
PHYSICAL REVIEW E 109, 024603 (2024)

Defect turbulence in a dense suspension of polar, active swimmers
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We study the effects of inertia in dense suspensions of polar swimmers. The hydrodynamic velocity field
and the polar order parameter field describe the dynamics of the suspension. We show that a dimensionless
parameter R (ratio of the swimmer self-advection speed to the active stress invasion speed [Phys. Rev. X 11,
031063 (2021)]) controls the stability of an ordered swimmer suspension. For R smaller than a threshold R1,
perturbations grow at a rate proportional to their wave number q. Beyond R1 we show that the growth rate
is O(q2) until a second threshold R = R2 is reached. The suspension is stable for R > R2. We perform direct
numerical simulations to characterize the steady-state properties and observe defect turbulence for R < R2. An
investigation of the spatial organization of defects unravels a hidden transition: for small R ≈ 0 defects are
uniformly distributed and cluster as R → R1. Beyond R1, clustering saturates and defects are arranged in nearly
stringlike structures.
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I. INTRODUCTION

The instability of a viscous suspension of motile organisms
[1–3] leads to an abundance of ordered and chaotic states
[4–11], of which active turbulence [12–14] has attracted much
attention. The majority of studies have investigated this iconic
phenomenon in nematic systems, where the local structure
and characteristic defects are associated with uniaxial fore-aft
symmetric order. References [15,16] investigated polar pat-
terns in active fluids and found traveling waves and chaotic
regimes. In a recent work [1] we established the stabilizing
role of fluid inertia in the transition to active turbulence in
polar active suspensions, where the local order is vectorial.
We discovered that the steady-state behavior of the suspension
changed across two thresholds, R1 and R2, in the dimen-
sionless ratio R ≡ ρv2

0/σ of inertia and activity, where ρ is
the mass density of the suspension, v0 is the self-propulsion
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speed, and σ the mean active stress. We found defect turbu-
lence for R < R1, a fluctuating but ordered phase-turbulent
steady state for R1 < R < R2, and a quiescent ordered state for
R > R2. The analysis of [1] considered only the suspension
velocity u and the polar order parameter p, while implicitly
treating the concentration of active particles as “fast.” This
approach is justified if the relaxation rate of the concentra-
tion fluctuations does not vanish as the wave number goes to
zero, as would happen, for example, if the concentration field
becomes nonconserved due to the birth and death processes.
The relevance of competing influence of inertia and viscous
effects for active swimmers was also emphasized in [17],
and other recent works have investigated defect dynamics and
turbulence in Malthusian polar suspensions with R = 0, i.e.,
without inertial effects [18–21].

Highly concentrated systems [6,22–24] present another
scenario where we can ignore fluctuations in the number
density of suspended particles, albeit in a radically different
manner. In such a limit it is reasonable to make the approxi-
mation that the fluctuations in the concentration are negligible
compared to its mean value, which means that the solute
velocity field or, equivalently, the polar order parameter p, is
solenoidal: ∇ · p = 0. We will term such systems as simply
“dense.” See Ref. [24] for the implementation of such a con-
dition in dry active matter.
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In this paper we study the stability and turbulence in a
dense suspension of polar active particles. Section II describes
the equations of motion, and in Sec. III we conduct a lin-
ear stability analysis of an ordered suspension with respect
to perturbations with wave number q. Dense suspensions of
contractile swimmers (σ < 0) are linearly stable. On the other
hand, for extensile suspensions (σ > 0), the same dimen-
sionless parameter R as in [1] governs the linear stability of
the suspension. For R < R1 ≡ 1 + λ, where λ is the flow-
alignment parameter, we find an inviscid instability where
the most unstable pure-bend modes grow at a rate ∝ q. For
R1 < R < R2, we find that the pure-bend perturbations grow
at a rate ∝ q2. Finally, for R > R2 orientational order is
linearly stable. These instability mechanisms are identical
to those reported in our earlier work [1]. Next, in Sec. IV
we study the steady-state properties of extensile suspension
using numerical simulations. We show the presence of vortex-
defect turbulence for R < R2. Correlation length grows as
we increase R and appears to diverge at R ≈ R2. Interest-
ingly, we do not find a phase-turbulent regime [1]. Instead,
a detailed analysis of the spatial distribution of defects using
the correlation dimension d2 reveals a novel morphological
transition. We find that the defects are uniformly distributed
(d2 ≈ 2) for R → 0 (Stokesian suspension) and start to cluster
on increasing R. Maximum clustering (d2 ≈ 1) is attained at
around R = R1, and we observe that defects organize into
stringy patterns. No further changes in defect organization are
observed on increasing R beyond R1.

