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Abstract: The Koopman operator framework allows for a linear, but infinite-dimensional,
representation of the dynamics of a non-linear system. The Koopman modes, or observables,
and the resulting linear dynamics are derived purely using a data-driven framework, where the
data are system outputs measured at discrete samples; improving accuracy of the Koopman
representation requires a large number of such modes to be considered. Recent results consider
the system input as well, in the derivation of the discrete linear dynamics, thus enabling the
design of controllers. Sliding mode controllers (SMCs), including the discrete-time versions, can
handle parameter uncertainties and variations and also ensure that the control objective is
satisfied in finite time. In this paper, a discrete-time SMC is designed for the output control
of a dynamic system approximated by fewer Koopman modes; the SMC is expected to handle
uncertainties introduced by the ignored modes. Conditions are identified for the closed-loop
system to be stable, with the occurrence of sliding mode.
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1. INTRODUCTION

As is well known from the literature, Koopman operator
theory permits a non-linear dynamic system to be rep-
resented by a linear dynamic system, albeit with infinite
dimensions. As mentioned in Proctor et al. (2018), with
the inclusion of inputs acting on the non-linear system
within the Koopman framework, this approach provides
linear dynamics, whose properties are estimated purely
from input-output data. By constructing the observables -
which are non-linear functions of the states of the original
non-linear system - from such data, that lead to the linear
system representation, controllers applicable to linear sys-
tems can be designed to control the non-linear system.
Indeed, the Koopman approach has found many appli-
cations, for example, control and observer design using
a bilinear approximation, in Goswami and Paley (2022)
and Surana (2016), respectively; modeling the working
environment for autonomous excavators in Sotiropoulos
and Asada (2022); and in robotics and motion control
of rigid bodies, Mamakoukas et al. (2019); Bruder et al.
(2019); Zinage and Bakolas (2022).

The challenges with the application of the Koopman
theory are the choices of observables and how many
should be selected to result in a better approximation.
A solution to overcome these challenges is proposed by
Korda and Mezić (2018), where, by lifting the state-space
of the non-linear system to a higher-dimensional one, the
dynamics in the lifted space of observables become linear;
the observables are selected in the form of radial basis

functions. The resulting linear system is now considered
as a predictor and using least-squares-based methods,
the parameters of the predictor are estimated so that its
trajectories closely match the trajectories of the non-linear
system. See also Korda and Mezić (2020); Williams et al.
(2016); Kaiser et al. (2021) for other approaches and their
descriptions, such as the Dynamic Mode Decomposition
(DMD), the Extended DMD, and KRONIC, that enable
Koopman-type representations.

From the above remarks, it is clear that diverse approaches
result in different linear system representations of the
same non-linear system. However, from a feedback control
perspective, if the objective of control is for the output
of the linear system to track a reference signal - either
time-varying or a fixed point - then the control should
be designed to meet this objective by considering the
internal dynamics as well as the composition of the output
itself as being uncertain. From this point-of-view, SMCs
seem an appropriate design choice. In particular, discrete-
time SMCs should be applied, since the input-output
data - used to construct the Koopman representation
- are available at discrete samples, thus leading to a
discrete-time linear representation. For linear systems, the
notion of the so-called Discrete Sliding Mode (DSM), is
well understood; see Drakunov and Utkin (1989); Furuta
(1990) for DSM controller designs; the sliding manifold
is selected so that the closed-loop system has the desired
dynamics. The benefits offered by the enforcement of DSM
is that it occurs after a finite number of time instants
and that it is robust to plant uncertainties; see Bartolini
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(2016); Kaiser et al. (2021) for other approaches and their
descriptions, such as the Dynamic Mode Decomposition
(DMD), the Extended DMD, and KRONIC, that enable
Koopman-type representations.

From the above remarks, it is clear that diverse approaches
result in different linear system representations of the
same non-linear system. However, from a feedback control
perspective, if the objective of control is for the output
of the linear system to track a reference signal - either
time-varying or a fixed point - then the control should
be designed to meet this objective by considering the
internal dynamics as well as the composition of the output
itself as being uncertain. From this point-of-view, SMCs
seem an appropriate design choice. In particular, discrete-
time SMCs should be applied, since the input-output
data - used to construct the Koopman representation
- are available at discrete samples, thus leading to a
discrete-time linear representation. For linear systems, the
notion of the so-called Discrete Sliding Mode (DSM), is
well understood; see Drakunov and Utkin (1989); Furuta
(1990) for DSM controller designs; the sliding manifold
is selected so that the closed-loop system has the desired
dynamics. The benefits offered by the enforcement of DSM
is that it occurs after a finite number of time instants
and that it is robust to plant uncertainties; see Bartolini

Design of Sliding Mode Controllers using
Reduced-order Koopman Mode

Representations

Sachit Rao ∗ Debasish Ghose ∗∗

∗ International Institute of Information Technology - Bangalore,
Bangalore, India 560 100 (e-mail: sachit@iiitb.ac.in).

