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Abstract The Hubble tension refers to the discrepancy in
the value of the Hubble constant H0 inferred from the cos-
mic microwave background observations, assuming the con-
cordance �CDM model of the Universe, and that from the
distance ladder and other direct measurements. In order to
alleviate this tension, we construct a plausible dark energy
scenario, within the framework of Horndeski gravity which
is one of the most general scalar–tensor theories yielding
second-order equations. In our set-up, we include the self-
interactions and nonminimal coupling of the dynamical dark
energy scalar field which enable very interesting dynamics
leading to a phantom behaviour at low redshifts along with
negative dark energy densities at high redshifts. These two
features together make this model a promising scenario to
alleviate the Hubble tension for appropriate choices of the
model parameters. Towards a consistent model building, we
show that this set-up is also free from both the gradient and
ghost instabilities. Finally, we confront the predictions of
the model with low redshift observations from Pantheon,
SH0ES, cosmic chronometers and BAO, to obtain best fit
constraints on model parameters.

1 Introduction

One of the most significant discoveries in modern cosmology
is the observational evidence of the accelerated expansion of
the present Universe, which has been independently inferred
from the observations of distant type Ia supernovae [1,2].
Such an accelerated expansion is thought to be caused by
an unknown yet dominant component of the Universe called
dark energy. Within the regime of general relativity (GR), the
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Standard Model of Cosmology, also known as the �-Cold
Dark Matter (�CDM) model, can explain this phenomenon
with the help of a cosmological constant �. Despite being the
simplest model describing the Universe, the �CDM frame-
work is plagued by fundamental issues like the cosmological
constant problem and lack of physical understanding regard-
ing the late time acceleration of the Universe, which might
be arising due to some unknown dynamics at large scales.
There are mainly two approaches that have been followed
in order to address these issues – either by considering GR
to be the accepted theory of gravity and modifying the dark
energy components [3] or by modifying the gravitational the-
ory itself in a way that leads to an accelerated expansion of
the Universe, while reducing to GR in certain limits [4].

In the former case, one disregards the cosmological con-
stant � and instead introduces a scalar field that mimics the
dynamical dark energy, thereby leading to the late time accel-
erated expansion. On the other hand, a modification of the
underlying gravitational theory is usually done by introduc-
ing some extra degrees of freedom (DoF) in addition to Ein-
stein’s gravity or GR. One of the ways to manifest this is
via the scalar–tensor theories of gravity [5] wherein the extra
DoF are mixed with curvature, and on subjecting the action
to a conformal transformation, they get non-minimally cou-
pled with the matter. The idea is that one should be able to
make use of such modified gravity theories to generate extra
DoF that mimic the late time acceleration at large scales and
hence resolve the problems that the �CDM model faces.
However, with respect to the local measurements, these DoF
should be suppressed so that Einstein’s gravity, which agrees
very well with observations, becomes the underlying theory
of gravity. The required suppression of such extra DoF so as
to be consistent with local measurements is usually achieved
via various screening mechanisms such as the chameleon [6]
and the Vainshtein mechanisms [7].
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Over the years, several discrepancies in the standard
�CDM model have also emerged with the advancement of
precision cosmology. These are related to the mismatch in
the values of cosmological parameters obtained from direct
observations as compared to those inferred from the concor-
dance �CDM model. One of the most interesting and sta-
tistically significant discrepancies is in the value of Hubble
constant H0 inferred from the cosmic microwave background
(CMB) data [8] which assumes a �CDM model and those
obtained from distance ladder measurements conducted by
the SH0ES collaboration [9]. Although one can attribute this
mismatch to the systematic errors in direct measurement of
H0, multiple observations from alternative methods have also
indicated a tension with H0 inferred from �CDM [10–16].
At present, the observations from SH0ES give a high value
of H0 = (73.3 ± 1.04) km/s/Mpc, with a 5σ tension with
that inferred from Planck. The Hubble tension thus raises a
direct question about our understanding of the expansion of
the Universe, thereby emphasizing the need to look for pos-
sible modifications in the standard �CDM picture. Apart
from the H0 tension, the σ8 (the cosmological parameter
related to the clustering of matter in an 8h−1Mpc radius
sphere) tension refers to a discrepancy between the esti-
mation from the CMB and the measurement from surveys
like BOSS [17,18]. Some other discrepancies are associated
with the Ly-α baryon acoustic oscillations (BAO), which pro-
vide an independent measurement of the expansion history
at higher redshifts. The Ly-α measurement from eBOSS at
z ∼ 2.33 prefers a lower value of H(z) than �CDM model
[19], although with a mild statistical significance of 1.5σ .

