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Abstract— This paper addresses the music-playing robot
problem, which is a benchmark problem for the spatio-temporal
multi-task assignment problem. In the music-playing robot
problem, an algorithm needs to compute the trajectories for
a dynamically-sized team of robots who will play musical
notes by traveling through the specific locations associated
with musical notes at their respective specific times. A two-
step dynamic resource allocation based on a spatio-temporal
multi-task assignment problem (DREAM) has been imple-
mented to assign robots to play a musical tune. The algorithm
computes the number of robots required to play the music
in the first step. In the second step, optimal assignments are
computed for the updated team of robots, which minimizes
the total distance traveled by the team. Even for individual
feasible trajectories, the multi-robot execution may fail if robots
encounter a collision. As some time will be utilized for this
conflict resolution, robots may not be able to reach the desired
location on time. This paper analyses and proves that if robots
are operating in a convex region, the solution of the DREAM
approach provides collision-free trajectories. The working of the
DREAM approach is illustrated using high-fidelity simulations
in a Gazebo operated using ROS2. The result clearly shows
that the DREAM approach computes the required number of
robots and assigns multiple tasks to robots in at most two
steps. A simulation of the robots playing the ’happy birthday’
is available at https://youtu.be/XToicNm-CO8.

I. INTRODUCTION

Multi-robot systems have been used to execute tasks
where a team of robots needs to visit a set of spatially
distributed locations. The robots have been used for different
purposes such as logistics [1], search [2], surveillance [3],
[4], [5], and various other applications [6], [7], [8]. Robots
are assigned to tasks such that they minimize some specific
criteria (e.g., minimization of total distance traveled [9],
completion time [10], [11], energy consumption [12]). With
recent IoT and communication infrastructure developments,
customers demand spatial visits with time constraints. In
logistics operations, the delivery person not only needs to
visit the locations but needs to visit those locations with
some time constraints. The multi-task assignment problems
with different temporal constraints are reviewed in [13].

The music-playing problem is the benchmark problem
for spatio-temporal tasks. For executing a task, a robot
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Fig. 1. Piano Setup in Gazebo for playing music using turtlebots

needs to visit the desired location at the desired time to
execute the spatio-temporal tasks. In operational research,
spatio-temporal tasks are also referred as just-in-time (JIT)
tasks. The promised-deliver-time (PDT) positively impacts
the brand image [14]. The time-constrained problem has
been extensively studied for industry automation [15], time-
constrained delivery problems [16], [17], [18], and time-
constrained cross-dock management [19], [20], hub-arrival-
departure [21]. All the aforementioned works highlight the
need and importance of spatio-temporal or just-in-time task
executions. But they did not comment on the feasibility of
the posed problem. For a given problem there, is any solution
exists or not? The feasibility of the problem depends on the
tasks and the number of agents available to execute those
tasks. All the aforementioned works assume that sufficient
agents are available to execute the given tasks and then solve
the assignment problem. This paper highlights the theoretical
features and demonstrates the application DREAM [22]
algorithm for the music-playing problem to provide a non-
iterative solution to guarantee feasibility.

The problem of music-playing robots is formulated by
Smriti Chopra and Magnus Egerstedt in [23], [24], [25].
For playing a musical note, a robot must visit the specific
location which plays that sound note. Each musical note is
connected to a different spatial location. Robots must visit
the prescribed note locations at specific times to play musical
tunes. In this way, the problem of music-playing robots is
converted to multiple spatio-temporal tasks for the team of
robots. A team of robots needs to compute the assignments
of robots to multiple spatio-temporal tasks, following which
they can play the music. The task allocation and scheduling
schemes [26], [27] have been used to schedule the tasks for
multiple robots. But in these approaches tasks are handled
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with soft temporal constraints and all tasks will not be
executed at the desired time. Hence can not be applied for the
exact time constraints. Also due to the exact-time constraints,
time-windowed task assignment approaches can not be used.
The just-in-time tasks assignment [28], [29] approaches have
been employed in automobile and automation industries, but
it assumes tasks are predefined and the solution requires
the off-line computations. The spatio-temporal multi-task
assignment (STMTA) problem has been studied in [23], [24],
[25], [30], [22], [31].