II. EQUATIONS OF MOTION

We use a hydrodynamic formulation to study the dense
suspension of polar active particles. In the dense limit (uni-
form suspension density and active particle concentration),
the dynamics of the hydrodynamic velocity field u(x, t ) and
the orientation order parameter p(x, t ) is described by the
following equations [1,2,4,25–27]:

ρ(∂t u + u · ∇u) = −∇P + μ∇2u + ∇ · (�a + �r ),

∂t p + (u + v0 p) · ∇p = −∇� + (λS + �) · p + �h,

∇ · u = 0, and ∇ · p = 0. (1)

Here, ρ is the suspension density, μ is the fluid viscosity,
v0 is the self-advection speed of the swimmers, λ is the
flow-alignment parameter, P is the hydrodynamic pressure
that enforces incompressibility of the velocity field, � is the
pressurelike term that enforces the solenoidal condition on
the order parameter field p imposed by the constant con-
centration approximation, and S ≡ (∇u + ∇uT )/2 and � ≡
(∇u − ∇uT )/2 are the symmetric and antisymmetric parts of
the velocity gradient tensor ∇u. �a ≡ −σ0 pp is the leading-
order apolar intrinsic stress associated with the swimming
activity where the force-dipole density σ0 > 0(< 0) for exten-
sile (contractile) swimmers [2], �r ≡ −λ+hp − λ− ph is the
reversible thermodynamic stress [27] with λ± = (λ ± 1)/2,
h = −δF/δp is the molecular field conjugate to p with the
free-energy functional

F =
∫

dd r

[
K

2
|∇p|2 + 1

4
(p · p − 1)2

]
,

FIG. 1. R − β phase diagram highlighting different stability
regimes for dense polar active suspensions. In both the unstable
regimes A and B, we observe defect turbulence (see Sec. IV). Red
squares mark the simulations on the R − β plane with β = 10−2,
R1 = 1.1, and R2 = 28. See Table I for the rest of the parameters.

that favors an aligned order parameter state with unit magni-
tude, and � is the rotational mobility for the relaxation of the
order parameter field to the uniform ordered state prescribed
by the free-energy dynamics. For simplicity we choose a
single Frank constant K , which penalizes the gradients in
p [28]. We are primarily interested in the interplay of the
self-propulsion speed v0 and the leading-order apolar active
stress, hence similar to our earlier study [1], and have ignored
the contribution from higher-order polar gradient terms in �a.

III. LINEAR STABILITY ANALYSIS

We analyze the stability of the ordered state (u, p) = (0, x̂)
to small monochromatic perturbations of the form (δu, δp) =
(̂u, p̂)ei(q·x−ωt ), where q is the perturbation wave vector and ω

is the frequency. As dense contractile suspensions are linearly
stable due to the solenoidal constraint on the order parameter
field, here we focus our study on extensile suspension. In what
follows we discuss the results for pure-bend perturbations, the
most unstable modes for extensile systems [1,5]. In a general
description of polar suspensions, the concentration fluctua-
tions only couple to the splay-bend modes; thus the dispersion
relations for twist-bend modes are identical for suspensions
with “fast” [1], slow, or no concentration fluctuations. For a
detailed discussion of the linear stability analysis including
the stability of twist-bend and splay-bend modes, we refer the
reader to Appendix. A large wavelength (small q) expansion
up to O(q2) yields the following dispersion relation for the
pure-bend modes:

2ω± = v0(1 ±
√

1 − R1/R)q

+ i
μ

ρ

(
± (1 − β )√

1 − R1/R
− (1 + β )

)
q2, (2)

where we have defined the dimensionless numbers R ≡
ρv2

0/2σ0, R1 ≡ 1 + λ, and β = �Kρ/μ. In Fig. 1 we show
a qualitative phase diagram highlighting the three different
stability regimes. In regime A, R < R1, and irrespective of
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TABLE I. Parameters used in our simulations. ρ = 1, λ = 0.1,
μ = 0.1, K = 10−3, v0 = 3.16 × 10−2, and � = 1 are kept fixed for
all runs. This sets β = 10−2, R1 = 1.1, and R2 = 28. We vary R by
varying σ0. The superscripts � (†) indicate increments of 0.05 (0.1).

