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A B S T R A C T   

This study highlights the recent advancements in organic electronic materials and their potential 
for cost-effective optoelectronic devices. The investigation focuses on the molecular design, 
synthesis, and comprehensive analysis of two organic dyes, aiming to explore their suitability for 
optoelectronic applications. The dyes are strategically constructed with carbazole as the foun-
dational structure, connecting two electron-withdrawing groups: barbituric acid (Cz-BA) and 
thiobarbituric acid (Cz-TBA). These dyes, featuring carbazole as the core and electron- 
withdrawing groups, demonstrate promising spectral, optical, electrochemical, thermal, and 
theoretical properties. They show strong potential for diverse optoelectronic applications, 
promising efficient light absorption and robust stability. The results endorse their suitability for 
practical optoelectronic systems.   

1. Introduction 

The organic semiconductor materials have attracted researchers across the globe owing to their possible application in opto-
electronic devices such as organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), dye-sensitized solar cells (DSSCs), 
sensors, and photodetectors etc [1–8]. Organic materials display several advantages such as design versatility, good processability 
economical device, transparency, and tuneable optical and electrochemical properties, over their inorganic counterpart [9–12]. In 
recent years, electronic devices employing organic semiconductors have witnessed substantial advancement in terms of the lifetime, 
stability, and performance of the device [8]. Typically, the sensible molecular design of organic materials employed in the device 
architecture is the key to achieving ideal optoelectronics properties. A deep understanding of the correlation between the materials 
molecular structure and their properties is crucial for the development of advanced and efficient devices. 

The integration of fused heteroaromatics like indole, carbazole, phenothiazine, and phenoxazine into a “push-pull" architecture has 
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emerged as a highly effective design strategy for creating organic materials with diverse optoelectronic applications [13–20]. 
Carbazole-based dyes, have garnered significant attention in various optoelectronics contexts, thanks to their remarkable attributes, 
including facile functionalization at multiple positions, straightforward synthesis, hole-transporting capabilities, and high molar 
extinction coefficients. These features have rendered carbazole and its derivatives as prominent building blocks for a wide array of 
optoelectronic devices, capitalizing on their distinctive optical and electrochemical properties [17,21–23]. Notably, the field of 
nonlinear optical (NLO) materials has also found carbazole-based compounds intriguing due to their distinctive electronic structure 
and donor-acceptor characteristics [24–28]. By integrating both electron-donating and electron-accepting groups into the carbazole 
framework, these compounds demonstrate enhanced charge transfer interactions, crucial for achieving efficient non-linear optical 
(NLO) responses. The electron-rich carbazole unit operates as a donor, facilitating electron transfer to electron-deficient acceptor 
groups. This molecular architecture not only enhances charge separation but also fosters intramolecular charge delocalization, 
culminating in superior nonlinear optical properties. As a result, the exploration of donor-acceptor systems built around carbazole 
holds immense potential for advanced NLO materials, customizable with tailored optical and electronic attributes, positioning them as 
promising candidates across photonics and optoelectronics [27–3027–3027–30]. The allure of carbazole and its derivatives further 
extends to their adaptability and distinctive traits, rendering them appealing for further exploration and development across various 
domains [31–37]. Current research endeavours concentrate on refining their electronic and optical features, alongside the creation of 
novel carbazole-based compounds, engineered to deliver enhanced performance and functionality for diverse applications. 

The electron-deficient nature of barbituric acid and thiobarbituric acid has garnered significant attention in the realm of opto-
electronic devices, due to their exceptional photophysical characteristics [38–40]. Barbituric acid exposed to exhibit high absorbance 
and emission in the ultraviolet (UV) range. Beyond their applications in solar cells, barbituric acid and thiobarbituric acid have been 
explored for their potential roles in OLEDs, serving as blue light emitting materials, and as photosensitizers in DSSCs [41–43]. Both 
barbituric acid and thiobarbituric acid have exhibited good electroluminescence properties, including high brightness and efficiency, 
and have shown promise as light emitting materials for OLEDs. Overall, the distinctive photophysical and electronic properties of 
barbituric acid and thiobarbituric acid render them compelling materials for diverse applications in the field of optoelectronics [41, 
44]. 