For the given spatio-temporal tasks, depending on the tasks
and velocity of robots, some minimum number of robots are
required to execute them. If the formulated STMTA is ill-
posed, the obtained solution is invalid and demands unreal-
istic velocities. The velocity-constrained STMTA problem is
solved in [24]. A Hungarian problem [32] is solved multiple
times, by increasing the robots one by one until a feasible
solution is achieved (iterative method).

Recently, a non-iterative solution has been proposed using
Dynamic resource allocation with a decentralized multi-task
assignment (DREAM) approach [22]. DREAM solves the
STMTA (Hungarian) problem, once to compute the required
minimum number of robots. Then, with an updated team of
robots, STMTA is solved to get the optimal solution. So with
only two steps, DREAM computes the required number of
robots and their optimal assignments.

In this paper, the music-playing problem is solved and
the execution guarantee is proved. Once the spatio-temporal
tasks are generated for a given music, the current team
of robots uses the DREAM algorithm. DREAM algorithm
computes the minimum number of robots required, updates
the team, and with an updated team it computes the optimal
assignments. Based on the assignments, the trajectory of
each robot is computed. Even if all individual trajectories
are feasible, one can not guarantee execution due to possible
collisions among multiple robots. Also, note that reactive
collision avoidance methods require some extra (and uncer-
tain) time to resolve the conflicts. This delay may violate
the temporal feasibility constraint. Hence, there is a need to
guarantee that the solution has collision-free trajectories.

The main contribution of this paper is the theoretical
analysis of the collision-free nature of obtained trajectories.
In this paper, we prove that the obtained trajectories are
collision-free for homogeneous robots operating in convex
space. By following the computed trajectories, robots will not
collide with other teammates and unassigned robots (which
were removed from the team). The same has been proved for
robots operating in the arena (simulated environment) used
in the paper. The working of the music-playing robots is
demonstrated using turtlebots in Gazebo simulations.

The rest of the paper is organized as follows: Section II
provides the mathematical problem formulation for piano-
playing robots. Section III explains the DREAM approach to
solve spatio-temporal tasks. Section IV proves the collision-
free nature of obtained trajectories. Section V explain sim-
ulation architecture and presents the performance of robots
for playing music. Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

Consider a two-dimensional arena with walls and musical
strings as shown in fig 1. Consider a string placed at the
center of lanes between the walls, which will generate sounds
with a specific frequency whenever the robots cross that
midsection of the lane. Robots will travel through the lanes
and plunk the strings to play the musical notes. With this
piano set-up, a musical tune is interpreted as the sequence
of the musical notes to be played at specific time instants.
Robots need to reach the respective note locations at specific
times. This defines the spatio-temporal tasks for robots.
Robots can play the music by routing through such timed
positions. Next, tasks and operations for piano music-playing
robots are mathematically formulated. Before that, we list the
notations used in the paper.

The following symbols are used in paper: R: robot; t: time;
p: position; µ: sequence of tasks assigned to robot; (·)Ri : for
ith robot; (·)Tj : for jth task; tj : desired execution time of task
Tj ; Tj(p

T
j , tj) = Tj : jth spatio-temporal task; Cf

ij : cost of
Ri executing the Tj as a first task; Cs

kj : cost of robot will
execute the task Tj just after the task Tk (subsequent task);
δfij : decision variable whether robot Ri execute the task Tj as
first task or not; δskj : decision variable whether robot execute
the task Tj just after task Tk or not.

Fig 1 shows the piano arena created in the Gazebo 11, and
Turtlebot3 are used as robots. The arena consists of 7 equally
separated walls. Each lane is associated with a predefined
specific music tune. A robot must cross the lane’s midsection
to play that specific note. A robot must wait at the entry
point until the desired time and cross the lane at the desired
time. The musical note will be played once the robot passes
through that lane’s midsection. A robot can cross the patch
either by traveling top-to-bottom or bottom-to-top.