L N R ≡ ρv2
0/2σ0

10π 1024 0.05
40π 2048 0.2 − 0.4�

80π 4096 0.5
160π 4096 0.01, 0.05, 0.6 − 0.9†

160π 4096 1.4, 2, 3, 4

the value of β, pure-bend modes are unstable with a growth
rate I(ω) ∝ q. In regime B, R1 < R < R2, where R2 ≡ R1(1 +
β )2/4β, pure-bend modes grow at a rate I(ω) ∝ q2. Finally,
in regime C, when R > R2 the ordered state is stable.

IV. DIRECT NUMERICAL SIMULATIONS

We perform direct numerical simulations of (1) on a square
domain of area L2 discretized with N2 equispaced collocation
points. Similar to [1], we use a pseudospectral method for
spatial integration of the velocity field and a fourth-order
finite difference method for the order parameter. For time
marching we use a second-order Adams-Bashforth scheme
[29], and the solenoidal condition on the order parameter field

is implemented using an operator-splitting method [30]. We
undertake high-resolution numerical studies at various values
of R and fixed β = 10−2 to characterize the turbulent states
arising from the instabilities of the ordered state. We initialize
our simulations with a perturbed ordered state u(x, 0) = 0 +
A

∑10
i=1 cos(qix )̂y and p(x, 0) = x̂ + B

∑10
i=1 cos(qix )̂y, where

qi = i(2π/L), and choose A = B = 10−3. For R < R2, the
perturbations destabilize the flow and a defect turbulence state
is achieved. Table I summarizes all our simulation parameters.
In what follows we discuss the statistical properties of defect
turbulence with varying R.

A. Defect turbulence

In Fig. 2 we show the streamlines of the order parameter
field p in the statistically steady state at different values of
R. In both regimes A and B, the order parameter field shows
vortices and saddles, with no evidence of global polar order.
Note that asters and spirals are ruled out by the solenoidal
constraint. To further verify that the turbulent states lack
global orientational order, we compute the magnitude of the
average polar order parameter |〈p〉| in the statistically steady
state at different values R, where 〈. . .〉 denotes spatiotemporal
averaging. Note that for disordered states, |〈p〉| = 0, whereas
|〈p〉| = 1 for a perfectly aligned state. In the inset of Fig. 3(c)
we plot |〈p〉| with increasing R, and, as expected, it is close to
zero in both the unstable regimes.

FIG. 2. Order parameter streamlines superimposed over pseudocolor plot of ∇ × p highlighting vortices at different values of R. For
R � 0.9 we only show a subdomain of size (40π )2. Interdefect separation grows with increasing R. For R < R1 = 1.1, we find that the defects
are uniformly distributed over the simulation domain but form clusters for R > R1 (see also Fig. 4).
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(a) (b) (c)

FIG. 3. (a) Steady-state correlation function C(r) for different values of R. (Inset) Correlation function collapse onto a single curve when
distance is scaled by the correlation length ξ . (b) Plot of the inverse correlation length 1/ξ vs 1/R. From the intercept of the linear fit on
the 1/R axis, we conclude that ξ diverges around R ≈ R2. Inset: Comparison between the correlation length ξ and average nearest-neighbor
distance dmin. For small R, ξ and dmin are identical. For large R, dmin saturates and ξ diverges. (c) Defect density N (ξ ) as a function of the
correlation length ξ . We observe two distinct scaling regimes for R < R1(> R1). Vertical black line marks the correlation length ξ (R = R1)
computed from the linear fit in (B). Inset: We do not observe any significant average order |〈p〉| in the steady state. The ordered state is stable
to perturbations in the green shaded region (R > R2).