Recently, a large number of attempts have been made
to alleviate the Hubble tension using different methods. A
comprehensive summary of these approaches can be found
in [10,20–27], most of which can be categorised either as
an early-time or a late-time modification. For a particu-
lar cosmological model, one can obtain the value of H0

via a measurement of the angular scale of sound horizon
θs = rs(zrec)/dA(zrec), where zrec is the redshift at recom-
bination, rs(zrec) is the sound horizon, and dA(zrec) is the
corresponding angular diameter distance. Since θs is con-
strained to high precision by CMB data [8], various solutions
to the H0 tension must necessarily respect this constraint. The
early-time solutions usually employ a reduction in rs(zrec),
which would require increasing dA(zrec) in order to keep θs
fixed, automatically implying an increase in the value of H0.
Some of these approaches include combining the BAO and
the Big Bang Nucleosynthesis (BBN) data [28,29], impos-
ing constraints on early dark energy [30–37], hot new early
dark energy [38,39], cascading dark energy [40], early dark
energy with thermal friction [41,42], and using massive neu-
trinos [43–45]. However, these approaches encounter a myr-
iad of problems, and it is understood that early-time solutions
are not sufficiently capable of alleviating the H0 tension [46].

On the other hand, late-time solutions incorporate mech-
anisms to alter the rate of expansion at redshifts close to the
present, which inherently implies z � zrec, thus resulting
in a higher value of H0 without disturbing either rs(zrec) or
dA(zrec), and hence θs . The usual prototype to bring about
this is to work with a phantom dark energy model, where the
equation of state behaves as w < −1 instead of the �CDM
model (with w = −1). To this end, a few of the numer-
ous attempts include employing “quintessence” potentials to
solve the H0 and σ8 tensions simultaneously [47], consider-
ing a quintessence field that tracks the equation of state during
recombination and then boosts the late-time expansion [48],
tuning the late-time acceleration of the Universe to cause a
monotonous increase in the expansion rate [49], employing
a phenomenological two-parameter family of dark energy
models [50], interacting dark energy models [51–53], using
new gravitational scalar–tensor theories that are free of ghosts
by definition [54], and many more [55–58].

In this paper, we introduce a plausible dark energy sce-
nario to provide a possible resolution of the Hubble ten-
sion, which is motivated within the framework of Horndeski
gravity [59] – one of the most general scalar–tensor theo-
ries involving second-order field equations. Horndeski the-
ory provides a rich phenomenology to modify the underlying
gravitational theory by introducing an additional degree of
freedom, a scalar field, leading to interesting implications
in inflationary [60–63] well as dark energy physics [64–66].
Recently Horndeski theories have been exploited to address
Hubble tension as well [54,67,68]. We consider a special case
of the Horndeski setup with a dynamical dark energy scalar
field φ involving self-interaction terms and nonminimal cou-
pling. This leads to interesting features in the dynamics of the
late universe and paves the way for a resolution of the Hubble
tension. We emphasize two important characteristics of the
model, the first being phantom behavior (implying that the
dark energy equation of state wφ < −1) at present while the
other is negative dark energy density (ρφ < 0) at high red-
shifts. The phantom dark energy models are well motivated in
literature to provide a faster expansion phase leading to large
H0, thereby resolving the Hubble tension [69–74], but at the
same time being disfavoured by BAO, σ8 (or S8) measure-
ments, unless accompanied by a phantom crossing behaviour
at some epoch [25,75,76]. On the other hand, a negative dark
energy density at high redshifts has been preferred by various
data and observational reconstructions [43,77–83], and has
been found to be helpful in resolving many anomalies and
cosmological tensions like BAO Ly-α measurements, H0 and
S8 tensions [84–90].

In this work, we show that with the combined features
mentioned above, our model promises to effectively address
the H0 tension. We also comment upon the predictions of
the model towards simultaneous alleviation of H0 and σ8

tensions based on the discussion by Heisenberg et al. [75].
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The dark energy scenario proposed in this work is a late-
time modification in the dynamics of the universe, thereby
not affecting the early universe physics before recombina-
tion. Towards a consistent, well-behaved theory, we show
that the model is free of gradient and ghost instabilities,
which may otherwise arise in more general scalar–tensor
theories. Finally, we compare the model predictions against
low redshift data from Pantheon, SH0ES, BAO, and cosmic
chronometers (CC) [9,91–93] and employ a Markov Chain
Monte Carlo (MCMC) analysis to obtain best fit constraints
on model parameters.

Our paper is organised as follows: in Sect. 2, we briefly
introduce the Horndeski theory and its dynamics and state
the conditions for the avoidance of any gradient and ghost
instabilities. In Sect. 3, we present our model as a special
case of Horndeski Lagrangian with a particular choice of
interaction terms. In this section, we further discuss in detail
the dynamics and features of the model and confront the
model predictions with available data. Finally, in Sect. 4, we
summarize our results and conclude with some discussions
and future directions.

We work with natural units such that h̄ = c = 1, and set
the reduced Planck mass MPl = (8πG)−1/2 = 1. Our metric
signature is (−,+,+,+).

