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Epigenomic states contribute to coordinated allelic
transcriptional bursting in iPSC reprogramming

Parichitran Ayyamperumal, Hemant Chandru Naik, Amlan Jyoti Naskar, Lakshmi Sowjanya Bammidi, Srimonta Gayen®

Two alleles of a gene can be transcribed independently or
coordinatedly, which can lead to temporal expression hetero-
geneity with potentially distinct impacts on cell fate. Here, we
profiled genome-wide allelic transcriptional burst kinetics during
the reprogramming of MEF to induced pluripotent stem cells. We
show that the degree of coordination of allelic bursting differs
among genes, and alleles of many reprogramming-related genes
burst in a highly coordinated fashion. Notably, we show that the
chromatin accessibility of the two alleles of highly coordinated
genes is similar, unlike the semi-coordinated or independent
genes, suggesting the degree of coordination of allelic bursting is
linked to allelic chromatin accessibility. Consistently, we show
that many transcription factors have differential binding affinity
between alleles of semi-coordinated or independent genes. We
show that highly coordinated genes are enriched with chromatin
accessibility regulators such as H3K4me3, H3K4me1, H3K36me3,
H3K27ac, histone variant H3.3, and BRD4. Finally, we demonstrate
that enhancer elements are highly enriched in highly coordinated
genes. Our study demonstrates that epigenomic states contribute
to coordinated allelic bursting to fine-tune gene expression
during induced pluripotent stem cell reprogramming.
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Introduction

Reprogramming of somatic cells to induced pluripotent stem cells
(iPSCs) serves as an excellent model system for studying the mech-
anisms of cell fate specification and gene regulation (Takahashi &
Yamanaka, 2006, 2016; Onder et al, 2012; Polo et al, 2012; Cheloufi et al,
2015; Bauer et al, 2021; Generoso et al, 2023; Naik et al, 2023 Preprint).
However, mechanisms of iPSC reprogramming remain poorly under-
stood. Precise expression of genes involved in iPSC reprogramming is
crucial for reprogramming. To date, the gene expression dynamics
during iPSC reprogramming have been studied at the gene level but
not at the allelic level. In eukaryotic cells, transcription happens in a
sporadic manner through random transcriptional bursting separated
by periods of silent state, which contributes to the gene expression

heterogeneity among the identical cells (Raj et al, 2006; Raj & van
Oudenaarden, 2008; Little et al, 2013; Padovan-Merhar et al, 2015;
Larsson et al, 2019b; Naik et al, 2021; RV et al, 2021). On the other hand,
the regulation of transcriptional bursting can be shared or autono-
mous between alleles (Onuchic et al, 2018; Finn et al, 2019; Naik et al,
2021; RV et al, 2021). Indeed, recent studies by us and others dem-
onstrated that often the kinetics of transcriptional bursting of the two
alleles of a gene differs, which in turn gives rise to dynamic autosomal
random monoallelic expression (aRME) (Borel et al, 2015; Reinius &
Sandberg, 2015; Gendrel et al, 2016; Reinius et al, 2016; Gregg, 2017; Naik
et al, 2021; RV et al, 2021). It is believed that dynamic aRME can induce
temporal variations of gene expression among cells and thereby may
contribute to cell fate specification. Therefore, it is important to profile
the transcriptional kinetics of genes at the allelic level to understand
how gene expression is fine-tuned for precise cell fate specification.
However, allelic transcriptional kinetics during iPSC reprogramming
remains unexplored. To address this, we have profiled genome-wide
transcriptional burst kinetics at allelic level across different stages of
reprogramming of MEF to iPSC using allele-specific single-cell
RNA-sequencing (scRNA-seq) analysis. We find that the degree of
coordination of allelic bursting differs among genes and changes
dynamically during iPSC reprogramming. Importantly, we find that
many genes involved in reprogramming pathways have a high
degree of allelic coordination. On the other hand, the factors
involved in coordinating allelic bursting are not known. Tran-
scription factors and enhancer functions are thought to modulate
transcriptional burst kinetics (Larsson et al, 2019b). Emerging
trends suggest that epigenomic states are linked to burst kinetics
(Nicolas et al, 2018; Chen et al, 2019; Fraser et al, 2021). Therefore,
we have explored how epigenomic features contribute to the co-
ordinated allelic transcriptional bursting during iPSC reprogramming.

Result

Prevalent bursty expression contributes to dynamic aRME during
iPSC reprogramming

Transcription of many genes occurs in a stochastic manner, where
genes undergo sporadic bursting to produce RNA. The kinetics of
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Genome-wide profiling of bursty expression and dynamic autosomal random monoallelic expression in different stages of MEF to induced pluripotent stem