B. Defect correlations and clustering

In Fig. 3(a) we plot the isotropic correlation function,

C(r) = 〈p(x + r) · p(x)〉
〈p(x) · p(x)〉 , (3)

where 〈. . .〉 denotes ensemble and angle averaging for differ-
ent values of R. With increasing R, the correlations of the order
parameter increase. We fit the functional form C(r) = e−( r

ξ
)δ

at small r 
 L to extract the correlation length ξ and the
exponent δ which decreases monotonically from δ ≈ 1.7 for
R = 0.2 to δ → 1 for large R. The correlation function C(r)
collapses onto a unique curve when plotted versus the scaled
separation r/ξ [see Fig. 3(a), inset]. In Fig. 3(b) we show
that the correlation length ξ increases with R, and from the
intercept of the linear fit on the 1/R axis, it appears to diverge
at R = R2. Note that investigating the spatial structure of the
order parameter field for R → R2 becomes numerically
unfeasible as ξ → ∞ and finite-size effects become
important.

To quantify the spatial distribution of the defect cores, we
begin by identifying the defect coordinates. In the inset of
Fig. 3(b) we plot the average nearest-neighbor separation dmin

for different values of R. For R < R1, the correlation lengths
ξ and dmin are indistinguishable, indicating that a unique
length scale describes the defect dynamics [31]. In contrast,
for R > R1 correlation length increases, whereas the average
nearest-neighbor separation dmin saturates. Consequently, in
Fig. 3(c) the defect number density N (ξ ) (number of defects
per unit area) also scales differently with the correlation length
ξ for R < R1 and R > R1. For R < R1, where a single length
scale governs the dynamics, we observe N (ξ ) ∼ ξ−2, which
indicates that the defects are distributed uniformly over the
entire domain [32–34]. In contrast, for R > R1 we find that
N (ξ ) ∼ ξ−1, indicating clustering of defects.

Indeed, the scatter plots of the defect coordinates in
Figs. 4(a) and 4(b) indicate uniformly distributed defects for
R < R1, whereas they appear clustered for R > R1. We further
quantify the clustering by evaluating the correlation dimen-

(a) (b) (c)

FIG. 4. (a), (b) Scatter plot of the vortex cores for R = 0.3 and R = 4.0, respectively. For R = 0.3 and R 
 R1 in general, defects are
uniformly distributed over the simulation domain. For R � R1 we observe clustering of defects on one-dimensional stringlike structures. (c)
Plot of the cumulative radial distribution function p(r) for different values of R. At smaller distances we observe p(r) ∼ rd2 , with d2 ∼ 2 for
R 
 R1 and d2 ∼ 1 for R � R1 p(r) ∼ r1. At distances larger than typical cluster size, p(r) ∼ r2 shows the same scaling for all R. Note that
we have rescaled each p(r) curve by its maximum value to highlight different scaling regimes. Inset: Variation of the correlation dimension d2

vs R obtained from least-squares fit on p(r) for small r.
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FIG. 5. Plot of the Shannon entropy density Hp of the polar order
parameter and the Shannon entropy density of the defect arrangement
HD. With increasing R, both Hp and HD decrease and scale roughly
as ξ−1.4 (dashed black guiding line).

sion d2 from the defect positions. The correlation dimension
d2 is evaluated from the r → 0 scaling behavior of the proba-
bility p(r) of finding two defects within a distance r [35,36].
For R 
 1 we find d2 ∼ 2, and it decreases with increasing R
until it saturates at around d2 ∼ 1 for R > R1 [see Fig. 4(c)].
Thus we conclude that in dense suspensions the crossover in
the O(q) to O(q2) instability around R = R1 is marked by
an intriguing defect clustering transition. Qualitatively, the
observed defect clustering can be understood by noting that
the larger vortex structures are formed in the order parameter
field as we increase R. Intense shear regions are created at
the boundaries of two such counter-rotating vortices (positive
defects), which lead to the formation of multiple vortex-saddle
pairs (positive-negative defects) in a stringlike arrangement
similar to a Kelvin-Helmholtz instability [37].

In order to gain further insight into the defect clustering
transition, we use the Shannon entropy as a proxy for the
heat capacity in the equilibrium phase transition and examine
any singular signatures. To do so we compute the Shannon
entropy density of the polar order parameter Hp and the defect
arrangement HD using a two-dimensional extension of the
pattern matching method from information theory [38–40].
To find Hp we apply the pattern matching method on the
discretized orientation field [41]. For the entropy density HD,
we apply the pattern matching algorithm on a boolean field
that is set to 1 at the defect locations and zero everywhere
else (see Fig. 4). In Fig. 5 we plot Hp and HD versus R. As
the defect position field contains less information in com-
parison to the order parameter field, HD is smaller than Hp

for all R. Both entropy densities decrease as we increase R
and scale inversely with the correlation length roughly as
HD, Hp ≈ ξ−1.4. However, we could not capture a pronounced
change in the trend of Hp or HD that corresponds to the
clustering transition at around R 
 R1. The Shannon entropy
does not show a singular feature at R = R1, which suggests
that the defect clustering transition may not involve broken
symmetries, similar to the case of the Kosterlitz-Thouless
transition [42–46].

