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Abstract—We study content caching in a network consisting of
a server and a base station with a finite-capacity cache. Contents
are dynamic. They stochastically arrive in the system, stay for
random times, and their popularities also randomly vary while
they are alive. Fetching contents from the server and storing in
the base station cache incurs a cost. But not having the requested
contents at the base station also incurs a cost that reflects QoS
deficiency. We study optimal proactive caching to minimise the
time-average content miss and caching costs. We formulate this
problem as an average cost Markov decision problem that is a
restless multi-armed bandit problem. We argue that the problem
is indexable and explicitly derives the Whittle indices. Finally, we
demonstrate the efficacy of the Whittle index policy via numerical
evaluation.

Index Terms—caching, restless bandits, threshold policy, whit-
tle index, dynamic popularity

I. INTRODUCTION

Over the last few years, there has been a rampant increase
in demand for video-on-demand (VoD) services. According to
a recent McKinsey and Company report, technology industry
analysts predict further growth in VoD services and expect to
see the market for Software as a service (SaaS) products to
approach near 200 billion by 2024 [1]. In the context of VoD
services, some videos may be more popular than others. These
and other characteristics suggest that caching should improve
the performance and scalability [2], [3]. There is plenty of
literature that has studied caching of VoD services.

Adding a cache to the Base Stations (BSs) invariably offers
several advantages. Caching contents at a BS closer to the
users minimizes delay in fetching the requested content as
it would be quicker to fetch them from the BS than from
the central server. As far as the users are concerned, this can
significantly improve their Quality of Experience (QoE). Also,
caching reduces traffic over the backhaul links that connect
BSs to the servers.

Despite the advantages offered by caching, there is a trade-
off. Caching all the contents from the server at the BSs is
not viable because the caches have a finite capacity. Also,
caching contents from the server incurs a certain caching
cost. Therefore caching contents that are less popular or
would seldom be requested is undesirable. In general, in all
caching problems, this is the motivation to develop an appro-
priate caching strategy to determine which contents should be
cached.

Two types of caching strategies have been proposed in
the literature, reactive and proactive caching strategies. In
reactive caching, contents are cached only on request. In a
proactive caching strategy, contents can be proactively cached
even before being requested based on their popularity and
dynamics of popularity. Proactive caching is preferred to
reactive caching in order to minimize cache miss. However,
most of the work related to proactive caching has assumed
that the contents’ popularity is fixed. On the other hand, we
let content popularity evolve with time.

We consider a scenario where contents arrive at the server
according to a stochastic process and their popularity evolution
and extinction follow a discrete-time Markov chain (DTMC).
We assume fixed content fetching cost and per request content
miss cost for each content. We frame the optimal proactive
caching problem as an average cost Markov decision prob-
lem (MDP) that is a restless multi-armed bandit (RMAB)
problem [4]. However, solving a restless multi-armed bandit
problem is, in general, difficult as it suffers from the curse of
dimensionality [5]. Therefore, we employ a low-complexity
heuristic called the Whittle index policy. The Whittle index
policy has been extensively used in literature, e.g., see [6]–
[8]. Furthermore, it is known to have a strong performance in
a range of applications [9]–[11]. We propose to use the Whittle
index policy for solving the problem of optimal caching.

In our RMAB problem, the MDP associated with a single
arm is closely related to the MDP in [12]. The key difference
between the two problems is that while [12] focuses on a
discounted cost MDP, we have a stochastic shortest path
problem at hand with content extinction being the terminal
state.

A. Related Work
1) Content Caching: Most of the literature on content

caching in networks has focused on the problem of delivering
multimedia content such as music or videos by deploying
caches close to the end users [3]. Such contents have time-
varying popularity and it affects edge caching decisions [13].
Constant popularity drawn from Zipf distribution is hardly
useful even in the context of a fixed set of contents with
time-varying popularity [14]. Therefore, we cannot employ
Zipf distribution in our content caching problem where the
number of contents at the server evolves over time. In [15],
the authors prove that chunking of videos is helpful. They

ISBN 978-3-903176-55-3 © 2023 IFIP 342
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on March 19,2024 at 08:39:10 UTC from IEEE Xplore.  Restrictions apply. 



propose an algorithm called chunk-LRU for caching partial
files and use an independent reference model (IRM) to model
the content request process. However, it is shown in [16]
that there are better models than an IRM to characterize the
dynamic popularity of content.