(A) A diagrammatical representation of the “two-state model” of transcriptional bursting. Ko, is the rate of transcriptional activation of a gene; Ko is the rate at which a
gene becomes transcriptionally inactive; S is the rate of transcription of a gene in an active state; d is the rate of mMRNA decay; burst kinetics is represented through K,
(burst frequency) and S/Kes (burst size). (B) Graphical representation of OSKM (Oct-3/4, Sox2, KIf4, and c-Myc)-mediated reprogramming of hybrid MEF cells (12951 X
CAST) and collection of cells of intermediate stages day 8, day 9, day 10, day 12, and iPSCs. (C) Plots representing UMAP-based clustering of cells of the different stages of
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transcriptional bursting are deduced through the well-known “two-
state model” of transcription. According to the “two-state model,”
the promoter of a gene switches stochastically from an inactive/
OFF state to an active/ON state, and burst kinetics is determined
through two parameters: burst frequency and burst size (Fig 1A)
(Chubb et al, 2006; Raj & van Oudenaarden, 2008; Larson, 2011).
Burst frequency is defined by the number of bursts per unit time,
and burst size explains the average amount of mMRNA molecules per
burst (Fig 1A). To date, burst kinetics have been studied mainly at
the gene level, not the allelic level. However, profiling burst kinetics
atallelic resolution is important as the kinetics of bursting between
alleles often differ (Naik et al, 2021). Therefore, to understand how
individual alleles of a gene contribute to the overall gene ex-
pression, we have delineated the kinetics of allelic bursting
genome-wide across different stages of reprogramming of MEF to
iPSC (Fig 1B). To profile, genome-wide allelic transcriptional burst
kinetics, we performed SCALE (Single-Cell ALlelic Expression)
analysis using scRNA-seq datasets (Fig 1B). SCALE relies on the
Empirical Bayes Framework, which first classifies the genes into
monoallelic, biallelic, and silent based on the allele-specific read
counts across the cells. Subsequently, the biallelic genes are
further categorized into biallelic bursty and biallelic constitutive
(Fig S1A) (Jiang et al, 2017). Biallelic genes that have zero expression
of both alleles in a few cells but not all cells are considered bursty
genes, whereas genes that have at least one allele constitutive
expression or both allele constitutive expression across cells are
considered biallelic constitutive genes (Fig STA). The MEF cells used
in the experiment were derived from a cross of two divergent mouse
strains M. Musculus (12951) and M. Castaneous (CAST), thereby
enabling us to perform allele-specific analysis based on strain-
specific SNPs (Fig 1B) (Talon et al, 2021). We excluded low-expressed
genes from our study to avoid allelic dropout-related technical
noise, which could lead to inaccurate estimation of the allelic
expression (Kim et al, 2015; Santoni et al, 2017; Zhao et al, 2017).
First, we performed UMAP-based clustering to identify homo-
geneous cell populations across the different stages of reprog-
ramming. We found that day 0-MEF cells and iPSC cells formed
individual tight clusters (Fig 1C). Intermediate cells (day 8, day 9, day
10) also clustered together. However, day 12 cells formed two
different sub-clusters (day 12A and day 12B). Therefore, we per-
formed SCALE analysis separately for day 12A and day 12B sub-
clusters to reduce the effect of heterogeneity in our burst kinetics
analysis (Fig 1C). Through SCALE analysis, we found that most of the
biallelic genes (~90%) have bursty expression across all stages of
reprogramming (Fig 1D). Next, we compared the bursty/constitutive
pattern of gene expression across different reprogramming stages
and found that most genes (n = 756) maintained bursty expression
throughout the reprogramming (Fig 1E). Interestingly, these genes
were enriched toward key reprogramming-related processes such
as ribosome biogenesis, proteasome assembly, blastocyst growth,

etc. (Fig 1F). Moreover, genes (n = 60) that remained bursty on all
days except iPSCs were also enriched in many reprogramming-related
biological processes, including chordate embryonic development
(Fig 1F). These results indicated that many genes involved in iPSC
reprogramming pathways exhibit bursty expression. However, a
few genes (n = 20) that maintained bursty expression in all-day points
except MEF did not show enrichment towards major iPSC reprog-
ramming pathways (Fig S1B). Genes (n = 18), which remained con-
stitutive throughout the reprogramming, were not enriched to major
reprogramming pathways (Fig S1B). On the other hand, we have
previously shown that bursty expression results in dynamic aRME,
which creates gene expression heterogeneity among cells (Naik et al,
2021). Therefore, we explored the landscape of allelic expression
throughout the different stages of iPSC reprogramming by allele-
specific scRNA-seq analysis. We categorized a gene as monoallelic
within a cell if at least 95% of the expression originated from one
allele. We classified genes based on their allelic expression patterns
into four categories: Cat 1: nonrandom monoallelic (same allele
expressed across the cells); Cat 2@ RME with one allele (genes
expressed biallelically in some cells whereas exhibiting monoallelic
expression from one allele consistently in other cells); Cat 3:
random monoallelic with either allele (genes expressed bial-
lelically in some cells whereas exhibiting monoallelic expression
from either of the allele in other cells); and Cat 4: biallelic (genes
expressed biallelically across the cells) (Fig 1G). Our analysis
revealed that ~80-90% of genes have dynamic aRME across dif-
ferent stages of reprogramming (Fig 1G). Analysis of allelic ex-
pression of X-linked genes in MEF showed monoallelic expression
from the CAST allele as 129S1-X is inactivated in these cells,
thereby validating our allele-specific analysis pipeline (Fig S1C).
X-inactivation is a process through which female mammals
compensate for the dosage of X-linked gene expression between
sexes (Gayen et al, 2015, 2016; Sarkar et al, 2015; Saiba et al, 2018;
Kaur et al, 2020; Samanta et al, 2022). Altogether, our analysis
suggested widespread bursty expression of genes during iPSC
reprogramming, resulting in dynamic aRME.