∗∗ Department of Aerospace Engineering, Indian Institute of Science,
Bangalore, India 560 012 (e-mail: dghose@iisc.ac.in)

Abstract: The Koopman operator framework allows for a linear, but infinite-dimensional,
representation of the dynamics of a non-linear system. The Koopman modes, or observables,
and the resulting linear dynamics are derived purely using a data-driven framework, where the
data are system outputs measured at discrete samples; improving accuracy of the Koopman
representation requires a large number of such modes to be considered. Recent results consider
the system input as well, in the derivation of the discrete linear dynamics, thus enabling the
design of controllers. Sliding mode controllers (SMCs), including the discrete-time versions, can
handle parameter uncertainties and variations and also ensure that the control objective is
satisfied in finite time. In this paper, a discrete-time SMC is designed for the output control
of a dynamic system approximated by fewer Koopman modes; the SMC is expected to handle
uncertainties introduced by the ignored modes. Conditions are identified for the closed-loop
system to be stable, with the occurrence of sliding mode.

Keywords: Sliding mode control; Data-driven control; Nonlinear system identification;
Identification for control; Model reduction.

1. INTRODUCTION

As is well known from the literature, Koopman operator
theory permits a non-linear dynamic system to be rep-
resented by a linear dynamic system, albeit with infinite
dimensions. As mentioned in Proctor et al. (2018), with
the inclusion of inputs acting on the non-linear system
within the Koopman framework, this approach provides
linear dynamics, whose properties are estimated purely
from input-output data. By constructing the observables -
which are non-linear functions of the states of the original
non-linear system - from such data, that lead to the linear
system representation, controllers applicable to linear sys-
tems can be designed to control the non-linear system.
Indeed, the Koopman approach has found many appli-
cations, for example, control and observer design using
a bilinear approximation, in Goswami and Paley (2022)
and Surana (2016), respectively; modeling the working
environment for autonomous excavators in Sotiropoulos
and Asada (2022); and in robotics and motion control
of rigid bodies, Mamakoukas et al. (2019); Bruder et al.
(2019); Zinage and Bakolas (2022).

The challenges with the application of the Koopman
theory are the choices of observables and how many
should be selected to result in a better approximation.
A solution to overcome these challenges is proposed by
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1. INTRODUCTION

As is well known from the literature, Koopman operator
theory permits a non-linear dynamic system to be rep-
resented by a linear dynamic system, albeit with infinite
dimensions. As mentioned in Proctor et al. (2018), with
the inclusion of inputs acting on the non-linear system
within the Koopman framework, this approach provides
linear dynamics, whose properties are estimated purely
from input-output data. By constructing the observables -
which are non-linear functions of the states of the original
non-linear system - from such data, that lead to the linear
system representation, controllers applicable to linear sys-
tems can be designed to control the non-linear system.
Indeed, the Koopman approach has found many appli-
cations, for example, control and observer design using
a bilinear approximation, in Goswami and Paley (2022)
and Surana (2016), respectively; modeling the working
environment for autonomous excavators in Sotiropoulos
and Asada (2022); and in robotics and motion control
of rigid bodies, Mamakoukas et al. (2019); Bruder et al.
(2019); Zinage and Bakolas (2022).

The challenges with the application of the Koopman
theory are the choices of observables and how many
should be selected to result in a better approximation.
A solution to overcome these challenges is proposed by
Korda and Mezić (2018), where, by lifting the state-space
of the non-linear system to a higher-dimensional one, the
dynamics in the lifted space of observables become linear;
the observables are selected in the form of radial basis

functions. The resulting linear system is now considered
as a predictor and using least-squares-based methods,
the parameters of the predictor are estimated so that its
trajectories closely match the trajectories of the non-linear
system. See also Korda and Mezić (2020); Williams et al.
(2016); Kaiser et al. (2021) for other approaches and their
descriptions, such as the Dynamic Mode Decomposition
(DMD), the Extended DMD, and KRONIC, that enable
Koopman-type representations.

From the above remarks, it is clear that diverse approaches
result in different linear system representations of the
same non-linear system. However, from a feedback control
perspective, if the objective of control is for the output
of the linear system to track a reference signal - either
time-varying or a fixed point - then the control should
be designed to meet this objective by considering the
internal dynamics as well as the composition of the output
itself as being uncertain. From this point-of-view, SMCs
seem an appropriate design choice. In particular, discrete-
time SMCs should be applied, since the input-output
data - used to construct the Koopman representation
- are available at discrete samples, thus leading to a
discrete-time linear representation. For linear systems, the
notion of the so-called Discrete Sliding Mode (DSM), is
well understood; see Drakunov and Utkin (1989); Furuta
(1990) for DSM controller designs; the sliding manifold
is selected so that the closed-loop system has the desired
dynamics. The benefits offered by the enforcement of DSM
is that it occurs after a finite number of time instants
and that it is robust to plant uncertainties; see Bartolini

et al. (1995) for design of adaptive DSM controllers that
handle plant uncertainties explicitly. In the literature,
only the Linear Quadratic Regulator (LQR) or the Model
Predictive Controller (MPC), have been designed and
implemented for Koopman approximations.