While there is no dearth of literature on caching dynamic
content, the term "dynamic" can have different meanings
depending on the context in which it is used. For instance, the
paper by [17]–[19] addresses the problem of content caching
in dynamic environments where the popularity of content
is unknown and evolves over time. The authors propose
Reinforcement Learning based caching strategies. On the other
hand, in [20]–[22], the contents are dynamic in the sense that
the contents at the server receive updates. The server always
retains a fresh version of all contents. The aforementioned
dynamic caching problems assume that the server hosts a huge
but fixed number of contents.

Several other approaches have been proposed, including
online caching based on the history of request arrivals [23],
federated learning-based caching [24], dynamic probabilistic
caching policies [14], caching models accommodating time-
varying request rates [25], online caching algorithms based
on content request predictions [26], and joint optimization
of service caching and routing [27]. Meanwhile, [12] and
[28] accounted for temporal changes in content popularity by
modelling the content request process as a stochastic process
whose intensity is modulated by an underlying discrete-time
Markov chain. The critical difference between our work and
[12], [14], [23]–[28] is our assumption that new contents
stochastically arrive and the existing ones expire after random
lifetimes.

In a more realistic setting, the number of contents at the
server evolves over time [29]. In our problem, contents are
dynamic in the sense that the contents arrive at the server
according to a stochastic process and their popularity evolution
and extinction follows a discrete-time Markov chain. Our
previous work [30] studies a caching problem where the
number of contents evolves over time. However, in [30], the
contents’ instantaneous request rates are assumed to be a
function of the number of contents at the server. Consequently,
at any given time, all the contents have the same popularity.
In our current work, the request rates of the contents vary
stochastically and are independent of the number of contents
at the server. The request rates of different contents are also
independent of each other. We formulate this problem as a
restless multi-armed bandit (RMAB) problem.

2) Restless Multi-armed Bandits: In an RMAB, a decision
maker determines which K arms out of the total N arms
should be activated at any time. The decision maker knows
the states of all bandits and the cost in every state and aims to
minimize the discounted or time-average cost over an infinite
time horizon. The state of a bandit evolves stochastically
according to transition probabilities that depend on whether
the bandit is active or not. In principle, an RMAB problem
can be solved by dynamic programming, but this approach is
not tractable for realistic model sizes because of computational
complexity [5]. Whittle [4] developed a methodology to obtain

a heuristic by solving a relaxed version of the RMAB in which
K arms are activated only on average. This heuristic, known
as the Whittle index policy, relies on calculating the Whittle
index for each of the bandits and activating at every decision
epoch K arms with the highest Whittle indices. However, the
Whittle indices are defined only when a certain indexability
condition is satisfied which, in general, is hard to verify.

Whittle [31] and Weiss [32] also introduced open bandit
processes where new arms continually arrive. Later the authors
in [33] considered mortal multi-armed bandits whose arms
have (stochastic) lifetime after which they expire. However,
unlike our work, the bandits in these works are not restless.
While the authors in [34] formulate a content caching problem
as a RAMB problem to minimize the average content service
latency, they assume a fixed number of contents at the server.

B. Contributions

We take a novel approach to the caching problem where
the contents randomly arrive at the server and stay there until
it expires. We propose dynamic caching policies where if the
requested content is not available at the BS, it is fetched from
the server and stored in the cache at the BS, keeping in view
of the capacity of the cache. We cast our problem as Mortal
MAB which is a variant of RMAB. We use a low complexity
policy called the Whittle Index policy to solve our problem
since RMAB is intractable. However, the Whittle Index policy
is defined only for problems that are indexable, which is often
challenging to establish.

We establish that the relaxed RMAB is indexable and obtain
a closed-form expression for Whittle’s Index. This allows us
to develop a Whittle index policy for the caching problem. In
addition, we compare the performance of the Whittle index
policy with greedy policy and policy under relaxed RMAB.

II. SYSTEM MODEL AND CACHING PROBLEM

We consider a wireless network where the users are con-
nected to a single base station (BS) which in turn is connected
to a content server via the core network. We assume a
slotted system. In particular, caching decisions are taken at
the slot boundaries. Below we present content dynamics and
the request model.