Ongoing research is actively exploring the full potential of these materials in the field, encompassing the development of new 
derivatives and the optimization of device architectures. In this regard, we report simple carbazole based organic dyes carrying with 
two withdrawing groups i.e., barbituric acid and thiobarbituric acid. The synthesized dye’s structure was validated through spectral 
analysis. To evaluate their suitability for potential optoelectronic applications, the synthesized dyes underwent thorough examination 
through photophysical and electrochemical studies. Additionally, the assessment was complemented by Density Functional Theory 
(DFT) calculations and Time-Dependent Density Functional Theory (TD-DFT) calculations. 

2. Experimental section 

2.1. Materials and methods 

All materials and solvents were procured from commercial suppliers and utilized without further purification. The molecular 
structures of Cz-BA and Cz-TBA were conclusively confirmed using various analytical techniques, including NMR spectroscopy 
(Bruker 400 and 100 MHz), High-Resolution Mass Spectrometry (HRMS), and elemental analysis (Flash EA1112 CHN analyser). 
UV–Visible spectra and fluorescence emissions were recorded in tetrahydrofuran (THF) solution at room temperature using a 
UV–Visible and fluorescence spectrophotometer. Cyclic voltammetry (CV) measurements were performed with a three-electrode setup 
submerged in an acetonitrile solution containing a supporting electrolyte (0.1 M tetrabutylammonium hexafluorophosphate) at a scan 
rate of 0.1 V/s, employing a CHI400A electrochemical workstation. To ensure data reproducibility, five complete cycles were 
recorded. Furthermore, comprehensive DFT and TD-DFT calculations, along with MESP maps, were conducted at the B3LYP/6-31G* 
level using the BIOVIA Turbomole 2022 software package. 

2.2. Synthesis 

2.2.1. Synthesis of N-ethyl carbazole-6-oxothymine (Cz-BA) 
0.25 g (0.001 mmol) of N-ethyl carbazole carboxaldehyde was taken in 10 ml of absolute methanol was stirred at 60 ◦C for 30 min. 

Subsequently, 0.5 g (0.003 mmol) of barbituric acid was gradually added with continuous stirring. The reaction mixture was then 
stirred for 10–12 h at 60 ◦C. Following the reaction’s completion, the precipitated solid was filtered and rinsed with pre-cooled ethanol. 
The obtained dye underwent additional purification through recrystallization in a dichloromethane (DCM)/methanol mixture, 
yielding a pure yellow solid. 

Yield 85 %, 1H NMR (400 MHz, DMSO‑d6, ppm), 11.30 (s 1H), 11.19 (s 1H), 9.30 (d, 1H), 8.65 (dd, 1H), 8.54 (s, 1H), 8.20 (d, 1H), 
7.75 (m, 2H), 7.57 (t, 1H), 7.34 (t, 1H), 4.53 (m, 2H), 1.38 (t, 3H). 13C NMR (100 MHz, DMSO‑d6, ppm): 168.3, 164.8, 163.0, 157.4, 
150.8, 143.2, 140.8, 133.9, 130.1, 127.3, 124.0, 123.0, 122.8, 121.1, 121.0, 114.6, 110.6, 109.6, 40.1, 40.0, 39.8, 14.3, CHN Analysis 
analytical calculated for C19H15N3O3: C - 68.46; H - 4.54; N - 12.61. found C - 68.43; H - 4.57; N - 12.59. Mass: HRMS 334.1192 [M+1]. 