From a DSM controller design viewpoint itself, the linear
Koopman representation simplifies the design process in
two ways. First, the need to solve non-linear equations
is eliminated. Formally, for discrete-time non-linear sys-
tems, the so-called equivalent control - which forms a key
component of the overall DSM controller - is computed
by solving a set of non-linear equations (the dynamic
equations), Rubagotti et al. (2021); also see Zheng et al.
(2007), where a non-linear system is first expressed as
a sum of local linear models - using the Takagi-Sugeno
fuzzy approach - and a DSM controller is now designed for
the linear model. The step of solving non-linear equations
to calculate control is eliminated for linear systems, as
now, the equivalent control can be computed using matrix
products and inverses. Second, the Koopman observables
are available for control computation and not just the
system outputs; with the former, there is now no need
for observers to estimate internal states. With both these
features of the Koopman representation, pole-placement
methods, that allow for arbitrary selection of the closed-
loop poles, or even LQR-type methods can be used to
design the sliding manifold.

The contributions of the paper are as follows:

(1) The use of the linear Koopman representation to
design DSM controllers for non-linear systems, which
is in contrast to nearly all other results in the lit-
erature which present designs of MPC or LQR-type
controllers.

(2) The use of DSM controller design techniques to con-
trol the outputs - by enforcing them to lie on a man-
ifold - of “approximate” linear Koopman represen-
tations themselves. This aspect is crucial as different
approximation techniques result in different represen-
tations - hence, the dynamics may be considered to
be uncertain.

(3) Study on the use of a reduced-order Koopman model
in the design of the DSM controller and sliding
manifold. The occurrence of sliding mode restricts
the behaviour of the output according to the chosen
manifold so that the dynamics of the ignored modes,
even in the closed-loop, do not influence the output.

In addition, the DSM controller considers bounds on
the control input. This is required as the magnitude of
control tends to infinity as the sampling time reduces,
Drakunov and Utkin (1989). As MPCs inherently include
such bounds in their computation, this is the most preva-
lent control approach presented in the literature for the
control of Koopman systems.

In this paper, a DSM controller design is demonstrated for
the control of the Koopman representation of the discrete
Damped Duffing Oscillator. The linear system matrices are
derived using the approach - and the code - described in
Korda and Mezić (2018). Various orders of observables are
considered, for which both a full-order and a reduced-order
DSM controller are designed.

The paper is organised as follows: in Sec. 2, the Koopman
operator theory is briefly described for both uncontrolled
and controlled systems. The design of the DSM controller
is presented in Sec. 3 and the aspects of computation of
the equivalent control for linear and non-linear systems are
distinguished. Simulation results are presented in Sec. 4,
followed by Conclusions in Sec. 5.

2. KOOPMAN OPERATOR THEORY

As the Koopman representations used in this paper are
derived from Korda and Mezić (2018), the notations used
here are also similar, but some additional notations from
Kaiser et al. (2021) are also used. Consider an discrete-
time, non-linear, uncontrolled system of the form x+ =
f(x), x ∈ �n, where the function f is the mapping of
the transitions of the state x; also denoted as the flow
map. Given a set of measurement functions φ : �n → �
of the states x in the space F , the linear and infinite-
dimensional Koopman operator K : F → F satisfies
Kφ = φ (f(x)), that is, the measurement functions can
be updated in discrete-time according to φ+ = Kφ.
The measurement functions φ are also denoted as the
observables. The Koopman operator retains all properties
of the dynamics of the non-linear system, if the functions
φ contain information on the states x. Thus, for the right
choice of observables found from measured data – and the
number of such observables may be infinite – the non-linear
system can be expressed as a linear dynamical system.

As the Koopman operator is linear, its eigenfunctions
and corresponding eigenvalues, denoted by Kψi = λiψi,
can be found. The Koopman eigenfunctions satisfy the
property λiψi = ψi (f(x)). Thus, if the observables, φ,
match the eigenfunctions, ψ, then, the non-linear dynamics
can be represented by a linear one that holds globally. For
example, the system x+

1 = µx1, x+
2 = ν

(
x2 − x2

1

)
can

be represented by a finite-dimensional linear Koopman
form using the eigenfunctions (or observables) ψ1 = x1

and ψ2 =
(
x2 − κx2

1

)
, κ = ν/ (ν − 2µ); this choice

yields the linear dynamics ψ+
1 = µψ1, ψ+

2 = νψ2.
Note that as µ, ν are estimated from input-output data,
they can be uncertain. As has been recognised in the
literature, finding these eigenfunctions, in essence, the
“right” observable functions is a key challenge. These
are typically approximated as a combination of candidate
functions, say in the form of polynomials, or radial basis
functions.