A. System Model

Content dynamics: New contents randomly arrive at
the content server and leave after random lifetimes. During
their lifetimes, i.e., before being extinct, the contents can
be in low or high-popularity states, denoted as 1 and 2,
respectively. While a more granular level of popularity might
better reflect real-world scenarios, to simplify the problem,
we have restricted the number of popularity levels to two, as
suggested in [35] and [12].

We assume that the contents arrive at the server according
to an independent and identically distributed (i.i.d.) arrival se-
quence m(t) = (m1(t),m2(t)), t ≥ 0. Let ms(t), s ∈ {1, 2},
be the number of contents that arrive during [t− 1, t] and are
in state s in this slot, with E[ms(t)] = λs(t), s ∈ {1, 2}.
A content’s popularity evolution and extinction constitute a
discrete-time Markov chain (DTMC), as shown in Figure 1;
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Fig. 1: Popularity evolution of a content. 1 and 2 denote low
and high popularity states, respectively. 0 denotes the terminal
extinction state. Self-loops are omitted for clarity.

here 0 denotes extinction, and the self-loops are not shown for
clarity. Naturally, extinction (0) is an absorbing state.

Content requests: The number of requests for a content in
a slot depends on its state in that slot, and given its popularity
states, the numbers are independent across slots. In particular,
r1 and r2 are the average number of requests in a slot for a
content when it is in low (1) and high (2) popularity states,
respectively.

Content caching: The BS has a cache where it can store
up to K contents. For s ∈ {1, 2}, let n0,s(t) and n1,s(t) denote
the number of uncached and cached contents at the beginning
of slot t that were in state s during [t−1, t]. Uncached contents
can be proactively cached at slot boundaries while evicting
other contents to meet the cache capacity constraints. We use
ks(t) to denote the number of cached contents in state s after
the execution of caching decisions at the beginning of slot t.
Clearly, ks(t) ≤

∑
c∈{0,1} nc,s(t) for s ∈ {1, 2} and k1(t) +

k2(t) ≤ K for all t ≥ 1. We let N (t) and K(t) denote the set
of feasible content status and decisions, respectively, at time
t. We illustrate various parameters in Figure 2.

1) Costs: We consider the following costs.
Caching cost: Contents’ caching status are updated keep-

ing their popularity and status in the previous slot in view. We
let d denote the cost of fetching a content from its server
and caching it. Clearly, the caching cost in slot t equals
d
∑

s∈{1,2}(ks(t)− n1,s(t))
+.1

Content missing cost: If a content is not cached, unit
cost per request is incurred. Notice that if a content is
in state s ∈ {1, 2} during [t − 1, t] then it is requested
expectedly r̄s :=

∑
s′∈{1,2} pss′rs′ times in [t, t + 1]. Con-

sequently, the expected content missing cost in slot t equals∑
s∈{1,2}(

∑
c∈{0,1} nc,s(t)− ks(t))r̄s.

We can express the total expected cost in a slot as a function
of content status n := (nc,s, c ∈ {0, 1}, s ∈ {1, 2}) and
caching decisions k := (k1, k2). Let g(n, k) denote this cost.
Then

g(n, k) = d
∑

s∈{1,2}

(ks −n1,s)
+ +

∑
s∈{1,2}

(∑
c

nc,s − ks

)
r̄s.

(1)

1r+ := max{r, 0}.

Fig. 2: Illustration of various parameters associated with the
system. Content i, having popularity status si(t−1) during [t−
1, t], draws on an average rsi(t−1) requests in this period.The
caching decisions k(t) = (k1(t), k2(t)) at the beginning of
slot t depend on the state n(t) = (nc,s(t), c = 0, 1, s = 1, 2).

B. Optimal Caching Problem

Our objective is to make caching decisions so as to minimize
the long-term time average cost. More precisely, given the
initial content status n, we aim to solve the following problem.

Minimize lim
T→∞

1

T
E

[
T∑

t=1

g(n(t), k(t))

∣∣∣∣∣n(1) = n

]
(2)

subject to k(t) ∈ K(t) ∀ t ≥ 1.

1) Markov Decision Problem: We formulate the optimal
caching problem as an average cost Markov decision problem.
The slot boundaries are the decision epochs. The state of the
system at decision epoch t is given by n(t). We consider k(t)
to be the action at decision epoch t.