C. Energy spectrum

The shell-averaged energy spectra for the velocity and the
order parameter field are defined as

Eu(q) =
∑

q− π
L �|m|<q+ π

L

|̂um|2, and

(4)
Ep(q) =

∑
q− π

L �|m|<q+ π
L

|̂pm|2,

where ûm and p̂m are the Fourier coefficients of the velocity
u and the order parameter p fields. In Fig. 6 we plot Eu(qξ )
and Ep(qξ ), averaged over the steady-state configurations, for
different values of R. Consistent with our correlation function
plots, we find that the spectra collapse onto a single curve for
q < qσ , where qσ = 2π/�σ , and �σ ≡ μ/

√
ρσ0 is the length

scale below which viscosity dominates over active stress. The
order parameter spectra show multiple distinct power law
scaling regimes,

Ep(qξ ) =
{

q for qξ → 0
q−(d2+1) for 1 < qξ < qσ ξ

, (5)

which we now describe in detail.
For the smallest R � 0.01, the correlation length ξ be-

comes comparable to �σ , and the order parameter fluctuations
become uncorrelated at large scales; thus Ep(q) ∼ q as q →
0 [see Fig. 6(a)] [1]. Consequently, we expect the stress
correlations to also become uncorrelated, leading to the
Ornstein-Zernike Eu(q) ∼ q/[(q�τ )c + 1] form of the kinetic
energy spectrum [1,47]. For R = 0.01, using a least-squares
fit, we obtain �τ ∼ 11ξ and c = 2.5, close to the expected
value c = 2. As R → 0, �τ � ξ and the peak of the spectra
will shift to small q, resulting in Eu(q) ∼ q−1 scaling. This
analysis naturally recovers the universal scaling regime of
active turbulence [1,18].

On further increasing R, a new scaling range 1 < qξ <

qσ ξ appears. For R = 0.35(
 R1), defects are uniformly dis-
tributed (see Fig. 4). In this case we observe Porod’s scaling
in the order parameter spectra scales as Ep ∼ q−(d+n)+1, where
d = 2 is the number of dimensions and n = 2 is the number of
components of the order parameter [34,48]. With increasing
R, defects start to cluster and we observe a change in the
scaling law. Using d2 as the effective dimension in Porod’s
scaling leads to Ep ∼ q−(d2+1). For R = 0.6, d2 ∼ 1.5 leading
to Ep(q) ∼ q−2.5. Finally, at R = 2(> R1), d2 ∼ 1.1 saturates,
which yields Ep ∼ q−2.1 [Fig. 6(b)]. For qξ > qσ ξ , dissipative
effects dominate, and we observe an exponential decay in the
order parameter spectrum.

The kinetic energy spectrum Eu(qξ ) at all R is easily deter-
mined by the balance of the viscous and active stresses,

〈〈|̂uq|2〉〉 ≈ − σ0

2μq2
〈〈̂u∗

q · f̂ q〉〉, (6)

where f̂ q = P · (iq · p̂pq), P is the projection operator, and
〈〈·〉〉 denotes temporal averaging. In Figs. 6(c) and 6(d) we
show an excellent agreement between the energy spectrum
obtained directly from the velocity field, and using Eq. (6),
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(a) (b)

(d)(c)