For systems with control, of the form x+ = f(x, u), u ∈
�m, in identifying the Koopman representation, the value
of control u at every instant is appended to the vector of
observables φ(x) to form a new vector, χ. This procedure
is applicable for systems that do not depend on the deriva-
tives of control, although systems with control dynamics
can also be converted into the Koopman form, see Proctor
et al. (2018) for details. Following the procedure described
in Korda and Mezić (2018), the observable functions for
the states χ are chosen to be linear with respect to control.
Since the interest is in deriving the time-domain represen-
tations of the non-linear system, predictors of the form

z+ = Az +Bu (1a)

y = Cz, y ∈ �p, (1b)
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et al. (1995) for design of adaptive DSM controllers that
handle plant uncertainties explicitly. In the literature,
only the Linear Quadratic Regulator (LQR) or the Model
Predictive Controller (MPC), have been designed and
implemented for Koopman approximations.

From a DSM controller design viewpoint itself, the linear
Koopman representation simplifies the design process in
two ways. First, the need to solve non-linear equations
is eliminated. Formally, for discrete-time non-linear sys-
tems, the so-called equivalent control - which forms a key
component of the overall DSM controller - is computed
by solving a set of non-linear equations (the dynamic
equations), Rubagotti et al. (2021); also see Zheng et al.
(2007), where a non-linear system is first expressed as
a sum of local linear models - using the Takagi-Sugeno
fuzzy approach - and a DSM controller is now designed for
the linear model. The step of solving non-linear equations
to calculate control is eliminated for linear systems, as
now, the equivalent control can be computed using matrix
products and inverses. Second, the Koopman observables
are available for control computation and not just the
system outputs; with the former, there is now no need
for observers to estimate internal states. With both these
features of the Koopman representation, pole-placement
methods, that allow for arbitrary selection of the closed-
loop poles, or even LQR-type methods can be used to
design the sliding manifold.

The contributions of the paper are as follows:

(1) The use of the linear Koopman representation to
design DSM controllers for non-linear systems, which
is in contrast to nearly all other results in the lit-
erature which present designs of MPC or LQR-type
controllers.

(2) The use of DSM controller design techniques to con-
trol the outputs - by enforcing them to lie on a man-
ifold - of “approximate” linear Koopman represen-
tations themselves. This aspect is crucial as different
approximation techniques result in different represen-
tations - hence, the dynamics may be considered to
be uncertain.

(3) Study on the use of a reduced-order Koopman model
in the design of the DSM controller and sliding
manifold. The occurrence of sliding mode restricts
the behaviour of the output according to the chosen
manifold so that the dynamics of the ignored modes,
even in the closed-loop, do not influence the output.

In addition, the DSM controller considers bounds on
the control input. This is required as the magnitude of
control tends to infinity as the sampling time reduces,
Drakunov and Utkin (1989). As MPCs inherently include
such bounds in their computation, this is the most preva-
lent control approach presented in the literature for the
control of Koopman systems.

In this paper, a DSM controller design is demonstrated for
the control of the Koopman representation of the discrete
Damped Duffing Oscillator. The linear system matrices are
derived using the approach - and the code - described in
Korda and Mezić (2018). Various orders of observables are
considered, for which both a full-order and a reduced-order
DSM controller are designed.

The paper is organised as follows: in Sec. 2, the Koopman
operator theory is briefly described for both uncontrolled
and controlled systems. The design of the DSM controller
is presented in Sec. 3 and the aspects of computation of
the equivalent control for linear and non-linear systems are
distinguished. Simulation results are presented in Sec. 4,
followed by Conclusions in Sec. 5.

2. KOOPMAN OPERATOR THEORY

As the Koopman representations used in this paper are
derived from Korda and Mezić (2018), the notations used
here are also similar, but some additional notations from
Kaiser et al. (2021) are also used. Consider an discrete-
time, non-linear, uncontrolled system of the form x+ =
f(x), x ∈ �n, where the function f is the mapping of
the transitions of the state x; also denoted as the flow
map. Given a set of measurement functions φ : �n → �
of the states x in the space F , the linear and infinite-
dimensional Koopman operator K : F → F satisfies
Kφ = φ (f(x)), that is, the measurement functions can
be updated in discrete-time according to φ+ = Kφ.
The measurement functions φ are also denoted as the
observables. The Koopman operator retains all properties
of the dynamics of the non-linear system, if the functions
φ contain information on the states x. Thus, for the right
choice of observables found from measured data – and the
number of such observables may be infinite – the non-linear
system can be expressed as a linear dynamical system.

As the Koopman operator is linear, its eigenfunctions
and corresponding eigenvalues, denoted by Kψi = λiψi,
can be found. The Koopman eigenfunctions satisfy the
property λiψi = ψi (f(x)). Thus, if the observables, φ,
match the eigenfunctions, ψ, then, the non-linear dynamics
can be represented by a linear one that holds globally. For
example, the system x+

1 = µx1, x+
2 = ν

(
x2 − x2

1

)
can

be represented by a finite-dimensional linear Koopman
form using the eigenfunctions (or observables) ψ1 = x1

and ψ2 =
(
x2 − κx2

1

)
, κ = ν/ (ν − 2µ); this choice

yields the linear dynamics ψ+
1 = µψ1, ψ+

2 = νψ2.
Note that as µ, ν are estimated from input-output data,
they can be uncertain. As has been recognised in the
literature, finding these eigenfunctions, in essence, the
“right” observable functions is a key challenge. These
are typically approximated as a combination of candidate
functions, say in the form of polynomials, or radial basis
functions.

