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Abstract: This paper proposes a robust adaptive attitude control law for handling a class of
actuator faults in the presence of various challenges, such as time-varying inertia, attitude
constraints, and input saturation. The proposed approach uses cone angles to represent
orientation errors, which are constrained within a performance function to ensure desired
transient and steady-state behaviour during reference tracking. Input saturation is approximated
using a smooth hyperbolic tangent function. The Nussbaum gain technique is used to handle the
unknown control coefficients, which guarantees uniformly ultimately bounded stability in the
presence of uncertainties and disturbances. The paper also proposes a norm-based disturbance
approximation to estimate the total uncertainty during the Lyapunov analysis. Numerical
simulations demonstrate the effectiveness of the proposed control law.
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1. INTRODUCTION

Attitude control of rigid bodies requires tracking a ref-
erence orientation while adhering to system constraints
and ensuring safety. However, nonlinear dynamics, uncer-
tainties, and disturbances make designing a control law
challenging. In addition, the moment of inertia (MOI)
matrix can vary significantly under actuator constraints.
To overcome these challenges, stabilizing control laws were
synthesized in the past (Zhang et al. (2021); Hou and
Sun (2020)) using robust and adaptive control strategies.
These approaches assume healthy actuator conditions, but
irreversible actuator faults pose a safety hazard.

Recent Fault Tolerant Control (FTC) strategies (Gao
et al. (2021b,a)) handle input saturation using Nussbaum
gains and achieve desired transient and steady-state atti-
tude tracking through a prescribed performance constraint
(PPC) function. However, limited literature addresses re-
dundancy in control actuation and complete actuator fail-
ures (Gao et al. (2021b); Hu et al. (2018)). Moreover, time-
varying MOI presents a critical challenge in practice. The
inertia matrix can change due to various factors such as
payload mass variations and moving/deployable parts in
the rigid body (Thakur et al. (2015)). There is a research
gap in FTC that addresses these constraints while accom-
modating time-varying MOI.

In our recent work (Vutukuri et al. (2022)), physically
meaningful cone angles were used to indicate orientation
errors. This paper proposes an error transformation that
imposes nonlinear constraints on quaternions while limit-
ing the cone angles within a time-varying constraint. A
smooth hyperbolic tangent function models the physical
limitations of the actuators, and matrix operators handle
time-varying MOI and associated uncertainty. The fea-

tures of the controller are 1.) The proposed controller min-
imizes total control effort and strictly meets time-varying
attitude constraints, despite time-varying MOI, parame-
ter variation, exogenous disturbances, a class of actuator
faults, and input saturation. 2.) Closed-loop stability of all
signals is guaranteed, and tracking errors remain uniformly
ultimately bounded (UUB). 3.) The norm-based distur-
bance approximation reduces computational demand, and
knowledge of uncertainty bounds is not required.

This paper uses 0q := [0; 0; 0; 1]
T

to indicate the zero
quaternion. ∥•∥ refers to a euclidean/induced second norm
of a vector/matrix, and I ∈ R3×3 indicates the identity

matrix. For a vector x = [x1;x2;x3]
T ∈ R3×1, x× denotes

a skew-symmetric matrix given by

x× =

[
0 −x3 x2

x3 0 −x1

−x2 x1 0

]

2. PROBLEM FORMULATION

2.1 Attitude Error Kinematics and Dynamics

Fig. (1a) shows the orientation of a rigid body frame,

B = {b̂1, b̂2, b̂3}, in an inertial frame, I = {̂i1, î2, î3}. B
is placed at the center of mass, B, of the rigid body, and
its orientation is represented by a unit quaternion q =[
qT
v ; q4

]T
with vector and scalar parts qv = [q1; q2; q3]

T

and q4, respectively. The angular velocity of B with respect
to I, expressed in B, is ω. A desired reference frame,

Br = {b̂1r, b̂2r, b̂3r}, is placed at B, and its orientation
with respect to I is represented by the unit quaternion

qr =
[
qT
vr; q4r

]T
with vector and scalar parts qvr =
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[q1r; q2r; q3r]
T

and q4r, respectively. The angular velocity
of Br with respect to I, expressed in Br, is ωr. The error

quaternion, qe =

qT
ve; q4e

T
, is used to determine the

relative orientation of B with respect to Br as

qve = −q4qvr + q4rqv + qv × qvr, q4e = q4q4r + qT
v qvr

The angular velocity of B relative to Br, expressed in B,
is ωe = [ω1e ω2e ω3e]

T
and obtained as ωe = ω − CB

Br
ωr.

Here CB
Br

indicates the direction cosine matrix (DCM) that
relates Br to B and computed using, qe, as

CB
R =

�
q24e − qT

veqve

I3×3 + 2qveq

T
ve − 2q4eq

×
ve (1)

The dynamics of qe and ωe are obtained as

q̇e = Qeωe, ω̇e = ω̇ + ω×
e C

B
Br
ωr − CB

Br
ω̇r (2)

The matrix Qe takes the form

Qe =
1

2


q4eI + q×

ve

−qT
ve



Assumption 1. The states q and ω are available. The
desired angular velocity and its derivative are bounded
quantities, i.e., ∥ωr∥ < ω̄r and ∥ω̇r∥ < ˙̄ωr for all t ≥ 0.