2.2.2. Synthesis of N-ethyl carbazole-6-oxo thiothymine (Cz-TBA) 
0.25 g (0.001 mmol) of N-ethyl carbazole carboxaldehyde was taken in 10 ml of methanol and stirred at 65 ◦C for 30 min. Sub-

sequently, 0.5 g (0.003 mmol) of 2-thiobarbituric acid (was added to the clear solution, and stirring was continued for 10–12 h at a 
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constant temperature. The precipitated solid formed was collected, filtered, and washed with pre-cooled ethanol. Subsequently, the 
obtained residue underwent recrystallization, leading to the formation of a pure red solid. 

Yield 92 %, 1H NMR (400 MHz, ppm), 12.39 (s, 1H), 12.30 (s, 1H), 9.35 (d, 1H), 8.69 (dd, 1H), 8.55 (s, 1H), 8.21 (d, 1H), 7.76 (m, 
2H), 7.56 (t, 1H), 7.36 (t, 1H), 4.53 (m, 2H), 1.38 (t, 3H). 13C NMR (100 MHz, DMSO‑d6, ppm): 192.5, 178.7, 173.3, 163.1, 160.7, 
158.5, 143.6, 140.9, 130.7, 128.8, 127.3, 124.2, 123.0, 122.9, 122.8, 121.4, 120.7, 114.6, 110.7, 110.4, 110.1, 109.8, 40.1, 40.0, 39.8, 
14.3, 14. 2 CHN Analysis analytical calculated for C19H15N3O2S: C - 65.31; H - 4.33; N - 12.03. found C - 65.30; H - 4.36; N - 12.0 Mass: 
HRMS 350.0963 [M+1]. 

3. Results and discussion 

3.1. Chemistry 

The synthesis of Cz-BA and Cz-TBA dyes followed a straightforward Knoevenagel condensation reaction [45,46], as depicted in 
Scheme 1. In this synthetic pathway, N-ethyl carbazole carboxaldehyde underwent condensation with barbituric acid and thio-
barbituric acid, yielding the targeted Cz-BA and Cz-TBA dyes, respectively. The synthesis protocol resulted in a substantial yield of the 
dyes, which were subsequently purified via recrystallization. 

3.1.1. Electronic absorption and emission studies 
Fig. 1 depicts the UV–Vis absorption profiles of the Cz-BA and Cz-TBA dyes, meticulously recorded in THF solvent at room tem-

perature using a Labman UV–Vis absorption spectrophotometer. The pertinent spectral data extracted from these measurements are 
summarized in Table 1. As illustrated in Fig. 1, both Cz-BA and Cz-TBA dyes exhibit distinctive dual absorption bands. The absorption 
peaks observed at 343 nm (Cz-BA) and 351 nm (Cz-TBA) stem from π-π* electronic transitions originating within the donor 
component. The absorption signals manifesting at higher wavelengths, specifically at 441 nm (Cz-BA) and 473 nm (Cz-TBA), can be 
attributed to ICT (intramolecular charge transfer) phenomena, whereby, electron-deficient barbituric acid and thiobarbituric acid 
acceptor units engage in interactions with the carbazole donor moiety. Notably, the carbazole dye integrating thiobarbituric acid 
exhibits a noteworthy bathochromic (red) shift. Furthermore, the optical band gaps (E0-0) of Cz-BA and Cz-TBA dyes were deduced 
from the normalized absorption spectrum, yielding values of 2.58 and 2.42 eV, individually. Moreover, the molar extinction co-
efficients (ε) for Cz-BA and Cz-TBA dyes were quantified as 26,543 M− 1cm− 1 and 36,490 M− 1cm− 1, respectively. These values un-
derscore their remarkable light-absorbing capabilities and signify their potential for efficacious light absorption. 

Fluorescence emission spectra of Cz-BA and Cz-TBA dyes were precisely recorded in THF solutions, corresponding to their 
respective excitation wavelengths. Illustrated in Fig. 2, the normalized emission spectra for both Cz-BA and Cz-TBA dyes in THF so-
lution are displayed, with their corresponding spectral values summarized in Table 3. Singular, distinct emission bands were observed 
at 506 nm (Cz-BA) and 519 nm (Cz-TBA). In addition, their Stokes shift values were calculated using the UV–Vis absorption and 
fluorescence emission spectra. The computed values were found to be 65 nm for Cz-BA and 46 nm for Cz-TBA, as detailed in Table 1. 
The notably larger Stokes shift for Cz-BA in comparison to Cz-TBA underscores its effective intramolecular charge transfer (ICT) 
characteristics. 