For systems with control, of the form x+ = f(x, u), u ∈
�m, in identifying the Koopman representation, the value
of control u at every instant is appended to the vector of
observables φ(x) to form a new vector, χ. This procedure
is applicable for systems that do not depend on the deriva-
tives of control, although systems with control dynamics
can also be converted into the Koopman form, see Proctor
et al. (2018) for details. Following the procedure described
in Korda and Mezić (2018), the observable functions for
the states χ are chosen to be linear with respect to control.
Since the interest is in deriving the time-domain represen-
tations of the non-linear system, predictors of the form

z+ = Az +Bu (1a)

y = Cz, y ∈ �p, (1b)
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are determined from data x(0), x(1), · · · and u(0), u(1), · · · .
Applying least-squares methods yields the matrices A,B,

and C. The vector z = [ψ1(x) · · ·ψN (x)]
T ∈ �N , where

N � n (typically) is the number of observable functions
that yields the Koopman approximation.

In this paper, the discrete-time predictor (1) is used to
design the control u as a DSMC to meet the control
objective, say z → 0. It is highlighted that the entire
vector z is available to compute the control policy, thus
output feedback-based DSM controllers, such as designed
in Edwards and Spurgeon (2002), are also not needed; note
that such output-based controllers require the system pa-
rameters to satisfy special conditions to design controllers.
As will be presented in Sec. 4, different types and orders
(N) of the observables lead to different system matrices,
thus rendering the original non-linear system as being
uncertain. For such systems, sliding mode control is an
appropriate choice.

3. DISCRETE SLIDING MODE CONTROL

From Drakunov and Utkin (1989); Bartolini et al. (1995),
for the discrete-time linear system x+ = Fx, x ∈ �n, DSM
occurs on the manifold s(x) = 0, s ∈ �m, if there exists an
open-neigbourhood U ∈ �n, such that s(Fx) = 0 ∀ x ∈ U .
For the linear system with control x+ = Ax+Bu, u ∈ �m,
by defining the sliding manifold as s(k) = Csx(k), DSM
is enforced by selecting the control as the solution to
s(k + 1) = 0. Since the control magnitudes are usually
bounded, in the form ‖u(k)‖ ≤ ulim, the DSM controller
is implemented according to the piecewise-constant form

u(k) =



ueq(k) if ‖ueq(k)‖ ≤ ulim

−ulim
ueq(k)

‖ueq(k)‖
otherwise

(2)

where ueq(k) = − (CsB)
−1

CsAx(k); ueq(k) can be in-
terpreted as equivalent control, that is well-defined for
continuous-time systems. The sliding manifold parameters

Cs are selected so that the matrix
(
I−B (CsB)

−1
Cs

)
A,

that defines the closed-loop dynamics, has the desired
properties.

The DSM controller (2) can also suppress bounded distur-
bances acting on the system, so that the DSM becomes
invariant to them, if matching conditions are satisfied.

While various design strategies are available to design
u(k), since the focus of this paper is in the implemen-
tation of DSM controllers to Koopman representations,
the control policy according to (2) is used in this paper.
Most, however, still require calculation of the equivalent
control ueq as the solution to s(k + 1) = 0. As discussed
in Rubagotti et al. (2021), for a control system of the
form x+ = f(x, u), with sliding manifold s = S(x) = 0,
equations of the form S(f(x, ueq)) = 0 need to be solved
to obtain ueq. For control-affine systems and sliding man-
ifolds that are linear functions of the state x, ueq can be
calculated analytically.

3.1 Design in the Regular Form

The sliding manifold matrix Cs ∈ �m×n can be selected in
the form [K Im], where, K ∈ �(n−m)×m, by transforming
the original linear system to the so-called regular form

x+
1 = A11x1 +A12x2 (3a)

x+
2 = A21x1 +A22x2 +B2u, (3b)

using an appropriate transformation matrix; see Ap-
pendix A for the derivation of this matrix. In (3),
x1 ∈ �(n−m), x2 ∈ �m. Now, if the pair (A11,A12)
is controllable and the matrix B2 ∈ �m×m is in-
vertible, then, by enforcing sliding mode on s(k) =

[K Im] [x1(k) x2(k)]
T
= 0, by choosing u(k) according to

(2), the sliding mode dynamics, of order (n−m), are given
by x+

1 = (A11 −A12K)x1. The matrix K can now be
selected based on the pole-placement method, so that the
closed-loop dynamics has the desired transient behaviour.
Note that as the pair (A11,A12) is assumed to be control-
lable, arbitrary pole-placement can be performed.