The dynamics associated with ω is

Jω̇ = −J̇ω − ω×Jω +D (E Sat (τ ) + τf ) + τe (3)

Sat (τ ) = [sat(τ1) · · · sat(τn)]T ∈ Rn×1 is the control
torque subjected to saturation constraints, where τ =

[τ1; · · · ; τn]T ∈ Rn×1 is the commanded torque generated
by n > 3 actuators. τf denotes a bounded faulty torque
arising due to unexpected deviations of the actuators,
and τe is an external disturbance torque acting on the
rigid body. D ∈ R3×n indicates the actuator distribution
matrix, and E = diag{e1 · · · en} ∈ Rn×n represents the
control effectiveness matrix that denotes the health status
of the actuators, where 0 ≤ ei ≤ 1, ∀; i = 1, · · · , n. The
case ei = 1 and τif = 0 indicates that the ith actuator is
healthy, otherwise it is faulty. J ∈ R3×3 indicates the MOI
of the rigid body.

Assumption 2. Gao et al. (2021b); Shao et al. (2018):
Actuators are mounted along B such that rank (D) = 3
and for the entire duration rank (DE) = 3. The implica-
tion is that the number of completely failed actuators is
never more than n − 3. When more than n − 3 actuators
completely fail, rank(E) < 3, and rank(DE) < 3, caus-
ing under-actuation and making it challenging to track a
reference attitude.

2.2 Modeling Parametric Uncertainties

Actuator misalignment introduces uncertainties in D as
D = Dn + D̃n, where Dn and D̃n are the nominal and
perturbed values of the distribution matrix, respectively.
The rigid body may also have moving/deployable parts
resulting in a time-dependent variation of J , explained in
Thakur et al. (2015) as

J(t) = (Jn + J̃n) + (Jnm + J̃nm)Ψ(t) (4)

here the constants Jn, J̃n ∈ R3×3 indicate a nominal and
uncertain portion of the inertia matrix, respectively. The
constant terms Jnm, J̃nm ∈ R3×k represent a nominal
and uncertain mass matrix. The term Ψ(t) ∈ Rk×3 is a
well characterized time-dependent matrix. The number of
moving parts is indicated by k.

Remark 1. Thakur et al. (2015): It is assumed that the
position of center of mass, B, is unaffected by the moving
parts. MOI modeling in Eq. (4) must ensure J(t) remains
symmetric and positive definite for all t ≥ 0. To guarantee
a physically possible distribution of mass, J(t) must satisfy

J̄1 + J̄2 ≥ J̄3, J̄2 + J̄3 ≥ J̄1, J̄3 + J̄1 ≥ J̄2 ∀ t ≥ 0 (5)

J̄1, J̄2, J̄3 indicate principal MOI. Terms in Eq. (4) are

Ψ(t) =



ρT
1 (t)ρ1(t)I − ρ1(t)ρ

T
1 (t)

...
ρT
k (t)ρk(t)I − ρk(t)ρ

T
k (t)


 (6)


Jnm + J̃nm


= [(m1n + m̃1n)I · · · (mkn + m̃kn)I] (7)

For all i = 1, · · · , k the moving part i has a nominal
mass min, an associated uncertain component m̃in that
is located at a bounded position ρi(t) relative to B.

2.3 Modeling Input Saturation

The input saturation function in Eq. (3) represents

sat(τi) =



τ̄i, if τi ≥ τ̄i
τi, if |τi| < τ̄i
−τ̄i, if τi ≤ −τ̄i

, ∀i = 1, · · · , n (8)

here, τ̄i denotes the maximum output torque provided by
the ith actuator. The saturation function is approximated
using a smooth, tan-hyperbolic function as

sat(τi) = τ̄i tanh


τi
τ̄i



  
si(τi)

+τis

here, τis is the error resulting from tan-hyperbolic approxi-
mation and is bounded by |τis| ≤ τ̄i (1− tanh(1)). Further,
applying the mean-value theorem to si(τi)

si(τi) = si(0) +
∂si
∂τi


τi=τ∗

i

(τi − 0) (9)

here τ∗i lies between 0 and τi. By defining s∗i := ∂si
∂τi


τi=τ∗

i

,

Eq. (9) reduces to sat(τi) = s∗i τi+τis. Due to the nature of
tan hyperbolic function, the term s∗i > 0. Following similar
saturation approximation along all the channels results in
the following vector form

Sat(τ ) = Sτ + τs (10)
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The unknown matrix S = diag{s∗1 · · · s∗n} ∈ Rn×n is pos-
itive definite and the disturbance vector due to saturation
approximation is indicated by τs = [τ1s · · · τns]T ∈ Rn×1.
Substituting Eq. (10) into Eq. (3) results in

Jω̇ = −J̇ω − ω×Jω +DnUτ + τd

Note that U = ES = diag{u1, · · · , un} ∈ Rn×n is an
unknown, diagonal positive definite matrix. A combined
lumped disturbance term arising due to variation in distri-
bution matrix, saturation approximation, actuator faults
and external disturbances is indicated by

τd := Dn (Eτs + τf ) + D̃n (E Sat(τ ) + τf ) + τe (11)

Assumption 3. The terms, τs, τf , τe in Eq. (11) are
unknown but bounded quantities. The saturation function
in Eq. (8), the nominal distribution matrix, Dn, and its

variation, D̃n, are bounded quantities. This leads to the
lumped disturbance term to be bounded as 0 < ∥τd∥ < τ̄d.