2 Horndeski theory and its dynamics

We work in the framework of the Horndeski theory which is
a generalised scalar–tensor theory in four dimensions. The
Lagrangian is constructed out of the metric tensor and a
scalar field and leads to second order equations of motion,
thereby being free of Ostrogradsky instability. The complete
Lagrangian for the Horndeski theory (or equivalently, for the
generalized Galileons) is given by

L =
5∑

i=2

Li , (1)

where

L2 = G2(φ, X),

L3 = −G3(φ, X)�φ,

L4 = G4(φ, X)R + G4,X (φ, X)
[
(�φ)2 − (∇μ∇νφ)2

]
,

L5 = G5(φ, X)Gμν∇μ∇νφ − 1

6
G5,X (φ, X)

×
[
(�φ)3 − 3�φ(∇μ∇νφ)2 + 2(∇μ∇νφ)3

]
,

where R is the Ricci scalar, Gi are four independent arbi-
trary functions of φ and X , and X = −∂μφ∂μφ/2, Gi,Y =
∂Gi/∂Y with Y = {φ, X}. Thus, in the Horndeski gravity,

the complete action can be given as,

S =
∫

d4x
√−g

(
5∑

i=2

Li + LM

)
, (2)

where, LM accounts for the matter (and the radiation) com-
ponent. Such a theory can well explain the dark energy phase
of the Universe modelled by a scalar field φ coupled to
gravity (minimal or non-minimal coupling) depending on
the choice of Gi (φ, X). In a flat FRW background with
ds2 = −dt2 +a(t)2dx̄2, two Friedmann equations are given
by [94],

2XG2,X − G2 + 6X φ̇HG3,X − 2XG3,φ − 6H2G4

+24H2X (G4,X + XG4,XX − 12HX φ̇G4,φX

−6H φ̇G4,φ + 2H3X φ̇(5G5,X + 2XG5,XX )

−6H2X (3G5,φ + 2XG5,φX ) = −ρM (3)

G2 − 2X (G3,φ + φ̈G3,X ) + 2(3H2 + 2Ḣ)G4

−12H2XG4,X − 4H ẊG4,X − 8Ḣ XG4,X

−8HX ẊG4,XX + 2(φ̈ + 2H φ̇)G4,φ + 4XG4,φφ

+4X (φ̈ − 2H φ̇)G4,φX − 2X (2H3φ̇ + 2H Ḣ φ̇

+3H2φ̈)G5,X − 4H2X2φ̈G5,XX

+4HX (Ẋ − HX)G5,φX + 2[2(Ḣ X + H Ẋ)

+3H2X ]G5,φ + 4HX φ̇G5,φφ = −pM (4)

In fact, the Eqs. (3) and (4) can be written in a simplified
manner as [95],

3H2 = κ2(ρφ + ρM ) (5)

−3H2 − 2Ḣ = κ2(pφ + pM ) (6)

where ρφ and pφ are the energy density and pressure of the
scalar field given as,

ρφ = 2XG2,X − G2 + 6X φ̇HG3,X − 2XG3,φ − 6H2G4

+24H2X (G4,X + XG4,XX − 12HX φ̇G4,φX

−6H φ̇G4,φ + 2H3X φ̇(5G5,X + 2XG5,XX )

−6H2X (3G5,φ + 2XG5,φX ) + 3H2

κ2 (7)

pφ = G2 − 2X (G3,φ + φ̈G3,X ) + 2(3H2 + 2Ḣ)G4

−12H2XG4,X − 4H ẊG4,X − 8Ḣ XG4,X

−8HX ẊG4,XX + 2(φ̈ + 2H φ̇)G4,φ + 4XG4,φφ

+4X (φ̈ − 2H φ̇)G4,φX − 2X (2H3φ̇ + 2H Ḣ φ̇

+3H2φ̈)G5,X − 4H2X2φ̈G5,XX

+4HX (Ẋ − HX)G5,φX + 2[2(Ḣ X + H Ẋ)

+3H2X ]G5,φ + 4HX φ̇G5,φφ − 1

κ2 (3H2 + 2Ḣ)

(8)

In the above equations, κ2 = 1/M2
Pl, and from now on,

we set κ2 = 1. Finally, the equation for the evolution of the
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scalar field is given by [94],

1

a3

d

dt
(a3J ) = Pφ (9)

where,

J = φ̇G2,X + 6HXG3,X − 2φ̇G3,φ

+6H2φ̇(G4,X + 2XG4,XX ) − 12HXG4,φX

+2H3X (3G5,X + 2XG5,XX )

−6H2φ̇(G5,φ + XG5,φX ), (10)

Pφ = G2,φ − 2X (G3,φφ + φ̈G3,φX ) + 6(2H2

+Ḣ)G4,φ + 6H(Ẋ + 2HX)G4,φX

−6H2XG5,φφ + 2H3X φ̇G5,φX . (11)

In the above equations ρM and pM are the energy density
and pressure of the matter field (and radiation), which satisfy
the continuity equation,

ρ̇M + 3HρM (1 + wM ) = 0, (12)

where wM = pM/ρM is the equation of state for the fluid.
The complete background evolution of the Universe can be
obtained by solving the above set of equations. However, due
to the non-trivial and non-canonical structure of the Horn-
deski Lagrangian, sometimes these models can have insta-
bility issues in the evolution of the perturbations, rendering
the background evolution inappropriate. It is therefore nec-
essary to keep a check on the parameters of the theory, even
if one is not concerned with the evolution of perturbations
for a given dark energy model. The Laplacian or gradient
instability is related to the propagation speed of the scalar
and tensor perturbations which arise in the regime where the
square of sound speed of perturbations becomes negative.
This leads to an unstable growth of the perturbation modes
on small scales. Another crucial one is the ghost instabil-
ity which arises when the sign of the kinetic term of the
perturbations goes negative. We shall work in the parameter
space wherein we avoid all these instabilities so as to have
a well-behaved theory. Following the standard technique of
linear cosmological perturbation theory, one can obtain the
second-order action for the scalar and tensor perturbations in
Horndeski theory as [94],

