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Abstract— We revisit the Reinforce policy gradient algorithm
that works with full cost returns obtained over random length
episodes. We propose a new Reinforce type algorithm that
estimates the policy gradient using a function measurement
over a perturbed parameter using a smoothed functional
based gradient estimator. We observe that even though we
estimate the gradient of the performance objective using sample
performance (and not the sample gradient), the algorithm
converges to a neighborhood of a local minimum. We further
describe the main convergence result.

I. INTRODUCTION

Policy gradient methods [5] form a popular class of
approaches in reinforcement learning where the policy is
considered parameterized and the policy parameter is up-
dated along a gradient search direction where the gradient is
normally of the value function. The policy gradient theorem
[5] is a fundamental result in these approaches and relies
on an interchange of the gradient and expectation operators
which is a straightforward operation when the state-action
space is finite. When this is not so, one would need extra
regularity conditions to interchange the two operators much
like the previously studied perturbation analysis based sen-
sitivity approaches for optimization via simulation [3].

The Reinforce algorithm [6] is a noisy gradient scheme
that updates the policy parameter once after the full return
on an episode and is based on the gradient of the performance
function. In this paper, we revisit the Reinforce algorithm and
present a new algorithm for the case of episodic tasks or the
stochastic shortest path setting. In this setting, updates are
performed only at instants of visit to a prescribed recurrent
state. This algorithm is based on a single function measure-
ment or simulation at a perturbed parameter value where
the perturbations are obtained using independent Gaussian
random variates.

II. THE SF REINFORCE ALGORITHM

We assume here that all stationary policies are proper [1].
Let C ⊂ Rd denote a compact and convex projection set
and Γ : Rd → C denote a projection operator that projects
any x ∈ Rd to its nearest point in C.

Let θ(n) denote the parameter value obtained after the
nth update of this procedure obtained after the (n − 1)st
episode and which is run using the policy parameter Γ(θ(n)+
δn∆(n)), n ≥ 0, where θ(n) = (θ1(n), . . . , θd(n))

T ∈
Rd, δn > 0 ∀n with δn → 0 as n → ∞ and
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∆(n) = (∆1(n), . . . ,∆d(n))
T , n ≥ 0, where ∆i(n), i =

1, . . . , d, n ≥ 0 are independent random variables distributed
according to the N(0, 1) distribution.

Let χn denote the nth state-action trajectory χn =
{sn0 , an0 , sn1 , an1 , . . . , snT−1, a

n
T−1, s

n
T }, n ≥ 0 where the ac-

tions an0 , . . . , a
n
T−1 in χn are obtained using the policy

parameter θ(n) + δn∆(n). The instant T denotes the ter-
mination instant in the trajectory χn when the goal state t is
reached. The various actions in χn are chosen according to
the policy ϕ(θ(n)+δn∆(n)). The initial state is assumed to be
sampled from an initial distribution ν = (ν(i), i ∈ S).

Let Gn =

T−1∑
k=0

gnk be obtained from χn, with gnk ≡

g(Xn
k , Z

n
k , X

n
k+1). The update rule that we consider here is

the following: For n ≥ 0, i = 1, . . . , d,

θi(n+ 1) = Γi

(
θi(n)− a(n)

(
∆i(n)

Gn

δn

))
. (1)

The step-sizes a(n), n ≥ 0 are assumed to satisfy the
Robbins-Monro conditions.

Consider now the ODE θ̇(t) = Γ̄(−
∑

s ν(s)∇Vθ(s)),
where Γ̄ : C(C) → C(Rd) is as in [4] (Chapter 5).

Let H
△
= {θ | Γ̄(−

∑
s ν(s)∇Vθ(s)) = 0} denote the set

of all equilibria of the ODE. By Lemma 11.1 of [2], the
only possible ω-limit sets that can occur as invariant sets for
the ODE above are subsets of H . Let H̄ ⊂ H be the set of
all internally chain recurrent points of this ODE. Our main
result below is based on Theorem 5.3.1 of [4] for projected
stochastic approximation algorithms and is stated below.

Theorem 1: The iterates θ(n), n ≥ 0 governed by (1)
converge almost surely to H̄ .

III. CONCLUSIONS

We presented a version of Reinforce that incorporates a
one-simulation SF for the episodic task setting and stated a
convergence result. In a longer version of this paper, we shall
present the analysis and experiments with this algorithm.
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