2.4 General Time-varying Attitude Constraints

A set of angles, δi, ∀ i = 1, 2, 3, that correspond to the

angles between b̂i and b̂ir axes are subject to time-varying
constraints as δi(t) < δ̄i(t), ∀ i = 1, 2, 3. The DCM in Eq.
(1) allows the constraints to be transformed into

e1 := q22e + q23e < ē1, e2 := q21e + q23e < ē2 (12)

e3 := q21e + q22e < ē3

here ēi =
(
1− cos

(
δ̄i
))

/2, ∀ i = 1, 2, 3. The set of qe that
satisfy the constraints in Eq. (12) form an inclusion type
set Uq := {qe| ei < ēi ∀ i = 1, 2, 3}.
Remark 2. When B is perfectly aligned with Br, the cone
angles δi = 0, ∀ i = 1, 2, 3, the quaternion qe = 0q and
ωe = 03×1. From Eq. (12), this results in ei = 0, ∀ i =
1, 2, 3. As qe and −qe represent the same orientation,
without loss of generality, the initial value of the scalar
component is considered to be positive, i.e., q4e(0) > 0.
Tracking Br via the shortest path warrants q4e(t) > 0 for
all t > 0. Using Eq. (12), the constraint set Uq in which qe
evolves that ensures q4e(t) > 0, must satisfy

3∑
i=1

q2ie = 1− q24e <
ē1 + ē2 + ē3

2
< 1, ∀ t ≥ 0 (13)

Simplifying the right-hand side of Eq. (13) results in the
requirement of inequality Σ3

i=1 cos
(
δ̄i(t)

)
> −1.

2.5 Control Objective

To design a robust adaptive control law to achieve the
following objectives despite actuator faults, time-varying
MOI, orientation and input constraints, uncertain param-
eters and external disturbances. i) The rigid body must
track the desired attitude, i.e., qe → 0q and ωe → 03×1

while staying within the set Uq. ii) All the closed-loop
signals remain bounded.

3. PRELIMINARIES

Lemma 1. Tee et al. (2011) For a positive constant kz ∈
R+, the following inequality log

(
kz

kz−z

)
≤ z

kz−z holds for

any z ∈ [0, kz).

Lemma 2. Tee et al. (2011) For a matrix M ∈ Rn×n, vec-
tor x ∈ Rn×1, ∥x∥i representing the ith norm, the follow-
ing inequalities hold ∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1, λmin(M)xTx ≤
xTMx ≤ λmax(M)xTx, ∥Mx∥2 ≤ ∥M∥2∥x∥2 ≤
∥M∥F ∥x∥2. Here λmin(•) and λmax(•) denote the mini-
mum and maximum eigenvalues of the matrix and ∥ • ∥F
denotes the Forbenius norm of the matrix. Consider two
vectors x, y ∈ Rn×1. The inequality (x− y)T (x− y) ≥ 0

leads to xTy ≤ xTx
2 + yTy

2 .

Lemma 3. For a vector x = [x1 x2 x3]
T ∈ R3×1 and J̃n

representing the symmetric uncertain portion of MOI in
Eq. (4), there exists a linear operator L1{•} : R3×1 →
R3×6 such that J̃nx = L1{x}θ1 with

L1{x} :=

[
x1 x2 x3 0 0 0
0 x1 0 x2 x3 0
0 0 x1 0 x2 x3

]

3×6

(14)

θ =
[
J̃n11 J̃n12 J̃n13 J̃n22 J̃n23 J̃n33

]T
(15)

here J̃nij
indicates the element in row i and column j of J̃n.

For a vector x = [x1 · · · x3k]
T ∈ R3k×1 and the uncertain

mass matrix J̃nm = [m̃1nI · · · m̃knI] ∈ R3×3k in Eq. (7),
there exists a linear operator L2{•} : R3k×1 → R3×k such

that J̃nmx = L2{x}θ2 with

L2{x} :=

[
x1 x4 x3k−2

x2 x5 · · · x3k−1

x3 x6 x3k

]

3×k

θ2 = [m̃1n · · · m̃kn]
T

(16)

Lemma 4. Tee et al. (2011) For a δ > 0 and x ∈ R, the
result 0 ≤ |x| − x tanh(x/δ) ≤ αδ, α = 0.2785 holds.

3.1 Nussbaum-type Function

A continuous function N(•) is called a Nussbaum-type
function if it satisfies the following properties

lim
l→+∞

sup
1

l

∫ l

0

N(χ)dχ = +∞, lim
l→+∞

inf
1

l

∫ l

0

N(χ)dχ = −∞

In this paper, with multiple inputs and outputs, the
Nussbaum-type function inspired from Gao et al. (2021b,a)
is selected as

N(χ) = e
χ2

2

(
χ2 + 2

)
sin (χ) + 1 (17)

Lemma 5. Gao et al. (2021b,a) Let V (•) and χi(•) be
smooth functions defined on [0 tf ) with V (t) ≥ 0, χi(0) =
0 ∀i = 1, · · · , n. If Ni(•) is a Nussbaum-type function in
Eq. (17) with the following inequality satisfied

V (t) ≤ c0 + e−c1t

n∑
i=1

∫ t

0

(−ui (ν)Ni (χi(ν)) + 1) χ̇i(ν)e
c1νdν

here c1 > 0, ui(t) is a time-varying parameter that
belongs to the unknown set I :=

[
u−
i u+

i

]
with 0 ̸∈ I

and c0 is a bounded constant. Then V (t), χi(t) and∑n
i=1

∫ t

0
ui (ν)Ni (χi(ν)) χ̇i(ν)dν are bounded on [0 tf ).