A. Mathematical Problem Formulation

Consider a set of N robots denoted as R, R =
{R1, R2, · · · , RN}. The positions of robots Ri is denoted
as pR

i = (xR
i , y

R
i ). Robots need to play a bunch of piano

notes in properly timed sequences.
1) Spatio-temporal tasks : Consider a musical note j with

the position pT
j = (xT

j , y
T
j ) and desired time tj . To play this

note, the robot has to visit a waiting area near the desired
lane, wait until the desired execution time, and then pass
through the desired location pT

j at desired time tj to play
that musical note. The steps in playing notes are (a) reach
to the waiting location near pT

j (b) wait till desired time tj
(c) cross the lane

In the rest of the paper, the musical note playing is
defined as a spatio-temporal task Tj(p

T
j , tj) is referred as Tj .

This paper assumes that all robots are homogeneous (same
maximum velocity (vmax) and can play all musical notes).

To play the musical tune, a team of robots needs to play
a sequence of musical notes. Let us consider that a musical
tune has M notes (in general M > N ), and a team of robots
needs to execute the given M spatio-temporal task. This
defines the spatio-temporal multi-task assignment problem.
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The objective of the problem is to compute the assignments
for the team of robots such that they will play the musical
notes at respective times. One should note that for playing the
musical notes, i.e., for executing the spatio-temporal tasks,
some minimum number of robots is required. If the given
number of robots is less than this required number, then
the problem is ill-posed, and all tasks can not be executed.
Hence the objective of the problem is twofold; the first is
to compute the minimum number of robots required to play
the given musical notes, and the second is to compute the
assignments for an updated team of robots to play the given
musical notes.

III. SPATIO-TEMPORAL MULTI-TASK ASSIGNMENTS

The team of robots needs to play the musical notes by
traveling through the lane of respective notes at desired
times. These task demands the robots to reach specific spatial
locations at specific times; hence tasks are termed spatio-
temporal tasks. For executing the given spatio-temporal
tasks, a minimum number of robots is required. Otherwise,
the problem is ill-posed, and the given team of robots cannot
execute all the spatio-temporal tasks with any assignments.
This minimum number of robots required depends on the
velocity limit and the given spatio-temporal tasks.

We use the DREAM approach proposed in [22] to compute
feasible assignments. The DREAM approach uses a two-step
method in which, at first, the infeasible tasks are assigned a
cost equal to a large value, and the task assignment problem
is solved with a given number of robots. Now from the
solution, the number of infeasible assignments is identified,
and those many robots are added to the team of robots. The
updated team size is the minimum number of robots, and the
proof of this optimality is provided in [22]. At first, the cost
function is defined for the tasks.

A. Cost Function

The cost of a spatio-temporal task is the distance that
needs to be traveled by a robot to reach the task location
on or before the time of the task from its previous location.
For a robot executing its first task from its initial position,
the cost of the first task (Cf ) is the distance traveled by
the robot from its current position to the task position on or
before the desired task time.

First we denote d(pR
i ,p

T
j ) as the distance computed along

the feasible path from point pR
i to pT

j . This distance is
computed using the A∗ motion planning algorithm on the
map of the arena. Now cost for the first task is defined as

Cf
ij =

d(pR
i ,p

T
j ) if

d(pR
i ,p

T
j )

V R
max

≤ tj

κ otherwise
(1)

for i ∈ I = {1, 2, · · · , N}, j ∈ J = {1, 2, · · · ,M}

where, κ is a large value.
The cost for executing the subsequent tasks (Cs) by the

robot is the distance traveled by the robot from its previous

task location to reach the current task location on or before
the desired execution time of that subsequent task.

Cs
kj =


d(pT

k ,p
T
j ) if tmin

k,j ≤ (tj − tk)

κ if tmin
k,j > (tj − tk) > 0

∞ if tj − tk ≤ 0

(2)

for k ∈ K = {1, 2, · · · ,M − 1} j ∈ J

where tmin
k,j is the minimum time required by robot to

travel from the location of task Tk to task Tj and it is
computed as tmin

k,j = d(pT
k ,p

T
j )/V

R
max

B. Optimization Problem

A task allocation algorithm assigns robots to multiple
spatio-temporal tasks. A robot will execute the tasks in a
sequence, and we denote the sequence assigned to robot Ri

by µi. Here, the problem of computing sequence µi has
been converted to compute each move of one robot from
one location to another; combining all moves, one can get
the sequence of tasks. Each robot computes its sequence
to execute all spatio-temporal tasks while minimizing the
distance traveled. The first decision variable δfij is used to
denote that either a robot moves from position pRi to execute
the task Tj as a first task or not. The subsequent decision
variable δskj is used to denote that either a robot will do
task Tj just after task Tk or not. The integer programming
problem is defined as,

min
δfij δskj

∑
i∈I

∑
j∈J

Cf
ijδ

f
ij +

∑
k∈K

∑
j∈J

Cs
kjδ

s
kj (3)

s. t. δfij ∈ {0, 1} ∀(i, j) ∈ I × J (3a)

