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Abstract— We consider the problem of sequentially learning to
estimate, in the mean-squared error (MSE) sense, a Gaussian
K-vector of unknown covariance by observing only m < K of
its entries in each round. We first establish a concentration
bound for MSE estimation. We then frame the estimation
problem with bandit feedback, and we propose a variant of
the successive elimination algorithm. We also derive a minimax
lower bound to understand the fundamental limit on the sample
complexity of this problem.

I. INTRODUCTION

Many real-world applications involve collecting local mea-
surements of a physical phenomenon and leveraging correla-
tion structures to estimate the phenomenon over a larger area.
Examples include monitoring temperature over a region [1],
estimating the cellular network load using base stations [2],
and detecting water contamination using sensors [3].

In this paper, we use the mean-squared error (MSE) to
capture the correlation structure. Formally, we consider a
jointly Gaussian K-vector X with mean zero and covariance
matrix Σ. A Gaussian modeling assumption is shown to be
practically valid in a cellular network application [2], where
the goal is to estimate traffic load across all base stations by
collecting measurements from a few. For a m-subset A, the
MSE ψ(A) is given by

ψ(A) = Tr
(

ΣA′A′ − ΣA′A

(
ΣAA

)−1
ΣAA′

)
, (1)

where A′ is [K] \ A, ΣAA,ΣA′A′ ,ΣA′A,ΣAA′ are sub-
matrices of Σ in obvious notation, and Tr(A) denotes the
trace of the matrix A.

Non-adaptive estimation We address the problem of esti-
mating the MSE for a subset A when provided with i.i.d.
samples for each of the sub-matrices defined in (1). This
approach is non-adaptive as each sub-matrix entry is sampled
equally.

The ’sample-average’ estimator Σ̂AA may not always be
invertible, even though it is positive definite with high prob-
ability. To handle invertibility, we form the matrix Σ̂A′A′

+

by performing an eigen-decomposition of Σ̂AA, followed by
a projection of eigenvalues to the positive side. Formally,
for i = 1, . . . ,m, let λ̂i denote the eigenvalue of Σ̂AA, with
corresponding eigenvector vi. The estimator Σ̂+

AA is defined
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by

Σ̂+
AA ,

m∑
i=1

λ̂+
i viv

ᵀ
i , (2)

where λ̂+
i =

{
λ̂i if |λ̂i| ≥ ζ,
ζ otherwise,

for i = 1, . . . ,m with ζ >

0. The MSE ψ(A) associated with set A is then estimated
as follows:

ψ̂(A) , Tr
(

Σ̂A′A′ − Σ̂A′A

(
Σ̂AA

+)−1
Σ̂AA′

)
. (3)

In Section III of [4], we present a concentration bound for
the MSE estimator (3), which shows that the tail decay is
sub-Gaussian.

Adaptive estimation. In this setting, we focus on non-
uniform sampling of the covariance matrix to optimize the
reuse of samples for estimating MSE across various subsets.

When concerned with estimating the MSE for a specific
subset, one can use the estimate in (3). However, if one
need to estimate the MSE for multiple subsets using the
same samples efficiently, one can maintain estimates for each
entry of the covariance matrix and then extract the necessary
information from the sample covariance matrix to form MSE
estimates for any given subset. Based on this approach, for a
subset A = {i1, . . . , im}, the MSE ψ(A), can be re-written
as follows:

ψ(A) =

K∑
j=1

[
σ2
j − Cj(Σ−1

AA)Cᵀ
j

]
, (4)

where Cj = [ρji1σi1σj . . . ρjimσimσj ]. To estimate the
MSE as described in (4), we need to estimate the variances
and correlation coefficients. We’re provided with ni samples
for variance σ2

i and nij samples for the correlation coefficient
ρij , with i, j ∈ [K], i 6= j.

For each j = 1, . . . ,K and k = 1, . . . ,m, we compute
σ̂j

2 and ρ̂jik . These are formed using nj and njik samples,
respectively, as follows:

σ̂j
2 = Xj

2
, where Xj

2
= 1

nj

nj∑
t=1

X2
jt.