3.2 Barrier Lyapunov Function

Four output errors are chosen as e1, e2, e3 in Eq. (12) and
e4 = q4e − 1. The Lyapunov function is designed as

Vq =
kq
2

(
3∑

i=1

log

(
ēi

ēi − ei

)
+ e24

)
(18)

here kq > 0 and log(•) denotes the natural logarithm. The
outputs ei, ∀ i = 1, 2, 3 that require strict enforcement of
constraints are incorporated using BLFs. The Lyapunov
function defined in Eq. (18) is smooth, non-negative and
strictly convex within the set Uq and admits a unique
global minimum at qe = 0q ∈ Uq.

4. CONTROLLER SYNTHESIS - BACKSTEPPING

Step 1: A steady state tracking error for qe is defined
as zq = qe − 0q. An angular velocity tracking error, zω,
is defined as the difference between ωe and a stabilizing

control, ξ, as zω = [z1ω z2ω z3ω]
T

= ωe − ξ. The term,
ξ ∈ R3×1, is designed as

ξ =
(
−k̃q − k̄q(t)

)
[q1e/q4e q2e/q4e q3e/q4e]

T
(19)

here the constant k̃q > 0 and the time-varying constant
k̄q(t) > 0 is designed later. Using zq and zω, derivative of
Vq in Eq. (18) is

V̇q = − k̃qkq
2

(
3∑

i=1

ei
ēi − ei

)
− kqk̃qe

2
4 (1 + q4e)

2q4e
· · ·

+ zT
ω QT

e Kqzq︸ ︷︷ ︸
vk1

+vs (20)

the scalar term vs is denoted by

vs =
−kq k̄qe24 (1 + q4e)

2q4e
−

kq

2

3∑
i=1

(
k̄q +

˙̄ei

ēi

)(
ei

ēi − ei

)
(21)

the matrix Kq is diagonal and positive definite in Uq

with Kq(1, 1) =
kq

ē3−e3
+

kq

ē2−e2
, Kq(2, 2) =

kq

ē1−e1
+

kq

ē3−e3
, Kq(3, 3) =

kq

ē1−e1
+

kq

ē2−e2
, Kq(4, 4) = kq.

Remark 3. To ensure the validity of Eq. (19), the condition
q4e ̸= 0 must be valid ∀t ≥ 0. Hence a mild restriction
is placed on the initial condition such that q4e(t0) ̸= 0,
and the subsequent adaptive control law must ensure
q4e ̸= 0 ∀ t > 0. This is feasible when the quaternion
error always lies within the feasible set, Uq, in which from
Remark (2), q4e > 0 is guaranteed.

Step 2: Choosing an augmented Lyapunov function, VT

VT = Vq + Vω + Vb, Vω =
zT
ω Jzω
2

, Vb =
b̃T b̃

2η
(22)

The term J indicates MOI matrix, b̃ and η > 0 indicate
the error in approximating the ideal weights and learning
rate. The derivative V̇ω invoking Lemma (3) is

V̇ω = zT
ω (vk2

+DnUτ + τd + V1θ1 + V2θ2) (23)

here, the vector vk2 represents

vk2
= −ω×Jntω + Jnt

(
ω×

e C
B
Br
ωr − CB

Br
ω̇r − ξ̇

)
· · ·

+ J̇nt

(zω
2

− ω
)

(24)

The term Jnt = Jn + JnmΨ(t) indicates the total nominal

part of MOI and J̇nt = JnmΨ̇(t). The matrices V1, V2 and
vectors θ1, θ2 represent

V1 =− ω×L1{ω}+ L1{ω×
e C

B
Br
ωr − CB

Br
ω̇r − ξ̇} (25)

V2 =− ω×L2{Ψ(t)ω}+ L2

{
Ψ̇(t)

(
(ωe − ξ)

2
− ω

)}
· · ·

+ L2

{
Ψ(t)

(
ω×

e C
B
Br
ωr − CB

Br
ω̇r − ξ̇

)}
(26)

θ1 =
[
J̃n11 J̃n12 J̃n13 J̃n22 J̃n23 J̃n33

]T
(27)

θ2 = [m̃1n · · · m̃kn]
T

(28)

Assumption 4. The perturbation in MOI and mass of the
moving/deployable parts are bounded quantities. Hence
the following relation holds, 0 < ∥θi∥ < θ̄i, ∀ i = 1, 2

Using Eq. (20) and Eq. (23) the derivative of the combined
Lyapunov function, VT , is

V̇T =− k̃qkq
2

(
3∑

i=1

ei
ēi − ei

)
− kqk̃qe

2
4 (1 + q4e)

2q4e
+ vs · · ·

+ zT
ωvk1

+ zT
ωvk2

+ zT
ωDnUτ · · ·

+ zT
ωV1θ1 + zT

ωV2θ2 + zT
ω τd −

b̃T
˙̂
b

η
(29)