Alleles of genes exhibit similar burst kinetics but have different
coordination during iPSC reprogramming

Next, we investigated if the two alleles of a gene have similar burst
kinetics or not. To explore this, we profiled burst frequency and
burst size at the allelic level for the biallelic bursty genes using
SCALE. SCALE relies on a “two-state model” of transcription where a
gene switches from active to inactive state with activation rate of
Kon and deactivation rate of Koff. When a gene is in the active state,
the rate of transcription is S and the rate of RNA decay is d (Fig 1A).
Burst frequency is determined by the number of bursts per unit
time (Kon), and burst size is deduced through average number of
mRNA molecules per burst when the gene is in active state (S/Koff)

reprogramming. (D) Quantification of the percent of genes exhibiting bursty expression across all-day points of reprogramming. The number of bursty genes in day 0:
1,769 (of 1,886 biallelic genes), day 8:1,869 (of 1,968 biallelic genes), day 9:1,921 (of 2,004 biallelic genes), day 10: 1,993 (of 2,058 biallelic genes), day 12A: 2,544 (0f 2,723 biallelic
genes), day 12B: 2,585 (of 2,678 biallelic genes), and iPSC: 1,901 (of 2,137 biallelic genes). (E) Cross-comparison plot of bursty and constitutive genes across the different
stages of reprogramming. (F) Gene ontology (GO) enrichment analysis of 756 genes that remain bursty across all-day points and 60 genes that are constitutive in iPSCs
but bursty in other-day points. (G) Plots representing the percent of genes with different allelic expression categories throughout different stages of reprogramming; Cat 1:
nonrandom monoallelic, Cat 2: random monoallelic with one allele, Cat 3: random monoallelic with either allele, Cat 4: biallelic.
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Figure 2. Profiling of allelic burst kinetics and coordination.

(A, B) Plots representing correlation between (A) allelic burst frequency across different stages of reprogramming day 0 MEF (r = 0.725), day 8 (r = 0.705), day 9 (r = 0.689),
day 10 (r=0.64), day 12A (r = 0.69), day 12B (r = 0.69) and induced pluripotent stem cells (iPSCs) (r = 0.778) and (B) allelic burst size in day 0 MEF (r = 0.741), day 8 (r = 0.757), day
9 (r=0.747), day 10 (r = 0.772), day 12A (r = 0.66), day 12B (r = 0.80) and iPSCs (r = 0.76). Genes that exhibit significant differences in burst frequency and size between two

Epigenomic states linked to coordinated allelic bursting Ayyamperumal et al.

https://doi.org/10.26508/1sa.202302337 vol 7 | no 4 | 202302337

4 of 17


https://doi.org/10.26508/lsa.202302337

>y D, o . o
s2epe Life Science Alliance

(Fig 1A). We observed a high degree of correlation of both burst
frequency (r = 0.64-0.778) and burst size (r = 0.669-0.803) between
two alleles across all-day points (Fig 2A and B). Very few genes
exhibited significant burst frequency and size differences between
the two alleles, as marked by the red triangles (Fig 2A and B). Taken
together, our results suggest that alleles of most of the genes have
similar burst kinetics. Next, we explored the degree of coordination
of bursting between two alleles by plotting the percent of cells
expressing neither allele (po) versus the percent of cells expressing
both alleles (p,) (Fig 2C). Blue diagonal line represents perfect
coordination (p0 + p2 = 1), whereas the red curve signifies inde-
pendent bursting with shared kinetics (Fig 2C). We categorized
genes based on the degree of coordination of allelic bursting into
three categories: (1) highly coordinated genes: with p0 + p2 > 0.90
marked by gray asterisk between blue dotted diagonal lines; (2)
independent genes: genes near the red curve with a threshold
of +0.05, signified by the upper red curve, and -0.05, signified by
the lower red curve, marked by rosewood triangles; (3) semi-
coordinated genes that lie between the uppermost red curve
line and lower blue dotted diagonal line (Persian blue dots) (Fig 2C).

We observed that most of the genes exhibited semi-coordinated
allelic bursting at all-day points. However, many genes also showed
highly coordinated allelic bursting across the different stages of
reprogramming (Fig 2C).

Genes involved in iPSC reprogramming undergo highly
coordinated allelic bursting

Next, we performed a gene ontology (GO) enrichment analysis of
highly coordinated genes across all stages of reprogramming (Fig
3). Interestingly, we found that highly coordinated genes in iPSCs
are enriched in processes linked to stem cell population mainte-
nance, in-utero embryo development, endoderm formation, etc.
(Fig 3A, Supplemental Data 1). Furthermore, highly coordinated
genes in iPSCs are enriched in cellular respiration, cristae forma-
tion, and glutamine metabolism, which are relevant to metabolic
remodeling in iPSCs (Fig 3A) (Teslaa & Teitell, 2015; Mathieu &
Ruohola-Baker, 2017; Tohyama et al, 2017). Importantly, genes in-
volved in ribosome biogenesis, crucial for stem cell maintenance,
were highly enriched into the highly coordinated gene cohort in
iPSC (Fig 3A) (Gabut et al, 2020). On the contrary, highly coordinated
genes in day 0 MEF cells were not enriched in such related
pathways. Interestingly, across the different intermediate stages of
reprogramming, highly coordinated genes were enriched towards
many reprogramming-related biological processes such as ribo-
some biogenesis, protein folding, stem cell maintenance, NFkB
signaling, etc. (Fig 3B) (Gabut et al, 2020; Yan et al, 2020; Kaltschmidt
et al, 2021). Next, we performed a cross-comparison of the three
allelic coordination categories across all-day points and found that,