3.2. Thermal behaviour 

The thermal characteristics and stability of the fluoranthene derivatives were comprehensively examined using TGA analysis. In 
particular, the decomposition temperature (Td) of both Cz-BA and Cz-TBA dyes were accurately determined through TGA, and the 
resulting plots are graphically presented in Fig. 3. The experimental procedure involved subjecting the samples of Cz-BA and Cz-TBA 
dyes to controlled heating within an inert nitrogen gas atmosphere, with a gradual temperature increase rate of 10 ◦C per minute. The 
results indicate that the decomposition temperatures (Td 5 %) corresponding to a 5 % weight loss were found to be 332 ◦C for Cz-BA 
and 310 ◦C for Cz-TBA, respectively. The notably high Td values exhibited by these dyes hold significant implications, suggesting their 
suitability for applications requiring elevated temperature operations. This enhanced thermal stability underscores their potential for 
integration into device fabrication processes that demand resilience in the face of challenging thermal conditions. 

Scheme 1. Synthetic routes of the carbazole-based dyes, Cz-BA and Cz-TBA.  
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Fig. 1. Normalized UV–Visible absorption spectra of Cz-BA and Cz-TBA.  

Table 1 
Optical properties of Cz-BA and Cz-TBA.  

Dyes Cz-BA Cz-TBA 

λabs (nm) 441 473 
λem (nm) 506 519 
ε 26,543 M− 1cm− 1 36,490 M− 1cm− 1 

Stoke Shift (nm) 65 46 
E0-0, Optical (eV) 2.58 2.42  

Table 2 
Electronic parameters obtained from DFT calculations.  

Dyes Bandgap (eV) HOMO (eV) LUMO (eV) 

Cz-BA 3.23 − 5.63 − 2.40 
Cz-TBA 3.03 − 5.68 − 2.65  

Fig. 2. Normalized fluorescence emission spectra of Cz-BA and Cz-TBA.  
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3.3. Computational studies 

DFT calculations were executed to evaluate the electronic feasibility and characteristics of Cz-BA and Cz-TBA dyes, encompassing 
both ground and excited states, through the utilization of the Biovia Turbomole 2022 software package [47–49]. Employing the 
B3LYP/6-31G* level [50; 51], the electron density distribution in the HOMO and LUMO energy levels, along with the optimized 
geometries obtained from Turbomole, are visually represented in Figs. 4 and 5. Numerical values derived from these calculations are 
compiled in Table 2. Initially, molecular geometry optimization was conducted at the AM1 semiempirical level. The 3-D optimized 
structures distinctly portray efficient charge separation in the frontier molecular orbital energy levels. In the HOMO levels, the electron 
density predominantly localizes on the carbazole units for both dyes, showcasing their electron-rich donor nature. Conversely, in the 
LUMO levels, the electron clouds notably shift towards the acceptor unit, signifying their effective electron-accepting characteristics. 
Notably, the calculation underscores that the electron density of the LUMO energy levels in both the dyes has shifted towards the 
acceptor units. 

In Fig. 6, ESP maps of Cz-BA and Cz-TBA offer a detailed view of the total charge density distribution at various spatial points 
surrounding the dye molecules. The alignment of cavity boundaries in the molecules with the density isosurface in the ESP plot visually 
represents the total charge distribution, encompassing electronegativity, dipole moment, and sites of chemical reactivity within the 
molecule. Distinct colors in the ESP plot correspond to electrostatic potential values, organized in the order of blue > green > yellow >
orange > red. Following this color scheme, red and blue contours on the plot denote electron-rich and electron-deficient regions, 
respectively, indicating the presence of positive and negative charges on the cavity surface. This dynamic interplay establishes local 
electric fields within the cavity [52–54]. As a result, ESP plots serve as a vivid visualization of the movement of electron density from 
the donor species to the acceptor/anchoring unit through spacer units. This phenomenon significantly contributes to efficient electron 

Table 3 
Electronic absorption parameters obtained from TD-DFT calculations.  