Using Assumption (4), Assumption (3) and Lemma (2),
the following term is further expanded as

zT
ω (V1θ1 + V2θ2 + τd) ≤ ∥zω∥1

(
Σ2

i=1∥Vi∥F θ̄i + τ̄d
)

(30)

An ideal weight vector, b, and a regression vector, Φ,
are defined that exactly model the lumped uncertain-
ties and disturbances in Eq. (30) as bTΦ where b =[
θ̄1 θ̄2 τ̄d

]T
, Φ = [∥V1∥F ∥V2∥F 1]

T
. Further, as long as

the error quaternion (qe) lies within the feasible set (Uq),
we have q4e > 0. Consequently from Eq. (20) the following
observations are deduced i.) (1 + q4e)/q4e > 2 ii) The
constant k̄q in vs is designed as a time-varying parameter
such that k̄q + ˙̄ei/ēi > 0, ∀ i = 1, 2, 3. One possibility that
satisfies the criterion is

k̄q =

√
˙̄e21
ē21

+
˙̄e22
ē22

+
˙̄e23
ē23

+ kδ, kδ > 0 (31)

here kδ is a small positive value introduced to ensure
the derivative of k̄q in ξ̇ exists despite the derivative
of all the output error constraints, ˙̄ei ∀ i = 1, 2, 3, are
zero. These observations lead to the scalar vs ≤ 0 within
the feasible set Uq. Further, applying Lemma (1), the
Lyapunov derivative in Eq. (29) is simplified as

V̇T ≤ −k̃qVq+zT
ω

(
vk1

+ vk2

)
+∥zω∥1bTΦ+zT

ωDnUτ −
b̃T

˙̂
b

η

The control laws are designed as

τ = N̄(χ)
(
DT

n

(
DnD

T
n

)−1
)
ψ (32)

ψ = −vk1 − vk2 − k̃ωzω − b̂TΦTanh

(
zω
φ

)
(33)

here b̂ = b − b̃ indicates the approximated weight vector.
The term Tanh(•) ∈ R3×1 represents element-by-element
hyperbolic tangent function as

Tanh

(
zω

φ

)
=

[
tanh

(
z1ω

φ

)
tanh

(
z2ω

φ

)
tanh

(
z3ω

φ

)]T
(34)

In Eq. (32), the term N̄(χ) := diag{N(χ1) · · · N(χn)} ∈
Rn×n represents the diagonal Nussbaum gain matrix with
each element representing the Nussbaum-type function

defined in Eq. (17). The vector χ = [χ1 · · · χn]
T ∈ Rn×1
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here kq > 0 and log(•) denotes the natural logarithm. The
outputs ei, ∀ i = 1, 2, 3 that require strict enforcement of
constraints are incorporated using BLFs. The Lyapunov
function defined in Eq. (18) is smooth, non-negative and
strictly convex within the set Uq and admits a unique
global minimum at qe = 0q ∈ Uq.

4. CONTROLLER SYNTHESIS - BACKSTEPPING

Step 1: A steady state tracking error for qe is defined
as zq = qe − 0q. An angular velocity tracking error, zω,
is defined as the difference between ωe and a stabilizing

control, ξ, as zω = [z1ω z2ω z3ω]
T

= ωe − ξ. The term,
ξ ∈ R3×1, is designed as

ξ =
(
−k̃q − k̄q(t)

)
[q1e/q4e q2e/q4e q3e/q4e]

T
(19)

here the constant k̃q > 0 and the time-varying constant
k̄q(t) > 0 is designed later. Using zq and zω, derivative of
Vq in Eq. (18) is

V̇q = − k̃qkq
2

(
3∑

i=1

ei
ēi − ei

)
− kqk̃qe

2
4 (1 + q4e)

2q4e
· · ·

+ zT
ω QT

e Kqzq︸ ︷︷ ︸
vk1

+vs (20)

the scalar term vs is denoted by

vs =
−kq k̄qe24 (1 + q4e)

2q4e
−

kq

2

3∑
i=1

(
k̄q +

˙̄ei

ēi

)(
ei

ēi − ei

)
(21)

the matrix Kq is diagonal and positive definite in Uq

with Kq(1, 1) =
kq

ē3−e3
+

kq

ē2−e2
, Kq(2, 2) =

kq

ē1−e1
+

kq

ē3−e3
, Kq(3, 3) =

kq

ē1−e1
+

kq

ē2−e2
, Kq(4, 4) = kq.

Remark 3. To ensure the validity of Eq. (19), the condition
q4e ̸= 0 must be valid ∀t ≥ 0. Hence a mild restriction
is placed on the initial condition such that q4e(t0) ̸= 0,
and the subsequent adaptive control law must ensure
q4e ̸= 0 ∀ t > 0. This is feasible when the quaternion
error always lies within the feasible set, Uq, in which from
Remark (2), q4e > 0 is guaranteed.