δskj ∈ {0, 1} ∀(k, j) ∈ K × J (3b)∑
i∈I

δfij +
∑
k∈K

δskj = 1 ∀j ∈ J (3c)∑
j∈J

δfij ≤ 1 ∀i ∈ I (3d)∑
j∈J

δskj ≤ 1 ∀k ∈ K (3e)

All tasks must be assigned as a first or subsequent task to
exactly one robot; this constraint is given by (3c). A robot
can move to at most one task location just after completing
the current task, which is constrained by eq. (3d) and (3e).

C. DREAM Approach

The spatio-temporal tasks require some minimum number
of robots to execute the given spatio-temporal tasks. The
problem formulated in Eq. (3) solves the assignment problem
for a given N number of robots. As the infeasible tasks are
given a cost equal to the κ, the solution of Eq (3) may
contain some infeasible assignments with a cost equal to
κ. The DREAM approach computes the minimum number
of robots required to execute all the given tasks (for which
all computed assignments will be feasible). For clarity, the
DREAM algorithm [22] is provided in algorithm 1.

Once all the feasible assignments are obtained using the
2-step solution provided by the DREAM approach, robots
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Algorithm 1 Dynamic resource allocation algorithm

1: Initialize with N robots and M musical notes to be
played with respective timings

2: Solve the optimization problem (eq. (3))
3: q = number of assignments with cost equal to κ
4: if q > 0 then
5: Add new q robots in team near to the spatial location

of infeasible tasks
6: N = N + q
7: Solve the optimization problem (eq. (3))
8: end if
9: feasible assignments are obtained

10: Compute the sequence of tasks assigned to each robots
using the assignments

must execute the assigned tasks in sequence. The assignment
solution provides the assignments of robots from one location
to another. Augmenting the next positions to the last, one can
compute the sequence of tasks assigned to each robot. The
detailed trajectory generation algorithm can be found in [22].

IV. ANALYSIS FOR COMPUTED TRAJECTORIES

Analysis in [22] proved that the solution obtained from
DREAM is optimal, and all trajectories are feasible for
individual robots. But in multi-robot systems, the feasibility
guarantee may fail if robots encounter any collision. If all
trajectories are collision-free, execution can be guaranteed.

First, we state the existing analysis for the optimal and
collision-free (non-intersecting path) solutions from [33].

Theorem 1. ( Theorem 3.1 from [33] ) The optimal
assignment using the minimum sum of distance optimization
results in non-intersecting paths with the exception of the
special case when a pair of robots have collinear start and
goal locations.

This theorem proves that the solution linear sum assign-
ment problem minimizes the distance traveled and gives
collision-free paths. As the paths of robots are collision-free,
the obtained trajectories are also collision-free. But solution
to a temporally constrained problem may have colliding
paths. For example, consider fig 2 with tD < tA (then tra-
jectory A to D becomes infeasible), and all other trajectories
are feasible. Then the solution obtained is different from the
unconstrained minimum path problem, and it has colliding
paths. Now, one can not comment on the collision-free nature
of the trajectories of the obtained solution of a temporally
constrained problem, as paths may collide with each other.

Theorem 2. For homogeneous robots operating in a convex
region, the feasible solution obtained from the DREAM
algorithm gives collision-free trajectories.

Proof. We will prove the theorem by contradiction. Without
the loss of generality, we assume that the computed trajec-
tories of robot R1 and R2 have conflict and will collide.
Let us consider R1 is moving from (pA, tA) towards spatio-
temporal point (pB , tB) with velocity v1 and R2 is moving

Fig. 2. Geometric illustration for proof of Theorem 2

from (pC , tC) towards spatio-temporal point (pD, tD) with
velocity v2 and while doing this the robots will collide at
location p∗ at time t∗. Without loss of generality, we consider
v1 ≤ v2 ≤ vmax. This scenario is shown in Fig 2 for clarity.