Dyes λabsI (nm) λabs
S (nm) f = OSI f = OSS 

Cz-BA 431 431 0.43 0.43 
Cz-TBA 461 461 0.51 0.51 

I - isolate dye and S - Chloroform solvent. 

Fig. 3. TGA analysis of Cz-BA and Cz-TBA dyes.  

Fig. 4. Optimize the structure of the synthesized dyes Cz-BA and Cz-TBA.  
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transfer in both Cz-BA and Cz-TBA, as demonstrated by the distinctive patterns revealed in the ESP maps. 
TD-DFT serves as a computational tool for comprehending the electronic behaviours of molecules [55,56,], elucidating light ab-

sorption in dyes like Cz-BA and Cz-TBA through absorption wavelengths (λabs) and oscillator strengths (f). This method simulates 
electronic transitions over time, aiding researchers in optimizing dyes for diverse applications based on their absorption traits. Fig. 7 
portrays simulated absorption spectra of Cz-BA and Cz-TBA, stemming from B3LYP/6-31G* calculations in gaseous and THF solvent 
phases, detailed in Table 3. Oscillator strength (f) gauges the likelihood of electronic transitions, with higher values indicating higher 
probability. Remarkably, Cz-BA and Cz-TBA exhibit identical λabs and f for isolate (I) and solvent (S) phases, signifying consistent 

Fig. 5. HOMO-LUMO energy levels of Cz-BA and Cz-TBA.  

Fig. 6. ESP mapping on the iso density surface of Cz-BA and Cz-TBA.  

Fig. 7. Simulated electronic absorption of Cz-BA and Cz-TBA dyes in (a) gaseous state and (b) THF solvent.  
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absorption across environments. Fig. 7 further demonstrates two distinct peaks in simulated absorption spectra, correlating with π-π* 
transitions and ICT phenomena. This observation aligns harmoniously with UV–Vis absorption spectra derived from real-world data, 
validating the chosen basis set and XC functional. The incorporation of DFT and time-dependent perturbation theory in TD-DFT en-
ables the computation and analysis of absorption properties. By comparing TD-DFT outcomes with experimental data, researchers 
refine models, gaining enhanced insights into dye electronic structures. This knowledge underpins tasks from developing 
purpose-specific dyes to tailoring properties for specific technological needs. 

3.4. Organic electronics applications 

3.4.1. Dyes as photosensitizers for DSSCs 
The energy level diagram illustrated in Fig. 8, along with the comprehensive data provided in Table 4, encapsulates the calculated 

HOMO-LUMO values and E0-0 values for Cz-BA and Cz-TBA dyes. These values were derived from optical and cyclic voltammogram 
analyses, with Fig. S7 presenting corresponding cyclic voltammogram traces. This collective information serves as a crucial foundation 
for assessing the potential suitability of these organic dyes as photosensitizers in DSSC applications. 

A noteworthy aspect is the positioning of the HOMO energy levels for these dyes, extending deeper than both the Nernst potential of 
the I₃⁻/I⁻ electrolyte system and the conduction band (CB) of TiO2. This characteristic underscores their efficacy in facilitating the 
regeneration and reduction of the oxidized dye by the electrolyte species. Simultaneously, the estimated LUMO levels are favourably 
situated relative to the CB edge of TiO2, ensuring efficient processes of charge injection and dye regeneration. The oxidation potentials 
obtained from cyclic voltammetry studies were utilized to calculate their ESOP values using Equation (1).  