We define an operator L : Z4
+×Z2

+ → Z4
+ for parsimonious

presentation. For any tuple (n, k) ∈ Z4
+ ×Z2

+, for all (c, s) ∈
{0, 1} × {1, 2},

Lc,s(n, k) =

{∑
s′ B (ks′ , ps′s) if c = 1∑
s′ B (

∑
c′ nc′,s′ − ks′ , ps′s) otherwise,

where B(l, q) is the binomial random variable with parameters
l and q. Given content status n and caching decision k at the
beginning of a slot, Ln represents content status at the end of
the same slot. From the description of the system model in
Section II-A, given n(t) and k(t), the state at decision epoch
t+ 1 is n(t+ 1) with

nc,s(t+ 1) =

{
Lc,s(n(t), k(t)) if c = 1

Lc,s(n(t), k(t)) +ms(t) otherwise.
(3)

For a state action pair (n, k), the expected single state cost is
given by g(n, k) as defined in Section II-A. A policy π is a
sequence of mappings {uπ

t , t = 1, 2, · · · } where uπ
t : N (t) →

K(t). The cost of a policy π for an initial state n is

V π(n) := lim
T→∞

1

T
E

[
T∑

t=1

g(n(t), uπ
t (n(t))

∣∣∣∣∣n(1) = n

]
Let Π be the set of all policies. Then the optimal caching
problem is minπ∈Π V π(n).
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Definition 1. (Stationary Policies) A policy π = {uπ
t , t =

1, 2, · · · } is called stationary if uπ
t are identical, say u, for

all t. For brevity, we refer to such a policy as the stationary
policy u. Following this, the content caching problem assumes
an optimal stationary policy.

Restless multi-armed bandit formulation: The above
Markov decision problem suffers from curse of dimensionality.
But we make the following observations.

1) Contents’ status evolves independently. Hence, the costs
associated with the contents are linked only via the
constraint on the caching actions, i.e., the capacity
constraint of the cache.

2) The total cost can be decomposed into costs associated
with different contents.

We thus see that the optimal caching problem is an instance of
the restless multi-armed bandit (RMAB) problem with each
content representing an arm. We show in Section III that this
problem is indexable. This allows us to develop a Whittle
index policy for the joint caching problem.

III. WHITTLE INDEX POLICY

We outline our approach here. We first solve certain caching
problems associated with each of the contents. We argue that
these problems are indexable and provide explicit Whittle
indices. The Whittle index for a state of content measures how
rewarding it is to cache that content at that particular state. The
Whittle index policy chooses those K contents whose current
states have the largest Whittle indices and among these caches
the ones with positive Whittle indices.

A. Single Content Caching Problem
We consider a Markov decision problem associated with

Content i. Recall that the costs, and consequently, the caching
decisions for the contents in a slot depend on their existing
caching and popularity status (see Section II-B). Hence, in
the MDP associated with the Content i, state and action in
slot t are taken to be xi(t) := (ai(t− 1), si(t− 1)) and ai(t),
respectively, where si(t) and ai(t) are the popularity status and
caching decision, respectively, for content i in slot t. Its state
and action spaces are {0, 1}×{0, 1, 2} and {0, 1}, respectively.
Given xi(t) = (āi, s̄i) and ai(t) = ai, the state evolves as
shown in Figure 1. The expected single-stage cost is

gi,w(āi, s̄i, ai) = wai + d(ai − āi)
+ + (1− ai)r̄s̄i . (4)

Observe that a constant penalty w is incurred in each slot in
which Content i is stored in the cache. Unlike Section II-B,
the single content MDP is a stochastic shortest path problem,
states (ai, 0) for ai ∈ {0, 1} being the terminal states. Here, a
policy π is a sequence {uπ

t , t = 1, 2, · · · } where uπ
t : {0, 1}×

{0, 1, 2} → {0, 1}. Given initial state (ai, si) the problem
minimizes

V π
i,w(ai, si) :=E

[ ∞∑
t=0

gi(ai(t), si(t), u
π
t (ai(t), si(t))

∣∣∣∣∣
ai(0) = ai, si(0) = si

]
(5)

TABLE I: Optimal Actions (a ∈ {0, 1}, s′ ̸= s)

Cases (u∗(a, s), u∗(a, s′))
w > max{r̄1, r̄2} (0, 0)

max
{
r̄s′ − (1− ps′s′ )d,

(1−ps′s′ )r̄s+pss′ r̄s′
1−ps′s′+pss′

}
(0, a)