S2 =
∫

dtd3xa3

[
QS

(
Ṙ2 − c2

S

a2 (∂iR)2

)

+QT

(
ḣ2
i j − c2

T

a2 (∂khi j )
2

)]
, (13)

where R is the scalar curvature perturbation while hi j are
the tensor modes or gravitational waves (GWs), and QS and
QT are given by

QS ≡ w1
(
4w1w3 + 9w2

2

)

3w2
2

(14)

QT ≡ w1

4
(15)

Similarly, cS and cT are the propagation speeds of the scalar
and tensor modes, respectively, and are given as,

c2
S ≡ 3

(
2w2

1w2H − w2
2w4 + 4w1w2ẇ1 − 2w2

1ẇ2
) − 6w2

1 [(1 + wA) ρA + (1 + wB) ρB]

w1
(
4w1w3 + 9w2

2

) (16)

and

c2
T ≡ w4

w1
(17)

where,

w1 ≡ 2
(
G4 − 2XG4,X

) − 2X
(
G5,X φ̇H − G5,φ

)
, (18)

w2 ≡ −2G3,X X φ̇ + 4G4H − 16X2G4,XX H

+4
(
φ̇G4,φX − 4HG4,X

)
X + 2G4,φφ̇

+8X2HG5,φX + 2HX
(
6G5,φ − 5G5,X φ̇H

)

−4G5,XX φ̇X2H2, (19)

w3 ≡ 3X
(
K,X + 2XK,XX

)

+6X
(
3X φ̇HG3,XX − G3,φX X − G3,φ + 6H φ̇G3,X

)

+18H
(

4HX3G4,XXX − HG4 − 5X φ̇G4,φX

−G4,φφ̇ + 7HG4,X X + 16HX2G4,XX

−2X2φ̇G4,φXX

)
+ 6H2X

(
2H φ̇G5,XXX X

2

−6X2G5,φXX + 13XH φ̇G5,XX − 27G5,φX X

+15H φ̇G5,X − 18G5,φ

)
, (20)

w4 ≡ 2G4 − 2XG5,φ − 2XG5,X φ̈. (21)

For consistent dynamics, free of any gradient and ghost
instabilities for both scalar and tensor modes, one must satisfy

c2
S > 0, Qs > 0, c2

T > 0, QT > 0 (22)
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Another non-trivial characteristic of Horndeski theories
is that the speed of GWs can evolve with time for models
containing G4(φ, X) and G5(φ, X), as can be seen from
Eq. (17) and in fact using Eqs. (18) and (21), can be stated as

c2
T = G4 − XG5,φ − XG5,X φ̈

G4 − 2XG4,X − X (G5,X φ̇H − G5,φ)
(23)

The recent observations of GWs from the LIGO-VIRGO
collaboration and their electromagnetic counterparts put a
very stringent bound on speed of GWs, such that [96,97]

−3 × 10−15 < cT − 1 < 7 × 10−16 (24)

which implies that a consistent dark energy model should not
violate Eq. (24) in any regime.

3 Our scenario with self-interactions and non-minimal
coupling

In this section, we present a model constructed within the
framework of the Horndeski Lagrangian, comprising of non-
zero G2, G3, and G4 terms of Eq. (1) such that,

G2 = X − V (φ), G3 = c1φ + c2X,

G4 = 1

2
+ c3φ, G5 = 0. (25)

Here we choose, G4 as a function of the dark energy scalar
field φ i.e. G4(φ, X) = G4(φ) and G5(φ, X) = 0. This
choice ensures that the speed of gravitational waves is always
luminal, i.e. cT = 1, as can be verified easily by Eq. (17). Our
model as specified by Eq. (25) can also be seen as an extension
to the quintessence dark energy scenario [98], where φ is the
scalar field that drives the dark energy phase, X = φ̇2/2 is
the kinetic term, and V = V (φ) is the potential of the field.
Clearly, G3 = 0, G4 = 1/2 corresponds to the quintessence
case, while �CDM scenario can be obtained by choosing
G2 = −2�, G3 = 0 and G4 = 1/2.

For the model given by Eq. (25) the energy density and
pressure of the dynamical scalar field can be written using
Eqs. (7) and (8) as,

ρφ = 1

2
φ̇2 + V (φ) − 6c3φH

2 − 6c3H φ̇ − c1φ̇
2 + 3c2H φ̇3

(26)

pφ = 1

2
φ̇2 − V (φ) + 6c3φH

2 + 4c3φ Ḣ + 2c3φ̈

+4c3H φ̇ − c1φ̇
2 − c2φ̈φ̇2 (27)

Therefore, using the above expressions for ρφ and pφ in
Eqs. (3) and (4) one can obtain the two Friedmann equations.
Further, the evolution of the dark energy scalar field for our
setup of Eq. (25) can be written using Eq. (9) as,

φ̈ + 3H φ̇ + V ′(φ) − 12c3H
2 − 6c3 Ḣ

−2c1φ̈ − 6c1H φ̇ + 6c2H φ̈φ̇ + 9c2H
2φ̇2

+3c2 Ḣ φ̇2 = 0 (28)