whereas many genes maintained a similar degree of allelic coor-
dination across all-day points, some genes did not (Fig S2A).
Strikingly, we found that the genes (n = 52) that become highly
coordinated in iPSCs are enriched towards ribosome biogenesis,
aerobic respiration, nuclear pore formation, which are highly
critical and directly relevant for iPSC reprogramming (Fig 3C) (Xu
et al, 2013; Teslaa & Teitell, 2015). Moreover, genes that remain
highly coordinated (n = 25) on all days showed enrichment towards
some iPSC reprogramming-linked functions like protein stability,
NFkB pathway, mitochondrion organization, etc. (Fig 3C). Altogether,
our analysis revealed that the two alleles of many genes involved in
iPSC reprogramming have a high degree of transcriptional bursting
coordination (Supplemental Data 1). In parallel, we also observed
that genes that remained semi-coordinated (n = 266) on all days or
converted from highly coordinated on day 0 to semi-coordinated
on other days (n = 33) were enriched towards some iPSC
reprogramming-related pathways like proteasome assembly, oxi-
dative stress response, etc. (Fig S2B) (Szutorisz et al, 2006; Schroter
& Adjaye, 2014; Hawkins et al, 2016; Mathieu & Ruohola-Baker, 2017).
Next, we investigated if higher coordination of transcriptional
bursting between alleles of individual genes facilitates the optimal
expression dosage of these highly coordinated genes involved in
iPSC reprogramming. To explore this, we compared the overall
expression level of highly coordinated, semi-coordinated, and
independent genes. We found that the indeed highly coordinated
genes have higher expression level compared to the semi-
coordinated and independent genes (Fig 3D). Taken together, we
conclude that highly coordinated allelic bursting helps to fine-tune
the optimal expression of genes involved in iPSC reprogramming.

Coordinated allelic bursting is linked to chromatin accessibility

To understand the mechanisms of allelic bursting coordination, we
asked whether the degree of coordination of allelic bursting is
linked to epigenomic states. To address this, we profiled genome-
wide allelic chromatin accessibility across different stages of MEF to
iPSC reprogramming through allele-specific analysis of available
ATAC-sequencing (ATAC-seq) datasets (Talon et al, 2021). The same
hybrid MEFs (12951X CAST), as described for scRNA-seq, were used
for this experiment, allowing us to profile chromatin accessibility at
the allelic level. We analyzed ATAC-seq in MEFs (day 0) and across
reprogramming stages (SSEA1+ reprogramming intermediates at
days 8, 9, 10, 12, and iPSCs), like the burst kinetics analysis (Fig 4A).
We first validated our allele-specific ATAC-seq analysis pipeline by
quantifying the difference in the enrichment of ATAC-seq reads
between active-X (12951) versus inactive-X (CAST allele) (Fig S3A). In
consistence with previous reports, in MEFs and early reprogram-
ming intermediates, active-X (CAST) showed strong enrichment of
ATAC-seq reads, whereas the inactive-X (12951) showed almost no

alleles have been marked by red triangles. (C) Smooth scatterplots representing bursting coordination between two alleles of genes for day 0 MEF, day 8, day 9, day 10,
day 12A, day 12B, and iPSCs. Percent of cells expressing neither allele (p0) is plotted with the percent of cells expressing both alleles (p2); the blue diagonal line represents
perfect coordination (p0 + p2 = 1), whereas the red curve signifies independent bursting with shared kinetics. Different categories of genes based on allelic bursting
coordination: low p0 high p2 (green filled squares), perfectly coordinated (p0 + p2 > 0.90 marked by gray asterisk between blue dotted diagonal lines), independent
genes marked by rosewood triangles (between upper and lower red curved lines, with a threshold of +0.05 signified by upper red curve and -0.05, signified by the lower red

curve), and semi-coordinated genes marked with persian blue dots.
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Figure 3. Highly coordinated genes are enriched to induced pluripotent stem cell (iPSC) reprogramming-related processes.

(A) Gene ontology (GO) enrichment analysis of highly coordinated genes in day 0 MEF and iPSCs. (B) Gene ontology (GO) enrichment analysis of highly coordinated
genes in intermediate stages of reprogramming: day 8, day 9, day 10, and day 12 cells. (C) Gene ontology (GO) enrichment analysis of genes (n = 52) that become highly
coordinated in iPSCs (top) and genes (n = 25) that maintain highly coordinated allelic bursting through all-day points. (D) Plot representing the expression level (reads per
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enrichment, and upon reactivation of the inactive-X towards the
attainment of iPSCs, there was a gain of chromatin accessibility (Fig
S3A). Taken together, enrichment analysis of ATAC-seq reads of
X-linked genes validated the accuracy of our method. Next, we
compared the enrichment of ATAC-seq reads between two alleles
of different categories of genes (highly coordinated, semi-
coordinated, and independent) across the gene body and 3 kb
upstream of TSS and 3 kb downstream of TES during reprogramming
(Fig 4A). Interestingly, our analysis revealed that the two alleles of
highly coordinated genes have very similar enrichment at most day
points. Whereas enrichment of ATAC-seq reads of alleles of semi-
coordinated/independent genes differed in most cases (Fig 4A). As
expected, allelic enrichment of ATAC-seq reads considering all
autosomal genes was quite similar (Fig 4A).

Notably, genes that maintained semi-coordinated bursting
throughout reprogramming maintained differences in allelic ac-
cessibility (Fig 4B). Similarly, genes that maintained highly coor-
dinated bursting throughout reprogramming always maintained
similar allelic accessibility (Fig 4B). Furthermore, we show that
allelic accessibility differences reduce upon becoming highly co-
ordinated in iPSC after maintaining a semi-coordinated bursting
throughout the other day points (Fig S3B). A similar trend was found
for genes which switched from highly coordinated in MEF to semi-
coordinated on other days (data not shown). Together, our analysis
suggested a positive correlation between the coordination of allelic
bursting and the similarity of allelic chromatin accessibility.