Step 2: Choosing an augmented Lyapunov function, VT

VT = Vq + Vω + Vb, Vω =
zT
ω Jzω
2

, Vb =
b̃T b̃

2η
(22)

The term J indicates MOI matrix, b̃ and η > 0 indicate
the error in approximating the ideal weights and learning
rate. The derivative V̇ω invoking Lemma (3) is

V̇ω = zT
ω (vk2

+DnUτ + τd + V1θ1 + V2θ2) (23)

here, the vector vk2 represents

vk2
= −ω×Jntω + Jnt

(
ω×

e C
B
Br
ωr − CB

Br
ω̇r − ξ̇

)
· · ·

+ J̇nt

(zω
2

− ω
)

(24)

The term Jnt = Jn + JnmΨ(t) indicates the total nominal

part of MOI and J̇nt = JnmΨ̇(t). The matrices V1, V2 and
vectors θ1, θ2 represent

V1 =− ω×L1{ω}+ L1{ω×
e C

B
Br
ωr − CB

Br
ω̇r − ξ̇} (25)

V2 =− ω×L2{Ψ(t)ω}+ L2

{
Ψ̇(t)

(
(ωe − ξ)

2
− ω

)}
· · ·

+ L2

{
Ψ(t)

(
ω×

e C
B
Br
ωr − CB

Br
ω̇r − ξ̇

)}
(26)

θ1 =
[
J̃n11 J̃n12 J̃n13 J̃n22 J̃n23 J̃n33

]T
(27)

θ2 = [m̃1n · · · m̃kn]
T

(28)

Assumption 4. The perturbation in MOI and mass of the
moving/deployable parts are bounded quantities. Hence
the following relation holds, 0 < ∥θi∥ < θ̄i, ∀ i = 1, 2

Using Eq. (20) and Eq. (23) the derivative of the combined
Lyapunov function, VT , is

V̇T =− k̃qkq
2

(
3∑

i=1

ei
ēi − ei

)
− kqk̃qe

2
4 (1 + q4e)

2q4e
+ vs · · ·

+ zT
ωvk1

+ zT
ωvk2

+ zT
ωDnUτ · · ·

+ zT
ωV1θ1 + zT

ωV2θ2 + zT
ω τd −

b̃T
˙̂
b

η
(29)

Using Assumption (4), Assumption (3) and Lemma (2),
the following term is further expanded as

zT
ω (V1θ1 + V2θ2 + τd) ≤ ∥zω∥1

(
Σ2

i=1∥Vi∥F θ̄i + τ̄d
)

(30)

An ideal weight vector, b, and a regression vector, Φ,
are defined that exactly model the lumped uncertain-
ties and disturbances in Eq. (30) as bTΦ where b =[
θ̄1 θ̄2 τ̄d

]T
, Φ = [∥V1∥F ∥V2∥F 1]

T
. Further, as long as

the error quaternion (qe) lies within the feasible set (Uq),
we have q4e > 0. Consequently from Eq. (20) the following
observations are deduced i.) (1 + q4e)/q4e > 2 ii) The
constant k̄q in vs is designed as a time-varying parameter
such that k̄q + ˙̄ei/ēi > 0, ∀ i = 1, 2, 3. One possibility that
satisfies the criterion is

k̄q =

√
˙̄e21
ē21

+
˙̄e22
ē22

+
˙̄e23
ē23

+ kδ, kδ > 0 (31)

here kδ is a small positive value introduced to ensure
the derivative of k̄q in ξ̇ exists despite the derivative
of all the output error constraints, ˙̄ei ∀ i = 1, 2, 3, are
zero. These observations lead to the scalar vs ≤ 0 within
the feasible set Uq. Further, applying Lemma (1), the
Lyapunov derivative in Eq. (29) is simplified as

V̇T ≤ −k̃qVq+zT
ω

(
vk1

+ vk2

)
+∥zω∥1bTΦ+zT

ωDnUτ −
b̃T

˙̂
b

η

The control laws are designed as

τ = N̄(χ)
(
DT

n

(
DnD

T
n

)−1
)
ψ (32)

ψ = −vk1 − vk2 − k̃ωzω − b̂TΦTanh

(
zω
φ

)
(33)

here b̂ = b − b̃ indicates the approximated weight vector.
The term Tanh(•) ∈ R3×1 represents element-by-element
hyperbolic tangent function as

Tanh

(
zω

φ

)
=

[
tanh

(
z1ω

φ

)
tanh

(
z2ω

φ

)
tanh

(
z3ω

φ

)]T
(34)

In Eq. (32), the term N̄(χ) := diag{N(χ1) · · · N(χn)} ∈
Rn×n represents the diagonal Nussbaum gain matrix with
each element representing the Nussbaum-type function

defined in Eq. (17). The vector χ = [χ1 · · · χn]
T ∈ Rn×1
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represents the arguments of the Nussbaum-type function.
The pseudo-inverse part of Eq. (32) is denoted by D̄n :=

DT
n

(
DnD

T
n

)−1 ∈ Rn×3 and row vector i, ∀ i = 1, · · · , n
of matrix D̄n is indicated by d̄i ∈ R3×1. Similarly,
the column vector i, ∀ i = 1, · · · , n of matrix Dn is
indicated by di ∈ R3×1. From the identity DnD̄n = I,
the equation Σn

i=1did̄
T
i = I holds. Expanding the term

∥zω∥1 = Σ3
i=1|ziω|, by adding and subtracting the terms

k̃ωz
T
ω zω, z

T
ω b̂

TΦTanh
(

zω

φ

)
and substituting Eq. (32) and

Eq. (33) into the total Lyapunov derivative results in

V̇T ≤− k̃qVq − k̃ωz
T
ω zω − zT

ωψ +
(
Σ3

i=1|ziω|
)
bTΦ− b̃T

˙̂
b

η
· · ·

− b̂TΦTanh

(
zω
φ

)
+ zT

ω

(
Σn

i=1uiN(χi)did̄
T
i

]
)ψ (35)