Finally, Eqs. (5), (6) and (28) form the set of three equa-
tions that provide the evolution of the cosmological back-
ground in the presence of the dynamical dark energy scalar
field with energy density and pressure given by Eqs. (26)
and (27), respectively. These equations are solved numeri-
cally to obtain the evolution of relevant background quanti-
ties such as the Hubble parameter H(z), dark energy equa-
tion of state wφ(z), etc. Throughout the analysis, we fix the
potential of the dark energy scalar field to a linear one, i.e.,
V (φ) = V0φ. The initial conditions on H , φ, and φ̇ are
set at the time of recombination, i.e. at zrec = 1100. We
set H(zrec) = H�CDM(zrec) in H0 units, while we choose
φ(zrec) = 2 and φ̇(zrec) = 10−3 in Planck units. Also, the
parameter V0 (of dimension [MPl]3) of the dark energy poten-
tial is kept fixed throughout the analysis, with V0 = 1.1 in
H0 units.

The three crucial model parameters in our analysis are c1,
c2, and c3, which control the strength of couplings as can be
seen from Eq. (25). Specifically, c1 and c2 contained inside
G3 control the self-interaction terms of the scalar field and
its derivative, while c3 in G4 controls the strength of non-
minimal coupling to gravity. These two interactions arising
from G3 and G4, respectively, lead to distinct effects in the
dynamics of the expansion of the universe. Specifically, the
G3 term in Eq. (25), with an appropriate choice of c1 and c2

can give a phantom behavior (wφ < −1) at low redshifts
leading to a faster expansion compared to �CDM, while the
nonminimal coupling to gravity due to the choice of G4 in
Eq. (25), leads to negative dark energy density at high red-
shifts (around z ≥ 3). This can be qualitatively seen from
Eq. (26), where the appropriate choice of c3(> 0) can lead
to ρφ < 0 in regimes where V (φ) is subdominant, given that
φ̇ is really small. In Sect. 3.2, we shall discuss these effects
in detail. As mentioned in Sect. 1, negative dark energy at
high redshifts has been found to be effective in resolving
anomalies and cosmological tensions. In the next section, we
will demonstrate these effects for different choices of c1, c2,
and c3. Also, the dimensions of the three model parameters,
c1, c2, c3 in terms of Planck mass are [MPl]0, [MPl]−3 and
[MPl]1 respectively. The case with c1 = c2 = c3 = 0 gives
the usual quintessence scenario, with a background similar
to the �CDM.

Another interesting feature of the Horndeski theory
involving a non-trivial G4 term is that it can lead to an evo-
lution of the Planck mass on cosmological scales. This leads
to a modification in the luminosity distance compared to the
standard GR due to additional friction arising from the run-
ning Planck mass [99], referred to as the GW distance. Future
GW distance observations from the Einstein Telescope will
constrain the deviations from GR, arising in modified gravity
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theories like Horndeski gravity [100]. Furthermore, the pres-
ence of Galileon-type interaction in our model, i.e. G3(X),
leads to the Vainshtein mechanism, thereby reconciling with
GR inside the Vainshtein radius [101].

3.1 Alleviating the Hubble tension—our model results

In this section, we present the results of the numerical anal-
ysis of the cosmological background for our model given by
Eq. (25). As mentioned earlier, we fix the initial conditions
on φ, φ̇, and H at recombination zrec, along with a fixed
value of V0, to solve the set of background equations numer-
ically. The top left panel of Fig. 1 shows the evolution of the
normalized Hubble parameter H(z) for different values of
c1, c2 and c3 while the top right panel shows the correspond-
ing evolution of the dark energy equation of state wφ(z). The
results of the standard �CDM model are also displayed for
comparison. In order to visualize the salient features of the
model, we also confront the corresponding evolution of the
Hubble parameter with observational data from BAO (bot-
tom left) and cosmic chronometers (bottom right), as shown
in Fig. 1. The model can favour larger values of the Hubble
parameter at present in comparison to the �CDM case for
specific choices of model parameters. This can be seen in the
top left panel of Fig. 1 that the model gives a comparatively
faster expansion at low redshifts than �CDM, thereby large
H0. This can clearly be attributed to the phantom behavior
of the dark energy scalar (wφ < −1) field around the present
epoch in the top right panel of Fig. 1.

However, at higher redshifts, the H(z) for the model is
less than that of �CDM, which is due to the negative energy
density of the scalar field around those redshifts. This fea-
ture of ρφ < 0 at high redshifts is traced in the evolution of
wφ in the right panel of Fig. 1, which crosses a singularity
around the epoch (z ∼ 2−5) where ρφ switches sign. Around
this point, the dark energy density transits to positive values,
giving appropriate evolution at present. This type of singu-
larity in wφ(z), arising due to negative dark energy in some
regime, has been studied in literature to address anomalies
in Ly-α BAO measurements of H(z), as well as supported
by the observational reconstructions [78,84,85]. Recently it
has been pointed out ([80,83] and references therein) that the
negative energy density of dark energy scalar field ρφ at high
redshifts, wherein the effects of dark energy are really sub-
dominant or insignificant, can lead to resolution of cosmolog-
ical tensions like H0, S8 etc. Indeed, the total energy density
of the universe is always positive, even when ρφ is negative
at higher redshifts. Since the contribution of ρφ to the total
energy density remains really insignificant at earlier epochs,
the singularity in the equation of state does not affect the evo-
lution of relevant background entities like H, Ḣ , etc. Thereby
the two crucial characteristics of the dark energy component
in our model i.e. the phantom behavior at low redshifts and