< w < r̄s′
r̄s + pss′d < w < r̄s′ − (1− ps′s′ )d (0, 1)
max{r̃1, r̃2} < w (a, a)

< min
{

(1−p11)r̄2+p21r̄1
1−p11+p21

,
(1−p22)r̄1+p12r̄2

1−p22+p12

}
r̄s − ps0d < w < min{r̄s + pss′d, r̃s} (a, 1)
w < min{r̄1 − p10d, r̄2 − p20d} (1, 1)

over all the policies to yield the optimal cost function
Vi,w(ai, si) := minπ V

π
i,w(ai, si). We analyze this problem

below. However, we omit the index i for brevity.
Bellman’s Equations: The value function V : {0, 1} ×

{0, 1, 2} → R+ satisfies the following Bellman’s equations.

V (a, 0) = 0,

V (a, s) = min
a′

{
wa′ + d(a′ − a)+ + (1− a′)r̄s

+
∑
s′

pss′V (a′, s′)
}
,

for all a ∈ {0, 1} and s ∈ {1, 2}.
1) The Optimal Policy: The single content caching problem

also assumes an optimal stationary policy. Recall that r̄s :=∑
s′∈{1,2} pss′rs′ for s ∈ {1, 2}. We further define

r̃s :=
(1− pss)r̄s′ + ps′sr̄s

1− pss + ps′s
− (1− ps′s′)(1− pss)− pss′ps′s

1− pss + ps′s
d

(6)
for (s, s′) = (1, 2) or (2, 1). Then the optimal policy is given
by the following theorem.

Theorem 1. For a ∈ {0, 1} and (s, s′) ∈ {(1, 2), (2, 1)}, the
optimal actions (u∗(a, s), u∗(a, s′)) are as given in Table I.

Proof: See Appendix A in [36].
In Table I we have divided the values of penalty parameter

w in six different intervals for the purpose of determining
the optimal policy. The expressions for these intervals can be
simplified, and a few of these may even be empty, depending
on the parameter values. We omit this analysis here due to
space constraints. Please see Append A [36] for details.

B. Indexability of the RMAB

From the structure of the optimal policy in Table I we can
deduce that it is of threshold type. In particular, there exist
(w(a, s), a = 0, 1, s = 1, 2) such that

u∗(a, s) =

{
1 if w < w(a, s)

0 otherwise.

The values of (w(a, s), a = 0, 1, s = 1, 2) depend on
various parameters. Clearly, the RMAB is indexable, and
w(a, s)s are the Whittle indices for various states. We present
(w(a, s), w(a, s′)) for a ∈ {0, 1} and (s, s′) ∈ {(1, 2), (2, 1)}
in Table II where have assumed, without any loss of generality,
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that r̄s′ ≥ r̄s. We formalize these assertions in the following
theorem.

Theorem 2. The content caching problem is indexable. For
a ∈ {0, 1} and (s, s′) ∈ {(1, 2), (2, 1)}, if r̄s′ ≥ r̄s, the Whittle
indices are as in Table II.

Proof: For details, see Appendix B, [36].
Consider the special but reasonable scenario where the

probability distribution (p22, p21, p20) is stochastically larger
than (p12, p11, p10). In this scenario r̄2 ≥ r̄1 and p20 ≤ p10
implying that r̄2 − r̄1 ≥ (p20 − p10)d. Hence the Whittle
indices are given by the first two cases of Table II. It can
can easily verified that w(0, 1) ≤ w(0, 2) ≤ w(1, 2) and
w(0, 1) ≤ w(1, 1) ≤ w(1, 2) as expected in this case.

C. Whittle Index Policy for the RMAB

We now describe the Whittle index policy for the joint
content caching problem. As stated earlier, it chooses those
K arms whose current states have the largest Whittle indices
and among these caches the ones with positive Whittle indices.
In the content caching problem at hand, each content for which
we have to make a caching decision can be in one of the four
states (a, s), a = 0, 1, s = 1, 2. We sort w(a, s)s and, subject
to the cache capacity, cache the contents with the highest
Whittle index if it is positive, then cache the contents with
the second highest Whittle index if it is positive and so on.

Holding cost: There can also be a holding cost for
keeping content in the cache. Let h denote this fixed hold-
ing cost per content per slot. The content caching problem
remains unchanged except that single stage cost associated
with Content i becomes

gi,w(āi, s̄i, ai) = hai + d(ai − āi)
+ + (1− ai)rs̄i .

