost have optimized at a lower
learning rate of 0.03, seven to ten times less than others.

Number of estimators
(1–1,000)

100, 150, 50, 10, 100 The number of estimators is the threshold limit at which the boosting is terminated.
NGBoost requires only 6.67% of estimators compared to CatBoost. It is 33.33%
of CatBoost for LGBoost and 66.67% of CatBoost for AdaBoost and XGBoost,
respectively. It is because of a lower learning rate where fewer estimators are
sufficient for simulation.

Mini-batch fraction
(0–1)

NA, NA, NA, 0.75, NA Mini-batch fraction refers to the fraction of rows that require subsampling.
This feature is exclusively present in NGBoost and will help avoid overfitting.

Colsample bytree
(0.5–1)

1, NA, 0.7, 1, 0.9 Colsample bytree is an important hyperparameter that governs decision tree
development and represents the percentage of columns requiring subsampling. A
value of 0.5 indicates that the model will randomly sample half of the training
data before growing trees. This will help to avoid overfitting and has the potential
to speed up the training process. This parameter is required by all algorithms
except CatBoost, as they are prone to overfitting.

Maximum depth
(1–15)

3, 6, 4, 4, 2 Maximum depth refers to the complexity of the decision tree.
Higher maximum depths than optimal value may lead to overfitting. CatBoost is
relatively complex.

Minimum child
weight (0–10)

NA, NA, 9.1, NA, 7.3 The minimum child weight determines the decision tree partitioning.
With higher values, the tree partitions more conservatively. Lower values
generate more decision trees and improve convergence but are more expensive
to compute and essential in the LGBoost and XGBoost.

Number of leaves
(1–1,000)

31, 31, 40, 31, 31 The number of leaves denotes the maximum number of splitting criteria in a
decision tree.
Except for LGBoost, all others were found to be identical in this instance.

Alpha (α) (0–5) 0, NA, 3.25, 1, 1.25 α denotes lasso-type regularization. Increasing their value causes the model to
become more conservative.
It is a critical hyperparameter for XGBoost, LGBoost, and NGBoost.

Lambda (Λ) (0–5) 0, 0.2, 4.5, 1, 2.5 Λ refers to ridge-type regularization.
Increasing their value will make the algorithm more conservative and a crucial
hyperparameter in the case of XGBoost, LGBoost, and NGBoost.

Subsample (0–1) 1, 1, 0.75, 1, 0.65 Subsample refers to the portion of training data chosen before forming the decision
tree. XGBoost and LGBoost consider fractions of 0.65 and 0.75, which are lower
than others.

NA, not applicable.
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In training:

• Simulated maximum streamflow (year and under or overestimation): August 1990 (�3.70%), August 1990 (�0.33%), August

1990 (�11.41%), August 1990 (�3.51%), August 1990 (�55.39%) as compared to the maximum observed (þ indicates
higher, �indicates lower than historical scenario).

• Average simulated streamflow: þ9.01%, �1.88%, þ0.24%, þ2.82%, �2.54% compared to the average observed streamflow.

• Year of occurrence of highest streamflow underestimation (overestimation): September 1987 (August 1986), September 2010
(January 2010), September 1994 (August 1986), September 1987 (August 1986), August 1990 (July 2010).

• Interquartile ranges are 1,304.43, 908.83, 997.43, 1,019.42, and 908.79 m3/s. Upper extreme whisker values are 3,419.34,
2,354.21, 2,599.77, 2,653.26, and 2,357.74 m3/s. Outliers identified above upper extreme whisker values (in percentages)
are 5.35, 13.64, 13.10, 13.64, and 14.17 (Figure 6(a)).

• KGE values in training are 0.87, 0.90, 0.95, 0.95 and 0.91

In testing:

• Simulated maximum streamflow (year and under or overestimation): August 2013 (þ6.39%), August 2013 (�27.60%),
August 2013 (þ3.23%), August 2013 (þ4.6%), August 2013 (�15.73%) as compared to the maximum observed.

• Average simulated streamflow: þ15.32%, þ5.24%, þ2.10%, þ3.92%, þ2.27% compared to average observed streamflow.

• Year of occurrence of highest streamflow underestimation (overestimation): July 2013 (June 2013), August 2013 (July 2018),
September 2019 (July 2018), July 2013 (July 2018), August 2013 (July 2018).