FIG. 6. Plot of the order parameter spectrum Ep(qξ ) and the kinetic energy spectrum Eu(qξ ) for different values of R. We scale the spectra
by their respective peak values for data collapse on the y axis. (a) Ep(qξ ) for small R. For qξ 
 1, Ep ∼ q. For qξ � 1, we also observe an
intermediate q2 scaling which vanishes when R → 0. For small R, defects are uniformly distributed in the simulation domain and thus we
observe Porod’s scaling between 1 < qξ < qσ ξ , best seen for R = 0.35. (b) Ep(qξ ) for large R. For R � R1, d2 changes continuously and we
find a scaling of q−d2−1. As an example, d2 = 1.5 for R = 0.6, thus Ep ∼ q−2.5. For R > R1 defects cluster and correlation dimension saturates
to d2 ∼ 1.1, which implies that Ep ∼ q−2.1, as is evident for R = 1.4 and R = 2.0. (c, d) Eu(qξ ) for various R. For R → 0, active stress is
spatially uncorrelated. A least-squares fit of the Ornstein-Zernike form Eu(q) = aq/[(q�τ )c + 1] for the smallest R = 0.01 (solid black line)
gives a = 7.4 × 10−6, �τ = 3.08 ∼ 11ξ , and c = 2.5. For all R, a balance between viscous and active stresses predicts the kinetic energy
spectrum very well, as shown in (c, d) for few R by solid and dashed lines of same colors as markers for (6) and (7), respectively.

confirming the dominant balance between viscous and active
stresses. Further assuming f̂ q to be Gaussian random vari-
ables and using Gaussian integration by parts [49] we get

〈〈|̂uq|2〉〉 =
〈〈

δ̂uq

δ f̂ q

〉〉
〈〈̂ f

∗
q · f̂ q〉〉 ≈ σ 2

0

2μ2q4
〈〈̂ f

∗
q · f̂ q〉〉. (7)

We observe that the prediction (7) matches well with the
energy spectrum for 1 < qξ < qσ ξ .

V. CONCLUSIONS

We study spatiotemporal properties of dense wet suspen-
sions of polar active particles. For such systems, fluctuations
in active particle concentration are small compared to its
average value and thus we can ignore them. Using a linear
stability analysis, we show that inertia can stabilize the orien-
tational order against small perturbations. Our study reveals
that the dimensionless parameter R ≡ ρv2

0/2σ0 characterizes
the stability of the aligned state. Physically, R is a squared
ratio of two speeds: the self-propulsion velocity v0 and the
speed at which active stresses invade through the system√

σ0/ρ. For R � 1, the swimmers can outrun the fluctuations
induced by active stresses and order persists in the system.

This mechanism is identical to the previously studied case
of Malthusian suspensions, where concentration fluctuations
are rendered “fast” [1] as a consequence of birth-death pro-
cesses. However, our numerical studies reveal that these two
different limits show distinct steady-state properties. Dense
suspensions do not show phase turbulence, and for R < R2 we
observe defect turbulence. The order parameter flow consists
of topological defects (vortices and saddles) with no global
polar or nematic order. We unravel a hidden defect-ordering
transition by investigating the spatial organization of defect
centers. For R → 0, defects are uniformly distributed and
start to cluster with increasing R. The clustering saturates at
around R = R1, where we observe that the defects organize
onto nearly one-dimensional, stringlike structures. Finally, we
show that the spectrum of the order-parameter field shows
a Porod’s scaling for qξ � 1, and a balance of viscous and
apolar active stress determines the kinetic energy spectrum of
the suspension velocity.
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APPENDIX: LINEAR STABILITY ANALYSIS

We analyze the stability of the ordered state u = 0, p = x̂ to small perturbations δu ≡ (δux, δu⊥) and δp ≡ (δpx, δp⊥), where
⊥ denotes the plane perpendicular to the ordering. The linearized equations are

ρ∂tδux = −∂xP + μ∇2δux − ∂x(σ0δpx + λ+K∇2δpx − 2λδpx ),

ρ∂tδu⊥ = −∇⊥P + μ∇2δu⊥ − ∂x(σ0δp⊥ + λ+K∇2δp⊥),

∂tδpx = −∂x� − v0∂xδpx + �K∇2δpx − 2�δpx + λ∂xδux,

∂tδp⊥ = −∇⊥� − v0∂xδp⊥ + �K∇2δp⊥ + λ+∂xδu⊥ + λ−∇⊥δux. (A1)

Note that the perturbations also satisfy the solenoidal criteria, ∇ · δu = 0, and ∇ · δp = 0. To proceed further, we consider
monochromatic perturbations of the form (δu, δp) = (̂u, p̂)ei(q·x−ωt ), where q ≡ (qxx̂ + q⊥ · ⊥) = q(cos φx̂ + sin φ⊥) is the
perturbation wave vector and ω = R(ω) + iI(ω). The system is linearly unstable when I(ω). We eliminate the pressure terms
and the longitudinal components to obtain