Further, manipulating the term zT
ωψ := zT

ω (Σ
n
i=1did̄

T
i )ψ

and designing the adaptive laws as

χ̇i = −γiz
T
ωdid̄

T
i ψ ∀ i = 1, · · · , n and χi(0) = 0 (36)

˙̂
b = η

(
ΦzT

ωTanh

(
zω
φ

)
− σb̂

)
, φ = µ/(1 + ∥Φ∥∞) (37)

here constant σ > 0 indicates a stabilizing term, µ > 0
and γi, η > 0 represent learning rates. Substituting Eq.
(36) and Eq. (37) into Eq. (35) and invoking Lemma (2)

V̇T ≤− k̃qVq − k̃ωz
T
ω zω − σ

b̃T b̃

2
+

n∑
i=1

1

γi
(−uiN (χi) + 1) χ̇i · · ·

+ σ
bT b

2
+ bTΦ

3∑
i=1

(
|ziω | − ziω tanh

(
zωi

φ

))
(38)

Applying Lemma (4) and the inequality Φi/ (1 + ∥Φ∥∞) ≤
1, the final term in Eq. (38) is

bTΦ

3∑
i=1

(
|ziω | − ziω tanh

(
zωi

φ

))
≤ 3αµ

(
Σ2

i=1θ̄i + τ̄d
)

(39)

Substituting Eq. (39) into Eq. (38) leads to

V̇T ≤ −kdVT + kc +

n∑
i=1

1

γi
(−uiN (χi) + 1) χ̇i (40)

here, kd = min{k̃q, 2kω/λmax(J), ση} > 0 and kc = σ bT b
2 +

3αµ
(
Σ2

i=1θ̄i + τ̄d
)
> 0.

Remark 4. Gao et al. (2021b) The individual Nussbaum
gains N(χ) in Eq. (17) are designed such that when the
argument χ(t0) = 0, χ̇(t) = 0 ∀ t, the resulting Nussbum
gain matrix N̄(χ) in Eq. (32) simplifies to an identity

matrix. Then the remaining term,
(
DT

n

(
DnD

T
n

)−1
)
ψ, is

a standard control-norm minimizing torque synthesized for
an unsaturated actuator with no faults.

4.1 Stability Analysis of the Closed-loop System

Theorem 1. Under the Assumptions (1)-(3) together with
the control and adaptive laws synthesized in Eqs. (32),
(33), (36) and (37) the constrained reference attitude
tracking is achieved with the following conclusions 1.)
All variables of the closed-loop system are bounded. 2.)
The cone-angles, δi(t) ∀ i = 1, 2, 3, evolve strictly within
the predefined constraint set Uq and hence the condition
q4e > 0 holds.

Proof 1. Multiplying both sides of Eq. (40) by ekdt and
integrating the resulting expression over [0 t] results in

VT (t) ≤ VT (0)e
−kdt +

kc
kd

· · ·
n∑

i=1

1

γi

∫ t

0

(−ui(ν)Ni (χi(ν)) + 1) χ̇i(ν)e
kd(ν−t)dν (41)

In Eq. (41), as the term VT (0)e
−kdt+kc/kd ≤ VT (0)+kc/kd

and 0 < ui < 1, from Lemma (5), the Nussbaum argu-

ment, χi(t), the term
∑n

i=1
1
γi

∫ t

0
ui (ν)Ni (χi(ν)) χ̇i(ν)dν

and the Lyapunov function, VT (t), are bounded on [0 tf ).
From Eq. (22), the boundedness of VT leads to the in-
dividual positive definite functions Vq, Vω and Vb to be
bounded. This implies, with the initial attitude inside Ub,
the errors satisfy ei(t) < ēi(t)∀i = 1, 2, 3 and the variables

e4, zω and b̃ are bounded on on [0 tf ). The definition of
ei, ∀ i = 1, 2, 3 in Eq. (12) and the relation q4e = e4 + 1
implies qe remains bounded. The stabilizing function ξ
in Eq. (19), that is a function of qe stays bounded. The
angular velocity error ωe = zω + ξ remains a bounded
value. Further, using Eq. (2) and Eq. (3), the bounds on
qr and ωr from Assumption (1) leads to q and ω to be
bounded. Therefore all signals in the closed-loop system re-
main bounded. Further, in Eq. (41), within the interval 0 ≤
ν ≤ t, the term ekd(ν−t) ≤ 1 and the term

∫ t

0
χ̇i(ν)dν re-

mains bounded as χi is bounded. Therefore, the bound on∑n
i=1

∫ t

0
1
γi

(−ui(ν)Ni (χi(ν)) + 1) χ̇i(ν)e
kd(ν−t)dν is de-

noted by ke > 0. Then Eq. (41) simplifies to VT (t) ≤
VT (0)e

−kdt+ ke+
kc

kd
. The combined Lyapunov function is

upper bounded by V̄T = VT (0) + ke +
kc

kd
. In Eq. (22), the

inequality Vq ≤ VT ≤ V̄T always holds. This leads to

ei(t) ≤ ēi(t)