Next, we explored if allelic accessibility differences in semi-
coordinated and independent genes are associated with the dif-
ferential binding of transcription factors (TFs) between alleles of
individual genes. To test this, we determined TFs binding scores of
individual alleles of a gene using TOBIAS (Transcription factor
Occupancy prediction By Investigation of ATAC-seq Signal). Inter-
estingly, we found that many TFs had a significantly different
binding score between individual alleles of semi-coordinated and
independent genes, which was not the case for highly coordinated
genes (Fig 5). Taken together, our analysis suggests that allelic
accessibility differences in semi-coordinated or independent genes
allow differential binding of certain TFs among alleles of genes,
which in turn leads to semi-coordinated or independent tran-
scriptional bursting.

Chromatin accessibility factors contribute to allelic
bursting coordination

Next, we investigated if the degree of allelic coordination is de-
pendent on chromatin accessibility factor enrichment. To explore
this, we profiled the enrichment of different chromatin accessibility
factors in the gene body and across 2 kb upstream of TSS and 2 kb
downstream of TES of highly coordinated, semi-coordinated, and
independent genes in MEF and iPSCs (Figs 6 and S4). Interestingly,
we found that many accessibility factors such as H3.3, H3K36me3,
H3K27ac, H3K4me3, H3K4me2, H3K4me1, and RNAPolII-S2P are highly
enriched on highly coordinated genes compared to the semi-

coordinated/independent genes in both MEF and iPSC (Figs 6
and S4). Moreover, in iPSC, we found that highly coordinated
genes are enriched with chromatin remodeler BRD4 (Fig 6).
H3K79me2, H3K9ac, and RNA Polll-S5P were highly enriched to the
highly coordinated genes in MEF cells (Figs 6 and S4). Next, we
tested if switching of coordination pattern of genes in MEF to iPSC is
associated with changes in the pattern of chromatin accessibility
factor enrichment. We found that highly coordinated genes in MEF
having higher enrichment of H3K36me3, H3K27ac, H3.3, and RNA
Polll-S2P compared to the semicordinated genes, which flip their
pattern of enrichment in iPSC upon conversion of their coordi-
nation pattern (Fig S5A and B). Whereas genes that do not switch
their coordination pattern in MEF to iPSC maintain the enrichment
pattern of these marks (Fig S5A and B). Altogether, our analysis
suggested that higher enrichment of these chromatin accessibility
factors ensures highly coordinated allelic bursting. However, other
chromatin modifications, such as H3K9me3 and CTCF, did not show
such differences in enrichment between different categories of
genes (Fig S4).

Next, we investigated if the chromatin states of highly coordi-
nated, semi-coordinated, and independent genes are different. To
explore this, we identified 10 chromatin states in both MEFs and
iPSCs using the ChromHMM based on the seven histone marks
(H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, and
H3K9me3) using the available ChIP-seq datasets (Fig S6). We an-
notated each state putatively based on related functional element
enrichment. Next, we compared the enrichment of these different
chromatin states in the gene body in the TSS/TES neighbourhood of
highly coordinated, semi-coordinated, and independent genes.
Interestingly, we found that chromatin states enriched around
strong enhancers showed higher enrichment in highly coordinated
genes than the semi-coordinated or independent genes in both
MEF and iPSC (Fig S6A and B). Notably, independent genes were
highly enriched with bivalent chromatin state compared to the
highly coordinated genes in both MEF and iPSC (Fig S6A and B). On
the other hand, enrichment of other chromatin states among highly
coordinated, semi-coordinated, and independent genes did not
exhibit much difference. Taken together, our analysis suggests that
enrichment of enhancer elements in highly coordinated genes
might play a role in coordinating the allelic transcriptional bursting.

Discussion

Since the discovery of reprogramming of somatic cells to plurip-
otent state in 2006, the underlying precise mechanistic aspect of
reprogramming remains unknown (Takahashi & Yamanaka, 2006).
To fill this gap, quantitatively understanding the transcriptional
regulation of reprogramming-related genes is imperative. Emerging
trends suggest that transcriptional regulation of two alleles of a
gene is not always shared and can be independent, which in turn
can lead to temporal expression heterogeneity (Finn et al, 2019;

kilobase million) of highly coordinated, semi-coordinated, and independent genes across different stages of reprogramming (Mann-Whitney U test: P-value < 0.0001;

*rxx poyalue < 0.01; **)-
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Figure 4. Comparison of allelic chromatin accessibility of highly coordinated, semi-coordinated, and independent genes.

(A) Quantitative analysis of allelic accessibility enrichment in the gene body and across 3 kb upstream of TSS and 3 kb downstream of TES of all autosomal genes, highly
coordinated, semi-coordinated, and independent genes throughout different stages of reprogramming: day 0, day 8, day 10, day 12, and induced pluripotent stem cells. In
the boxplots, the line inside each of the boxes denotes the median value, and the edges of each box represent 25% and 75% of dataset, respectively (Mann-Whitney U test:
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Naik et al, 2021). Therefore, it is important to explore the allelic
contribution of genes and their cooperativity to understand how
cells fine-tune the optimal expression to bring developmental
precision. To understand this aspect quantitatively, we have pro-
filed genome-wide transcriptional burst kinetics at the allelic level
and their relevance to cell state transition during iPSC reprog-
ramming. We found that most of the autosomal genes exhibit bursty
expression and have dynamic aRME across different stages of iPSC
reprogramming (Fig 1), which is consistent with our previous reports
in pre-gastrulation embryos (Naik et al, 2021). Importantly, we found
that many genes involved in iPSC reprogramming pathways exhibit
bursty expression (Fig 1). Interestingly, we found that burst fre-
quency and burst size are highly similar between two alleles for
most of the genes across reprogramming (Fig 2A and B). However, in
terms of the cooperativity of allelic bursting, we found different
patterns of allelic bursting: whereas most of the genes exhibited
semi-coordinated allelic bursting, many genes showed highly co-
ordinated allelic bursting (Fig 2C). On the other hand, few genes
showed the independent nature of allelic bursting. It is worth
mentioning that our analysis of allelic burst kinetics might be
erroneous to some extent given the cellular heterogeneity during
the iPSC reprogramming. Nevertheless, to reduce this kind of
variability, we considered homogeneous populations of cells as
clustered through the UMAP analysis. Separately, another limitation
of our study is that we have not validated the burst kinetics de-
duced from the scRNA-seq data through other independent ex-
periments. However, we must mention that many studies have
leveraged single-cell RNA-seq technology coupled with allele-
specific analysis to profile genome-wide transcriptional burst ki-
netics (Larsson et al, 2019a, 2019b; Ochiai et al, 2020; Johnsson et al,
2022). Notably, Oichai et al demonstrated that burst kinetics
measured through scRNA-seq data can be correlated with kinetics
measured through single-molecule FISH (Ochiai et al, 2020). Fur-
thermore, we demonstrate that highly coordinated genes have
higher expression level compared to the semi-coordinated and
independent genes, suggesting expression level is linked to the
degree of coordination of allelic bursting (Fig 3D). In the future, a
more precise investigation is necessary to disentangle the inter-
connection between the coordination of allelic bursting versus
expression.