ρ̂jik =
XjXik

σ̂jσ̂ik
, where XjXik = 1

njik

njik∑
t=1

XjtXikt.

Using these estimates of variance and correlation coeffi-
cients, we estimate the MSE ψ(A) as follows:
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ψ̂(A) =

K∑
j=1

[
σ̂j

2 − Ĉj
(
Σ̂AA

+)−1
Ĉj

ᵀ]
, (5)

where Ĉj =
[
ρ̂ji1 σ̂i1 σ̂j . . . ρ̂jim σ̂im σ̂j

]
, Σ̂AA formed

by using the relevant sample correlation coefficients
ρ̂ikil , ik, il ∈ A, and sample variances σ̂2

ik
, ik ∈ A, and Σ̂+

AA

is defined in (2).

In Section IV of [4], we provide a tail bound for the MSE
estimator (5), which establishes exponential concentration of
this estimator around the true MSE.

Adaptive estimation with bandit feedback. The goal here
is to find the optimal subset with the lowest MSE, denoted
as A∗:

A∗ ∈ arg min
A∈A

ψ(A).

For finding A∗, we aim to develop a δ-PAC algorithm that
efficiently finds the best m-subset with high probability.
For a given confidence parameter δ ∈ (0, 1), a δ-PAC
algorithm stops after τ rounds and returns a set Aτ such
that P (Aτ 6= A∗) ≤ δ. We prefer the algorithm with the
lowest sample complexity E[τ ].

For any set A, define

∆(A) , ψ(A)− ψ(A∗), and ∆ = min
A∈A

∆(A). (6)

where ∆(A) represents the difference in MSE for a subset
A, and ∆ is the smallest such difference.

Successive elimination for correlated bandits. We consider
the fixed confidence variant of the best-arm identification
framework [5]. In the fixed confidence setting that we
consider, a naive approach, based on Algorithm 1 in [6],
would be to sample each subset an equal number of times.
This uniform sampling is effective when all subsets provide
similar information about others, i.e., when correlations and
variances are similar. However, in the presence of varying
correlations, uniform sampling becomes less suitable. To
minimize the error in identifying the best m-subset, it’s
essential to sample the set of candidates for the most infor-
mative subset more frequently, and the successive elimination
technique [6] embodies this idea.

We propose a modified successive elimination algorithm
tailored for finding the best m-subset based on the MSE
objective. The algorithm begins with an active set, initially
comprising all m-subsets, denoted as A. In each round t, the
algorithm samples each active m-subset once and estimates
its MSE using (5). Subsequently, the algorithm eliminates
subsets whose confidence intervals are clearly separated
from the confidence interval of the subset with the lowest
estimated MSE seen thus far. The algorithm continues until
only one m-subset remains in the active set, which inevitably
occurs with probability one.

For the algorithm mentioned above, we derive a sample

complexity bound of the form O

(
(K
m)
∆ log

(
(K
m)
δ

))
. The

reader is referred to Section V of [4] for the details.

Lower bound. We consider a special case of the adaptive
estimation problem, where the goal is to identify the best
pair of arms, i.e.,

(i∗1, i
∗
2) ∈ arg min

(i,j)∈[K]×[K],i6=j
ψ({i, j}).

Let Alg(δ,K) denote the class of algorithms that are δ-PAC
for the best pair identification problem.

In Section VI of [4], we prove that, for any δ-PAC algo-
rithm, there exists a bandit problem instance governed by a
covariance matrix Σ such that the sample complexity EΣ[τδ]
of this algorithm satisfies

EΣ[τδ] ≥
log( 1

2.4δ )

∆
. (7)

where ∆ denotes the smallest gap on the problem instance
governed by Σ.

The reader is referred to the longer version of this paper,
available in [4], for the following: (i) the concentration
bounds for MSE estimators presented in (3) and (5); (ii) a
detailed description and a sample complexity analysis for a
bandit algorithm designed to find the most correlated subset
(in the MSE sense) under the fixed confidence best-arm
identification framework; and (iii) the proof of the lower
bound presented in (7).
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