3.2 Design for Koopman Systems

The procedure described in Sec. 2 yields the approximate
linear predictor, (1), for the non-linear system x+ =
f(x, u). Now, by transforming (1) to the regular form (3),
say with states z1 and z2, with appropriate dimensions, a
discrete sliding manifold and corresponding controller can
be designed so that control objectives, say z1,2 → 0, can
be met.

The motivation to design DSM controllers for Koopman
systems stems from the robustness properties that can be
assigned to the sliding manifold dynamics. Now, as men-
tioned before, the linear predictor (1) is an approximation
of the true non-linear system. Suppose it is possible to ex-
press the predictor matrices in the form A = Atrue+∆A,
and B = Btrue +∆B, where Atrue and Btrue capture the
dominant spectral properties of the non-linear dynamics
and the matrices ∆A and ∆B are uncertain, then design
techniques, such as presented in Zheng et al. (2007), can
be adopted to design the DSM controller.

Without any loss of generality, let the control objective
be to make x → 0, where, x ∈ �n are the states of
the non-linear system. Now, the observables ψ chosen to
approximate this system are expected to contain informa-
tion on the states of the non-linear system. If n (which
denotes the number of states of the non-linear system)
of the observables, ψi, i = 1, · · · , NO, where NO � n,
satisfy ψi = xi (that is, these n observables are the states
themselves and not functions of the states), then ensuring
that all the observables ψi → 0, by applying the DSM
controller, implies that the primary control objective of
making x → 0 is satisfied. Indeed, it is necessary for the
linear predictor to satisfy the fundamental property of full
state controllability.

From a generic feedback control perspective, the Koopman
operator theory is able to capture the spectral properties
of the original non-linear system - these are given by the
eigenvalues of the corresponding Koopman eigenfunctions.
Thus, if some of these eigenvalues lie outside the unit
circle then these eigenfunctions (or observables) can be
explicitly considered in the linear representation and the
stable eigenfunctions, say those that decay rapidly, can be
ignored.

The results of designing a DSM controller for various
Koopman representations of the Duffing equation are
presented next.

4. SIMULATION RESULTS

In this section, we design DSM controllers for the Damped
Duffing Oscillator (DDO), defined by the discrete non-
linear dynamics,

x+
1 = x1 +∆tx2

def
= f1 (4a)

x+
2 = ∆tx1 − 4∆tx3

1 + (1− 0.5∆t)x2 + 0.5∆tu, (4b)
def
= f2 + gu,

where x1, x2 ∈ � are the states, u ∈ � is the control,
and ∆t = 0.01 sec is the step-size used to discretise
the continuous non-linear dynamics. The control objective
is to stabilise the states at (0, 0), which is an unstable
equilibrium.

4.1 Control of the Non-linear System

A DSM controller is designed for the non-linear dynamics
(4). The sliding manifold is selected as s(k) = cx1(k) +
x2(k), where c > 0 decides the transient properties of
the sliding mode dynamics. The control is implemented
according to the piecewise-constant form (2), where, the
equivalent control is given by

ueq(k) = −g−1 (f2 + cf1) , (5)

and g, f1,2 are defined in (4). The results of implementing
this DSM are shown in Fig. 1 with c = 0.95 and ulim = 2;
different values of c yield different transient characteristics.
It can be observed that the DSM occurs after a finite num-
ber of steps and that the control bounds are maintained.
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Fig. 1. Control of the non-linear system using a DSM
controller

4.2 Control of the Koopman Predictors

Following the procedure described in Korda and Mezić
(2018) and the programs available in Korda (2020), the
system matrices of the predictor (1) are calculated. For the
results presented in this paper, the number of observables
are varied; as the code presented in Korda (2020) uses
radial basis functions (also of several types), the gauss
type of function is selected to define the states of the
predictor. While this choice of basis function is made
arbitrarily, the impact of designing a DSM controller for
this uncertain system becomes evident.

The orders of the observables, z ∈ �NO , are selected as
NO = 8 and NO = 16. The open-loop evolution of the
states x1,2, given by the non-linear dynamics (4) and the
outputs of the Koopman predictor, are shown in Fig. 2.
As can be seen, the predictor with NO = 16 approximates
the non-linear system better than NO = 8; this result is
similar to the ones presented in Korda and Mezić (2018,
2020).
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Fig. 2. Open-loop outputs of the DDO using the non-linear
model and Koopman representations with different
orders (N) of the predictor; a square wave input is
applied

The DSM controller is designed using the Regular Form
technique presented in Sec. 3. Prior to performing pole-
placement to evaluate the matrix K, the controllability of
the full-order predictor and the reduced-order system in
the regular form is examined. The variation in the rank
of the respective controllability matrices with number of
observables, N , selected to define the linear system, is
shown in Fig. 3. To generate these results, the predictor
with order NO = 16 and different sub-matrices of different
orders are selected from the pair, (A,B), found with
NO = 16. These sub-matrices are obtained by partitioning
the NO ×NO matrix A and the NO × 1 matrix B in the
form

A =

[
A1 A2

A3 A4

]
, B =

[
B1

B2

]
(6)

where A1 ∈ �N×N and B1 ∈ �N×1 with n ≤ N ≤ NO;
the other matrices in (6) are of appropriate dimensions.