(
1− e

(−2V̄T
kq

))
∀ i = 1, 2, 3 (42)

From Eq. (42) it is clear that the tracking errors satisfy
ei < ēi ∀ i = 1, 2, 3 thereby strictly remaining within
the set Uq in which from Remark (2), q4e > 0 holds.
This implies the cone angles evolve within their respective
constraints, i.e., δi(t) < δ̄i(t) ∀ i = 1, 2, 3. Further, notice,
as t → ∞, the combined Lyapunov function satisfies
VT (t∞) ≤ kf := ke +

kc

kd
. This implies the tracking errors

are uniformly ultimately bounded as

ei(t∞) ≤ ēi(t∞)

(
1− e

(
−2kf
kq

))
, i = 1, 2, 3 (43)

5. NUMERICAL SIMULATION

A satellite is commanded to track a desired attitude
with orientation constraints under actuator faults and
saturation. While doing so, its antennas are simultaneously
commanded to spread out to establish communication.
The nominal and perturbed parameters in Eq. (4) are

Jn =

[
30 1 0.5
1 20 3
0.5 3 10

]
, J̃n =

[
3 0.1 −0.05
0.1 2 0.3

−0.05 0.3 1

]

m1n = 5, m̃1n = 0.5,m2n = 5, m̃2n = 0.5

ρ1(t) = 0.15 (0.3κt+ 0.1 sin (t))
[
0b̂1 1b̂2 0b̂3

]T
ρ2(t) = 0.15 (0.3κt+ 0.1 sin (t))

[
0b̂1 0b̂2 1b̂3

]T

Here κ = 1 if t ≤ 20 sec else κ = 20/t otherwise. All the
parameters are in S.I units. The nominal and perturbed
mass together with the position of antennas from COM
are indicated bymin, m̃in and ρi, respectively. The desired
attitude that needs to be tracked is

qr(t0) =
[
0 0 0 1

]T
ωr(t) = 0.025

[
sin(0.1πt) cos(0.1πt) sin(0.1πt)

]T
rad/s

The satellite starts with the following initial condition

q(t0) =
[
0.3 −0.2 0.2 0.9110

]T
, ω(t) =

[
0.1 −0.05 −0.05

]T
rad/s

While tracking Br the cone angles, δi, ∀ i = 1, 2, 3
are constrained to evolve within a predefined PPC as

δ̄i(t) = δ̄is +
(
δ̄i0 − δ̄is

)
e−

t
tc . The parameters are chosen

as δ̄i0 = 60
◦
, δ̄is = 0.05

◦
, tc = 3 sec. A bounded external

disturbance torque on the satellite in B frame is

τe = 10−2 × [5 cos (0.5πt) −3 sin (0.3πt) 4 sin (0.4πt)]
T
N-m

The satellite is controlled using four actuators arranged
in a pyramidal structure. Each actuator makes an angle

θi = θin + θ̃in with b̂3 axis and its projection on b̂1 −
b̂2 plane makes an angle ϕi = ϕin + ϕ̃in with b̂1 axis.
The nominal and perturbed orientation values are θin =
45

◦
, θ̃in = (−1)i+15

◦
, ϕin = (i − 1) × 90

◦ − 45
◦
, ϕ̃in =

(−1)i+15
◦
, ∀ i = 1, 2, 3, 4. The ith column, di ∀ i =

1, 2, 3, 4 of the nominal matrix, Dn ∈ R3×4, is

di = [sin(θin)cos(ϕin) sin(θin)sin(ϕin) cos(θin)]
T

The actuators are faulty that lead to the diagonal el-
ements of the effectiveness matrix as e1 = 0.7 +
0.09 sin (0.05t), e2 = 0.6 + 0.1 cos (0.08t), e3 = 0.4 +
0.08 cos (0.06t), e4 = 0.6+0.07 cos (0.07t). After t ≥ 40sec,
the third actuator fails completely, i.e., e3 = 0. During the
entire faulty duration the system remains fully actuated,
i.e., Assumption (2) is verified to hold. The corresponding
deviation torque in N-m is τ1f = 0.01 , τ2f = −0.03 +
0.03e−0.5t, τ3f = −0.02 + 0.02e−t, τ4f = 0.015. The

controller constants are selected as kq = 10−3, k̃q = 1,

k̄q = Eq. (31), kδ = 10−3, k̃ω = 20, η = 0.5, γi ∀ i = 0.025,

µ = 0.1, σ = 10−3, b̂(t0) = 03×1, χi(t0) ∀ i = 0. A
time step of 0.025 sec was chosen with a total simulation
time of 60 sec. An illustration of the quaternion, q, and
angular velocity, ω, is depicted in Fig (2). Notice that
the states are driven to their desired values, qr and ωr,
respectively. Figure (3) shows the evolution of the cone
angles, δi, ∀ i = 1, 2, 3. Despite actuator faults and a
complete failure, the control and adaptive laws ensure con-
straint satisfaction for the entire duration. The designed
control torque, τ , and the supplied torque, Tanh(τ ), by
the healthy actuators are indicated in Fig. (4). Notice that
while τ may violate the saturation constraints, the torque
supplied to the actuators, Tanh(τ ), remains within the
constraint limit of 10 N-m. Moreover, after t > 40 sec, the
control automatically compensates for the failed actuator.
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