As the solution is optimal, ∥pApB∥2 + ∥pCpD∥2 is the
minimum cost for executing tasks TB , and TD by robots
R1 and R2. Now due to collision both robot reach p∗ at
time t∗. The remaining trajectories will be feasible for both
robots from the collision points. As robots are homogeneous,
if they exchange their trajectories, the trajectories still remain
feasible. (Let us refer to them as alternate trajectories).

In the alternate solution, the tasks after collision points do
not change the total distance that needs to be traveled by
both robots. Alternate trajectories are feasible and require
traveling the same distance; hence they are also optimal. i.e.
∥pAp∗∥2+∥p∗pD∥2+∥pCp∗∥2+∥p∗pB∥2 is the minimum
cost for executing tasks TB , and TD by robots R1 and R2

In alternate optimal solution R1 travels along the path
pA − p∗ − pD, but there exists direct path pA − pD. By
the triangle inequality, direct path from pA to pD is shorter.
On direct path pA − pD, robot R1 can reach location pD

before the desired time tD. i.e., the direct path is feasible.
Hence the cost of the alternate solution is not optimal.

This contradiction proves that the assumption of the exis-
tence of a collision point is incorrect. Thus it is proved that
the optimal solution obtained from the DREAM approach
gives collision-free trajectories.

Corollary 2.1. For homogeneous robots operating in the
convex region, if the robot follows the trajectory computed by
the DREAM algorithm, then the robot will not collide with
any unassigned robots.

It can be proven with a case of v1 = 0 (unassigned
defender executes the fictitious task at the same location and
travels with zero velocity) in the proof given for Theorem 2.

Corollary 2.2. For the music-playing problem defined in this
paper, the computed trajectory of robots is collision-free.

Proof. Let us divide the arena into three regions, Ω1 (a
region above the lanes), Ω2 (a region below the lanes), and
Ω3 (remaining region of lanes). Without loss of generality,
we assume that a robot Ri is initialized in Ω1. As the robot
is in Ω1, it will be asked to visit the entry location of the
lane which lies in Ω1. The region Ω1 is convex; using the
Theorem 2, a robot will have a collision-free trajectory.

For playing music but Ri has to wait at the entry point
till the desired time and then possess through lanes, i.e., Ω3
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and goes to region Ω2. From the region, Ω1, Ri can enter
region Ω3 only for playing music and only at desired task
time. Only one robot is assigned to play a musical note, so
no two robots will enter the lane at the same time. Hence
robots won’t collide with any other robots in Ω3. Once the
robot reaches the other end of the lane, it enters the region
Ω2. For the next task, it will be asked to visit the entry point
of the assigned lane, which lies in Ω2. Region Ω2 is convex;
hence, the robot will have a collision-free trajectory in Ω2.

The robot will have a collision-free trajectory whenever
it is in the region Ω1,Ω2, and Ω3. Hence, a robot has a
collision-free trajectory for the entire arena.

A. Complexity analysis

Consider O(·) denotes the upper bound on the complexity
of the algorithm, and Ω(·) denotes the lower bound on the
complexity of the algorithm, H(n) denotes the Hungarian
problem of size n. For the Hungarian algorithm, the com-
plexity is upper bounded by O(n3) and lower bounded by
Ω(n2). For M tasks with N required robots, the complexity
of DREAM is denoted by CDREAM , and the complexity of
the iterative algorithm ( [24]) is denoted by Citer.

CDREAM = H (M) +H (M +N − 1)

= O
(
(M +N − 1)3

)
Citer =H (M) +H (M + 1) + · · ·+H (M +N − 1)

=O
(
N(M +N − 1)3

)
The reduction in complexity is defined to compute the lower
bound on reduction in computation as,

Cr =Citer − CDREAM

=H (M + 1) +H (M + 2) + · · ·+H (M +N − 2)

≥Ω
(
(M + 1)2

)
+ · · ·+Ω

(
(M +N − 2)2

)
≥Ω

(
(M +N − 2)3 − (M)3

)
The complexity of the DREAM algorithm is cubic, and it is
N is times lower than the iterative algorithm. Furthermore,
the iterative algorithm requires at least Cr complexity more
than DREAM.