• Interquartile ranges are 1,412.43, 1,517.37, 1,136.11, 1,175.83 and 1,153.44 m3/s. Upper extreme whisker values are
3,685.33, 3,889.26, 2,944.8, 3,042.44 and 2,955.85 m3/s. Outliers identified above upper extreme whisker values (in percen-
tages) are 6.38, 4.26, 8.51, 6.38, and 10.64. It is noticed that the outliers are comparatively low in testing over the training

period (Figure 6(b)).

• KGE values in testing are 0.85, 0.78, 0.93, 0.95 and 0.90.

All these boosting algorithms are further considered (as a condition of KGE more than 0.75 is satisfied) for projecting
streamflow using 13 CMIP6-GCMs for four SSPs for two time splits: short-term projections (2025–2050) and long-term pro-
jections (2051–2075). For now, they are mentioned as short-term and long-term throughout the manuscript.

Figure 4 | Radar plot of KGE for boosting algorithms in 80:20 and 70:30 train-test split ratios.
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4.3. Streamflow projections for short-term and long-term

To understand the fluctuations, the average, maximum, and minimum projected stream flow in the short-term and long-term
were compared with historical scenarios and presented in Table 3. Results are presented in the order of the following algor-

ithms: AdaBoost, CatBoost, LGBoost, NGBoost, and XGBoost.
Short-term:

• The discharge line plots follow a regular trend across the boosting algorithms. The highest and lowest fluctuations were
observed in NGBoost and XGBoost, as presented in Figure 7(a)–7(e).

• Minimum streamflow: 1,860.22 m3/s (all four SSPs), 785.35 m3/s (SSP585), 3,507.82 m3/s (SSP585), 130.23 m3/s (SSP585),

2,701.23 m3/s (SSP370).

• Maximum streamflow: 4,581.04 m3/s (SSP245), 3,558.72 m3/s (SSP370), 6,116.03 m3/s (SSP245), 10,252.47 m3/s
(SSP370), 6,962.72 m3/s (SSP126).

Figure 5 | Scatter plots for boosting algorithms in (a) training and (b) testing periods for 80:20 ratio.
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• Maximum average streamflow: 2,762.03 m3/s (SSP245), 2,193.01 m3/s (SSP126), 5,223.24 m3/s (SSP245), 5,602.52 m3/s

(SSP126), 5,739.18 m3/s (SSP126).

• Average streamflow: An increase from SSP126 to SSP245 and a further decline in SSP370 and SSP585 is observed for Ada-
Boost. In the case of CatBoost, the decrease is observed from SSP126 to SSP245, a further increment in SSP370, and a

decline in SSP585. NGBoost shows the opposite of the trend observed in AdaBoost. The decreasing trend from SSP126
to SSP585 is observed in the case of XGBoost.

Long-term:

• The discharge line plots follow a similar trend as short-term across the boosting algorithms and as presented in Figure 7(a)–
7(e).

Figure 6 | Box plots of boosting algorithms in (a) training and (b) testing periods for 80:20 ratio (* dots above upper whisker represents the
outliers).
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• Minimum streamflow: 1,813.78 m3/s (SSP245, SSP370 and SSP585), 1,287.79 m3/s (SSP126), 3,117.54 m3/s (SSP126),
938.72 m3/s (SSP245), 3,048.62 m3/s (SSP126).

• Maximum streamflow: 3,924.49 m3/s (SSP245), 3,328.22 m3/s (SSP126), 6,394.36 m3/s (SSP245), 10,477.52 m3/s
(SSP245), 6,987.93 m3/s (SSP370).

• Maximum average streamflow: 2,677.67 m3/s (SSP245), 2,165.10 m3/s (SSP245), 5,271.58 m3/s (SSP245), 5,731.18 m3/s

(SSP126), 5,676.26 m3/s (SSP370).

• Average streamflow:A streamflowdecrease is observed fromSSP126 toSSP245, increased inSSP370, anddeclined inSSP585
in the case of NGBoost. The trend almost remains flat in the case of XGBoost. The remaining is the same as short-term.

4.4. Weighted ensembling-based streamflow projections

A weighted ensembling is used to provide unified projections for the benefit of policymakers and is necessitated as all algor-
ithms satisfy the requirements of KGE. Accordingly, all five were considered for the ensembling. The information on average,

maximum, and minimum projected stream flow of weighted ensembling in two time periods SSP-wise were compared with
that of the historical scenario and are presented in Table 3. A brief discussion is presented as follows:

• The discharge line plots of weighted ensembling follow a regular trend across SSPs of two time periods, as presented in
Figure 8.