HOMO = -[EOX - E1/2(ferrocene)+ 4.8 eV ].                                                                                                                                 (1) 

Here, EOX represents the reduction potential of dyes, and E1/2 (ferrocene) is 0.17 eV. Additionally, their GSOP values were 
computed from the obtained E0-0 (optical band-gap) and ESOP values, as expressed in Equation (2):  

LUMO = [HOMO - E0-0] eV.                                                                                                                                                      (2) 

To complement this analysis, we conducted calculations of essential thermodynamic parameters, including ΔGreg (Gibbs free 
energy for dye regeneration), ΔGinj (Gibbs free energy for electron injection), and ΔGrec (Gibbs free energy for charge recombina-
tion). Equations (3)–(5) were utilized for these calculations, considering Nernst potentials against the standard calomel electrode (SCE) 
for the CB edge of TiO2 and the I₃⁻/I⁻ electrolyte system, which are − 4.2 eV and − 5.2 eV, respectively. 

ΔGinj =ELUMO– ECB (TiO2) (3)  

ΔGreg= E
(
I-3
/

I-●) – EHOMO (4)  

ΔGrec =ECB (TiO2) – EHOMO (5) 

Table 4 summarizes the calculated values of these thermodynamic parameters for Cz-BA and Cz-TBA dyes, providing a concise 
overview of their performance in terms of ΔGinj, ΔGreg, and ΔGrec. Significantly, both the dyes exhibit favourable thermodynamic 
driving forces for charge injection and dye regeneration, meeting the specified range [57,58,]. This indicates promising potential for 
these dyes as sensitizers, as they meet the electrochemical prerequisites necessary for efficient charge transport in DSSC applications. 

3.4.2. Refractive index calculation from E0-0 through various theoretical model 
The optical bandgap and refractive index (n) stand as critical and fundamental parameters in assessing the suitability of any 

material. Theoretical relationships, particularly equations involving the refractive index and optical bandgap, provide insights into the 
optical and electronic characteristics of a material. In numerous cases, the refractive index exhibits an inverse relationship with the 
bandgap. The linear refractive index of Cz-BA and Cz-TBA can be determined using the well-known Dimitrov and Sakka relation [59]. 

n2 − 1
n2 + 2

= 1 −

̅̅̅̅̅̅̅̅̅
E0− 0

20

√

(6)  

Here ‘E0-0’ represents the optical bandgap. The computed refractive index values are detailed in Table 5. The high-frequency dielectric 
constant (ε∞) is determined as n2, utilizing the refractive index obtained from equation (1), and the results are provided in Table 5 
[60]. 

Another approach to establishing a relationship between n and E0-0 was undertaken by Moss [60] relying on the material’s energy 
levels. This relationship is expressed as, E0-0 x n4 = k (constant). Rearranging the above equation, 

nM =

̅̅̅̅̅̅̅̅̅

95
E0− 0

4

√

(7)  

In this equation, the constant k s assigned a value of 95 eV, where n represent the refractive index. This relationship is employed to 
calculate refractive loss, enhancing the solar cell’s conversion parameter. Following this, Ravindra [61] proposed a modification to the 
aforementioned relation, presenting an alternative model that accounts for the constant difference between the average and optical 
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energy gaps. The relation is expressed as: 

nR = 4.084 − [0.62×E00] (8) 

Moss confirmed the validity of this relation for bandgaps less than 4 eV; however, it may generate impractical values for extremely 
low and high optical energy values. Herve-Vandamme [62], relying on oscillator theory, introduced an alternative relation suitable for 
materials with low optical energy gaps: 

n2 = 1 +

(
A

E00 + B

)2

(9) 

Here, A is 13.6 eV, representing the ionization energy of hydrogen. The relation can be expressed as: 

n[HV] =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +

(
13.6

E00 + 3.47

)2
√

(10)  

In addition to the aforementioned relations, Tripathy [63] proposed an exponentially decreasing relationship between n and E00 that 
characterizes the refractive index of materials in relation to their corresponding bandgaps: 

nT = 1.73 ×
[
1+ 1.9017× e− 0.539×E00

]
(11) 

The theoretical values of ‘n’ are presented in Table 5. It is evident that the calculated ‘n’ values for Cz-TBA are higher than those for 
the Cz-BA material. This observation aligns with the inverse relationship between ‘n’ and E0-0. As per Moss’s rule, given that the 
bandgap of Cz-BA is greater than that of Cz-TBA, the refractive index of Cz-BA is consequently less than that of Cz-TBA. 