Next, we found that the degree of coordination of allelic tran-
scriptional bursting is relevant to reprogramming pathways. We
show that allelic bursting of many genes crucial to iPSC reprog-
ramming occurs in a highly coordinated fashion (Fig 3). We found
that genes related to translation, protein stability, protein folding,
and RNA processing undergo highly coordinated allelic bursting in
iPSC. Specially, ribosome biogenesis-related genes (e.g, rpl7, nop5s,
nmd3, nifk, etc) become highly coordinated upon initiation of
reprogramming (day 8 onwards) and remain highly coordinated
through most of the intermediate stages and iPSC (Fig 3). Indeed,
reprogramming of ribosome biogenesis is crucial for iPSC reprog-
ramming and stem cell maintenance to enhance translational effi-
ciency (Gabut et al, 2020; Hu, 2020). Moreover, pluripotent embryonic

stem cells bear a high density of inactive ribosomes to facilitate in-
creased translation efficiency during their subsequent differentiation
into different lineages (Sampath et al, 2008; Novak et al, 2012; You
et al, 2015; Gabut et al, 2020). In addition, important genes like
nanog, dppa2, med28, etc, which play important roles in iPSC
reprogramming, showed highly coordinated allelic expression (Li et al,
2015). Importantly, many genes related to embryonic development and
stem cell maintenance showed highly coordinated allelic bursting (Fig
3). Surprisingly, we observed that genes associated with mitochondrial
cristae formation (e.g, ndufa10) exhibited highly coordinated allelic
bursting in iPSC (Fig 3). It is known that iPSC reprogramming is as-
sociated with the metabolic shift from oxidative phosphorylation
(OXPHOS) to glycolysis, which is accompanied by the formation of
immature spherical mitochondria with less dense cristae in iPSCs in
comparison to the highly elongated mitochondria with dense cristae
network in MEF (Xu et al, 2013; Teslaa & Teitell, 2015; Seo et al, 2018).
Although reprogramming to iPSC is associated with the shift from
OXPHOS to glycolysis, iPSC remains dependent on mitochondrial
metabolism for intermediate metabolites, which play an important
role in epigenomic regulation to drive iPSC reprogramming or stem cell
pluripotency (Todd et al, 2010; Carey et al, 2014; Moussaieff et al, 2015;
Zhang et al, 2016, 2018; Zhou et al, 2016; Guitart et al, 2017, Fang et al,
2019). Therefore, it may be possible that highly coordinated bursting of
these mitochondria-related genes is crucial for iPSC reprogramming.
Notably, genes involved in nuclear pore formation shifted to highly
coordinated state in iPSC. It has been demonstrated that the nuclear
pore complex plays an important role in modulating pluripotency and
reprogramming (Hansson et al, 2012; Yang et al, 2014). On the other
hand, in a recent study, we demonstrated that developmental genes
related to gastrulation undergo highly coordinated allelic bursting in
pre-gastrulation mouse embryos (Naik et al, 2021). Taken together, we
conclude that many genes crucial to reprogramming and development
burst in a highly coordinated fashion. Possibly, the coordination of
transcriptional bursting between the two alleles fine-tunes gene ex-
pression dosage to drive precise development or reprogramming.
Next, we show that epigenomic states contribute to the co-
ordination between allelic transcriptional bursting. We demon-
strate that the coordination of allelic bursting is linked to
chromatin accessibility. We find that, whereas genes undergoing
highly coordinated allelic bursting exhibit equivalent chromatin
accessibility between alleles, alleles of semi-coordinated or in-
dependent genes have differential chromatin accessibility (Fig ).
Importantly, our analysis suggests that differential chromatin
accessibility between alleles of semi-coordinated or independent
genes leads to differential binding of certain transcription factors
(Fig 5). Previous studies have shown that random chromatin
accessibility contributes to transcriptional bursting by providing
intermittent accessibility to the transcription factors (Brown et al,
2013; Nicolas et al, 2018; Chen et al, 2019; Fraser et al, 2021).
Moreover, open chromatin states are believed to modulate
transcriptional burst size and burst frequency (Bartman et al,
2016; Nicolas et al, 2018; Fraser et al, 2021; Bullock et al, 2022). Our
analysis extends the support on the role of chromatin

P-value < 0.0007; **** p-value < 0.007; *** P-value < 0.01; ** and P-value < 0.05; *). (B) Allelic accessibility enrichment analysis in the gene body and across 3 kb upstream
of TSS and 3 kb downstream of TES of genes that remain semicordinated or highly coordinated throughout the reprogramming (Mann-Whitney U test: P-value < 0.05; *).
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Figure 5. Binding kinetics of TFs between alleles correlate with the allelic bursting coordination.
Left: Plots showing the correlation of TFs binding score between alleles of highly coordinated, semi-coordinated, and independent genes throughout different stages of
reprogramming: day 0, day 8, day 10, day 12, and induced pluripotent stem cells. TFs that exhibit significant differences in binding between two alleles have been marked
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accessibility on transcriptional bursting and, most importantly,
sheds light on how allelic open chromatin dynamics is linked to
allelic transcriptional burst kinetics. In the future, more extensive
studies would help to gain deeper insights into the role of
chromatin accessibility in mediating allelic bursting coordination.