As can be seen in Fig. 3, the system loses full controllability
for some values of N ; note that the rank of the controllabil-
ity matrix of the pair (A11,A12) (derived from expressing
the system with matrices (A1,B1) in the regular form) is
one less (dimension of control) than that of the full-order
predictor.

Note that controller design can still be performed for
the system that is not fully controllable by partitioning
the states into the controllable and uncontrollable states
using standard Kalman decomposition techniques. Indeed,
the uncontrollable states should be stable in such cases,
although this case is not considered in this paper.

A DSM controller is designed for N = 8 states of the pre-
dictor estimated using NO = 16 observables. The results
of implementation are shown in Fig. 4. The matrix K, in
the definition of the sliding manifold, is chosen such that
the reduced-order closed-loop matrix (A11 −A12K) ∈ �7

has the desired eigenvalues; these eigenvalues are randomly
chosen from the range [0.6 0.95].
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The results of designing a DSM controller for various
Koopman representations of the Duffing equation are
presented next.

4. SIMULATION RESULTS

In this section, we design DSM controllers for the Damped
Duffing Oscillator (DDO), defined by the discrete non-
linear dynamics,

x+
1 = x1 +∆tx2

def
= f1 (4a)

x+
2 = ∆tx1 − 4∆tx3

1 + (1− 0.5∆t)x2 + 0.5∆tu, (4b)
def
= f2 + gu,

where x1, x2 ∈ � are the states, u ∈ � is the control,
and ∆t = 0.01 sec is the step-size used to discretise
the continuous non-linear dynamics. The control objective
is to stabilise the states at (0, 0), which is an unstable
equilibrium.

4.1 Control of the Non-linear System

A DSM controller is designed for the non-linear dynamics
(4). The sliding manifold is selected as s(k) = cx1(k) +
x2(k), where c > 0 decides the transient properties of
the sliding mode dynamics. The control is implemented
according to the piecewise-constant form (2), where, the
equivalent control is given by

ueq(k) = −g−1 (f2 + cf1) , (5)

and g, f1,2 are defined in (4). The results of implementing
this DSM are shown in Fig. 1 with c = 0.95 and ulim = 2;
different values of c yield different transient characteristics.
It can be observed that the DSM occurs after a finite num-
ber of steps and that the control bounds are maintained.
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Fig. 1. Control of the non-linear system using a DSM
controller

4.2 Control of the Koopman Predictors

Following the procedure described in Korda and Mezić
(2018) and the programs available in Korda (2020), the
system matrices of the predictor (1) are calculated. For the
results presented in this paper, the number of observables
are varied; as the code presented in Korda (2020) uses
radial basis functions (also of several types), the gauss
type of function is selected to define the states of the
predictor. While this choice of basis function is made
arbitrarily, the impact of designing a DSM controller for
this uncertain system becomes evident.

The orders of the observables, z ∈ �NO , are selected as
NO = 8 and NO = 16. The open-loop evolution of the
states x1,2, given by the non-linear dynamics (4) and the
outputs of the Koopman predictor, are shown in Fig. 2.
As can be seen, the predictor with NO = 16 approximates
the non-linear system better than NO = 8; this result is
similar to the ones presented in Korda and Mezić (2018,
2020).
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Fig. 2. Open-loop outputs of the DDO using the non-linear
model and Koopman representations with different
orders (N) of the predictor; a square wave input is
applied

The DSM controller is designed using the Regular Form
technique presented in Sec. 3. Prior to performing pole-
placement to evaluate the matrix K, the controllability of
the full-order predictor and the reduced-order system in
the regular form is examined. The variation in the rank
of the respective controllability matrices with number of
observables, N , selected to define the linear system, is
shown in Fig. 3. To generate these results, the predictor
with order NO = 16 and different sub-matrices of different
orders are selected from the pair, (A,B), found with
NO = 16. These sub-matrices are obtained by partitioning
the NO ×NO matrix A and the NO × 1 matrix B in the
form

A =

[
A1 A2

A3 A4

]
, B =

[
B1

B2

]
(6)

where A1 ∈ �N×N and B1 ∈ �N×1 with n ≤ N ≤ NO;
the other matrices in (6) are of appropriate dimensions.

As can be seen in Fig. 3, the system loses full controllability
for some values of N ; note that the rank of the controllabil-
ity matrix of the pair (A11,A12) (derived from expressing
the system with matrices (A1,B1) in the regular form) is
one less (dimension of control) than that of the full-order
predictor.

Note that controller design can still be performed for
the system that is not fully controllable by partitioning
the states into the controllable and uncontrollable states
using standard Kalman decomposition techniques. Indeed,
the uncontrollable states should be stable in such cases,
although this case is not considered in this paper.