3.4.3. Nonlinear optical parameters 
Nonlinearity is a characteristic of a material that manifests its polarizability [64]. As the intensity of an electromagnetic wave 

Fig. 8. Energy level diagram of Cz-BA and Cz-TBA dyes.  

Table 4 
Theoretical thermodynamics properties of Cz-BA and Cz-TBA dyes.  

Dyes EOX (V) HOMO (eV) LUMO (eV) ΔGinj (eV) ΔGreg (eV) ΔGrec (eV) 

Cz-BA 1.23 − 5.86 − 3.28 0.92 0.66 1.43 
Cz-TBA 1.05 − 5.68 − 3.26 0.94 0.48 1.48  

Table 5 
Theoretical calculation of refractive index from models for Cz-BA and Cz-TBA dyes.   

Dyes 
Refractive index 

n[DS] nM nR n[HV] nT 

Cz-BA 2.308 2.307 2.007 2.230 2.270 
Cz-TBA 2.311 2.309 2.013 2.233 2.273  
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incident on the material increases, the material begins to exhibit nonlinear behaviour. As a result, the material’s overall polarizability 
is affected by the electric field in various orders, and the connection between the electric field and polarization vector is articulated as 
[65]. 

P= χ(1).E + PNL (12)  

or,P=
[
χ(1).E+ χ(2).E2 + χ(3).E3 +…

]

Here χ(1) represents the linear optical susceptibility, and χ(2) and χ(3) denote the second and third-order nonlinear susceptibilities, 
individually. The inclusion of the first and third-order terms in this expression offers valuable insights into the nonlinear behaviour 
exhibited by the material. 

As per the Miller’s empirical rule, the first nonlinear susceptibility (χ(1)) and third-order nonlinearity (χ(3)) can be computed using 
the following relations [66], 

χ(1) =
(n2 − 1)

4π  

and χ(3) =A
(n2 − 1)4

(4π)4 =A
(
χ(1))4 (13)  

Here n0 represents the static refractive index at hν → 0 and A = 1.7 × 10− 10 e.s.u. The computed nonlinear susceptibilities for the 
material are presented in Table 6. 

Nonlinear refractive index (n2) 
The nonlinear refractive index (n2) of Cz-BA and Cz-TBA samples can be determined utilizing the modified Miller rule proposed by 

Tichy and Ticha [67]. The empirical relation provides an expression from which the nonlinear refractive index can be deduced, as 
follows: 

n2 =
12πχ(3)

n
(14) 

The estimated values of n2 for Cz-BA and Cz-TBA is tabulated in Table 6. 

4. Conclusion 

In conclusion, our investigation of carbazole-based dyes, Cz-BA and Cz-TBA, has unveiled their promising potential for diverse 
optoelectronic applications, with a particular emphasis on their suitability for DSSC and NLO applications. Through a combination of 
comprehensive spectral and theoretical analyses, we have shed light on their optical properties, including refractive index calculations 
and nonlinear optical parameters like the nonlinear refractive index (n2), positioning them as promising candidates for nonlinear 
optical applications. Furthermore, our photophysical studies have underscored their effective light-absorption and emission behav-
iour, while DFT and TD-DFT simulations have provided robust validation of their electronic characteristics and absorption spectra in 
congruence with experimental data. The successful design and characterization of these dyes represent a significant leap forward in the 
practical utilization of advanced organic materials for DSSCs, making substantial contributions to materials science while offering 
innovative solutions for a wide range of real-world optoelectronic challenges. This marks a significant stride in the practical appli-
cation of these advanced organic materials in the renewable energy sector. 
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