On the other hand, we find that highly coordinated genes are
enriched with important chromatin accessibility factors: H3K4me3,
H3K36me3, H3K27ac, H3K4me1, BRD4, and histone variant H3.3 (Fig
6). In fact, H3k36me3, H3K27ac, along with BRD4, have been reported
to play a role in orchestrating transcription and burst frequency
(Nicolas et al, 2018; Ochiai et al, 2020; Sundarraj et al, 2027; Abe et al,
2022; Altendorfer et al, 2022; Pal et al, 2023). Interestingly, we report
the implications of H3.3 in allelic transcriptional bursting for the first
time. Moreover, we found that H3K79me2, H3K9ac, RNA Polll-S2P, and
RNA Polll-S5P were also highly enriched in highly coordinated genes.
Taken together, we propose that these chromatin-related factors
play a crucial role in mediating the coordination of allelic bursting. In
the future, analysis of allele-specific enrichment of these marks or
factors in highly coordinated, semi-coordinated, and independent
genes would provide better insight into the plausible regulatory link
among allele-specific enrichment of active chromatin marks, burst
frequency, and degree of coordination of bursting. Notably, many of
these factors or marks have been reported to play an important role
in iPSC reprogramming and pluripotency. BRD4 has been shown to
play a crucial role in driving the late phase of iPSC reprogramming
(Liu et al, 2014).

Occupancy of the H3.3 variant has been attributed to maintaining
MEF-specific identity during the early stages of pluripotency
reprogramming. However, towards the fag end of reprogramming,
they have been conducive to determining and maintaining plu-
ripotent cell fate (Fang et al, 2018). Moreover, H33 is found to be
critical for early development as its depletion results in early
embryonic lethality (Jang et al, 2015). Ablation of H3.3 has been
implicated in reducing the overall chromatin accessibility in ESC
(Tafessu et al, 2023). Overall, H3.3 enrichment is crucial in plurip-
otent cell maintenance and early development. Also, the enrich-
ment of active chromatin marks, H3K27ac in enhancer, and
H3K36me3 in gene bodies of mouse embryonic stem cells is im-
portant for their maintenance (Mikkelsen et al, 2007; Kim et al, 2018).
Altogether, we conclude that these chromatin accessibility factors
drive reprogramming through mediating allelic bursting coordi-
nation of genes involved in iPSC reprogramming to fine-tune the
appropriate dosage of these genes (Fig 6). On the other hand, we
show that chromatin states linked to enhancer element enrichment
are highly enriched in highly coordinated genes (Fig S6). We
conclude that enhancer element enrichment in highly coordinated
genes might orchestrate the higher coordination of allelic bursting.
Indeed, the previous report suggests that enhancer elements can
contribute to coordinated transcriptional bursting (Fukaya et al,
2016). Broadly, our study provides fundamental insights into the
implications of epigenomic states in fine-tuning of allelic dosage of
genes to orchestrate cell fate specification and extends strong

support towards the role of epigenomic states in mediating tran-
scriptional bursting (Fig 7).

Materials and Methods

Data acquisition

Single-cell RNA-seq, ATAC-seq datasets for MEF to iPSC reprog-
ramming were retrieved from Gene Expression Omnibus under the
following accessions: GSE153846 and GSE153844, respectively (Talon
et al, 2021). The ChIP-seq datasets used for MEF and iPSC were
retrieved from GSE87037 (Aldiri et al, 2017), GSE99592 (Fang et al,
2018), GSE33823 (Vildirim et al, 2011), and GSE90893 (Chronis et al,
2017).

Allele-specific expression and burst kinetics analysis

To obtain allelic read counts from scRNA-seq data, we performed
allele-specific expression analysis following the pipeline as re-
ported previously (Mandal et al, 2020; Naik et al, 2021, 2022). Briefly,
we first constructed in silico CAST/EiJ and 12951-specific parental
genome by incorporating CAST/EiJ or 12951-specific SNPs into
the mm10 genome using variant calling file tool (Danecek
et al, 2011). Variant calling file was downloaded from the mouse
genome project (https://www.sanger.ac.uk/science/data/mouse-
genomes-project). Next, we aligned RNA-seq reads into both pa-
rental genomes using STAR aligner (STAR-2.7.10a), allowing no
multi-mapped reads (--outFilterMultimapNmax 1). We filtered out
those genes for allele-specific read counts which had at least two
informative SNPs and a minimum of three reads per SNP site. We
took an average across SNPs to get gene-level allelic read counts.
We normalized the allelic read counts by reads per kilobase million.
Because low-expressed genes are dropout prone, we removed low-
expressed genes from our analysis to avoid potential dropout effect
(Kim et al, 2015; Santoni et al, 2017; Zhao et al, 2017). We considered
only those genes, which were expressed in at least ~27% of cells and
had mean expression >10 reads per kilobase million. Allelic ratio
was calculated individually for each gene using the formula =
(12951/CAST reads) + (12951 + CAST reads). A gene was considered
monoallelic if at least 95% of the allelic reads came from only one
allele. We performed genome-wide allele-specific burst kinetics
analysis using SCALE (Jiang et al, 2017). In brief, SCALE relies on
Empirical Bayes Framework, which first classifies the genes into
monoallelic, biallelic, and silent based on the allele-specific read
counts and deduces the allelic burst kinetics based on the two-
state model of transcription. It infers different burst kinetic pa-
rameters at the allelic level, such as burst frequency (Ko,,) and burst
size (S/Kqfp), as described in the results. We excluded X-linked genes
for our burst kinetics analysis. We performed SCALE analysis on
each time point of the reprogramming separately.