negative energy density at higher redshifts, collectively are
capable of explaining the observed measurement of Hubble
parameter from independent observations like Supernovae,
BAO and CC as demonstrated in the lower panel of Fig. 1.
To illustrate further, these two characteristics of the model
lead to a sign switching in δH(z) (= H(z) − H�CDM(z)),
i.e. δH(z) < 0 at high redshifts while δH(z) > 0 around the
present, which is seen as a necessary condition to be satisfied
by any late dark energy model trying to address the Hubble
tension [75,90]. These conditions are obtained to ensure that
any late-time modifications do not disturb the precisely mea-
sured angular size of the sound horizon around recombination
by Planck. In Sect. 3.2, we shall further illustrate the distinct
effects arising from the individual interaction terms, i.e. from
G3 and G4 of Eq. (25), one at a time.

For a consistent model building, it is necessary to ensure
that there are no instabilities, as discussed in Sect. 2. The
necessary conditions to avoid such instabilities in a Horn-
deski setup are given by Eq. (22). As shown in Fig. 2, from
the evolution of the speed of perturbations of scalar modes
cS and the parameter QS , it is evident that our model is free
of gradient and ghost instabilities. Moreover, as discussed
earlier in Sect. 3, for our setup given by Eq. (25), the speed
of tensor perturbations is always luminal thereby, we do not
worry about tensor perturbations.

Finally, we comment upon the implications of such a
model towards resolution of σ8 (or S8) tension as well, in ref-
erence to the points made by Heisenberg et al. in [75]. The
former reference discusses the necessary conditions in the
background evolution of a dark energy model for simultane-
ous alleviation of H0 and σ8 tensions in a model-independent
way. Our model meets the criteria suggested by [75], i.e.,
it exhibits a phantom crossing behaviour. Thereby, without
going to the evolution of perturbations, we highlight that our
model indeed shows the possibility of resolving the σ8 ten-
sion as well. Due to the complicated structure of perturbations
in a Horndeski setup, we leave the evolution of perturbations
for future work.

3.2 Understanding the effects of the choice of G3 and G4

in our model

As discussed earlier, the proposed dark energy model given
by Eq. (25) involves non-zeroG3 andG4 terms. From Eq. (1),
one can see that a non-trivial G3 invokes self-interactions of
dark energy field while the choice of G4 introduces non-
minimal coupling to gravity. In this section, we will try to
understand the individual effects ofG3 andG4 on the dynam-
ics of our model. As mentioned in Sect. 3, the role of G3 is to
lead to a phantom behaviour at low redshifts. The condition
for a phantom behaviour is given by
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Fig. 1 The evolution of the normalized Hubble parameter (top left) and equation of state of dark energy scalar field (top right) for different
combinations of c1, c2, and c3. In the bottom panel, the model is confronted with the measurement of H(z) from SN [9], BAO, and CC data [92,93]

Fig. 2 The evolution of the speed of scalar perturbations cs (left) and stability parameter Qs (right) for a specific choice of model parameters
c1, c2 and c3. The plots indicate that the model is free of gradient and ghost instabilities as specified by conditions in Eq. (22)

wφ = pφ

ρφ

< −1

For the case whenG4 is turned off, putting c3 = 0 in Eqs. (26)
and (27), the above condition resorts to,

φ̇2(1 − 2c1 − c2φ̈ + 3c2H φ̇) < 0

which can be achieved with appropriate choices of c1 (pre-
dominantly) and c2. A non-zero c2 is necessary to ensure the

stability condition Qs > 0 is not violated in any regime.
It is to be noted that with c3 = 0, one cannot go into
the ρφ < 0 regime as can be seen from Eq. (26), since
the terms O(φ̇2) < V (φ). Now, for the case when only
the non-minimal coupling term G4 is switched on, putting
c1 = c2 = 0, one gets

ρφ = V (φ) + 1

2
φ̇2 − 6c3φH

2 − 6c3H φ̇

123



  220 Page 8 of 14 Eur. Phys. J. C           (2024) 84:220 

Fig. 3 The evolution of H(z)/(1 + z) confronted with measurement
of Hubble parameter from [9], BAO, and CC data [92,93] (left) and the
corresponding equation of state of dark energy scalar field (right) for

the cases where either of G3 and G4 are turned on to see the effects of
these individual terms on the background cosmological dynamics