• The minimum streamflow in short-term and long-term are (2,387.43 m3/s, 2,385.01 m3/s) for SSP126; (3,148.64 m3/s,

3,137.09 m3/s) for SSP245; (3,143.09 m3/s, 3,180.01 m3/s) for SSP370 and (2,122.24 m3/s, 3,244.7 m3/s) for SSP585
respectively.

• The maximum streamflow in short-term and long-term are (5,843.96 m3/s, 5,381.66 m3/s) for SSP126; (6,017.61 m3/s,
5,897.91 m3/s) for SSP245; (5,713.89 m3/s, 5,374.81 m3/s) for SSP370 and (5,866.37 m3/s, 5,344.49 m3/s) for SSP585

respectively.

• The average streamflow in short-term and long-term are (4,307.27 m3/s, 4,298.37 m3/s) for SSP126; (4,151.96 m3/s,
4,136.93 m3/s) for SSP245; (4,260.91 m3/s, 4,243.49 m3/s) for SSP370 and (4,238.46 m3/s, 4,144.88 m3/s) for SSP585

respectively.

• It is observed that the magnitude of minimum streamflows increased drastically in all the SSPs, corresponding to short-term
and long-term compared to the historical scenario.

Table 3 | Projected streamflow information using five boosting algorithms and weighted ensemble (all units are in m3/s)

Models Aspects

Short-term (2025–2050) Long-term (2051–2075)

SSP126 SSP245 SSP370 SSP585 SSP126 SSP245 SSP370 SSP585

AdaBoost A 2,737.41 2,762.03 2,751.19 2,699.42 2,662.48 2,677.67 2,625.79 2,493.86
Min 1,860.22 1,860.22 1,860.22 1,860.22 1,836.20 1,813.78 1,813.78 1,813.78
Max 3,782.34 4,581.04 4,034.55 3,555.66 3,514.14 3,924.49 3,514.14 3,514.14

CatBoost A 2,193.01 2,162.62 2,169.38 2,151.91 2,149.23 2,165.10 2,131.95 2,092.87
Min 1,542.26 1,406.37 1,261.32 785.35 1,287.79 1,561.68 1,566.31 1,568.47
Max 3,446.19 3,375.58 3,558.72 3,293.30 3,328.22 3,276.30 3,107.12 3,021.09

LGBoost A 5,088.53 5,223.24 5,116.53 5,150.70 5,087.79 5,271.58 5,140.03 5,137.63
Min 3,578.25 4,276.73 3,666.38 3,507.82 3,117.54 3,940.61 3,807.19 3,494.22
Max 5,955.94 6,116.03 5,984.29 6,089.25 6,295.86 6,394.36 6,055.87 6,264.96

NGBoost A 5,602.52 4,753.41 5,395.90 5,336.07 5,731.18 4,738.92 5,463.92 5,149.72
Min 1,999.77 1,469.10 1,910.15 130.23 1,298.04 938.72 1,909.33 1,772.30
Max 10,206.34 10,179.85 10,252.47 10,117.49 10,015.78 10,477.52 9,730.26 9,732.85

XGBoost A 5,739.18 5,708.37 5,702.23 5,683.71 5,676.24 5,675.74 5,676.26 5,674.72
Min 3,507.38 4,642.03 2,701.23 3,608.55 3,048.62 4,890.46 4,675.70 4,586.85
Max 6,962.72 6,516.09 6,652.09 6,615.51 6,646.65 6,474.66 6,987.93 6,712.82

Weighted ensemble A 4,307.27 4,151.96 4,260.91 4,238.63 4,298.37 4,136.93 4,243.49 4,144.88
Min 2,837.43 3,148.64 3,143.09 2,176.15 2,385.01 3,137.09 3,180.01 3,244.70
Max 5,843.96 6,017.61 5,713.89 5,866.37 5,381.66 5,897.91 5,374.81 5,344.49

A, Min, and Max indicate, respectively, the average, minimum, and maximum in m3/s.
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Figure 7 | Projected streamflow for four SSPs in short-term and long-term: (a) AdaBoost; (b) CatBoost; (c) LGBoost; (d) NGBoost; and
(e) XGBoost. (Continued.)
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• The maximum streamflows are 0.57–0.65 times in the short- and long-term across the SSPs compared with the maximum

streamflow observed in the historical scenario.

• The increase in average streamflow for short-term and long-term across SSPs is about 4.66–4.85 times that of the historical
scenario. The positive side of this situation is that there is scope for the basin to receive sufficient water to fulfill its water

demands.