V. SIMULATION AND RESULTS

The DREAM algorithm has been used to play piano music.
This system is implemented and tested with the help of ROS2
in the Gazebo simulation environment. The simulations are
conducted in Ubuntu 20.04 system with a 3.20GHz processor
and 16 GB RAM.

A. Performance Evaluation

The Piano setup is shown in Fig. 1. The team of 4 robots
plays a happy birthday tune in the piano arena to illustrate
the working of the proposed approach. A total of 7 different
musical notes are used. Here, the gap between the two walls
is 0.5m, and the lane length is 0.4m, but for turning robots
(considering the waiting area), the practical distance that
needs to be traveled is 0.8 m. The turtlebots (with a max
velocity of 0.5 m/sec) are used as robots to travel in the arena

Task
No Note time

(sec)
1 G3 105
2 G3 113
3 A3 119
4 G3 124
5 C4 133
6 B3 142
7 G3 157
8 G3 163

Task
No Note time

(sec)
9 A3 168
10 G3 172
11 D4 183
12 C4 192
13 G3 206
14 G3 214
15 G4 221
16 E4 229

Task
No Note time

(sec)
17 C4 235
18 B3 239
19 A3 250
20 G4 260
21 G4 270
22 C4 280
23 D4 290
24 D4 300

TABLE I: Spatio-temporal tasks for ’Happy birthday’ tune

Fig. 3. Operations of robots while playing music

and play music. As the distance that needs to be traveled is
large compared to the velocity of the robots, the musical
tasks are given for execution by scaling the time ten times.

A total of 24 musical notes are required to play the tune,
and the spatio-temporal tasks considered are given in table I.
The attached video demonstrates the music-playing robots.

Once all tasks are received, the robots use the map of
the piano arena to compute the distances and then com-
pute the cost matrices. When only one robot is used to
solve STMTA, it demands three extra robots. So, total
of four robots has been used to play the desired tune.
The computed trajectories for the robots are, for robot 1,
µ1 = {T1, T2, T4, T7, T8, T10, T13, T14, T19}; for robot 2,
µ2 = {T3, T9, T12, T17, T22, T23, T24}; for robot 3, µ3 =
{T5, T6, T18}, for robot 4, µ4 = {T11, T15, T16, T20, T21}.

The video https://youtu.be/XToicNm-CO8
shows the operations of robots to play the ’happy birthday’
tune. Fig 3 shows the operations of robots. Four different
colors are used for the four robots. The solid line denotes
the robots in motion, and the dashed lines denote the robots
waiting. One can observe that four robots are required to
execute tasks from 230 sec to 250 sec. If any robot is
absent, then all notes can not be played. It shows that the
team size computed by the DREAM (i.e., 4 robots) is a
necessary and sufficient team size to execute the given
spatio-temporal tasks.

DREAM requires solving the Hungarian problem only
twice for N = {1, 4}, while iterative algorithm [24] requires
solving the Hungarian problem for N = {1, 2, 3, 4}.
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VI. CONCLUSIONS

In this paper, we considered the spatio-temporal multi-
task assignment problem for playing piano music using a
team of robots. The dynamic resource allocation with multi-
task assignments (DREAM) approach can be directly used to
compute the minimum team size and the optimal assignments
(which minimizes the total distance traveled). The DREAM
approach solves the bottleneck issue of iterative computation
for the required number of robots and provides the two-
step solution to compute the required minimum number of
robots and their optimal assignments to execute given spatio-
temporal tasks. This paper analyses the DREAM algorithm
and proves that the solution gives collision-free trajectories
for all robots when operated in convex regions. The working
of the DREAM approach is demonstrated for the piano
music-playing robot simulations in a ROS2-Gazebo envi-
ronment. Future work focuses on the heterogeneous robots
playing music on more complex and various instruments and
the exploitation of guaranteed collision-free trajectories for
various STMTA problems.
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