which can give rise to ρφ < 0 for a suitable choice of c3

whenever V (φ) < 6c3φH2 in some regimes, where we
ignore the terms O(φ̇) being very small. Since we are work-
ing with a linear potential, the above condition can be given as
V0 < 6c3H2, or V0 < 2c3ρc, where ρc = 3H2. This can eas-
ily be satisfied at high redshifts where dark energy density is
really insignificant. We now show these results obtained from
numerical solutions of the background equations Eqs. (5), (6)
and (28) for these two cases discussed above. The left panel
in Fig. 3 shows the evolution of H(z)/(1+z) for cases where
either G3 or G4 is turned on. Note that we do not vary the
scalar field mass (quantified by V0) throughout the analy-
sis. For the case with G3 turned on (i.e. with c3 = 0), one
can obtain a higher value of H0 arising due to the phantom
behaviour of dark energy around the present epoch. This can
be visualized from the green and brown plots in the evolution
of H(z) and wφ(z) in Fig. 3. But at the same time, the equa-
tion of state does not cross the phantom divide or become sin-
gular in any regime; thereby, such a setup may not address the
BAO Ly-α measurements of H(z) at high redshifts. In fact, it
will not satisfy the condition of δH(z) < 0 at high redshifts,
as required for successful alleviation of the Hubble tension
[75,90]. Such type of scenarios where the dark energy equa-
tion of state makes a sudden transition to phantom behaviour
at very low redshifts, so-called “hockey stick” models, are not
considered suitable (see for example [102]). In the other case,
when only G4 term is turned on (by putting c1 = c2 = 0),
we do not obtain H0 significantly higher than �CDM. This
is also understood from the evolution of wφ(z) in the red and
blue curves in Fig. 3, which rather behaves like a quintessence
field at present redshift with wφ > −1. Interestingly, such
a setup gives rise to a singularity in wφ(z), which leads to
a phantom crossing behaviour, the position of which can be
controlled depending on the choice of parameter c3. Because
of this feature in wφ , arising due to negative dark energy at

Table 1 Baryon acoustic oscillation (BAO) expansion rate measure-
ments from SDSS collaboration. The references of these measurements
are provided in the table

z H(z) References

0.38 81.9 ± 1.9 [17]

0.51 90.8 ± 1.9 [17]

0.61 97.8 ± 2.1 [17]

1.52 159 ± 12 [105]

2.34 223 ± 7 [106]

2.36 227 ± 8 [107]

Table 2 The priors on model parameters used in our analysis. The prior
range is the same for all the likelihoods used

Parameters Priors

c1 [2.0, 6.0]

c2 [3.0, 10.0]

c3 [0.0, 0.02]

high redshifts, such setup can explain the H(z) observations
from BAO Ly-α measurements. In conclusion, the phantom
behaviour of the model can be attributed to the G3 term (con-
trolled by c1 and c2) while the negative dark energy at high
redshifts arises due to the choice of G4 (controlled by c3)
in our model given by Eq. (25). The former effect gives rise
to a large H0 at present, explaining the observations from
Supernovae [9] while the latter gives the necessary phan-
tom crossing condition to successfully resolve H0 tension, in
addition to explaining the measurements of H(z) from BAO
and SDSS at higher redshifts [92,93]. Hence, the combined
characteristics drive the model towards a successful allevia-
tion of the Hubble tension.
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Fig. 4 The posterior distribution of the model parameters c1, c2, c3
and the derived background quantities H0 and 
M from MCMC sam-
pling for individual low redshift data (top panel) and for combined data
(bottom panel)

3.3 Best fit constraints on model parameters

In this section, we assess our model against the low red-
shift data to obtain constraints on the model parameters.
This is achieved by employing a Markov Chain Monte Carlo
(MCMC) analysis, which samples the parameter space of c1,
c2 and c3, to obtain best fit constraints on these parameters
and thereby on the derived background quantities of interest

(here H0, 
M ) for different likelihoods. The data used in our
analysis are as follows:

• The SH0ES measurement of H0 = 73.3±1.04 km/s/Mpc
[9], modelled with a Gaussian likelihood.

• The distance moduli measurements of 1048 SNIa Pan-
theon sample in the redshift range 0.01 < z < 2.3 [91].

• The expansion rate measurements from BAO, compiled
in Table 1.

• The cosmic chronometer (CC) data on H(z) as compiled
in Table III of [103] and the covariance matrix obtained1

following the method discussed in [104].

For the sampling process, the three free model parameters
are provided with uniform priors as summarised in Table 2.
In Fig. 4 the results of the analysis are presented as poste-
rior distributions of the model parameters and the derived
background quantities for individual data (top panel) and for
the combined data (bottom panel) obtained using the GetDist
Python package [108]. We also tabulate the mean values and
1σ constraints on these parameters obtained from the MCMC
sampling in Table 3.

For the case of individual likelihoods, the posteriors of
parameters c1 and c2 overlap to a great extent for all the cases.
Interestingly for the parameter c3, which controls the strength
of nonminimal coupling and causes the dark energy density
to possess negative values at high redshifts, the constraints
from BAO differ largely from those obtained for the other
three data, namely CC, Pantheon and SH0ES. The BAO con-
straints seem to prefer a large value of c3, thereby inclined
to strongly favour the presence of negative dark energy at
high redshifts and, thus, explain the anomalous Ly-α mea-
surement of expansion rate, as also discussed in [84,106].
But unlike BAO, the other data (CC, Pantheon and SH0ES)
seem to be less sensitive to the nonminimal coupling param-
eter c3, as evident from Table 3, only providing an upper
bound on it. This can also be understood, given that these
data mostly constrain the expansion history at low redshifts
(z < 2), while the negative dark energy density feature is
effective at somewhat larger redshifts.