4.4.1. Lowest and highest number of events

The lowest and highest number of events in Table 4 are based on the four SSPs over two periods, short-term and long-term
(refer to Table 4). Only one value is presented for the historical scenario. The boosting algorithms obtained lower and higher
values among eight possibilities, i.e., four SSP and two time periods. Salient observations from Table 4 are as follows:

Figure 7 | Continued.
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• In the historical scenario category, three hundred fifty events are less than 1,000 m3/s. NGBoost has recorded the highest
number in the less than 1,000 m3/s segment, followed by CatBoost. No events were identified in other algorithms.

• CatBoost has the highest number of events in 1,000–2,000 m3/s and 2,000–3,000 m3/s segments, whereas no events were

identified in LGBoost.

• AdaBoost has the highest number of events in the 3,000–4,000 m3/s segment.

• Weighted ensembling has the highest events in the 4,000–5,000 m3/s segment, whereas no events were identified in
CatBoost.

• XGBoost has the highest number of events in 5,000–6,000 m3/s and 6,000–7,000 m3/s segments, whereas no events were
identified in AdaBoost and CatBoost.

• NGBoost has highest number of events in 7,000–8,000, 8,000–9,000, 9,000–10,000, and. 10,000 m3/s segments, whereas

no events were reported in other algorithms.

• NGBoost has reported at least one event in the 1,000–2,000 to 8,000–9,000 m3/s category, similar to the historical scenario.
This situation is not observed in other algorithms.

5. DISCUSSION

In the present study, NGBoost demonstrated an exceptional Kling Gupta Efficiency value of 0.95 in both the

training and testing periods, affirming its effectiveness in simulating streamflow. A similar inference was made by Shen
et al. (2022).

Several comparative studies have presented contrasting views to the present study by the authors, suggesting that AdaBoost

(Khan et al. 2023), XGBoost (Ma et al. 2021), CatBoost (Rathnayake et al. 2023), and LGBoost (Fan et al. 2019; McCarty
et al. 2020; Szczepanek 2022; Xu et al. 2023) exhibit greater simulating abilities other than NGBoost. However, none of
these studies have applied NGBoost to validate or confirm the dominance of those algorithms.

Figure 8 | Projected streamflow for four SSPs in short-term and long-term using weighted ensemble.
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Table 4 | Lowest and highest number of events (based on four SSPs over short-term and long-term)

Algorithm

Segment

,1,000 m3/s
1,000–
2,000 m3/s

2,000–
3,000 m3/s

3,000–
4,000 m3/s

4,000–
5,000 m3/s

5,000–
6,000 m3/s

6,000–
7,000 m3/s

7,000–
8,000 m3/s

8,000–
9,000 m3/s

9,000–
10,000 m3/s .10,000 m3/s

Historic
scenario

350 42 29 19 11 9 4 1 2 1 0

AdaBoost (0,0) (69,96) (85,117) (87,150) (0, 2) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

CatBoost (0,1) (125,164) (123,173) (2,29) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

LGBoost (0,0) (0,0) (0,0) (0,9) (73,124) (178,200) (0,34) (0,0) (0,0) (0,0) (0,0)

NGBoost (0,3) (1,31) (13,29) (23,85) (20,55) (78,147) (14,40) (13,35) (7,17) (0,22) (0,3)

XGBoost (0,0) (0,0) (0,1) (0,4) (1,11) (198,233) (63,92) (0,0) (0,0) (0,0) (0,0)

Weighted
ensemble

(0,0) (0,0) (0,4) (66,120) (165,202) (8,43) (0,2) (0,0) (0,0) (0,0) (0,0) W
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Furthermore, the development of hybrid boosting algorithms such as Gaussian Mixture Model-XGBoost (Ni et al. 2020),
Genetic Algorithm-CatBoost (Kilinc et al. 2023), Gradient Boosting Regressor-Bagging Regressor (Dastour & Hassan 2023),
and Deep Boost (Pham et al. 2021) are also found to help improve simulation efficacy.

The choice of hyperparameter tuning method is equally important for achieving better simulation efficacy. The present

study utilizes the grid search approach to optimize selected boosting algorithms that resonate with the prior works (Fan
et al. 2019; Ni et al. 2020; Adib & Harun 2022; Szczepanek 2022; Xu et al. 2023). This extensive adoption of grid search
highlights its effectiveness in thoroughly examining a predetermined range of values inside the hyperparameter space,
which is important when complex interactions between hyperparameters are unclear.