Comparing it with (4), we see that the penalty w can be
interpreted as the fixed holding cost. Obviously, in the presence
of the holding cost, the content caching problem can be solved
following the same approach as above.

IV. PERFORMANCE OF THE WHITTLE INDEX POLICY

We analyze the performance of the proposed Whittle index
policy in this section. Following the approach in [4], we
consider a relaxed version of the RMAB problem and derive
the associated optimal average cost, which is a lower bound
on the optimal cost of the RMAB problem in Section II-B,
i.e., a lower bound on minπ∈Π V π(n). We then show that the
average cost of the Whittle index policy in Section III-C is
close to this lower bound and hence to the optimal cost of the
RMAB problem in Section II-B.

We now constrain the average number of cached contents to
be less than or equal to K. Caching K or fewer contents each
time is one way to satisfy this constraint. We can formalize
this relaxed content caching problem as follows. Let Cs(t), s ∈
{1, 2} denote the set of contents arrived until t and having
initial state s, and C(t) = C1(t)∪C2(t). Further, for any content

i ∈ C(t), let Ai and Di denote its arrival and exit times,
respectively. Then the time-average cost can be expressed as

lim
T→∞

1

T
E

 ∑
i∈C(T )

(Di−1)∧T∑
t=Ai

ci(si(t), ai(t))

∣∣∣∣∣n(1) = n

 .

We aim at minimizing the above cost subject to

lim
T→∞

1

T
E

 ∑
i∈C(T )

(Di−1)∧T∑
t=Ai

ai(t)

∣∣∣∣∣n(1) = n

 ≤ K.

The following theorem gives the optimal policy for this
relaxed problem in terms of the Whittle indices.

Theorem 3. Let V̄ denote the optimal average cost of the
above RMAB problem. Then

V̄ = max
w≥0

{λ1Vw(0, 1) + λ2Vw(0, 2)− wK} (7)

where where Vw(0, 1) and Vw(0, 2) are the value functions
of the arms as defined in Section III-A. This optimal value
is achieved by a policy that caches at each time the contents
whose current Whittle indices exceed a threshold w∗, w∗ being
the value that achieves the maximum in (7),

Proof: The proof is based on a Lagrangian duality. For
details, see Appendix C [36].

We have provided the optimal policies as functions of the
penalty parameter w in Table I. We can use these optimal
policies to compute Vw(0, 1) and Vw(0, 2) for various w. We
present these value functions in Table III.

Remark 1. Let V and V W denote, respectively, the average
cost of the optimal policy and that of the Whittle index policy
for the original RMAB problem with the strict activation
constraint. It is easy to see that

V̄ ≤ V ≤ V W

i.e., V̄ as specified in (7) provides a lower bound on the
optimal cost. It can be used as a benchmark for gauging
the performance of the Whittle index policy for the original
RMAB problem.

Asymptotic optimality: The Whittle index policy per-
forms close to the optimal policy, especially when the average
number of contents in the system is high. However, a formal
assessment of the performance of the Whittle index policy
has evaded us until now. We numerically demonstrate the
performance of various policies in the next section.

Greedy policy: We have assumed that contents’ pop-
ularity and extinction evolve independently of the caching
decisions. In the absence of caching costs (switching costs), a
greedy policy that only accounts for single-stage costs would
be optimal for the content caching problem. On the other
hand, in the presence of caching costs, the state evolution of
the MDP depends on the caching decisions. In this case, the
greedy policy performs abysmally.
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TABLE II: Whittle Indices (s′ ̸= s, r̄s′ ≥ r̄s)

Cases w(0, s) w(1, s) w(0, s′) w(1, s′)
r̄s′ − r̄s ≥ max{ps′0 − ps0, 1− ps′s′ + pss′}d r̄s − ps0d r̄s + pss′d r̄s′ − (1− ps′s′ )d r̄s′

(ps′0 − ps0)d ≤ r̄s′ − r̄s < (1− ps′s′ + pss′ )d r̄s − ps0d
(1−ps′s′ )r̄s+pss′ r̄s′