(−iρω + μq2 )̂u⊥ = 2iλqx
q⊥ · p̂⊥

q2
q⊥ − iqx(σ0 − λ+Kq2 )̂p⊥

(−iω + �Kq2 + iv0qx )̂p⊥ = −2�
q⊥ · p̂⊥

q2
q⊥ + iλ+qxû⊥. (A2)

The linear system (A2) is a set of four (two) coupled equations in three (two) dimensions and is easily solved by decomposing
into splay-bend and twist-bend modes [1,2,45,50]. Taking a dot product with q⊥ and solving for ω gives the following dispersion
relation for the two-dimensional splay-bend modes:

2ωs
± = v0q cos φ − i

μ+
ρ

q2 − 2i� sin2 φ

± 1

ρ

√
(ρv0q cos φ + iμ−q2 − 2iρ� sin2 φ)2 − 4ρλ+q2 cos2 φ(σ0 − λ+Kq2 − 2λ sin2 φ), (A3)

where μ± = μ(1 ± β ). Similarly, a cross product with q⊥ yields the following solutions for the three-dimensional twist-bend
modes:

2ωt
± = v0q cos φ − i

μ+
ρ

q2 ± 1

ρ

√
(ρv0q cos φ + iμ−q2)2 − 4ρλ+q2 cos2 φ(σ0 − λ+Kq2). (A4)

In two dimensions, ω has two solutions given by Eq. (A3). Additionally, in a general description of polar suspensions, the
concentration fluctuations only couple to the splay-bend modes; thus the dispersion relations for twist-bend modes are identical
for suspensions with fast [1], slow, or no concentration fluctuations.

1. Extensile suspensions

For extensile systems, the most unstable modes are the pure-bend modes with φ = 0 [1]. In this case, (A3) and (A4) are
identical, and as discussed in the main text, a small q expansion reveals that the stability of the pure-bend modes is governed
by R. In Figs. 7(a) and 7(b) we plot the growth rate I(ω) vs q for pure bend modes at different values of R in regimes A and B,
respectively. The growth rate for a given q �= 0 decreases with increasing R and is an order of magnitude smaller in regime B as
compared to regime A.
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(a) (b) (c)

FIG. 7. (a), (b) Growth rate I(ω) vs q for the most unstable pure-bend modes at various R in regimes A and B, respectively. With increasing
R, the growth rate and the range of unstable wave numbers decreases. (c) Growth rate I(ω) vs q for the splay-bend modes at small values of φ

for a fixed R = 0.3.

The solenoidal constraint has major consequences on the
stability of the φ �= 0 modes. The longitudinal and transverse
fluctuations are coupled to each other and thus δpx cannot be
rendered fast, as was done previously in [1]. Further, the splay
deformations are eliminated by an equal and opposite contri-
bution in the transverse direction, which has a q-independent
stabilizing effect. The relaxation rate does not vanish in the
q → 0 limit, and at q = 0 we have one nonvanishing eigen-
value ωs

− = −2i� sin2 φ, which is a remnant of the coupling
between δpx and δp⊥. For small but nonzero φ, the splay
contribution to these modes is small, and they go unstable in
a manner similar to the pure bend modes but with a smaller
growth rate and a smaller range of unstable wave numbers. In
Fig. 7(c) we plot I(ω) vs q for various values of φ at R = 0.3
and verify that indeed it is the case. The stability of the twist-
bend modes is identical to that of the pure-bend modes, i.e.,

depending on the various values of R, we obtain three distinct
regimes (see Fig. 1 in main text) but with a φ-dependent R1

and R2. The dispersion relation for pure twist modes [φ =
π/2 in (A4)] reduces to ωt

± = − i
2ρ

(μ+ ∓ μ−)q2, implying
that the pure twist modes are stable to linear perturbations.

2. Contractile suspensions

Contractile suspensions go unstable via two-dimensional
splay perturbations and as a direct consequence of the
solenoidal constraint on the order parameter, are always sta-
ble. This can also be verified directly from Eqs. (A3) and (A4).
For example, the pure splay modes (φ = π/2) relax with rates
ωs = (−i μ

ρ
q2,−2i�), and twist-bend modes are always stable

as R < 0.
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