A similar behaviour is seen in the joint likelihood analy-
sis (with all data combined), where the parameter c3 favours
very small values with an upper bound as shown in Table 3,
indicating that the combined data does not constrain well the
nonminimal coupling parameter. But any non-zero value of
c3, irrespective of its amplitude, implies the presence of nega-
tive dark energy. As discussed earlier, this incorporates inter-
esting features like phantom crossing in the model, which
is essential in order to successfully address H0 and σ8 ten-
sion without disturbing the CMB peaks [75]. The other two

1 https://gitlab.com/mmoresco/CCcovariance/-/tree/master?
ref_type=heads.
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Table 3 We present the best fit constraints on various model parameters after MCMC analysis with different low redshift data. The mean values
of all the parameters along with their 1-σ constraints are listed here

Parameters BAO CC Pantheon Pantheon+SH0ES BAO+CC+Pantheon+SH0ES

c1 4.50+0.61
−0.37 3.09+0.43

−0.48 3.61+0.52
−0.43 3.58+0.52

−0.44 3.57+0.49
−0.39

c2 6.70+1.0
−0.51 6.0 ± 1.2 6.1 ± 1.3 6.0 ± 1.3 6.0+1.5

−1.3

c3 0.01714+0.00061
−0.00052 < 0.000735 < 0.000410 < 0.000460 < 0.000558

H0 72.28 ± 0.27 71.05 ± 0.46 72.342+0.059
−0.079 72.342+0.053

−0.069 72.325+0.050
−0.061


M 0.2712 ± 0.0019 0.2791 ± 0.0036 0.26921+0.00060
−0.00049 0.26921+0.00054

−0.00043 0.26934+0.00047
−0.00042

parameters c1 and c2 are well-constrained with nearly Gaus-
sian posteriors and similar mean values for different data.
This indicates the preference for a phantom behaviour of
dark energy at low redshifts (due to the non-zero c1 and c2),
which leads to a large value of H0 ∼ 72 km/sec/Mpc, thereby
reducing the tension with local measurements. However, in
order to obtain the complete picture, one needs to include the
CMB data as well to obtain parameter constraints, which is
beyond the scope of the present work. Indeed, including the
CMB data would help us impose more stringent constraints,
especially on the nonminimal coupling parameter c3, indicat-
ing whether or not the data favours the presence of negative
dark energy at high redshifts.

4 Conclusions and discussions

The Hubble tension is certainly one of the most intriguing
problems in modern cosmology and has recently received
a lot of attention. Numerous attempts are ongoing as well
as have been made in order to bridge the gap between
the �CDM-predicted value of H0 and the values obtained
through the late-time (low redshift) observations. While the
mismatch can certainly be attributed to the systematic errors
associated with different direct or indirect (or both) mea-
surements, the tension may also be a true reflection of real-
ity, requiring exotic new physics and, perhaps, a dramatic
revision to our current understanding of cosmic evolution on
large scales.

In this work, we have proposed a new dark energy model
within the framework of Horndeski gravity as a plausible sce-
nario towards the resolution of H0 tension. The dark energy
expansion is governed by a dynamical scalar field involv-
ing non-trivial self-interactions and non-minimal coupling,
motivated by the Horndeski Lagrangian. The proposed model
resorts to late-time modification approaches to resolve H0

tension. The two crucial characteristics of our model, which
are negative dark energy density at high redshifts (giving rise
to phantom crossing) and a phantom behaviour around the
present epoch, make it an appealing candidate among vari-
ous solutions to alleviate the Hubble tension. As discussed

in detail, both these conditions suffice for explaining the
observed measurement of the Hubble parameter from inde-
pendent observation and at the same time, ensuring that the
CMB measurements of the angular size of the sound horizon
from Planck remain unaffected. We have further shown that
our scenario remains free of various issues, such as gradient
instability or superluminal propagation and, thus, is consis-
tent from a physical model-building perspective. We have
also briefly mentioned that our model shows the possibility
of resolving the σ8 tension as well due to the presence of a
phantom crossing scenario [75]. To check the feasibility of
our model, we use low redshift data from Pantheon, SH0ES,
BAO and CC, and employing an MCMC analysis, obtain the
best fit constraints on model parameters. The analysis shows
that the proposed dark energy model can support larger val-
ues of H0(∼ 72 km/s/Mpc) due to the phantom behaviour of
the dark energy field at low redshifts (due to self-coupling
parameters c1 and c2), thereby resolving the H0 tension.

In fact, the next relevant step in this direction would be
to study the evolution of linear density perturbations in such
Horndeski models to see the effects on CMB and the matter
power spectrum. We consider this as a future prospect to per-
form complete data analysis, including full CMB data, and
explore the parameter space of such late Universe modifica-
tions arising within the Horndeski theory, along with exam-
ining the possibility of alleviating the σ8 tension simultane-
ously. Finally, it would be very interesting to construct other
consistent models within this framework, which can simulta-
neously alleviate the H0 and σ8 tensions without affecting the
CMB measurements. We leave these fascinating possibilities
for future work.
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