A DSM controller is designed for N = 8 states of the pre-
dictor estimated using NO = 16 observables. The results
of implementation are shown in Fig. 4. The matrix K, in
the definition of the sliding manifold, is chosen such that
the reduced-order closed-loop matrix (A11 −A12K) ∈ �7

has the desired eigenvalues; these eigenvalues are randomly
chosen from the range [0.6 0.95].
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Fig. 3. Variation in the rank of the controllability matrices
with number of states in the predictor
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Fig. 4. Closed-loop control using a DSM controller for a
predictor with N = 16 states, but choosing only the
first 8 states

To enforce sliding mode on s(k) = 0, the bound on
control had to be increased considerably. This can be
observed from the magnitude of control determined in
the reaching phase, in Fig. 4. Reducing this bound led
to unstable closed-loop characteristics. While this result
deserves closer analysis, and is out of scope of this paper,
potential reasons could be the magnitude of the coefficient
multiplying the control input that appears in the regular
form design as well as the sampling interval used to calcu-
late the DSM controller (0.01 sec in this case). However,
the DSM controller is able to steer the outputs of the DDO
system to the desired values.
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Fig. 5. Closed-loop control using a DSM controller for a
predictor with N = 8 states, but choosing only the
first 6 states

Similar results can be observed when the number of states
in the observer is selected as NO = 8. Even for this case,
the system lost full state controllability, and hence the first
6 (N = 6) states are selected. These results are shown in
Fig. 5. In this case, a larger control magnitude was also
required.

Finally, a DSM controller is designed for the case where
only those modes that correspond to unstable eigenvalues
of the open-loop system - defined by matrix A of the
predictor - are considered in the controller design. This
result is illustrated for N = 4 observables, derived using
the predictor with NO = 16 observables; see (6) for
the resulting system matrices. This system, with pair
(A1,B1) has 3 unstable eigenvalues; hence, it is first
converted to the diagonal form, x+

d = Λxd + Bdu, using
the transformation xd = V−1x, where V is the matrix of
eigenvectors of A1 and Λ are its eigenvalues. Thus, this
system is of the form

xdi = λixdi + biu, xdi ∈ xd, i = 1, · · · , 4. (7)

Let, λ1,2,3 be the unstable eigenvalues. The DSM controller
is designed for the 3 states, xd1,2,3, again using pole-
placement following the Regular Form approach. As a
result, with the occurrence of sliding mode on the designed
manifold, the states xdi → 0, i = 1, 2, 3, as well as the
control u → 0. Now, since the dynamics of the state xd4 is
asymptotically stable and its input, u, also tends to zero,
the state xd4 → 0 at a rate decided by λ4. The results of
this controller implementation are shown in Fig. 6.
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Fig. 6. Closed-loop control using a DSM controller for
a predictor where only the unstable modes are con-
trolled; the stable mode is part of the system, but is
not considered in controller design

In Fig. 6, the evolution of the states x1,2 of the non-linear
system are shown when the ignored mode is part of the
output and also when it is not, that is, xi = Cixd1,2,3

and xi = Cixd1,2,3,4, where Ci is the corresponding output
matrix defined in the predictor equations. As can be seen,
although the outputs display stable behaviour, when the
stable mode is ignored, the transient behaviour is markedly
different than when it is not.

5. CONCLUSION

This paper presented the application of the concept of
sliding modes to the control of Koopman representations
of non-linear dynamical systems with inputs. While the
resulting linear dynamics simplifies controller design - as
pole-placement can be performed and no observers are
needed - the use of Koopman forms illuminates further

avenues of research in the design of DSM controllers. For
instance, how does the choice of observables influence
transient behaviour as well as the bounds on control
that can ensure the occurrence of sliding mode. While
alternative DSM controller designs can be implemented
that can possibly overcome these challenges, such basic
questions still remain. The results presented in this paper
will hopefully motivate improved designs of SM controllers
for linear systems as well as for output feedback control-
based designs.
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Appendix A. TRANSFORMATION TO REGULAR
FORM

The procedure presented in Edwards and Spurgeon (1998)
is used. Given x+ = Ax + Bu, y = Cx, x ∈ �n, y ∈
�p, u ∈ �, define z = T1x, where

T1 =
[
WT C

]
, (A.1)

and the columns of W span the null-space of C. Applying

this transformation leads to T1B = [Bc1 Bc2]
T

where

Bc1 ∈ �(n−p)×1, Bc2 ∈ �p×1. Perform the QR decomposi-
tion to yield Bc2 = QR, where Q ∈ �p×p is an orthogonal
matrix and R is upper-triangular. Rearrange Q and R, to
yield Qs and Rs, so that Rs is now lower triangular.

Define the second transformation v = T2z, where

T2 =

[
I(n−p) −Bc1B

†
c2

0 QT
s

]
, (A.2)

and B†
c2 =

(
BT

c2Bc2

)−1
BT

c2 is the pseudo-inverse of Bc2.
Thus, the dynamics in the regular form is given by

v+ = T2T1AT−1
1 T−1

2 v +T2T1Bu, (A.3)

where

T2T1AT−1
1 T−1

2 =

[
A11 A12

A21 A22

]
(A.4)

and

T2T1B =

[
0
B2

]
(A.5)
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