Notably, Shen et al. (2022) and Kilinc et al. (2023) employed hyperparameter methods like Tree-structured Parzen Estima-
tor and Genetic Algorithm, differing from the choice of the present study. ‘Shen et al. (2022) reported optimal values,
including 900 learners, a learning rate of 0.03722, a subsample percentage of 0.6, and a base learner depth of 3. However,

a notable deviation in the number of learners is observed between the present study and Shen et al. (2022). In contrast,
no significant deviation exists regarding learning rate and base learner depth. For LGBoost, Fan et al. (2019) identified opti-
mal values of 100 trees, a maximum depth of 3, and a learning rate of 0.05, differing findings from the present study, i.e., 50

trees, a depth of 4, and a learning rate of 0.03. McCarty et al. (2020) reported an optimal number of leaves as 1,024, with a
remarkably low learning rate of 0.005, in contrast to the present study. Szczepanek (2022) found optimal values of the
number of estimators and learning rate as 200 and 0.5, respectively, nearly four times and 17 times higher than reported

in the present study.
Furthermore, Xu et al. (2023) found the number of leaves, number of estimators, and learning rate, to be 12, 450, and 0.11,

respectively. All the aforementioned hyperparameters deviated significantly from the optimal values obtained in the study.
These differences underscore the sensitivity of hyperparameter optimization to specific contexts and datasets, emphasizing

the importance of tailored tuning for betterment of algorithm performance in streamflow simulations.
The reliability of future climate data is imperative for generating credible streamflow projections. In this regard, Adib &

Harun (2022) and Singh et al. 2023) preferred a mean ensemble of multiple GCMs. Adib & Harun (2022) employed five

GCMs with SSP245 and SSP585, whereas Singh et al. (2023) employed six GCMs with SSP126, SSP245 and SSP585. The
present study also focuses on a similar framework employing a mean ensemble of thirteen GCMs with SSP126, SSP245,
SSP370, and SSP585.

6. SUMMARY AND CONCLUSIONS

Five boosting algorithms, AdaBoost, CatBoost, LGBoost, NGBoost, and XGBoost, were implemented to simulate the stream-
flow of the Lower Godavari Basin. Grid search-based hyperparameter tuning was utilized. Rainfall, temperatures, and
streamflow were utilized for training and testing. Train-test split ratios of 70:30 and 80:20 were examined in this study.

The model performances were diagnosed using KGE. The following are the salient conclusions drawn from this study:

• 80:20 train-test split ratio has shown slightly better performance than 70:30 in training and testing periods.

• All the boosting algorithms have been further used for projecting streamflows for the short-term and long-term due to their
higher KGE values.

• Minimum and maximum streamflow of 130.23 and 10,252.47 m3/s were observed in SSP585 and SSP370 respectively,

based on all short-term projections.

• Minimum and maximum streamflow of 938.72 and 10,477.52 m3/s were observed in SSP245 based on all long-term
projections.

• The average streamflow trends for LGBoost, NGBoost, and weighted ensembling were the same for the short-term and

long-term. At the same time, they differ in the case of AdaBoost, CatBoost, and XGBoost in the short and long term.

• The highest number of events were recorded for CatBoost in (1,000–2,000 and 2,000–3,000 m3/s) segments; AdaBoost in
(3,000–4,000 m3/s); weighted ensembling in (4,000–5,000 m3/s); XGBoost in (5,000–6,000 and 6,000–7,000 m3/s); and

NGBoost in (7,000–8,000, 8,000–9,000, 9,000–10,000, and .10,000 m3/s) segments.

The study primarily focuses on boosting algorithms with grid search optimization methods. All five boosting algorithms

achieve greater simulation efficacy, as evidenced by the employed metric. It indicates the excellent potential of boosting algor-
ithms to simulate complex problems such as rainfall–runoff modeling. In addition, the impact of ensembling five algorithms to
generate streamflows in the climate change framework is a new dimension to researchers in this field and allied fields.
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However, specific challenges need to be addressed for further advancements. In this regard, it is essential to emphasize the

development of hybrid algorithms and robust hyperparameter tuning techniques. Additionally, incorporating a fuzzy logic
layer within the boosting algorithms can effectively tackle the challenge of uncertain input data, improving the understanding
of the relationship between input variables and streamflow. Furthermore, exploring novel combinations of ensemble models

in the climate change perspective holds promise for gaining new insights and deriving more reliable predictions. Overcoming
these limitations and challenges is crucial to driving progress in climate change research.
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