1−ps′s′+pss′
r̃s r̄s′

r̄s′ − r̄s < (ps′0 − ps0)d r̃s′
(1−ps′s′ )r̄s+pss′ r̄s′

1−ps′s′+pss′
r̄s′ − ps′0d r̄s′

TABLE III: Vw(0, s) and Vw(0, s
′)

Cases Vw(0, s) Vw(0, s′)

w ≥ max{r̄1, r̄2}
(1−ps′s′ )r̄s+pss′ r̄s′

(1−ps′s′ )(1−pss)−pss′ps′s

(1−pss)r̄s′+ps′sr̄s
(1−ps′s′ )(1−pss)−pss′ps′s

max
{
r̄s′ − (1− ps′s′ )d,

(1−ps′s′ )r̄s+pss′ r̄s′
1−ps′s′+pss′

}
≤

w < r̄s′

(1−ps′s′ )r̄s+pss′ r̄s′
(1−ps′s′ )(1−pss)−pss′ps′s

(1−pss)r̄s′+ps′sr̄s
(1−ps′s′ )(1−pss)−pss′ps′s

r̄s + pss′d ≤ w < r̄s′ − (1− ps′s′ )d
(1−ps′s′ )(r̄s+pss′d)+pss′w
(1−pss)(1−ps′s′ )−pss′ps′s

ps′sr̄s+(1−ps′s′ )((1−ps′s′ )d+w)

(1−pss)(1−ps′s′ )−pss′ps′s

max{r̃1, r̃2} ≤ w <

min
{

(1−p11)r̄2+p21r̄1
1−p11+p21

,
(1−p22)r̄1+p12r̄2

1−p22+p12

} (1−ps′s′ )r̄s+pss′ r̄s′
(1−ps′s′ )(1−pss)−pss′ps′s

(1−pss)r̄s′+ps′sr̄s
(1−ps′s′ )(1−pss)−pss′ps′s

r̄s − ps0d ≤ w < min{r̄s + pss′d, r̃s} r̄s
(1−pss)

+
pss′ (w+d)

(1−pss)
+

pss′
(1−pss)

((1−pss)ps′s′+ps′s+ps′spss′ )w
(1−ps′s′ )(1−pss)−pss′ps′s

w + d+
((1−pss)ps′s′+ps′s+ps′spss′ )w

(1−ps′s′ )(1−pss)−pss′ps′s

w < min{r̄1 − p10d, r̄2 − p20d} w + d+
((1−ps′s′ )pss+pss′ (1+ps′s))w
(1−ps′s′ )(1−pss)−pss′ps′s

w + d+
((1−pss)ps′s′+ps′s(1+pss′ ))w
(1−ps′s′ )(1−pss′ )−pss′ps′s
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Fig. 3: Whittle indices vs r1, d, p11 and p12. We use p22 = 0.6,
p21 = 0.2 and r2 = 100. Figure 3a gives the Whittle indices
vs r1 for d = 10, p11 = 0.6 and p12 = 0.2. Figure 3b gives
the Whittle indices vs d when the the parameters are r1 = 10,
p11 = 0.6 and p12 = 0.2. Figure 3c gives the Whittle indices
vs p11 for r1 = 10, d = 10, and p12 = 0.2. Figure 3d gives
the Whittle indices vs p11 when the parameters are r1 = 10,
d = 10 and p11 = 0.6.

V. NUMERICAL RESULTS

A. Whittle indices vs system parameters
Whittle indices vs r1: We plot Whittle indices vs r1, for
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Fig. 4: Average cost vs r2, d, p22 and p12. We use p11 = 0.6,
p21 = 0.2, r1 = 10, λ1 = 1, λ1 = 2 and K = 5. Figure
4a gives Average Cost vs r2 for d = 10, p22 = 0.6 and
p12 = 0.2. Figure 4b gives Average Cost vs d for r2 = 100
and p22 = 0.6 and p12 = 0.2. Figure 4c gives Average cost vs
p22 for r2 = 100 and d = 10 and p12 = 0.2. Figure 4d gives
Average cost vs p12 for r2 = 100 and d = 10, p11 = 0.2 and
p22 = 0.6.

a single content at states (1, 2), (0, 2), (1, 1) and (0, 1). In
Figure 3a, we observe that the Whittle index for any state
is a piecewise linear increasing function in r1. This is true
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Fig. 5: Average cost vs K. We use p11 = 0.6, p22 = 0.6, p12 = 0.2, p21 = 0.2, r1 = 10 and r2 = 100. λ1 = 1.25 and
λ2 = 2.5 at K = 5. In Figure 5a and Figure 5b, we use d = 10 and d = 100, respectively.

because we prefer to cache contents that see a lot of requests.
Therefore, as r1 increases, the Whittle index also increases so
that contents are cached even if we incur more holding costs.