by red triangles. Right: Venn diagram representing the comparison of TFs that exhibit significant differences in binding between two alleles across highly coordinated,

semi-coordinated, and independent genes.
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Figure 6. Correlation between occupancy of chromatin marks and degree of allelic bursting coordination.
Comparison of enrichment of different chromatin accessibility-related factors in the gene body and across 2 kb upstream of TSS and 2 kb downstream of TES of highly
coordinated, semi-coordinated, and independent genes in MEF and induced pluripotent stem cells. In the boxplots, the line inside each of the boxes denotes the median
value and the edges of each box represent 25% and 75% of dataset, respectively (Mann-Whitney U test: P-value < 0.0007; **** P-value < 0.001; *** P-value < 0.01; ** and

P-value < 0.05; *).
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Gene ontology

Functional enrichment of different classes of genes was profiled
using ¢GOSt from gProfiler (https://biit.cs.utee/gprofiler_archive3/
€108_eg55_p17/gost) with Benjamini-Hochberg FDR and selected
the biological process having FDR < 0.05 from GO: BP (Raudvere
et al, 2019).

Allelic ATAC-seq analysis
For allele-specific ATAC-seq analysis, first we created an “N-masked

reference genome mm10” through substituting strain-specific
(12951/Svim) and CAST/EiJ) SNP position with “N” using

Epigenomic states linked to coordinated allelic bursting Ayyamperumal et al.

A TFs

SNPsplit_genome_preparation (0.5.0) (Krueger & Andrews, 2016).
Strain-specific SNPs were obtained as described above. Next, reads
for all samples were mapped to this N-masked genome using
Bowtie2 (Langmead & Salzberg, 2012). We removed duplicate reads
and mitochondrial reads from our analysis. SNPsplit was then used
to create allele-specific BAM files by segregating the aligned reads
into two distinct alleles (12951/Svim) and CAST/EiJ). Bigwig files
were generated from these allelic BAM files using deepTools
(version 35.1) function bamCoverage (--binSize 100 --smoothLength
500 --normalizeUsing RPGC) (Ramirez et al, 2016). Allelic enrichment
metaplots were generated for different gene categories using
deepTools functions computeMatrix and plotProfile. Few genes
were excluded from our analysis because of the lack of SNP for each
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day: day 0-15 (of 1,745); day 8-13 (of 1,849); day 9-14 (of 1,906); day
10-19 (of 1,982); day 12A-21 (of 2,521); day 12B-23 (of 2,562); iPSC—14
(of 1,863).

ChiP-seq analysis

For analysis of chromatin mark enrichment in MEF and iPSC in
different categories of genes, we analyzed available ChIP-seq data.
For ChlIP-seq analysis, the reads were mapped to either mm9 or
mm10 genome using Bowtie tool (Langmead & Salzberg, 2012). We
removed duplicate reads, mitochondrial reads from our analysis.
Different enrichment metaplots were generated for different gene
categories using deepTools (version 3.5.1) functions computeMatrix
and plotProfile.

Transcription factor binding analysis using ATAC-seq footprinting

Transcription factor occupancy between individual alleles of genes
was predicted using Transcription factor Occupancy prediction By
Investigation of ATAC-seq Signal (TOBIAS, version 0.16.0) (Bentsen
et al, 2020). Allelic ATAC-seq BAM files were first corrected for in-
sertion bias of the Tn5 transposase using the command ATACorrect
for each gene category (highly coordinated, semi-coordinated, and
independent) separately. Gene-wise allelic peak regions were
identified through allelic peak calling using macs2 (v 2.2.7.1), and
peaks were annotated using uropa (v 4.03). Next, footprinting
scores for individual alleles were generated using the command
ScoreBigwig using the ATACorrect data.

Allelic footprint scores were matched to the curated list of
JASPAR motifs using the command BINDetect for both alleles
separately. Then the resulting scores of each TF motifs for both
alleles were correlated using Pearson correlation method.

Identifications of chromatin states

Chromatin states in both MEFs and iPSCs were profiled using the
ChromHMM (v 1.24) based on the seven chromatin marks (H3K27ac,
H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, and H3K9me3)
using the available ChIP-seq datasets (Ernst & Kellis, 2012). In brief,
we first constructed binarized bam files of the chromatin marks
required as input for ChromHMM using the binarizeBam function of
ChromHMM v 1.24. Chromatin state models were generated with the
LearnModel function with 10 states. Then we manually curated to
assign putative functions to each state according to the combi-
nation of epigenomic marks. Finally, enrichment for each category
of genes was shown across the states using the OverlapEnrichment
function of ChromHMM.

Quantification and statistical analysis

All statistical analysis was performed using the R software
(https:/ /www.R-project.org/). Mann-Whitney two-sided U test
was used for statistical significance analysis, and P-values < 0.05
was considered significant. For correlation analysis, the Pearson
test was used.
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