Whittle indices vs d: We plot Whittle indices vs d, for
a single content at states (1, 2), (0, 2), (1, 1) and (0, 1). We
observe that the Whittle index at the state (1, 2) is constant.
This is true because, based on the parameters that we have
chosen, the Whittle index at (1, 2) is independent of d. Based
on the parameters that we have chosen, the Whittle index at
(0, 2) and (1, 1) is a piece-wise linear decreasing and piece-
wise linear increasing function of d, respectively. Whittle index
at (0, 1) goes down linearly with d.

Whittle indices vs transition probabilities: Figure 3 gives
Whittle indices vs transition probabilities. Based on the param-
eters that we have chosen, the Whittle index at (0, 1) and (1, 1)
increase linearly with transition probability. Since the Whittle
index at (1, 2) and (0, 2) are independent of the transition
probability, we observe that the Whittle index at the state (1, 2)
and (0, 2) is constant.

B. Average Cost vs system parameters
We compare the average relaxed cost, average cost under

Whittle index Policy and greedy policy against various pa-
rameters as we see in Figure 4. In Greedy policy, at each time
slot, we decide to cache up to K contents, such that a content
i is cached if it happens to be in the state xg ∈ {0, 1}×{1, 2}
such that

xg = argmin
xi∈{0,1}×{1,2}

{gi(xi, 1)− gi(xi, 0) < 0}.

In each time slot, if more than K contents happen to be in state
xg , then the ties are broken arbitrarily. From Figures 4a, 4b,
4c and 4d, we observe that the Whittle index policy performs
better than the greedy policy. We also observe that the Relaxed
RMAB has a slight edge over the Whittle index policy.

Average cost increases with the content request rate. This
is true because, in the event of a cache miss, a higher request
rate implies a higher service cost. This leads to an increase
in average cost. In the greedy policy, we face more cache
misses than in the Whittle index policy. Therefore, as we see
in Figure 4a, as r2 increases, the Greedy policy performs
worse than the Whittle index policy. As the fetching cost d
increases, the cost of caching content increases. In Figure 4b,
as d increases, the Whittle index policy performs better than
the Greedy policy.

From Figures 4c and 4d we observe that the average
cost increases with the transition probability p22 and p12,
respectively. This is true because as the transition probability
increases, contents tend to stay in the system forever. As p22
increases, the missing cost associated with the high-popularity
content increases, leading to a higher average cost. Similarly,
as p12 increases, the missing cost associated with the low-
popularity content increases, leading to a higher average cost.

In Figures 4c and 4d, Whittle index policy performs as
good as the Relaxed RMAB, as the transition probability
increases. This is true because as the transition probability
increases, contents tend to stay in the system forever. Whittle
index policy performs close to the optimal policy as the mean
number of contents at the server increases.

We also examined the performance of the Whittle index
policy as we varied the number of cached contents, denoted as
K. In practical scenarios, the caching problem is meaningful
when the number of cached contents is less than the average
number of contents at the server. To this end, the arrival rate
of content of popularity state s at K is computed as follows.

λs(K) = λs(K − 1)
K

K − 1
, s ∈ {1, 2}.

At K = 5, we used λ1 = 1.25 and λ2 = 2.5. Figures 5a and
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5b illustrate that the Whittle index policy performs comparably
to the Relaxed RMAB policy.

VI. CONCLUSION AND FUTURE WORK

We considered optimal caching of dynamic contents. We
cast the problem as an average cost Markov decision problem
and showed that it is an instance of RMABs. We established
that the caching problem is indexable and obtained explicit
expressions for the Whittle indices. Furthermore, we showed
that the Whittle Index Policy outperforms the greedy policy
and performs comparably to the relaxed RMAB policy.

We plan to extend our findings to more than two popularity
levels in our future work. Additionally, we aim to apply our
approach to a distributed caching system that involves multiple
base stations. We also intend to integrate a Reinforcement
Learning-based algorithm that can handle scenarios where the
popularity dynamics are unknown, making it more applicable
to real-world settings.
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